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Abstract. In this paper we consider three problems, which are related to the classical
Monge’s optimal mass transport problem and which are known to be equivalent when
the ambient space is an open, convex and bounded subset of Rn ; to these problems there
correspond different definitions of particular measures (often called transport densities),
which are also known to be equivalent. Here we will generalize the setting of these problems
and the resulting definitions of transport densities to the case of a Riemannian manifold
endowed with a finslerian semidistance, and we will see that the equivalences still hold.
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1. Introduction

Here we briefly introduce the original context of the problems we will study.

The celebrated mass transport problem, first formulated by Monge over two
centuries ago, can be today expressed as the search of γ which minimizes the cost

C(γ) =
∫∫

Ω×Ω

c(x, y) dγ(x, y) (1.1)

among the transports, i.e. the measures γ ∈ M+(Ω × Ω) such that γ1 = f + and
γ2 = f −, where f + and f − are given positive measures of equal (and finite) total
mass on Ω and we denote by γ1 and γ2 the projections of γ on Ω. The “cost” c
is a function from Ω × Ω to R+ such that c(x, y) = c(y, x): the original problem
was with Ω ⊆ Rn and c(x, y) = |x − y| (the Euclidean norm of Rn), but also
other situations (for example c(x, y) = |x − y|p) have been considered. This way
to express the problem was first suggested by Kantorovich ([15], [16]), and then it
has been deeply studied (here there is a vast literature, to give an example only [11]
or [14] are cited). Two of the main and best known results are collected in the
following theorem, which holds for a generic topological space Ω:
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Theorem 1.1. If c is l.s.c. and bounded there exists an optimal transport γ . If,
moreover, c is a semidistance, for each optimal transport γ there exists a function
u (often called the Kantorovich potential) such that u(x) − u(y) ≤ c(x, y) for any
couple (x, y) and u(x) − u(y) = c(x, y) for γ−a.e. (x, y) ∈ Ω × Ω.

Given a transport γ , the measure µ ∈ M+(Ω) defined by

〈µ, ϕ〉 :=
∫∫

Ω×Ω

(∫
Ω

ϕ(z) dH1
xy(z)

)
dγ(x, y) ∀ϕ ∈ Cb(Ω), (1.2)

is usually called the transport density; with H1
xy we denote the restriction of

the one-dimensional Hausdorff measure H1 to the segment xy. We interpret this
formulation in terms of the original transport problem by saying that γ is the
transport which takes a mass γ(A × B) from A and transports it onto B, and then
the transport density results in nothing else than the distribution in Ω of the work
done by the transport γ . We will call the optimal transport density each transport
density corresponding to a transport γ of minimal cost.

The second problem we consider was proposed by Brenier (see [8] and [5]),
and consists of finding the best configuration which transports f + onto f −. A con-
figuration is a set of scalar measures ft and vectorial measures Et on Ω, with
t ∈ [0, 1], such that the compatibility condition f ′

t + div Et = 0 holds in the
distribution sense; by saying that { ft, Et} “transports f + onto f −” we intend that
f0 = f + and f1 = f −. The “goodness” of a configuration is given by its cost

C
({

ft, Et
}) :=

∫ 1

0
‖Et‖ dt, (1.3)

where ‖Et‖ = |Et |(Ω) is the norm of Et in the space of the vectorial measures on Ω

(see the Appendix for the definition of the measure |Et |); of course a configuration
is better if its cost is lower. The interpretation of these configurations in terms of the
mass transport problem is clear: we imagine that a transport from f0 to f1 is made
in a unitary time, and then ft and Et , respectively, say which is the distribution
of mass and how it has to be moved at time t. For each configuration { ft, Et} we
consider the work density, i.e. the measure µ given by

µ :=
∫ 1

0
|Et | dt. (1.4)

We will call the optimal work density each work density corresponding to a con-
figuration { ft , Et} of minimal cost.

About the interest and the different physical interpretations of this problem see
the introduction of [5].

The last problem to be considered is the shape optimization, which can be
reformulated (see [7]) as the search of the extremals of the following dual problems:

sup
{∫

Ω

u d( f + − f −) : u is 1-Lipschitz
}

(1.5)

inf

{∫
Ω

d|ν| : − div ν = f + − f −
}

. (1.6)
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The optimal shapes are the measures µ = |ν| where ν is a solution of (1.6).
In [7] it was also shown the connection between the shape optimization problem
and the following PDE equation, whose formulation in the context of the Monge–
Kantorovich problem is due to Evans and Gangbo (see [12]):

{− div (µDu) = f + − f − on Ω

|Du| = 1 µ − a.e.,
(1.7)

where µ ∈ M+(Ω) and u is a 1-Lipschitz function on Ω; we will discuss the
connections which hold on the manifolds in Section 3.5.

The equivalence between these problems (with, as usual, c(x, y) = |x − y| for
the Monge problem) can be collected in the following:

Theorem 1.2. inf(1.1) = inf(1.3) = inf(1.6). Moreover, the set of the optimal
transport densities, the set of the optimal work densities and the set of the optimal
shapes are the same.

Let us discuss for a moment the second part of the last assertion: in general,
there are several optimal transport densities, corresponding to different transports
of minimal cost, as there are several optimal work densities and optimal shapes;
however, a measure µ on Ω is an optimal transport density if and only if it is an
optimal work density and if and only if it is an optimal shape.

Some discussions about the equivalences between the problems and the proofs
of the assertions of the preceding theorem can be found in [1], [6] and [10], under the
hypothesis that Ω is an open, bounded and convex subset ofRn; a generalization that
has been already considered (see for example [6]) is to imagine a closed Dirichlet
region Σ ∈ Ω on which the transport is free, while the case of a Riemannian
manifold was considered also in [9].

In this work we will consider the more general situation in which the ambient
space is a Riemannian manifold M; moreover, the Riemannian distance will be
replaced by a more general finslerian semidistance, i.e. the infinitesimal length
of a path σ is given by j(σ, σ ′), where we are given a positively 1-homogeneous
function j : TM −→ R

+: throughout the paper, when v ∈ Tx M we will always
write j(x, v) instead of simply j(v). Note that d reduces to the standard Riemannian
distance if j(x, v) = |v|, while the case of the Dirichlet region Σ discussed above
is the situation in which j(x, v) = 0 if x ∈ Σ and j(x, v) = |v| otherwise.

The plan of the paper is the following: in Section 2 we list and discuss the
different hypotheses we will use through the paper; in Section 3 we will set the
problems and their relaxations in our context; in Section 4 we will give our results,
namely that the extremals of the problems are equal, that the problems – or their
relaxed version – have always a solution and that the optimal measures of the
three problems are the same; moreover, we will discuss the non-intersection of the
transport rays in the strictly convex case.

We state here a result of measure theory we will often use through the paper
(by P (X) we denote the set of the probability measures on X):
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Theorem 1.3 (disintegration theorem). Let f : X −→ Y and µ ∈ M(X). Then
there exist µy ∈ P (X) such that µy is concentrated on {x : f(x) = y} for any
y ∈ Y and

∫
X

ϕ(x) dµ(x) =
∫

Y

(∫
X

ϕ(x) dµy(x)

)
d f#µ(y) ∀ϕ ∈ Cb(X).

Moreover the measures µy are univocally determined up to a negligible set with
respect to f#µ.

The proof of this assertion can be found, for instance, in [2].

