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Abstract. A class of minimal almost complex submanifolds of a Riemannian manifold
M̃4n with a parallel quaternionic structure Q, in particular of a 4-dimensional oriented
Riemannian manifold, is studied. A notion of Kähler submanifold is defined. Any Kähler
submanifold is pluriminimal. In the case of a quaternionic Kähler manifold M̃4n of non
zero scalar curvature, in particular, when M̃4 is an Einstein, non Ricci-flat, anti-self-dual
4-manifold, we give a twistor construction of Kähler submanifolds M2n of maximal possible
dimension 2n. More precisely, we prove that any such Kähler submanifold M2n of M̃4n is the
projection of a holomorphic Legendrian submanifold L2n ⊂ Z of the twistor space (Z,H)
of M̃4n , considered as a complex contact manifold with the natural holomorphic contact
structure H ⊂ TZ. Any Legendrian submanifold of the twistor space Z is defined by
a generating holomorphic function. This is a natural generalization of Bryant’s construction
of superminimal surfaces in S4 = HP1.
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1. Introduction

1.1. In 1982 R. Bryant [8] gave an explicit construction of superminimal con-
formal immersions of compact Riemann surfaces into the 4-sphere S4 which led to
several developments. The key idea of the construction is to use the twistor fibration
π : CP3 → S4 which is a Riemannian submersion with fiber S2 ≡ CP1, and whose
horizontal distribution H is a holomorphic contact structure. An oriented surface
M2 ⊂ S4 has a natural lift L = J(M2) into CP3 defined by the complex structure
of M2. The surface M2 is superminimal if and only if its lift L is a holomorphic

D.V. Alekseevsky: Department of Mathematics, The Hull University, Cottingham Road,
HU6 7RX, UK, e-mail: d.v.alekseevsky@hull.ac.uk

S. Marchiafava: Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le
A. Moro 2, 00185 Roma, Italy, e-mail: marchiaf@mat.uniroma1.it

Work done under the program of G.N.S.A.G.A. of C.N.R.; partially supported by
M.U.R.S.T. (Italy) and EPSRC (UK)

The second author is a member of EDGE, Research Training Network HPRN-CT-2000-
00101, supported by the European Human Potential Programme



54 D.V. Alekseevsky, S. Marchiafava

Legendrian submanifold of CP3, that is a horizontal holomorphic 2-dimensional
submanifold. This reduces a description of superminimal surfaces M2 ⊂ S4 to
a description of holomorphic Legendrian submanifolds L of CP3. R. Bryant con-
structed the holomorphic local coordinates u, p, q such that the contact distribution
H is the kernel of the 1-form θ = du − pdq. In terms of these coordinates a Legen-
drian submanifold has the form L = L f = {u = f(q), p = ∂ f/∂q} where u = f(q)

is a holomorphic function. Then the projection M2 = π(L f ) is a superminimal
surface of S4.

Bryant’s construction was studied by several authors and generalized to im-
mersions of surfaces into another manifolds for which the twistor construction
still applies. Superminimal immersions of surfaces into 4-dimensional Rieman-
nian manifolds were considered for example in [16]–[19], [22], [28], [12], [33],
[29], [23]. In particular, H.B. Lawson constructed the superminimal immersions
of surfaces into the complex projective plane CP2, which is a quaternionic Kähler
manifold as well as the 4-sphere S4 ≡ HP1. Superminimal immersions of sur-
faces into higher dimensional manifolds, and particularly into quaternionic Kähler
manifolds were studied in [12], [9], [11], [23].

We recall that a quaternionic Kähler manifold (M̃4n , g̃, Q) is an oriented Rie-
mannian (Einstein) manifold (M̃4n , g̃) together with a parallel (skew-symmetric)
quaternionic structure Q ⊂ EndTM which is locally generated by an almost hyper-
complex basis (J1, J2, J3). It has a twistor space Z = {J ∈ Q | J2 = −Id} which
is endowed with a natural complex structure and projection π : Z → M̃4n . If the
scalar curvature is non zero, Z carries a natural (pseudo) Kähler metric, such that
the projection π is a Riemannian submersion, and a holomorphic contact structure,
defined by S. Salamon [37].

