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Introduction

We work over the field of complex numbers. In this paper we consider the Prym
map P : Rg → Ag−1 from the moduli space of unramified double covers of
projective irreducible and non-singular curves of genus g ≥ 6 to the moduli space
of principally polarized Abelian varieties of dimension g − 1. If π : C̃ → C is
such a double cover with C non-hyperelliptic, we consider the natural embedding
C̃ ⊂ P (defined up to translation) of C̃ into the Prym variety P of π and we study
the local structure of the Hilbert scheme HilbP of P at the point [C̃] (here and
through the paper we adopt the notation [−] for the point of a moduli space or of
a Hilbert scheme which parametrizes the object −). We show that this structure is
related to the local geometry of the Prym map, or more precisely with the validity
of the infinitesimal version of Torelli’s theorem for Pryms at [π] (see Section 3 for
the definitions).

The results we prove are the following.

Proposition. If the infinitesimal Torelli theorem for Pryms holds at [π] then HilbP

is non-singular of dimension g − 1 at [C̃] (i.e. C̃ is unobstructed) and the only
deformations of C̃ in P are translations.

It is known that if the Clifford index of C is at least 3 then the condition of the
proposition is satisfied. Therefore we have, in particular:

Corollary. If Cliff(C) ≥ 3 then HilbP is non-singular of dimension g − 1 at [C̃]
(i.e. C̃ is unobstructed) and the only deformations of C̃ in P are translations.

On the other side we have the following result:

Theorem. Assume that the following conditions are satisfied:

(a) the infinitesimal Torelli theorem for Pryms fails at [π];
(b) [π] is an isolated point of the fibre P −1(P ([π])).
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Then C̃ is obstructed. Moreover the only local deformations of C̃ in P are trans-
lations and the only irreducible component of HilbP containing [C̃] is everywhere
non-reduced.

Conversely, if C̃ is obstructed then the infinitesimal Torelli theorem for Pryms
fails at [π].

Using these results we give some examples in which C̃ ⊂ P is obstructed and
some in which we have unobstructedness but the infinitesimal Torelli theorem for
Pryms fails. The examples we construct are obtained from double covers belonging
to R6 and to R7. For their construction we make use of a result proved in Section 4
which is a slight extension of a theorem of Recillas (see [12]).

The paper is divided into 5 sections. In Section 1 we discuss the Hilbert scheme
of curves Abel–Jacobi embedded in their Jacobian. We prove that such curves are
obstructed precisely when they are hyperelliptic of genus g ≥ 3. This case is not
relevant for what follows but it is worth keeping in mind the analogies between the
two cases. In Section 2 we consider our problem and we study the conditions for
the unobstructedness of [C̃]. We use the well-known cohomological description
of certain tangent spaces and of maps between them. In Section 3 we relate these
results with the infinitesimal Torelli theorem for Pryms and we prove our main
result. In Section 4 we give a proof of the extension of Recillas’ theorem. The final
Section 5 contains the examples.

1. The case of curves in their Jacobians

Consider a projective non-singular irreducible curve C of genus g ≥ 2, let JC :=
Pic0(C) be the Jacobian variety of C, and let j : C → JC be an Abel–Jacobi map.
We want to study the local structure of the Hilbert scheme HilbJC of JC at [ j(C)]
(the point parametrizing j(C)). Since j is an embedding we will identify C with
j(C). We have an exact sequence of locally free sheaves on C:

0 → TC → TJC|C → NC → 0.(1)

We have a canonical isomorphism TJC|C ∼= H1(OC ) ⊗ OC and therefore the
cohomology sequence of (1) is:

0 → H1(OC ) → H0(NC )
δ−→ H1(TC )

σ−→ H1(OC ) ⊗ H1(OC ) → H1(NC ).

(2)

The family of translations of C in JC is parametrized by JC itself, and the map
H1(OC) → H0(NC ) in (2) is precisely the characteristic map of this family at the
point 0. Therefore we have the following Lemma, whose proof is obvious:

Lemma 1.1. The following conditions are equivalent:

(a) HilbJC is non-singular of dimension g at [C];
(b) δ = 0;
(c) σ is injective.
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If these conditions are satisfied then the only local deformations of C in JC are
translations.

Using this lemma we can prove the following:

Theorem 1.2. Suppose that C has genus g ≥ 3:

(a) if C is non-hyperelliptic then HilbJC is non-singular of dimension g at [C];
(b) if C is hyperelliptic then the connected component of HilbJC containing [C] is

irreducible of dimension g and everywhere non-reduced with Zariski tangent
space of dimension 2g − 2.