2. Ambient space and hypotheses

In this paper M is an n−dimensional connected Riemannian manifold, not neces-
sarily complete and possibly with a boundary, whose Riemannian metric is denoted
by dM . We want to define a finslerian semidistance on M (to find a general dis-
cussion on finslerian metrics, refer to [4]); to do this, we are given a function
j : TM −→ R

+ 1-homogeneous, i.e. j(x, λv) = |λ| j(x, v). Then we denote by S
the set of the paths in M which are Lipschitz with respect to dM , and we regard S
as a metric space by means of the distance

dS(σ, τ) := max
t∈[0,1]

dM (σ(t), τ(t)) , (2.1)

here we think, as we will always do, σ : [0, 1] −→ M as the parameterization at
constant speed of any element σ ∈ S. Now we define the length of each path σ ∈ S
as

l(σ) :=
∫ 1

t=0
j
(
σ(t), σ ′(t)

)
dt,

finally the finslerian semidistance d between two points is simply the infimum of
the lengths of the paths that connect them, i.e.

d(x, y) := inf {l(σ) : σ ∈ S, σ(0) = x, σ(1) = y} .

We will call M a manifold of type 0 if the following holds:

0-a) The metric space (M, d) is bounded;
0-b) j is locally bounded, i.e. for each x ∈ M there exists a neighborhood U of x

and a constant K such that j(z, v) ≤ K |v| for each z ∈ U and v ∈ Tz M;
0-c) for each x ∈ M the restriction j(x, ·) is a convex function.

If M is of type 0, we will call it a manifold of type 1 if the following holds:

1-a) M is a complete manifold, possibly with boundary;
1-b) j is l.s.c.;
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1-c) there exists an idempotent map ret : S −→ S (i.e. ret2 = ret) such that ret(σ)

has the same extremal points of σ , H1
j ret(σ) ≤ H1

j σ – see (3.1) – and,
denoted by lM the Riemannian length of the paths, it holds that

lM(ret(σ)) ≤ C + α l(σ), (2.2)

we will call “retraction” the function ret and its push-forward ret# : M+(M)→
M+(M) and “retracted” a path σ or a transport η if ret(σ) = σ or ret#(η) = η.

Finally, if M is of type 0, we will call it a manifold of type 2 if, denoted by
(M̂, dM) and (Ŝ, dS) the completions of (M, dM ) and (S, dS), respectively, the
following holds:

2-a) M̂ is a manifold of type 1, where we extend j from TM to the whole T M̂ by
lower semicontinuity;

2-b) for each σ ∈ Ŝ, there exists a sequence σi → σ in S such that l(σi) → l(σ).
It is easily noted that Ŝ is the metric space of the paths on M̂ which are
Lipschitz with respect to dM, where the distance is given as in (2.1).

2.1. About the hypotheses. Here we briefly discuss the hypotheses we made:
first of all, let us note that our hypotheses are very weak; in fact, they cover many
more situations than the ones which have been already considered for the Monge–
Kantorovich problem, and in particular all the compact manifolds with a boundary,
equipped with any Riemannian metric and possibly with a Dirichlet region. In the
manifolds of type 0, the more general we can work with, the problems presented
in Section 1 will be suitably restated, and we will prove that the extremals are still
equal. Note that asking M to be a bounded metric space allows us to avoid situations
in which all the extremals are +∞, which has nothing of particular interesting and
forces to make a lot of boring distinctions; the fact that j is locally bounded ensures
that the distance d is continuous with respect to the Riemannian topology; finally,
the convexity assumption is standard when dealing with a finslerian semidistance.

It is easy to imagine that we can not hope the extremals to be reached without
some completeness hypotheses: in fact, we will prove the existence of solutions
and the fact that the optimal measures of the problems are the same for the manifold
of type 1, which are complete, and for the manifold of type 2, in which we will
consider a relaxed setting of the problems passing to the completion. To convince
ourselves that these hypotheses are nearly essential to get the existence of solutions,
we point out that:

1) If j were not l.s.c., we could not hope to have paths of minimal length, which
is clearly essential to reach the extremals of the problems; moreover, with
standard convexity arguments the lower semicontinuity of j implies the one of
l : S → R

+.

2) The hypothesis 1-c) seems at first glance a bit strange, but it is quite natural: the
idea is that if for example σ contains some closed subpath, then ret(σ) is without
them; or if in σ there is a long – in the Riemannian sense – part in a Dirichlet
region (it is possible since it has null finslerian length), then in ret(σ) it will be
replaced by a short one with the same extremal points. This hypothesis is useful



220 A. Pratelli

because if there are short paths with great Riemannian length, we need some
corresponding paths which are short also in the Riemannian sense; if not, there
could be a lack of paths of minimal length, and this would of course prevent
the minimal being achieved. However, if for example on M there is a Dirichlet
region Σ and j(x, v) ≥ ε|v| for x /∈ Σ, (2.2) holds when α = ε−1 and C is
the sum of the diameters of the arcwise connected components of Σ (if finite).
Vice versa, if there is no ε such that j(x, v) ≥ εv there are counter-examples
to the existence of minimizers.

3) The hypothesis 2-b) is fundamental to made a good relaxation of the problems
in the non-complete case since, if it does not hold, the extremals could change
passing to the relaxed formulations: in fact, there could be paths in M̂ connect-
ing two points with a length strictly smaller than the distance between them.
However, note that this is not a strong hypotheses: it holds, for example, if j is
continuous on M̂ \ M.

3. Setting of the problems and relaxation

In this section we will set the problems in the more general context of the manifolds
of type 0; then, we will relax them in the non-complete case of the manifold of
type 2; then, we discuss the possibility of generalizing problem (1.7); finally, we
present some operations which can be done with the transports. In the following,
f + and f − will be positive measures on M of equal total mass, and we will denote
f = f + − f −.

3.1. The Monge–Kantorovich problem. Let us recall that, in the classical case
of a convex subset Ω of Rn , a transport is simply a measure γ on Ω × Ω, whose
meaning is that a mass γ(x, y) has to be moved from x to y; γ does not say how
to move this mass, but this does not give difficulties since clearly the best way is
to follow the segment from x to y. In our new setting the situation is no longer so
easy, because, given x and y in M, there could be more than one shortest path from
x to y, or there could be no shortest path at all: to say that a certain mass must
travel from x to y is then not sufficient, we must specify which path has to be used.
The best definition for a transport is then the following:

Definition 3.1. Given f +, f − ∈ M+(M) of equal total mass, a transport from
f + to f − is a measure η ∈ M+(S) such that π0#η = f + and π1#η = f −.

Here, and also in the rest of the paper, πt : S −→ M is the function defined
by πt(σ) = σ(t), recalling that we always think of σ as parameterized at constant
speed. It is easy to understand how we think of such a measure η as a transport: η(σ)

indicates the quantity of mass which must be moved following the path σ , and then
π0#η and π1#η are the distributions of mass that start and arrive, respectively. We
can note that in this new setting, where giving a transport means saying precisely
how to move the mass, the transports are much more similar to the configurations (in
the sense of Brenier). In fact, the difference between transports and configurations
will be better discussed in Remark 4.3.
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Having defined the transports, we have now to specify their cost; since η(σ)

is the quantity of mass which is moved through the path σ , it is not difficult to
generalize (1.1) defining the cost of η, which can also be +∞, as

C(η) :=
∫

S
l(σ) dη(σ). (MK)

Note that what we are presenting is a generalization of the classical transport
problem in the topological space M with, as cost, the semidistance d, and we still
have inf(1.1)=inf(MK): in fact, we can associate to the “new” transport η the “old”
transport γ = (π0, π1)#η, and it is clearly C(γ) ≤ C(η); on the other hand, if
β : M × M −→ S is a measurable selection of paths which are optimal up to ε and
we associate to the “old” γ the “new” η = β#γ , it is C(η) ≤ C(γ)+ε‖γ‖ (as usual,
throughout the paper we will denote the norm of a positive measure α ∈ M(X)

with ‖α‖ = α(X)). This argument also shows that a minimizing transport (if there
exists one) is concentrated on geodesics for the semidistance d.