More recently, some generalization of Bryant’s construction to superminimal
higher dimensional submanifolds of some quaternionic Kähler manifolds were
considered, see [29], [3], [24], [25].

The main aim of this paper is to show that a natural generalization of Bryant’s
construction provides a simple description of Kähler submanifolds of a quaternionic
Kähler manifold M̃4n with non zero scalar curvature and, in particular, gives an
explicit description of such submanifolds in Wolf spaces (that is compact symmetric
quaternionic Kähler manifolds).

A Kähler submanifold (M2m, J1)of a quaternionic Kähler manifold (M̃4n, g̃, Q)

is defined as a submanifold M2m together with a section J1 of the twistor bundle
Z|M which preserves TM and is parallel along M [2]. Such a submanifold M2m

with the induced metric g = g̃|TM and the complex structure J = J1|TM is a Kähler
manifold. If M̃4n , n > 1, is a quaternionic Kähler manifold with non zero scalar
curvature then Kähler submanifolds are precisely the totally complex submanifolds
studied by many authors, see for example [20], [41], [40], [2]. It is known, [20],
that they are minimal, and even pluriminimal [34] (or (1,1) geodesic [24]), and that
their maximal dimension is 2n.

The generalization of Bryant’s construction works as follows. If the scalar cur-
vature of the quaternionic Kähler manifold (M̃4n , g̃, Q) is non zero (like in the case
of 4-sphere) there is a correspondence between holomorphic, horizontal submani-
folds N of the twistor space equipped with the holomorphic contact structure, and
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Kähler submanifolds M2m of M̃4n : the natural lift N = J1(M) of a Kähler subman-
ifold M2m to the twistor space Z is a holomorphic, horizontal submanifold of Z
and conversely the projection M2m = π(N) to M̃4n of a holomorphic horizontal
submanifold N ⊂ Z is a Kähler submanifold. In fact, this correspondence was
already indicated by M. Takeuchi [40], who stated it in terms of totally complex
submanifolds. Like in the case of S4, the explicit construction of Legendrian sub-
manifolds L ⊂ Z (i.e. maximal holomorphic horizontal submanifolds) and hence
maximal Kähler submanifolds M2n ⊂ M̃4n reduces to the construction of Darboux
coordinates u, pk, qk such that a (local) contact 1-form θ with H = Ker θ has the
form θ = du−∑

k pkdqk. A direct generalization of the Bryant’s formulas provides
such Darboux coordinates for the twistor space Z = CP2n+1 of the quaternionic
projective space M̃4n = HPn . This allows to construct Kähler submanifolds of
HPn hence, due to results by F. Burstall and P. Kobak (see below), of any Wolf
space explicitly.

The above definition of Kähler submanifold makes sense, in fact, for any
Riemannian manifold (M̃4n , g̃, Q) with a parallel (skew-symmetric) quaternionic
structure Q, in particular for an oriented Riemannian 4-manifold (M̃4, g̃, Q) where
Q = g̃−1 ◦ Λ2+ and Λ2+ is the bundle of self-dual 2-forms on M4. In this case it
was proved by T. Friedrich [16], see also [33] Prop.1, that the Kähler submanifolds
M2 ⊂ M̃4 are precisely the superminimal surfaces. Moreover, if (M̃4, g̃) is an
Einstein anti-self-dual manifold with non zero scalar curvature then the twistor
space Z is a complex contact 3-manifold and the proposed construction provides
all superminimal surfaces of M̃4. In particular if M̃4 = S4 or CP2, it reduces to
Bryant’s and, respectively, Lawson’s construction.

The only known examples of compact quaternionic Kähler manifolds with
positive scalar curvature are the Wolf spaces, that is the symmetric compact quater-
nionic Kähler manifolds. Let M̃1, M̃2 be two Wolf spaces of the same dimension.
Their twistor spaces Z1,Z2 are homogeneous complex contact manifolds. Gener-
alizing the results by Bryant and Lawson in dimension 4, F. Burstall proved that
there exists a birational correspondence ϕ : Z1 → Z2 which preserves the con-
tact distributions and hence transforms Legendrian submanifolds into Legendrian
submanifolds [9]. This establishes a birational correspondence between maximal
Kähler submanifolds of M1 and M2. P. Kobak [25] described this correspondanceϕ

explicitly. In particular, if M1 = HPn we can construct a Kähler submanifold of
the Wolf space M2 as the projection on M2 of the Legendrian submanifolds ϕ(L f )

where L f is a Legendrian submanifold of CP2n+1 defined by a holomorphic func-
tion f .