In both cases the only deformations of C in JC are translations.

Proof. The transpose of σ is the multiplication map:

σ∨ : H0(ωC ) ⊗ H0(ωC ) → H0(ω⊗2
C

)

(see [5, Lemma 3]). This map, by Noether’s theorem, is surjective if C is non-
hyperelliptic and has co-rank g − 2 if C is hyperelliptic (see [1]). Therefore, in
view of Lemma 1.1, part (a) follows.

Now assume that C is hyperelliptic and that C̄ ⊂ JC is a closed subscheme
such that [C̄] belongs to the connected component of HilbJC containing [C]. By
the criterion of Matsusaka–Ran (see [7]) C̄ = C1 ∪ · · · ∪ Cr is a reduced curve
of compact type, and JC and JC1 × · · · × JCr are isomorphic as ppav’s. Then it
follows that r = 1 and C̄ is irreducible and non-singular because C is. Now we apply
Torelli’s theorem to conclude that C̄ is a translate of C. It follows that the connected
component of HilbJC containing [C] is irreducible of dimension g and parametrizes
the translates of C. On the other hand by (2) we have h0(NC ) = 2g − 2 > g. The
conclusion follows. �	

Theorem 1.2 can be interpreted in terms of the Torelli morphism,

τ : Mg → Ag,

from the moduli stack of projective non-singular curves of genus g to the moduli
stack of principally polarized Abelian varieties of dimension g. The surjectivity of
σ∨ is equivalent to that of the multiplication map

S2 H0(ωC ) → H0(ω⊗2
C

)
,

which is the codifferential of τ at [C]. Hence the surjectivity of this map is equivalent
to the infinitesimal Torelli theorem for C (see [11]). Therefore Theorem 1.2 implies
the following:

Corollary 1.3. C is unobstructed in JC if and only if the infinitesimal Torelli
theorem holds for C.

Remarks. (i) The proof of Theorem 1.2(a) has already appeared in [5], but the
argument does not appear to be complete. A proof is also given in [3] using the
semiregularity map, but it is more complicated; moreover, the semiregularity map
does not seem to be able to detect what happens in case (b).

(ii) In the case g = 2 we have that C is unobstructed in JC because the
semiregularity map H1(NC ) → H2(OJC) is injective since H1(OJC(C)) = 0 by
the ampleness of C in JC.
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2. The Hilbert scheme of the Prym variety at [C̃]
Let now π : C̃ → C be an unramified double cover of a projective non-singular
irreducible curve C of genus g ≥ 3, so that C̃ has genus g̃ = 2g − 1. Let
η ∈ Pic0(C) be the 2-division point corresponding to π. We have a canonical
isogeny JC̃ → JC × P, where P is the Prym variety of π. Throughout this section
we assume C to be non-hyperelliptic. Under this hypothesis we have an embedding
α : C̃ → P which is obtained as the composition

C̃ → JC̃ → JC × P → P

(see [7]). We will identify C̃ with α(C̃). We want to study the Hilbert scheme HilbP

locally at the point [C̃].
In analogy with the situation studied in Section 1, we consider the exact se-

quence of locally free sheaves on C̃,

0 → TC̃ → TP|C̃ → NC̃ → 0.(3)

We have a canonical isomorphism TP|C̃ ∼= H1(C, η) ⊗ OC̃ so that the cohomology
sequence of (3) becomes

0 −−−−→ H1(C, η) −−−−→ H0(C̃, NC̃)
δ−−−−→ H1(C̃, TC̃)

σ−−−−→ H1(C, η) ⊗ H1(C̃,OC̃) −−−−→ H1(C̃, NC̃).

(4)

Along the same lines of Section 1 we can state the following:

Lemma 2.1. The following conditions are equivalent:

(a) HilbP is non-singular of dimension g − 1 at [C̃];
(b) δ = 0;
(c) σ is injective.

If these conditions are satisfied then the only local deformations of C̃ in P are
translations.