In order to introduce the transport densities, as it can be understood recall-
ing (1.2), we have first to define H1

j σ for σ ∈ S, which is the 1-dimensional
Hausdorff measure weighed with j on σ : formally, if ϕ ∈ Cb(M), it can be com-
puted by

〈
H1

j σ, ϕ
〉 :=

∫ 1

0
ϕ (σ(t)) j

(
σ(t), σ ′(t)

)
dt. (3.1)

We can now define the transport density associated to a transport η: the direct
generalization of (1.2) turns out to be

µ :=
∫

S
H1

j σ dη(σ); (3.2)

note also that l(σ) = 〈H1
j σ, 1〉 and then C(η) = 〈µ, 1〉 = µ(M).

3.2. The Brenier problem. The new formulation of the Brenier problem will be
the same as the old one, and we will need only to extend the definitions of the objects
we work with to our new setting. Recalling the definitions given in the Appendix, we
start defining the configuration of any set { ft ∈ M+(M), Et ∈ Mn(M), t ∈ [0, 1]}
such that the compatibility condition

f ′
t + div Et = 0 (3.3)

holds. The meaning of (3.3) is that for each ϕ ∈ C∞
b (M) the equality d/dt〈 ft, ϕ〉 =

〈Et, Dϕ〉 holds in the weak sense: then, if { ft , Et} is a configuration, for any
ϕ ∈ C∞

b (M) the function t → 〈Et, Dϕ〉 is in L1
loc([0, 1]) and t → 〈 ft , ϕ〉 is in

W1,1
loc ([0, 1]), so in particular it is continuous. This implies that the measure ft

is well defined for any time t, and then it makes sense to say that { ft, Et} is
a configuration from f + to f −; in particular the measures ft are somehow an
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interpolation between f0 and f1. With an easy generalization of (1.3), we define
the cost of a configuration as

C
({

ft, Et
}) :=

∫ 1

0

∫
M

j
(
x, dEt(x)

)
dt, (Br)

where, writting any ν ∈ Mn(M) as ν = ω̄|ν| as discussed in the Appendix, we will
throughout the paper, intend

j(x, ν) := j(x, ω̄) |ν| ∈ M+(M);
this means that, for any continuous and bounded function ϕ,

〈 j(x, ν), ϕ〉 =
∫

M
ϕ(x) j(x, ν) =

∫
M

ϕ(x) j(x, ω̄) d|ν|.

Finally, the definition of the work density which generalizes (1.4) is

µ :=
∫ 1

0
j(x, dEt(x)) dt. (3.4)

As was made for the Monge–Kantorovichproblem, we can note that C
({ ft, Et}

) =
〈µ, 1〉 = µ(M).

3.3. The shape optimization problem. As we said in the introduction, the shape
optimization problem consists of finding two dual extremals; to generalize them,
we consider first of all the set Lip j(M) of the functions on M which are 1-Lipschitz
with respect to d (recall that d depends on j). So, instead of (1.5), we will try now
to find

sup
∫

M
u d f (3.5)

among all u ∈ Lip j(M); note that, thanks to the local boundedness of j , the elem-
ents of Lip j(M) are locally Lipschitz, and so continuous, with respect to dM; more-
over, since (M, d) is bounded by hypothesis 0-a), then the elements of Lip j(M)

are also bounded: thus the integral in (3.5) is well defined.
On the other hand, the search of the minimizers of (1.6) becomes the search of

inf
∫

M
j(x, ν) (SO)

among all ν ∈ Mn(M) such that − div ν = f , i.e. 〈 f, ϕ〉 = 〈ν, Dϕ〉 for each
ϕ ∈ C∞

b (M). Since we refer to (3.5) and (SO) as “dual problems”, it can be
imagined that we will prove these extremals are equal; we prove now the first
inequality, the second one will follow from the proof of Theorem A:

Proposition 3.2. sup(3.5) ≤ inf(SO).
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Proof. Let us take a smooth 1-Lipschitz function u and a vectorial measure ν ∈
Mn(M) such that − div ν = f ; recalling the definition of the semidistance d and
the fact that u ∈ Lip j(M) it is easy to deduce that

Du(x) · ω̄(x) ≤ j
(
x, ω̄(x)

) |ν|−a.e., (3.6)

where we write, as in the Appendix, ν = ω̄|ν|. We can then write
∫

M
u d f =

∫
M

Du · dν =
∫

M
Du · ω̄ d|ν| ≤

∫
M

j
(
x, ω̄

)
d|ν| =

∫
M

j(x, ν). (3.7)

The extension of the result for any u ∈ Lip j(M) can be obtained using the definition
and the properties of the tangential derivatives given in [7] as generalized in [13]:
in fact, the elements of Lip j(M) are easily seen to be in W1,2

|ν|,loc, thus the tangential
derivative D|ν|u is defined |ν|−a.e.; moreover, since u ∈ Lip j(M) then (3.6)
generalizes as

D|ν|u(x) · ω̄(x) ≤ j
(
x, ω̄(x)

) |ν|−a.e.

Finally, since for any v ∈ W1,2
µ,loc and any ϕ such that div (ϕµ) ∈ M

∫
Dµv · ϕ dµ = −〈 div (ϕµ), v〉

holds, setting ϕ = ω̄, µ = |ν| and v = u we find
∫

M
D|ν|u · ω̄ d|ν| =

∫
M

u d f,

and then, as in (3.7), we conclude that
∫

u d f ≤
∫

j
(
x, ω̄

)
d|ν| =

∫
j(x, ν).

Since the last inequality holds for a generic u ∈ Lip j(M) and ν such that
− div ν = f , taking the sup in the left side and the inf in the right side we conclude
the proof. �

3.4. Relaxation of the problems. As we noted in Section 2, the completeness of
the space M is essential to hope for the existence of solutions for our problems.
For example, if M is a ball in Rn without the center and with the Riemannian
distance, x and y are two opposite points and f + = δx and f − = δy, then clearly
inf(MK ) = d(x, y), but any path between x and y is strictly longer than d(x, y)
and then the inf can not be reached; the same reason shows that no configuration is
optimal and that also (SO) is not a minimum. Only in (3.5) is the maximum always
attained, and in fact we will not need to relax that problem.

Let us then consider a manifold M of type 2: we will relax the problems simply
by considering them with M̂ and Ŝ in place of M and S. Then a relaxed transport
from f + to f − is nothing else than a measure η ∈ M+(Ŝ) such that π0#η = f +
and π1#η = f −; in the same way, a relaxed configuration is { ft, Et}, where
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the ft and the Et are now scalar and vectorial measures on M̂, if the compatibility
condition (3.3) holds and f0 = f +, f1 = f −; finally, a relaxed shape is now the
measure j(x, ν) if − div ν = f and ν is a vectorial measure on M̂. The relaxed
problems will be then the search of the relaxed transports, or configurations, or
shapes, which are extremals for (MK), (Br) or (SO), where the integrals must
be intended over M̂ and Ŝ instead of M and S. Finally, note that the problem to
maximize (3.5) need not be extended: in fact, the 1-Lipschitz functions on M or M̂
are exactly the same by construction, and the integral

∫
u d f over M or M̂ does

not change, since f is a measure on M. Moreover, it is easily seen that (3.5) admits
a maximum, recalling that

∫
d f = 0 and applying the Ascoli–Arzelà theorem to

a maximizing sequence of functions with 0 mean.