In fact, we consider a more general class of almost complex submanifolds
(M, J1) of a manifold (M̃, g̃, Q) with a parallel quaternionic structure that is
a submanifold M together with a section J1, J2

1 = −id, of the twistor bundle
π : Z|M → M which preserves TM. It is well known that any almost complex
submanifold of a Kähler manifold is complex and minimal. In the case of a Rie-
mannian manifold (M̃4n , g̃) with a parallel quaternionic structure Q, in particular
for a quaternionic Kähler manifold, the situation is different. The almost complex
structure J = J1|M of an almost complex submanifold may be not integrable, or
it may be integrable, but not parallel, such that (M, g̃|M, J ) is a Hermitian, but
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not a Kähler manifold. The section J1 defines a natural lift N = J1(M2m) of an
almost complex submanifold into the twistor space Z. Imposing some additional
condition on J1 which implies integrability of J1, we define a notion of supercom-
plex submanifold (M2m , J1). In fact, in Section 4 we prove that the lift J1(M2m)

of an almost complex submanifold (M2m , J1) of a quaternionic Kähler manifold is
a complex submanifold of the twistor space if and only if it is supercomplex. The
result holds also for surfaces of an oriented 4-dimensional Riemannian manifold.
In this case the notion of supercomplex submanifold reduces to Th. Friedrich’s no-
tion [18] of t-holomorphic surface in an oriented Riemannian 4-manifold. A result
from [2] implies that for n > 1 an almost complex submanifold (M2m , J1) is su-
percomplex if and only if the complex structure J = J1|TM2m is integrable. Remark
that almost complex structures J1 on an open submanifold M4n of a quaternionic
Kähler manifold M̃4n and their integrability were studied in [5].

In Section 3, we give necessary and sufficient conditions for an almost complex
submanifold (M2m , J1) of a Riemannian manifold M̃4n with a parallel quaternionic
structure Q to be minimal. A general formula for the mean curvature vector of
(M2m , J1) is given in terms of Lee form of the (local) extension of J1 to M̃4n .
Under the hypothesis that the quaternionic Kähler manifold has non zero scalar
curvature, a characterization of the supercomplex submanifolds (M, J1) whose
immersion is pluriminimal is given, proving that they are the Kähler submanifolds
or the quaternionic (hence totally geodesic) submanifolds.

Sections 4 and 5 contain the twistor description of supercomplex and, respec-
tively, Kähler submanifolds of a quaternionic Kähler manifold with non zero scalar
curvature. Some results concerning the global structure of Legendrian submani-
folds of a quaternionic Kähler manifold are also stated. In Section 6, we construct
a Darboux coordinated for the twistor space CP2n+1 of HPn , which gives an ex-
plicit local construction of Kähler submanifolds of HPn in terms of holomorphic
functions on CP2n+1.

2. Almost complex, totally complex and Kähler submanifolds of
a Riemannian manifold with parallel skew-symmetric quaternionic structure

2.1. Recall that a (skew-symmetric) almost quaternionic structure Q on a Rie-
mannian 4n-manifold (M4n , g) is a rank-3 subbundle Q of the bundle of endomor-
phisms locally generated by 3 anticommuting skew-symmetric almost complex
structures (J1, J2, J3 = J1 J2). The triple (J1, J2, J3) is called an admissible (local)
basis of Q. An almost quaternionic structure Q is called a quaternionic structure
if it admits a quaternionic connection, that is a torsionless connection ∇ which
preserves Q:

∇X Jα = ωγ (X)Jβ − ωβ(X)Jγ , X ∈ TM(1)

where α, β, γ is a cyclic permutation of 1, 2, 3 and ωα, α = 1, 2, 3, are local
1-forms which depend on the choice of an admissible basis (Jα).