In order to understand the conditions of Lemma 2.1 we must study the map σ ,
or equivalently, its transpose σ∨. We have canonical isomorphisms:

H1(C̃,OC̃)∨ ∼= H0(C̃, ωC̃) ∼= H0(C, ωC ) ⊕ H0(C, ωC ⊗ η)

and

H1(C̃, TC̃)∨ ∼= H0(C̃, ω⊗2
C̃

) ∼= H0(C, ω⊗2
C ⊗ η

) ⊕ H0(C, ω⊗2
C

)

corresponding to the decompositions into +1 and −1 eigenvalues under the action
induced by the involution on C̃. Hence

σ∨ : H0(C, ωC ⊗ η)
⊗[

H0(C, ωC ) ⊕ H0(C, ωC ⊗ η)
]

→ H0(C, ω⊗2
C ⊗ η

) ⊕ H0(C, ω⊗2
C

)
,
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and it is induced by multiplication of sections [2, p. 382]. Therefore, after decom-
posing the domain of σ∨ as

H0(C, ωC ⊗ η)
⊗[

H0(C, ωC ) ⊕ H0(C, ωC ⊗ η)
]

= [
H0(C,ωC ⊗ η) ⊗ H0(C, ωC )

]⊕[
H0(C, ωC ⊗ η) ⊗ H0(C, ωC ⊗ η)

]
,

we see that σ∨ = µ ⊕ ν, where

µ : H0(C, ωC ⊗ η) ⊗ H0(C, ωC ) → H0(C, ω⊗2
C ⊗ η

)

and

ν : H0(C, ωC ⊗ η) ⊗ H0(C, ωC ⊗ η) → H0(C, ω⊗2
C

)
.

The following lemma is well known (see [2, Prop. 7.7]):

Lemma 2.2. The sheaf ωC ⊗ η is not very ample if and only if there exist points
x, y, z, t ∈ C such that η ∼= OC(x + y − z − t). If these conditions are satisfied
then the map ν is not surjective.

Proposition 2.3. (i) In each of the following cases the map µ is surjective:

(a) C is not bi-elliptic;
(b) ν is surjective;

(ii) if C is not bi-elliptic then cork(σ∨) = cork(ν). In particular if C is not bi-elliptic
the surjectivity of σ∨ is equivalent to the surjectivity of ν.

Proof. (i) Note first that in both cases (a) and (b) the linear series |ωC ⊗ η| is base
point free and is not composed with an involution: in fact, in case (a) since C is
not hyperelliptic, |ωC ⊗ η| is base point free; moreover if it were composed with
an involution then, since deg(ωC ⊗ η) = 2g − 2, the morphism

φη : C → Pg−2

would be of degree 2 onto a curve of degree g − 1, which has genus ≤ 1, a contra-
diction. In the case (b) the assertion is true by Lemma 2.2.

Let b := P1 + · · · + Pg−3 ∈ C(g−3) be general. Consider the exact sequence
on C

0 → ωC ⊗ η(−b) → ωC ⊗ η → T → 0,

where T is a torsion sheaf supported on b. Multiplying firstly by H0(ωC ) and
taking cohomology, and secondly by ωC and taking cohomology, we obtain the
following commutative diagram with exact rows, where the vertical maps are given
by multiplication:

0 −→ H0(ωC ⊗ η(−b)) ⊗ H0(ωC ) −→ H0(ωC ⊗ η) ⊗ H0(ωC ) −→ H0(T ) ⊗ H0(ωC ) −→ 0
�µb

�µ

�µ̄

0 −→ H0
(
ω⊗2

C ⊗ η(−b)
) −→ H0

(
ω⊗2

C ⊗ η
) −→ H0(T ⊗ ωC ) −→ 0.
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Since |ωC ⊗ η| is not composed with an involution and b is generic, ωC ⊗ η(−b)

is base point free, and by the base point free pencil trick we find

ker(µb) = H0(b ⊗ η) = 0,

hence

rk(µb) = 2g = h0(ω⊗2
C ⊗ η(−b)

)
,

i.e. µb is surjective. On the other hand µ̄ is surjective because ωC is globally
generated. The conclusion follows from the above diagram.

(ii) follows immediately from part (i) and from the relation between the maps
σ,µ, ν. �	

Collecting all we have said so far we can state the following:

Corollary 2.4. If ν is surjective then HilbP is non-singular of dimension g − 1
at [C̃] (i.e. C̃ is unobstructed) and the only local deformations of C̃ in P are
translations.

As an application we can prove the following:

Corollary 2.5. If Cliff(C) ≥ 3 then HilbP is non-singular of dimension g − 1
at [C̃] (i.e. C̃ is unobstructed) and the only local deformations of C̃ in P are
translations.