3.5. The extension of problem (1.7). As we said in the introduction, in the
classical setting there is a connection between the shape optimization problem
and the PDE equation (1.7), namely that (u, µ) solves (1.7) if and only if u and
ν = µDu separately solve (1.5) and (1.6). Since our finslerian context is too general
to give a notion of gradient, in this paper we are not interested in a generalization
of (1.7); however, in this section we will briefly describe how this can be done in
a particular case, which contains most of the most interesting situations. To give
a meaningful definition of “gradient”, the strict convexity of j is needed: let us
then assume, only for this section, that there is a closed Dirichlet region Σ such
that j is continueous on M \ Σ and, if x ∈ Σ then j(x, ·) ≡ 0, while otherwise
j(x, ·) is strictly convex on Tx M, clearly except for the multiple vectors (recall the
1-homogeneity). Then, if u ∈ W1,∞

loc (M) and x /∈ Σ is a point where Du(x) is
defined, it is u(x + εv) ≈ u(x) + ε Du(x) · v and d(x, x + εv) ≈ ε j(x, v), and then
the slope is

v −→ Du(x) · v

j(x, v)
. (3.8)

On the unit sphere of Tx M this is a continuous function, and then by compactness
it admits a maximum v̂, which is unique thanks to the strict convexity of j on Tx M.
For each u ∈ W1,∞

loc (M) and x /∈ Σ where Du(x) is defined, then, we define the
gradient of u at x as

∇j u(x) := Du(x) · v̂

j(x, v̂)2
v̂,

which is the vector on the direction of the maximal slope such that j(x,∇j u(x))

equals that slope; then it easily follows that Lip j(M) are exactly the continuous

elements of W1,∞
loc (M) such that j

(
x,∇j u(x)

) ≤ 1 for a.e. x ∈ M \ Σ. Now we
need to generalize this concept with respect to a measure: to do this, suppose we
are given a measure µ and let x /∈ Σ such that Dµu(x), the µ-tangential gradient
(see [7] and [13]), is defined. Let then v̂, as before, be the unique maximum of (3.8)
on the unit sphere of Tx M: the µ-tangential gradient of u at x is

∇j,µ u(x) := Dµu(x) · v̂

j(x, v̂)2
v̂,
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which is clearly defined µ−a.e.; now, we can finally generalize problem (1.7) to
the search of a measure µ ∈ M+(M) and a function u ∈ Lip j(M) such that

{− div (µ∇j,µ u) = f on M \ Σ

j(x,∇j,µ u) = 1 µ − a.e. on M \ Σ.
(3.9)

This is a good extension of the classical setting, since we can prove the:

Proposition 3.3. There are solutions for problem (3.9); in particular, if u and ν

are optimal for (3.5) and (SO), then (u, j(x, ν)) solves (3.9).

Proof. Let us take u and ν solving (3.5) and (SO) – Theorem B will prove that such
extremals exist – and, defining µ = j(x, ν), write ν = θµ + ν̃ where ν̃ = ν Σ:
then j(x, θ) ≡ 1 µ−a.e.; recall now that Dµu(x) · v ≤ j(x, v) for µ−a.e. x and
each v thanks to the 1-Lipschitz property of u and that 〈ν̃, Du〉 = 0, as one can
infer from the continuity of u and the fact that − div ν = f ∈ M(M). Since, as we
will note with Corollary 4.1, inf (SO) = sup (3.5), we have
∫

M
dµ =

∫
M

j(x, ν) = inf (SO) = sup (3.5) =
∫

M
u d f = 〈u,− div (θµ + ν̃)〉

=
∫

M
Dµu · θ dµ ≤

∫
M

j(x, θ) dµ =
∫

M
dµ;

it follows that Dµu · θ = j(x, θ), and this implies that ∇j,µ u = θ; since prob-
lem (3.9) requires the validity of − div (µ∇j,µ u) = f only on M \ Σ, (u, µ)

solves (3.9). �
The converse of the theorem is only partially true: in fact, if (u, µ) solves (3.9)

then u is extremal for (3.5) and ν = µ∇j,µ u is such that
∫

j(x, ν) = (SO); but
− div ν = f holds only out of Σ and not necessarily on the whole M (but we can
change ν in Σ such that the equation holds on M). However, since j(x, ·) ≡ 0
in Σ, it follows that the measures µ in the solutions of (3.9) are exactly the optimal
shapes.

3.6. Useful operations in the theory of mass transport. Here we define four
useful operations we can have to do with the transports and prove their main
properties.

3.6.1. The restriction. Let us begin with the restriction: if η ∈ M+(S) is a trans-
port from f + to f − and h ≤ f +, we define the restriction of η to h (or, more
precisely, the restriction on the first component) as the transport

η|h := (
h f + ◦ π0

)
η,

where h f + ∈ L1
f +(M) is the density of h with respect to f +, i.e. h = h f + f +. It

is immediatly noted that π0η|h = h, which means that η|h is a transport moving h
somewhere, and that if f + = g+h then η = η|g +η|h and C(η) = C(η|g)+C(η|h).
In the same way one can make the restriction on the second component to h ≤ f −,
that we will denote η|h .
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3.6.2. The composition. The second operation we consider is the composition of
transports: if η transports f + onto g and ν transports g onto f −, it is clear that
we would gladly consider some transport ν ◦ η that moves f + onto f −; it is not
difficult to write down the definition which corresponds to what we have in mind,
that turns out out be

〈ν ◦ η, ϕ〉 :=
∫

x∈M

(∫∫
(σ,τ)∈S×S

ϕ(σ ◦ τ)dνx(σ) dηx(τ)

)
dg(x),

where νx and ηx denote the disintegrations of ν and η with respect to π0 and π1 in
the sense of Theorem 1.3; note that σ ◦ τ is well defined, since for νx−a.e. σ and
ηx−a.e. τ we have σ(0) = τ(1) = x. Some straightforward calculations prove the
following:

Proposition 3.4. The composition ν ◦ η is a transport that moves f + onto f −;
moreover, ζ ◦ (ν ◦ η) = (ζ ◦ ν) ◦ η; finally the transport density is additive, in the
sense that µν◦η = µν + µη, and then C(ν ◦ η) = C(ν) + C(η).

3.6.3. The simplification. We want to define now the simplification of transports:
given η0, which transports f + + �0 onto f − + �0, we would like to build another
transport moving f + onto f − in a reasonable way (we mean doing somehow
what η0 does; anyway, this will be more clear with Proposition 3.5): to make this,
let us consider η0| f + , and write it as η0,a +η0,b, where the first part transports mass
on f − and the second on �0; formally,

η0,a := (
η0| f +

)|π1#(η0| f + )∧ f −
η0,b = η0| f + − η0,a;

on the other hand, we divide η0|�0
as η0,c + η0,d , where

η0,c := (
η0|�0

)
|π1#η0,b

η0,d = η0|�0
− η0,c;

so we write η0 = η0,a +η0,b +η0,c +η0,d , and η0,a transports part of f + onto a part
of f −, η0,b transports the rest of f + onto a part of �0, η0,c transports this part of
�0 somewhere and finally η0,d concludes everything; note that one can make the
composition η0,c ◦η0,b. Let us then define τ0 = 0, τ1 = η0,a, η1 = η0,c ◦η0,b +η0,d ,
�1 = π0#η0,d and, finally, f +

0 = f +, f −
0 = f −, f +

1 = π0#η1 − �1 and f −
1 =

π1#η1 − �1. So, since ‖ f +‖ ≤ ‖ f +
0 − f +

1 ‖ + ‖ f +
1 ‖, recalling that τ0 + τ1 and η0,b

transport f +
0 − f +

1 onto f −
0 − f −

1 and f +
1 onto �0 − �1, respectively, we obtain

‖ f +‖M+(M) ≤ ‖τ0 + τ1‖M+(S) + ‖�0 − �1‖M+(M).