A quaternionic structure Q on a Riemannian manifold (M4n , g) is called a
parallel (skew-symmetric) quaternionic structure if the Levi–Civita connection
is a quaternionic connection and Q consists of skew-symmetric endomorphisms.



A twistor construction of Kähler submanifolds 57

Any oriented 4-dimensional Riemannian manifold has two parallel (skew-
symmetric) quaternionic structures Q = g−1 ◦ Λ2+ and Q′ = g−1 ◦ Λ2− associated
with the decomposition Λ2(TM) = Λ2+ ⊕ Λ2− of 2-forms into self-dual and anti-
self-dual part. For n > 1, a Riemannian manifold (M̃4n , g̃) with a parallel (skew-
symmetric) quaternionic structure Q is called a quaternionic Kähler manifold. It
is an Einstein manifold and its curvature has a decomposition

R = νRHPn + W

where RHPn is the curvature tensor of the quaternionic projective space HPn with
the standard metric, ν is a constant which is called the reduced scalar curvature,
such that K = 4n(n + 2)ν is the scalar curvature, and W is the quaternionic Weyl
tensor which verifies the identity [W(X, Y ), Q] = 0 and has all contractions equal
to zero.

For n = 1, we call an oriented Riemannian 4-manifold, together with the
parallel quaternionic structure Q = g−1 ◦ Λ2+, a quaternionic Kähler manifold if
its curvature tensor has such a decomposition. Since HP1 = S4, the tensor R

HP1

is the curvature tensor of constant curvature equal 1 and W is the anti-selfdual part
of the Weyl tensor. Hence 4-dimensional quaternionic Kähler manifolds are the
same as Einstein anti-self-dual manifolds.

2.2. We will denote by (M̃4n , g̃, Q) a Riemannian manifold with a parallel
quaternionic structure Q.

Definition 2.1. A submanifold M2m of (M̃4n , g̃, Q) together with a section J1 =
J M

1 ∈ Γ(Q|M ) such that

1) J2
1 = −Id,

2) J1TM = TM

is called almost complex.
In this case (M2m , g = g̃|TM , J = J1|TM ) is an almost Hermitian manifold with

the Kähler form F = g ◦ J.
An almost complex submanifold (M2m , J1) is called complex if the restriction

J = J1|TM is an (integrable) complex structure on M.

A local admissible basis (J1, J2, J3) of Q, defined on a neighbourhood U in
M̃4n of a point x ∈ M2m , is called an adapted basis for the almost complex
submanifold M2m if J1|(M∩U ) = J M

1 .

Definition 2.2. An almost complex submanifold (M2m , J1) of (M̃4n , g̃, Q) is called
supercomplex if

∇̃J1 X J1 − J1∇̃X J1 = 0, ∀X ∈ TM

where ∇̃ is the Levi-Civita connection of g̃.

By using (1) for an adapted basis we get the identity

∇̃J1 X J1 − J1∇̃X J1 = (ω3 ◦ J1 − ω2)(X)J2 + (ω3 ◦ J1 − ω2)(JX)J3

∀X ∈ TM. This implies
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Proposition 2.3. The almost complex submanifold (M2m , J1) of (M̃4n , g̃, Q) is
supercomplex if and only if the locally defined 1-form

ψ := (ω3 ◦ J1 − ω2)|TM = 0.

The above condition does not depend on the adapted basis (J1, J2, J3) with the
associated 1-forms (ω1, ω2, ω3).

The following result was proved in [2], see (1) of Theorem 1.1.

Proposition 2.4. If m > 1, an almost complex submanifold (M2m , J1) of a quater-
nionic Kähler manifold M̃4n is complex if and only if it is supercomplex.

Remark that any 2-dimensional almost complex submanifold (M2, J1) of (M̃4n ,

g̃, Q) is complex but not necessarily supercomplex.
In Section 4, we characterize supercomplex submanifolds as the projection to

M̃ of complex submanifolds of the twistor space Z (see Corollary 4.6).