Proof. It follows easily from a result of [6] (see e.g. [8]) that if Cliff(C) ≥ 3 then
the map ν is surjective. Therefore the corollary follows from Corollary 2.4. �	

3. HilbP and the infinitesimal Torelli theorem for Pryms

We keep the notations of Section 2. Consider the Prym morphism

P : Rg → Ag−1,

which goes from the coarse moduli scheme of étale double covers of curves of
genus g to the coarse moduli scheme of ppav of dimension g − 1, g ≥ 6. These
schemes have singularities due to the presence of automorphisms of the objects
they classify. Therefore if we want to study the infinitesimal properties of P it
is more natural to consider the corresponding moduli stacks Rg, Ag−1. The Prym
construction defines a morphism of stacks

Pr : Rg → Ag−1.

Then the map ν considered in Section 2 coincides with the co-differential of
Pr at [π] (see [2, Proposition 7.5], which implies this statement modulo obvious
modifications). Therefore the surjectivity of ν is equivalent to Pr being an immersion
at [π] (see [2, 7.6]). In this case we say that the infinitesimal Torelli theorem for
Pryms holds at [π], according to the terminology most commonly used nowadays.
In view of Corollary 2.4 we can therefore state the following:
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Proposition 3.1. If the infinitesimal Torelli theorem for Pryms holds at [π] then
HilbP is non-singular of dimension g − 1 at [C̃] (i.e. C̃ is unobstructed) and the
only local deformations of C̃ in P are translations.

In the case Cliff(C) ≤ 2 the infinitesimal Torelli theorem for Pryms in general
fails, i.e. in general ν is not surjective. Our next goal is to relate the obstructedness
of C̃ in P to the failure of the infinitesimal Torelli theorem for Pryms. The main
result of this section is the following:

Theorem 3.2. Assume that the following conditions are satisfied:

(a) the infinitesimal Torelli theorem for Pryms fails at [π];
(b) [π] is an isolated point of the fibre P −1(P ([π])).

Then C̃ is obstructed. Moreover the only local deformations of C̃ in P are
translations; in particular the only irreducible component of HilbP containing [C̃]
is everywhere non-reduced of dimension g − 1.

Conversely, if C̃ is obstructed then the infinitesimal Torelli theorem fails at [π].
Proof. By (a) the map δ in the exact sequence (4) is non-zero. Assume by contra-
diction that [C̃] is unobstructed. Then we can find a non-singular curve S ⊂ HilbP

passing through [C̃] such that δ(TS,[C̃]) 
= 0. This condition implies that the func-
torial morphism S → Mg̃ defined by the family of curves C → S (which can be
assumed to be smooth) is not constant and therefore this family does not consist of
curves all isomorphic to C̃. But this is impossible: in fact for each curve C̃′ in the
family we have

C̃′ ≡num C̃ ≡num
2

(g − 2)!Ξ
g−2,

so that by a theorem of Welters (see [13]) there is an étale double cover π ′ : C̃′ → C′,
(P,Ξ) is the Prym variety of π ′ and C̃′ is Prym embedded. But this contradicts
condition (b) if C̃′ is not isomorphic to C̃ because [π ′] ∈ P −1(P ([π])).

This analysis also shows that locally the only deformations of C̃ in P are trans-
lations; and since δ 
= 0 the Zariski tangent space of HilbP at [C̃] has dimension
larger than g − 1. This also proves the last assertion.

The converse is a special case of Proposition 3.1. �	
The theorem does not say anything in the case when [π] is a non-isolated point

of the fibre P −1(P ([π])). We will see in Section 5 that in this case there are
examples where [C̃] is unobstructed.

4. Further considerations

A theorem of Recillas [12] says that if π : C̃ → C is a double cover with C
trigonal (but not hyperelliptic) of genus g then P ([π]) = [JX] with X a 4-gonal
curve, and the pair (X, g1

4) is uniquely determined. A consequence of this result
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and of a theorem of Mumford [9], which gives a list of the Prym varieties which
are Jacobians, is that

P −1([JX]) = W1
4 (X)(5)

set-theoretically if g − 1 ≥ 6. This says in particular that for g ≥ 11 the Prym
map is 1-1 on Rg,T (= the locus of étale double covers of trigonal curves): this
follows from the fact that W1

4 (X) consists of at most one point if g(X) ≥ 10. If
g − 1 = 5 then (5) is not true but we have a strict inclusion ⊃ (see Section 4). The
following proposition gives some further information which will suffice for some
applications.