But now we have η1 that transports f +
1 + �1 onto f −

1 + �1, and then we can iterate
our construction finding ηi , τi , �i , f +

i and f −
i ; so τ0 + · · ·+ τi transports f + − f +

i
on f − − f −

i , and the last inequality generalizes as

‖ f +‖M+(M) ≤ ‖τ0 + · · · + τi‖M+(S) + ‖�i−1 − �i‖M+(M); (3.10)

now, since �0 ≥ �1 ≥ · · · ≥ �i and ‖τ0 + · · · + τi‖ ≤ ‖ f +‖, we infer that
‖�i−1 − �i‖ → 0 and τ0 + · · · + τi → τ; then, thanks to (3.10), it follows that τ

transports exactly f + onto f −. This measure τ is what we call the simplification
of η with respect to �0: we have the:
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Proposition 3.5. If τ is the simplification of η, µτ ≤ µη. Recalling that, as noted
in Section 3.1, C(τ) = ‖µτ‖ and C(η) = ‖µη‖, it follows that C(τ) ≤ C(η).

Proof. The construction made before, together with Proposition 3.4, assures us that
µη = µτ0+···+τi +µηi ; then µτ0+···+τi is an increasing sequence of measures bounded
by µη, and so µτ0+···+τi → µ∞ with µ∞ ≤ µη. We will conclude by proving that
µτ ≤ µ∞: in fact, given 0 ≤ ϕ ∈ C(M), 〈H1

j σ, ϕ〉 is a l.s.c. function of σ (as
we will better discuss in Lemma 4.5), and then the convergence of τ0 + · · · + τi

to τ and the definition (3.2) of µ imply 〈µτ, ϕ〉 ≤ lim inf〈µτ0+···+τi , ϕ〉 = 〈µ∞, ϕ〉.
�

3.6.4. The fattening. The last operation we consider is, in a certain sense, the
inverse of the simplification: given ηwhich transports f + onto f − and � ∈ M+(M),
we could need another transport moving f + + � onto f − + �; it will be simply
η + Id�, where Id� is the trivial transport that moves � onto itself without moving
anything: we will call it the fattening of η with respect to �; note that the fattening
leaves the transport density unchanged.

4. Results

Here are the results of this paper: we begin by proving that on a manifold of
type 0 the extremals of the three problems are equal, then we study how to make
a passage between the items of the different problems; then we will state and prove
our main results, namely that the problems on the manifolds of type 1 and the
relaxed problems on the manifolds of type 2 have solutions, and the corresponding
optimal measures are the same; finally we will prove the non-intersection of the
transport rays in the strictly convex case.

4.1. Equality of the extremals. Here we generalize the first part of Theorem 1.2:

Theorem A. If M is a manifold of type 0, inf(MK ) = inf(Br) = inf(SO).

Proof. We will prove this theorem in three steps.

Step 1: inf(MK ) ≥ inf(Br).

Given the transport η, we define ft := πt #η and 〈Et, ϕ〉 := ∫
S ϕ(σ(t)) ·σ ′(t)dη: it is

easy to check that it is an admissible configuration, and its cost is less than C(η) by
the Jensen inequality (we will make the explicit computation in Proposition 4.2).

Step 2: inf(Br) ≥ inf(SO).

Given the configuration { ft, Et}, let us define ν = − ∫ 1
0 Et : from the compatibility

condition (3.3) we infer that − div ν = f ; moreover, the Jensen inequality imme-
diately implies

∫
j(x, ν) ≤ C({ ft, Et}).

Step 3: inf(SO) ≥ inf(MK ).
We have already noted that inf(1.1) = inf(MK); let us then for a moment consider
the “old” transport problem: thanks to Theorem 1.1 and the continuity of d, we
know that there exists an optimal “old” transport γ (while, as we discussed in
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the previous section, there could be no optimal “new” transport) and there exists
a Kantorovich potential u; so

sup(3.5) ≥
∫

u d f =
∫∫

u(x) − u(y) dγ =
∫∫

d(x, y) dγ = inf(1.1)

= inf(MK ),

recalling that γ1 = f + and γ2 = f −: then this step follows from Proposition 3.2.
�

Corollary 4.1. The statement of Proposition 3.2 can be strengthened by saying
that sup(3.5) = inf(SO): in fact, to prove the previous theorem we showed that
sup(3.5) ≥ inf(MK ) ≥ inf(Br) ≥ inf(SO).

4.2. Passing from one problem to another. Here we will describe how, starting
from an object of one of the problems, it is possible to build a “better” object for
one of the other problems: we will prove three propositions, which will be the tools
with which in Section 4.3 we will prove our main theorems. Through this section,
we assume we are dealing with a manifold of type 1 (so M, and consequently S,
are complete). Let us begin with the first result:

Proposition 4.2. For each transport η there exists a configuration { ft , Et} such
that µ̃ ≤ µ and then C({ ft, Et}) ≤ C(η), where µ and µ̃ are the transport density
and the work density associated to η and { ft, Et}, respectively.

Proof. First of all, given η we define { ft, Et} as

ft := πt #η 〈Et, ϕ〉 :=
∫

S
ϕ(σ(t)) · σ ′(t) dη(σ);

{ ft, Et} is admissible, since f0 = f + and f1 = f − is clear, and

〈 f ′
t , u〉 = d

dt

∫
M

u(x) d ft(x) = d

dt

∫
S

u(σ(t)) dη(σ) =
∫

S
Du(σ(t)) · σ ′(t) dη(σ)

= 〈Et, Du〉 = −〈 div Et, u〉.

Moreover, let us denote by {ηx} the disintegration of η with respect to πt : S −→ M,
in the sense of Theorem 1.3, and let h(x) = ∫

S σ ′(t) dηx(σ); then Et = h ft , since

〈Et, ϕ〉 =
∫

S
ϕ(σ(t)) · σ ′(t) dη(σ) =

∫
M

(∫
S
ϕ(σ(t)) · σ ′(t) dηx(σ)

)
dπt#η(x)

=
∫

M
ϕ(x) ·

(∫
S
σ ′(t) dηx(σ)

)
d ft(x) =

∫
M

ϕ(x) · h(x) d ft(x) = 〈h ft , ϕ〉
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(recall that σ(t) = πt(σ) is equal to x for ηx−a.e. σ). Finally, we can prove µ̃ ≤ µ:
in fact, if 0 ≤ ϕ ∈ Cb(M) we have

〈µ̃, ϕ〉 =
∫ 1

0

∫
M

ϕ(x) j(x, dEt) dt =
∫ 1

0

∫
M

ϕ(x) j(x, h(x)) d ft(x) dt

=
∫ 1

0

∫
M

ϕ(x) j

(
x,

∫
S
σ ′(t) dηx(σ)

)
d ft(x) dt

≤
∫ 1

0

∫
M

ϕ(x)

(∫
S

j(x, σ ′(t))dηx(σ)

)
d ft(x) dt

=
∫ 1

0

∫
S
ϕ(σ(t)) j

(
σ(t), σ ′(t)

)
dη(σ) dt =

∫
S

〈
H1

j σ, ϕ
〉

dη(σ) = 〈µ, ϕ〉

recalling (3.4), the Jensen inequality, the properties of disintegration described in
Theorem 1.3, (3.1) and (3.2). This gives µ̃ ≤ µ and, since C({ ft, Et}) = 〈µ̃, 1〉
and C(η) = 〈µ, 1〉, the proof is completed. �
Remark 4.3. In the previous proposition, { ft , Et} has been built exactly following
the paths used by the measure η, so one could think that C(η) = C({ ft , Et}),
while the inequality we proved can also hold strictly. The reason for this fact relies
essentially on the main difference between the configuration and the transports: the
first are made “effectively”, on M, while the second only “in theory”, on S. Then
the different paths are covered independently by a transport, while they interact
when covered by a configuration. In fact, the preceding proposition shows that this
interaction lowers the cost thanks to the convexity of j; and if the convexity is
strict, also the inequality in the preceding proposition can hold strictly.