Definition 2.5. An almost complex submanifold (M2m , J1) of a Riemannian mani-
fold (M̃4n , g̃) with a parallel quaternionic structure Q is called

1) Kähler if

∇̃X J1 = 0 ∀X ∈ TM

or equivalently

ω2|TM
= ω3|TM

= 0

where ∇̃ is the Levi-Civita connection of g̃ and ωα, α = 1, 2, 3, are the 1-forms
associated with a local adapted basis (J1, J2, J3) of Q and

2) totally complex if

J2TM⊥TM .

Proposition 2.6. ([2]) Let (M̃4n , g̃, Q) be a quaternionic Kähler manifold with
non zero scalar curvature. If m > 1, an almost complex submanifold (M2m , J1) is
Kähler if and only if the almost Hermitian manifold (M2m , g = g̃|TM, J = J1|TM)

is Kähler.

Proposition 2.7. Let M2 be a 2-dimensional oriented submanifold of a Rieman-
nian manifold (M̃4n , g̃) with a quaternionic structure Q. Assume that
dim(T Q

x M2) = 4, ∀x ∈ M2, where T Q
x M is the Q-invariant subspace of Tx M̃

generated by Tx M. Then M2 is totally complex with respect to a uniquely defined
section J1 ∈ Γ(Q|M ) which induces the given orientation of M2.

Remark. Such a submanifold M2 was called inclusive in [12] and pseudoquater-
nionic in [32].

Proof. The proof follows from the lemma below. �
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Lemma 2.8. Let V be a 4n-dimensional vector space with a given (constant)
quaternionic structure Q = span(J1, J2, J3). For any oriented 2-plane U ⊂ V
which is included in a quaternionic line Rv + Qv there exists a unique complex
structure J = JU ∈ Q which preserves U and induces the given orientation.

Proof. Let (u, u′) be an oriented basis of U . The condition that U ⊂ Rv+Qv means
that u′ can be written as u′ = a0u +a1 J1u +a2 J2u +a3 J3u. Let define the complex

structure J ∈ Q by J = 1
b (a1 J1 + a2 J2 + a3 J3), b =

√

a2
1 + a2

2 + a2
3 > 0. Then

u′ = a0u + bJu and J leaves U invariant and induces on it the given orientation.
The complex structure J ∈ Q is uniquely determined by these properties: assume
that Ĵ ∈ Q is a complex structure which leaves U invariant, that is Ĵu = a′u+b′Ju,
and induces the same orientation, that is b′ > 0; then the linear independence of
(u, J1u, J2u, J3u) implies that a′ = 0, b′ = 1, that is Ĵ = J . �

Corollary 2.9. Any oriented 2-dimensional submanifold M2 of a 4-dimensional
oriented Riemannian manifold (M̃4, g̃) with the parallel quaternionic structure
Q = g̃−1 ◦ Λ2+ is a totally complex submanifold with respect to a uniquely defined
section J1 as in Proposition 2.7.

In general, the totally complex submanifold M2 ⊂ M̃4 is not Kähler. For n > 1,
the situation is different, as the following proposition shows.

Proposition 2.10. ([41], [2]). If n > 1 and the scalar curvature of a quaternionic
Kähler manifold (M̃4n , g̃, Q) is non zero, then an almost complex submanifold
(M2m , J1) of M̃4n is Kähler if and only if it is totally complex.

It is evident that the existence at a point p ∈ M2m of two non proportional
complex structures J1, J̃1 ∈ Zp both leaving the tangent space Tp M2m invariant
would imply that it is Q-invariant, i.e. Q pTpM2m = Tp M2m .

Recall that a submanifold M of a quaternionic Kähler manifold (M̃4n , g̃, Q) is
called a quaternionic submanifold if QTM ⊂ TM. Then the following corollary
follows immediately.

Corollary 2.11. Let M2m be a submanifold of a quaternionic Kähler manifold
(M̃4n , g̃, Q) with non zero scalar curvature. If M2m is not a quaternionic subman-
ifold then, up to a sign, there exists at most one section J1 ∈ Γ(Z |M) such that
(M2m , J1) is an almost complex submanifold of M̃4n .