Proposition 4.1. Assume that X is a non-singular irreducible curve of genus g−1
≥ 5, non-hyperelliptic nor trigonal, and such that every g1

4 on X has no divisors
of the form 2P + 2Q or 4P and let π : C̃ → C be an unramified double cover,
with C trigonal of genus g, such that P ([π]) = [JX]. Then there is a canonical
isomorphism between the kernel of the differential of Pr at [π] and the Zariski
tangent space of W1

4 (X) at the line bundle L corresponding to π.

Proof. Since X is not trigonal we may view W1
4(X) as parametrizing 4-1 morphisms

of X into P1. Let ϕ : X → P1 be the 4-1 cover defined by L.
Let B = Spec(C[ε]) and consider a family of deformations of ϕ parametrized

by B:

X × B

��F
FF

FF
FF

FF
�� P1 × B

��xx
xx
xx
xx
x

B.

To this family we can associate a family of deformations of π just extending
Recillas’s construction, as follows. Consider the second relative symmetric product
over P1 × B:

C̃ := S(2)

P1×B
(X × B),

which comes endowed with an induced family of morphisms of degree 6

f (2) : C̃ ��

���
��

��
��

� P1 × B

��xx
xx
xx
xx
x

B.

On C̃ there is a natural involution ι commuting with the projection to B. Letting
C = C̃/ι, we obtain a family parametrized by B:

C̃ ��Π

���
��

��
��

� C

����
��
��
�

B

(6)
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such that f (2) factors through Π. Therefore (6) is a first-order deformation of π;
moreover (6) is contained in P −1([JX]) by construction and therefore it is an
element of ker(dPr[π]).

Conversely, assume a family (6) given, and assume that (6) is contained in
ker(dPr[π]). Then we also have a family of triple covers of P1:

C ��

���
��

��
��

� P1 × B

��xx
xx
xx
xx
x

B.

Correspondingly we have an inclusion P1×B ⊂ S(3)
B (C), and an étale morphism

of degree 8

Π(3) : S(3)
B (C̃) → S(3)

B (C)

induced by Π. Let D := Π(3)−1(P1 × B). The involution ι on C̃ induces an
involution on S(3)

B (C̃) which commutes with Π(3) and induces an involution on D .
We obtain a commutative diagram:

D

��

�� P1 × B

��
D/ι ��

��vvvvvvvvv
B,

(7)

where the diagonal morphism defines a family of deformations of X with an
assigned g1

4 on the family. The assumption that (6) is contained in ker(dPr[π])
means that the family of ppav obtained as Pryms of the family (6) is the family of
Jacobians of D/ι → B and that it is trivial. By the infinitesimal Torelli theorem
for Jacobians D/ι → B is the trivial family as well. Therefore diagram (7) gives
us a family of deformations of ϕ. �	

5. Examples

5.1. Let X̄ ⊂ P2 be an irreducible sextic having 4 distinct nodes N1, . . . , N4, and
let X be the normalization of X̄, which has genus 6. If no three among N1, . . . , N4

are on a line then W1
4 (X) consists of five non-singular points, the g1

4’s cut by
the four pencils of lines through each of the nodes and by the pencil of conics
containing N1, . . . , N4. From Proposition 4.1 it then follows that the infinitesimal
Prym-Torelli theorem holds at the five double covers π : C̃ → C of trigonal curves
of genus 7 such that P ([π]) = [JX].

Assume now that X̄ has three of the nodes, say N1, N2, N3, on a line. Then
the g1

4 defined by N4 and that defined by the pencil of conics are identified to
a unique element L of W1

4(X) with a 1-dimensional Zariski tangent space. Applying
Proposition 4.1 to this case we see that the infinitesimal Prym-Torelli theorem fails
at the double cover π corresponding to (X, L) in the fibre P −1([JX]). Moreover,
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since equality (5) implies that P −1([JX]) is finite, from Theorem 3.2 we deduce
that C̃ is obstructed in JX and that the only component of HilbP containing [C̃] is
everywhere non-reduced and consists of translates of [C̃].

A count of parameters shows that in this way we get a 14-dimensional locus
where the infinitesimal Prym-Torelli theorem fails inside the 18-dimensional space
R7.

5.2. Let’s consider the Prym map P : R6 → A5. This case has been extensively
studied in [4] and offers a wide variety of examples, but it is not yet completely
understood from the point of view of the infinitesimal Prym-Torelli theorem. Recall
that both domain and co-domain are irreducible of dimension 15. Some loci where
the infinitesimal Prym-Torelli theorem fails are the following.