Proposition 4.4. For each configuration { f t, Et} there existsν such that−divν= f,
the shape j(x, ν) is less than the work density µ and then

∫
j(x, ν) ≤ C({ ft, Et});

on the other hand, to each ν such that − div ν = f we can associate a configuration
{ ft , Et} such that µ = j(x, ν) and then C({ ft, Et}) = ∫

j(x, ν).

Proof. Given { ft, Et}, we define ν = − ∫ 1
0 Et dt; the fact that − div ν = f follows

from the compatibility condition (3.3), while j(x, ν) ≤ µ comes directly from the
Jensen inequality; then

∫
j(x, ν) ≤ ∫

µ = C({ ft , Et}).
On the other hand, given ν let us define

ft := (1 − t) f + + t f − Et := −ν;
the compatibility condition holds since div Et = f = −d ft/dt, and moreover,
µ = ∫ 1

0 j(x, Et) = j(x, ν); then the thesis follows. �
To finish our comparison, we should pass from a shape to a transport and this

will require a bit of work from us: first of all, we need the following:

Lemma 4.5. If {ηi} is a sequence of retracted transports with C(ηi) ≤ H < +∞
and ‖ηi‖ ≤ H, there exists η such that, up to a subsequence, ηi

*
M+(S)

η and

µ ≤ lim inf µi (i.e. 〈µ, ϕ〉 ≤ lim inf〈µi, ϕ〉 for any ϕ ≥ 0), where µ and µi are the
transport densities relative to η and ηi .
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Proof. Let us define

ηi,k :=
{

ηi
{
σ ∈ S : lM(σ) < 1

}
if k = 0

ηi
{
σ ∈ S : 2k−1 ≤ lM(σ) < 2k

}
otherwise,

and note that for each k ∈ N {ηi,k} is, varying i, a sequence of measures on
Sk = {σ ∈ S : lM(σ) ≤ 2k}, which is easily seen to be complete and totally bounded
and then a compact metric space: then, since ‖ηi,k‖ ≤ ‖ηi‖ ≤ H , we find ηk ∈
M+(S) such that, up to a subsequence, ηi,k

*
M+(Sk)

ηk . Moreover, for each k ≥ 1 we

have, recalling (2.2), C(ηi,k) ≥ (2k−1 − C)α−1‖ηi,k‖, and then

‖ηi,k‖M+(S) ≤ Hα

2k−1 − C
‖ηk‖M+(S) ≤ Hα

2k−1 − C
,

where the second inequality follows by the first one with a limit for i → +∞: it
is then well defined η = ∑

ηk in M(S). Moreover we have ηi
* η: in fact, given

ϕ ∈ C(S), we have that 〈ηi,0 + · · ·+ ηi,k, ϕ〉 → 〈η0 + · · ·+ ηk, ϕ〉 and that the two
terms differ from 〈ηi , ϕ〉 and 〈η, ϕ〉 less then Hα‖ϕ‖∑+∞

l=k (2l−1 − C)−1.
To finish the proof, we have to check that µ ≤ lim inf µi ; first we note that,

given 0 ≤ ϕ ∈ C(M), 〈H1
j σ, ϕ〉 is a l.s.c. function of σ ; in fact, we know

that
∫ 1

0 j(σ, σ ′) dt = lim infτ→σ

∫ 1
0 j(τ, τ ′) dt for each σ ∈ S and then, since ϕ is

continuous and the image of σ compact, we have also

∫ 1

0
ϕ(σ) j(σ, σ ′) dt = lim inf

τ→σ

∫ 1

0
ϕ(τ) j(τ, τ ′) dt,

that, recalling the definition (3.1) of H1
j σ , gives the searched lower semicon-

tinuity of 〈H1
j σ, ϕ〉; since ηi

* η, (3.2) assures that 〈µ, ϕ〉 ≤ lim inf〈µi , ϕ〉.
�

Then let us prove the:

Proposition 4.6. For each ν such that − div ν = f there exists a transport η such
that µη ≤ j(x, ν) and then C(η) ≤ ∫

j(x, ν), where µη is the transport density
associated to η.

Proof. We will make the proof in three steps:

Step 1: The smooth case.
Let us first suppose that f and ν are smooth and supported on M \ ∂M; then,
following the construction made in Theorem 4.2 of [1], we prove the thesis: first
of all, choose ε > 0 and writing ωt(x) = t f −(x)+ (1 − t) f +(x)+ ε, we define the
smooth vector field

vt(x) := ν(x)

ωt(x)
,
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which suggests how to move the mass; in other words, we define the smooth flow
Ψ : [0, 1] × M −→ M as




Ψ(0, x) = x

d

dt
Ψ(t, x) = vt(Ψ(t, x)),

and consider the transport η̃ = ξ#ω0, where ξ(x) (s) = Ψ(s, x). We note then that

Ψ(t, ·)#ω0 = ωt ; (4.1)

in fact, both the measures are easily seen to solve the ODE

{
ζ(0, ·) = ω0

ζ ′ = − div (vtζ),

and then, all being smooth, equation (4.1) follows from the uniqueness of the
solution. Moreover we have that, also thanks to (4.1),

〈µη̃, ϕ〉 =
∫

S

〈
H1

j σ, ϕ
〉
dη̃(σ) =

∫
M

〈
H1

j ξ(x), ϕ
〉
dω0(x)

=
∫

M

∫ 1

0
ϕ
(
Ψ(t, x)

)
j
(
Ψ(t, x), vt(Ψ(t, x))

)
dt dω0(x)

=
∫ 1

0

∫
M

ϕ(x) j(x, vt(x)) dωt(x) dt =
∫ 1

0
〈 j(x, ν), ϕ〉 dt = 〈 j(x, ν), ϕ〉.

Note now that η̃ is a transport that moves ω0 = f + + ε onto ω1 = f − + ε, and
then the thesis follows from Proposition 3.5, calling η the simplification of η̃.

Step 2: The case when j is Lipschitz.
Let us first suppose that j(·, ω) is Lipschitz for |ω| ≤ 1 uniformly on ω: this means
that there exists a constant L such that whenever |ω| ≤ 1 the function j(·, ω) is
Lipschitz with constant L (since j(x, ·) is 1-homogeneous, it follows that in general
j(·, ω) is Lipschitz with constant L|ω|). Define now νi , νi,ε and νε as in (A.1). Take
now 0 ≤ ϕ ∈ Cb(M); fix i and making, for simplicity, the calculation inRn instead
of in Ui , we have

νε,i(x) =
∫

y
ρε/2(x − y) dνi

(
(1 − ε)y

) =
∫

y
ρε/2(x − ỹ) dνi(y),

writing ỹ = y/(1 − ε); set also ω̄ such that νi = ω̄|νi |: since |ω̄(y)| = 1 and thanks
to the Lipschitz assumption on j , for each δ there exists ε̄ such that j(x, ω(y)) ≤
j(y, ω(y)) + δ if ε ≤ ε̄ and ρε/2(x − ỹ) > 0. Then, using the fact that j(x, ·) is
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1-homogeneous and the Jensen inequality, we have

〈 j(x, νε,i), ϕ〉 =
∫

x
ϕ(x) j(x, νε,i(x)) dx =

∫
x
ϕ(x) j

(
x,

∫
y
ρε/2(x − ỹ) dνi(y)

)
dx

≤
∫

x
ϕ(x)

∫
y

j
(
x, ρε/2(x − ỹ) dνi(y)

)
dx

=
∫

x

∫
y
ϕ(x)ρε/2(x − ỹ) j

(
x, ω̄(y)

)
d|νi|(y) dx

≤
∫

x

∫
y
ϕ(x)ρε/2(x − ỹ) j

(
y, ω̄(y)