5.2.1. Consider a non-singular curve C ⊂ P4 obtained as a general hyperplane
section of a Reye congruence in P5, i.e. of an Enriques surface S of degree 10
contained in a non-singular quadric. Then C is a curve of genus 6, embedded
with a Prym canonical linear series |ω ⊗ η|; since C is contained in a quadric it
follows that the map ν is not surjective, and therefore the infinitesimal Prym-Torelli
theorem fails at the double cover π : C̃ → C associated to η.

Naranjo–Verra proved that the fibre P −1(P ([π])) is discrete [10]. Therefore
from Theorem 3.2 it follows that HilbP is obstructed at C̃.

Note that a count of parameters shows that the locus of double covers π

constructed in this way has dimension 14 = 9 + 5 (9 for the moduli of Enriques
surfaces and 5 for the hyperplane sections), i.e. it is a divisor in R6. In particular
it follows that a general such curve C is not trigonal since trigonal curves depend
on 13 parameters.

5.2.2. Consider an irreducible sextic C̄ ⊂ P2 with four nodes such that two of its
bi-tangents meet in one of the nodes, say N. Then the normalization C has genus
6 and the g1

4 defined by the pencil of lines through N has two divisors of the form
2P + 2Q. It follows that there is a 2-division point η ∈ Pic(C) such that ω ⊗ η

is not very ample and the map ν is not surjective (use Lemma 2.2). Therefore the
infinitesimal Prym-Torelli theorem fails at the double cover π : C̃ → C associated
to η. The locus in R6 defined by this family of examples is disjoint from the
previous one because there the line bundles ω ⊗ η were very ample. It is not clear
to us what the dimensions of the fibres P −1(P ([π])) are and therefore whether
[C̃] is obstructed in this case.

5.2.3. Another locus where the infinitesimal Prym-Torelli fails is R6,T , the locus
of double covers of trigonal curves. It has dimension 13, and the restriction of P
to R6,T has general fibre of dimension 1, as it follows from Recillas’s theorem
recalling that W1

4 (X) for a curve X of genus 5 has dimension 1.
What is interesting here is that W1

4 (X) = Θsing, the singular locus of the theta
divisor of JX: for a general X this is a non-singular curve of genus 11 which has
an involution ι with quotient a non-singular plane quintic C. The double cover
π : W1

4 (X) → C is associated with a 2-division point η such that O(1) ⊗ η is
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an even theta-characteristic (see [4] for details). Moreover P ([π]) = [JX] again,
by [9]. Therefore we see that for a general X of genus 5 we have

P −1([JX]) = W1
4 (X) ∪ {[π]}.

In particular the fibre of P is not equi-dimensional. Moreover ν is surjective at [π]
(see [4, part II, Section 5]) and therefore the curve W1

4 (X) = Θsing is unobstructed
in JX. Note that this gives an example of a double cover π of a curve of Clifford
index 1 (namely a non-singular plane quintic) at which the infinitesimal Prym–
Torelli theorem holds.

Note also that, since cork(ν) is 1-dimensional if π : C̃ → C is a double cover
of a general trigonal curve of genus 6, we have that cork(σ) is 1-dimensional as
well, by Proposition 2.3 (clearly a general trigonal C is not bi-elliptic). Therefore
δ has rank 1 and

h0(C̃, NC̃) = g.

With some extra effort one can easily show that in this case C̃ is unobstructed in
JX. In fact consider a small (1-dimensional) neighborhood A of [π] in the fibre
P −1([JX]) and let

C̃ ⊂ JX × A
�

A

(8)

be the corresponding 1-parameter family of deformations of C̃ in JX. Since
this family has varying moduli, in the exact sequence (4) we have 0 
= δ(v) ∈
H1(C̃, TC̃) if v 
= 0 is a tangent vector to A at the point a0 parametrizing C̃, and
δ(v) generates Im(δ). Now consider a small neighborhood B of 0 in JX and build
a new family:

C̃ ′ ⊂ JX × A × B
�

A × B,

whose fibre over (a, b) is the curve t∗b (C̃a), i.e. the translate by b of the fibre C̃a of
the family (8). It is clear that the characteristic map

TA×B,(a0,0) → H0(C̃, NC̃)

is an isomorphism, proving that C̃ is unobstructed. Note that h0(C̃, NC̃ ) > g − 1
in this case, and C̃ has non-trivial moduli.
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