)
d|νi |(y) dx + δ ‖ϕ‖ ‖νi‖

=
∫

y
ϕε(y) j(y, νi(y)) + δ ‖ϕ‖ ‖νi‖ = 〈 j(x, νi), ϕε〉 + δ ‖ϕ‖ ‖νi‖,

writing ϕε(y) = ϕ ∗ ρε/2(ỹ). Since clearly 〈 j(x, νi), ϕε〉 → 〈 j(x, νi), ϕ〉, recalling
that δ was arbitrary and arguing as in Theorem A.2. to pass from an estimate in
a single chart to a global estimate, we deduce lim inf j(x, νε) ≤ j(x, ν). Now, using
the first step, to each νε we can associate a transport η̃ε which moves f +

ε onto f −
ε

with µη̃ε ≤ j(x, νε) and moreover, written ηε = ret#η̃ε, thanks to hypothesis 1-c)
of Section 2 we know that µηε ≤ µη̃ε . Since lim inf j(x, νε) ≤ j(x, ν) we know
that, up to a subsequence, C(ηε) ≤ H ; moreover, fε * f thanks to Theorem A.2.
and then ‖ηε‖ = ‖η̃ε‖ = ‖ f +

ε ‖ ≤ ‖ fε‖ ≤ H : so we can apply Lemma 4.5 to
the sequence ηε obtaining η. Now, µη ≤ lim inf µηε ≤ lim inf j(x, νε) ≤ j(x, ν)

and, again using fε * f , η is a transport from f + + τ to f − + τ with a suitable
measure τ ∈ M(M). So the thesis follows, possibly applying to η a fattening and
a simplification with respect to τ− and τ+, respectively.

Step 3: The general case.
We have now only to skip the Lipschitz assumption on j: first of all note that the
construction of the preceding step allows us, given ν, to build a transport η which
does not depend on j; then, since j is l.s.c., we can choose jε ↗ j with jε Lipschitz
and we already know that

µε :=
∫

S
H1

jε σ dη(σ) ≤ jε(x, ν) ≤ j(x, ν);

then the thesis will follow by the fact that µε
* µ; finally, this fact is easily proved

by twice applying the monotone convergence theorem (once to an integral in [0, 1]
and once to an integral in S). �

4.3. Existence of extremals and equivalence between the optimal measures.
We prove here the main results of this paper, which generalize Theorem 1.2 for the
manifolds of type 1 and 2, in the second case in the relaxed sense. First of all we
have the

Theorem B. If M is a manifold of type 1, there exist extremals for problems (MK),
(Br) and (SO). Moreover, the associated optimal transport densities, work densities
and shapes are exactly the same.
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Remark 4.7. As discussed after the statement of Theorem 1.2, in general there
is not a uniqueness of the optimal transport densities, work densities and shape:
however, as the theorem above claims, each measure µ ∈ M+(M) is an optimal
transport density if and only if it is an optimal work density, and if and only if it is
an optimal shape.

Proof of Theorem B. Let us begin by taking an optimal sequence of transports {ηi}
from f + to f −, which we can assume to be retracted since the retraction lowers
the costs: thanks to Lemma 4.5, which we can apply since for each i we have
‖ηi‖ = ‖ f +‖, we get a transport η, and this is also a transport from f + to f − since
ηi

* η. But η is an optimal transport because {ηi} was an optimal sequence and
C(η) = 〈µη, 1〉 ≤ lim inf〈µηi , 1〉 = lim inf C(ηi): so we proved that the Monge–
Kantorovich problem has a solution. Then, all we stated immediately follows by
Propositions 4.2, 4.4 and 4.6. �

Then we prove that the extension of the problems we defined for the manifolds
of type 2 is a “good” relaxation:

Theorem C. The problems defined in Section 3.4 are a standard relaxation in
the case when M is a manifold of type 2. In particular, the relaxed problems
have solutions and the optimal measures associated to the different problems are
the same. Moreover, the extremals inf(MK ), inf(Br) and inf(SO) of the original
problems do not change with the relaxation. Finally, each relaxed solution is
a weak* limit of non-relaxed items such that also the associated measures weak*
converges.

Proof. The first fact comes directly from Theorem B, used on the manifold M̂
which, by hypothesis 2-a, is a manifold of type 1. To prove the other assertions,
let us first define the functions τi : Ŝ −→ S such that |l(σ) − l(τi(σ))| ≤ 2−i ,
dS(σ, τi(σ)) ≤ 2−i and, if both the extremals of σ ∈ Ŝ are in M, then they are
the same as τi(σ): this can be done thanks to hypothesis 2-b. If we define now
ηi := τi #η, it follows that the ηi are non-relaxed transports; moreover, by the
definition of τi , it holds that the inequality C(ηi) ≤ C(η) + 2−i‖η‖: this assures
that the extremals have not decreased by relaxing and, since they clearly cannot
have been increased (recall, that the relaxed items are more than the non-relaxed
ones), also the second assertion follows. In our construction, we have also that
ηi

* η and µηi
* µη, where the last convergence holds since C(η) = lim C(ηi);

so the last assertion is now proved for the Monge–Kantorovich problem. To prove
it for the other two problems it suffices to use again Propositions 4.2, 4.4 and 4.6.

�
Note that proving these theorems we have given some constructions that allow

us, starting from a solution of a problem, to build a solution of one of the other
problems preserving the optimal measure.

Remark 4.8. We can point out that also sup(3.5) is attained, both in the manifolds of
type 1 and 2 (since it was the only problem we did not need to relax in Section 3.4):
in fact, using Theorem 1.1 we can take a Kantorovich potential u associated to an
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optimal transport and, recalling Step 3 in Theorem A, it follows that u is optimal
for (3.5).

Remark 4.9. In [9] the question was left open as to whether or not each optimal
shape on a Riemannian manifold can be obtained integrating the H1 measures on
some geodesics. Thanks to the theorems we proved, we can give an affirmative
answer to this question, also in our more general contexts.

4.4. Non-intersection of transport rays. In this section, we will discuss the
generalization of the non-intersection property of the transport rays, which holds
in the Euclidean case; through the section, M will be a manifold of type 1: then the
same results hold on M̂ if M is a manifold of type 2.

It is a well-known fact that, in the Euclidean case, the transport rays – i.e.
the paths of a given optimal transport – do not intersect, in the sense that all the
different transport rays that pass for a fixed point are parallel: this can be expressed
with the equation

∫ 1

0

∣∣Et

∣∣ dt =
∣∣∣∣
∫ 1

0
Et dt

∣∣∣∣ , (4.2)

that holds for each optimal Brenier configuration and can be found for example
in [1]. It is easy to understand that the non-intersection can not be generalized in
our setting without an hypothesis of strict convexity for j: for example, if in R2 we
set j(x, v) = v1, the horizontal component of a vector, and consider the problem to
translate horizontally an homogeneous vertical block, it is clear that it can be done
in many optimal ways also with a great intersection of rays. However, let us note
the following:

Lemma 4.10. If { ft, Et} is optimal, then

∫ 1

0
j(x, Et) dt = j

(
x,

∫ 1

0
Et dt

)
. (4.3)

Proof. This is a very easy fact; define ν = − ∫ 1
0 Et and calling µ the work density

relative to { ft , Et}, we have j(x, ν) = µ: in fact, j(x, ν) ≤ µ as in Proposition 4.4,
and on the other hand the inequality cannot hold strictly since { ft, Et} is optimal.
Recalling (3.4), this equality is exactly (4.3) and then the thesis is proved. �

Clearly (4.3) is the perfect parallel to (4.2); let us see how this can be read as
a non-intersection result in the strictly convex case: first we recall that, being j
1-homogeneous, we call it strictly convex on Tx M if j(tv + (1 − t)w) ≤ t j(x, v) +
(1 − t) j(x, w) for each v, w ∈ Tx M and t ∈ (0, 1), and the equality holds only if v

and w are parallel. Then the hypothesis of strict convexity allows us to prove the:

Theorem D. (Non-intersection of transport rays) If { ft , Et} is optimal and j is
strictly convex on each Tx M, there are vectors h(x) ∈ Tx M such that Et(x) is
parallel to h(x) for a.e. (x, t) (with respect to the measure |Et | ⊗ dt).
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Proof. First of all, let us write as usual Et = ωt d|Et |, and define α := |Et | ⊗ dt,
a positive measure on M ×[0, 1]; moreover, we call π the projection of M ×[0, 1]
on M and operate a disintegration of α with respect to π, finding the measures αx

on [0, 1] – to be precise, the αx are measures on M × [0, 1] concentrated on the
couples (y, t) with y = x, and then we consider them as measures on [0, 1]. Setting
now

h(x) :=
∫ 1

0
ωt(x) dαx(t) ξ := π#α, (4.4)

we have
∫ 1

0
Et = h dξ, since for each smooth vector field ϕ it is

〈 ∫ 1

0
Et, ϕ

〉 =
∫ 1

0

∫
M

ϕ(x) · dEt(x) dt =
∫∫

M×[0,1]
ϕ(x) · ωt(x) d

(|Et | ⊗ dt
)
(x, t)

=
∫

M

(∫ 1

0
ϕ(x) · ωt(x) dαx(t)

)
dπ#α(x)

=
∫

M
ϕ(x) · h(x) dξ = 〈h dξ, ϕ〉,

recalling the properties of disintegration; then we can evaluate

∫
M

j

(
x,

∫ 1

0
Et dt

)
=

∫
M

j(x, h(x)) dξ(x) =
∫

M
j

(
x,

∫ 1

0
ωt(x) dαx(t)

)
dξ(x)

≤
∫

M

∫ 1

0
j(x, ωt(x)) dαx(t) dξ(x)

=
∫

M

∫ 1

0
j(x, ωt(x)) dα(x, t)

=
∫ 1

0

∫
M

j(x, ωt(x)) d|Et |(x) dt =
∫ 1

0

∫
M

j(x, Et) dt,

using the Jensen inequality. But thanks to (4.3), the inequality must be an equality,
and using the strict convexity of j it follows that the unit vectors ωt(x) are equal,
varying t; to be more precise, for ξ−a.e. x the vectors ωt(x) are equal for αx−a.e. t.
Recalling that Et = ωt |Et | and (4.4); the thesis follows. �
Remark 4.11. Note that, in the presence of a Dirichlet region Σ, the thesis of the
theorem cannot be true: since moving in Σ does not cost, there can be intersecting
paths also in optimal transports; in fact, if x ∈ Σ then j(x, ·) ≡ 0 and then the
strict convexity fails. However, the assertion of the previous theorem can clearly be
strengthened by saying that the different transport rays cannot cross in the points
x such that j is strictly convex on Tx M or, equivalently, that for each x such that
j(x, ·) is strictly convex there exists a vector h(x) on Tx M such that Et(x) is parallel
to h(x) for a.e. t.
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Appendix A. Vectorial measures on manifolds

Let M be an n-dimensional connected manifold, possibly with a boundary; the
space Mn(M) of the vectorial measures on the manifold M can be defined as the
dual space of the continuous sections of the tangent bundle TM. Given a measure
ν ∈ Mn(M), one would clearly find it useful (as in the Euclidean case) to write
ν = ω|ν| with an unitary vector field ω and a suitable definition of the scalar
measure |ν|: it turns out that (exactly as in the Euclidean case) the correct definition
for |ν| ∈ M+(M) has to be

〈|ν|, h〉 := sup {〈ν, ωh〉, |ω| ≤ 1} ∀ 0 ≤ h ∈ Cb(M).

We define then L1
ν as the completion of Cb(M) embedded with the norm ‖ϕ‖L1

ν
:=

〈|ν|, ϕ〉; finally, one can easily prove the following generalization of Riesz’s theo-
rem, either using it on the charts of an atlas or directly by intrinsic duality arguments:

Theorem A.1. There exists a |ν|-measurable unit vector field ω̄ such that ν = ω̄|ν|:
this means that 〈ν, ϕ〉 = 〈|ν|, ϕ·ω̄〉 whenever ϕ is a continuous section of the tangent
bundle TM.

We could want to approximate a measure ν ∈ Mn(M) with regular measures
νε; to do this, let us first fix an atlas for M: so we have a locally finite open
covering {Ui} of M and the corresponding functions ψi : Ui → R

n , where each
ψi is a diffeomorphism between Ui and the image ψi(Ui) and that image is the
open unitary hypercube (0, 1)n if Ui ∩ ∂M = ∅, while it is (0, 1)n−1 × [0, 1) if
Ui ∩ ∂M �= ∅: moreover, in the last case it is ψ−1

i

(
(0, 1)n−1 × {0}) = Ui ∩ ∂M.

Let us define now τε : Rn → R
n as τε(x) = (1 − ε)x and denote by {ϕi} a partition

of the unity corresponding to the covering {Ui} and by ρε the standard convolution
kernel. Finally, we set


νi := ϕiν;

νε,i := ψ−1
i #

(
(τε ◦ ψi)# νi ∗ ρε/2

) ;
νε = ∑

i νε,i.

(A.1)

This definition is what we needed, since we have the:

Theorem A.2. νε ∈ C∞(M \ ∂M) and νε
*

Mn(M)
ν. Moreover, if − div ν = f then

fε := − div νε
*

M(M)
f .

Proof. The smoothness assertion is obvious, since νε is a locally finite sum of
smooth functions supported in the interior of M. To prove the weak* conver-
gence of νε to ν, let ω be a continuous field of vectors of norm less than 1:
a standard computation, starting from the definition of the convolution and using
Fubini’s theorem, shows that 〈νε,i, ω〉 ≤ 〈|νi |, 1〉, so the generality of ω assures
that 〈|νε,i|, 1〉 ≤ 〈|νi |, 1〉. Now, from the definition it follows that νi = |νi | ω̄ (i.e.
the νi are all parallel to ν, since ω̄ works for each i), and then

∑
i

〈|νi |, 1〉 =
∑

i

〈νi , ω̄〉 = 〈ν, ω̄〉 < +∞;
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the existence of a finite set I such that∑
i /∈I

〈|νi |, 1〉 ≤ δ (A.2)

follows. Then given a continuous vector field h, since 〈ν, h〉 = ∑
i〈νi , h〉 we can

assume, possibly passing to a greater finite set I , that
∣∣∣〈ν, h〉 −

∑
i∈I

〈νi, h〉
∣∣∣ ≤ δ. (A.3)

On the other hand, thanks to (A.2) we have
∑
i /∈I

〈νε,i, h〉 ≤ ‖h‖Cb(M)

∑
i /∈I

〈|νε,i |, 1〉 ≤ ‖h‖
∑
i /∈I

〈|νi |, 1〉 ≤ δ‖h‖. (A.4)

Since clearly for each i it is νε,i
*

ε→0
νi and I is finite, if ε � 1 we have

∣∣∣ ∑
i∈I

〈νε,i − νi, h〉
∣∣∣ ≤ δ. (A.5)

Putting together (A.3), (A.4) and (A.5), we infer
∣∣∣〈ν, h〉 − 〈νε, h〉

∣∣∣ ≤ δ
(
2 + ‖h‖Cb(M)

)
,

and from the generality of h it follows that νε
* ν. The same argument, made in

the scalar case, also proves the last assertion, just applying the definition in order
to write fε as a convolution also. �
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