Corollary 2.12. The maximal (real) dimension of a Kähler submanifold of a quater-
nionic Kähler manifold (M̃4n , g̃, Q) with non zero scalar curvature is 2n.

We call a 2n-dimensional Kähler submanifold of a quaternionic Kähler mani-
fold (M̃4n , g̃, Q) with non zero scalar curvature a maximal Kähler submanifold.
In [31] such submanifolds were considered in HPn under the name of complex-
Lagrangian submanifolds; see also [24].
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3. Minimal almost complex submanifolds

In this section we calculate the mean curvature vector of an almost complex sub-
manifold of a Riemannian manifold (M̃4n , g̃) with a parallel quaternionic struc-
ture Q and prove that any Kähler submanifold is minimal. We give also some
characterizations of Kähler submanifolds.

Let (M2m , J1) be an almost complex submanifold of a Riemannian manifold
(M̃4n , g̃) with a parallel quaternionic structure Q. We have the following orthogonal
decomposition of the tangent space of M at a point x ∈ M:

Tx M = T x M ⊕ Dx

where T x M = Tx M ∩ J2Tx M is the maximal Q-invariant subspace of Tx M and
Dx is the J1-invariant orthogonal complement to T x M.

Note that the space D ′
x = J2Dx , does not depend on the adapted basis

(J1, J2, J3) and

T Q
x M = T x M ⊕ Dx ⊕ D ′

x

is a direct sum decomposition of the minimal Q-invariant subspace T Q
x M of Tx M̃

which contains Tx M.
Remark that D ′

x is orthogonal to T x M but in general, if dimDx > 2, not
orthogonal to Dx . Let recall also that, in case n > 1, if dimDx > 2 for any x ∈ M
then the almost complex structure J1|M is integrable, see [2].

The Lee form of an almost Hermitian manifold (M2m , g, J ) is defined as the
1-form

θ = −(δF) ◦ J,

where δF is the codifferential of the Kähler form F = g ◦ J .
For a quaternionic Kähler manifold (M̃4n , g̃, Q) with an admissible basis

(J1, J2, J3) of Q the Lee form θ1 of (g̃, J1) is given by

θ1 = ω2 ◦ J2 + ω3 ◦ J3

where the 1-forms ωα are associated with (J1, J2, J3), see [5].
Let (M2m , J1) be an almost complex submanifold of (M̃4n , g̃, Q). We denote

by

t1 = g̃−1 ◦ θ1 ∈ T M̃|M

the vector field along M, dual to the 1-form θ1.

Proposition 3.1. Let (M̃4n , g̃) be a Riemannian manifold with a parallel quater-
nionic structure Q. Then the mean curvature vector H of an almost complex
submanifold (M2m , J1) of M̃4n is given by

H = − 1

2m

[
PrD ′ t1

]⊥
(2)
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where, for any X ∈ Tx M̃, PrD ′ (X) is the orthogonal projection of X onto the
subspace D ′

x and X⊥ means the orthogonal projection of X onto T⊥
x M.

If m = 1 the formula can be written as

H = 1

2

[
(ω3 ◦ J1 + ω2)(X)J2 X − (ω3 ◦ J1 + ω2)(J1 X)J3 X

]
(3)

where X is any unit vector of TM.

Proof. Let J = J1|TM and (J1, J2, J3) be an adapted basis. For any vectors X, Y ∈
TM one has

ω3(X)J2Y − ω2(X)J3Y = (∇̃X J1)Y = (∇X J )Y + h(X, JY ) − J1h(X, Y ).

Hence

h(X, JY ) − J1h(X, Y ) = [
ω3(X)J2Y − ω2(X)J3Y

]⊥
(4)

where ⊥ means the projection on TM⊥. By comparing with the identity where X
is exchanged with Y , one gets the identity

h(X, JY ) − h(Y, JX) = [
ω3(X)J2Y − ω2(X)J3Y − ω3(Y )J2 X + ω2(Y )J3 X

]⊥

that is, by exchanging X with JX,

h(X, Y ) + h(JX, JY ) = [
ω3(J1 X)J2Y − ω2(J1 X)J3Y + ω3(Y )J3 X

+ ω2(Y )J2 X
]⊥

.
(5)

Let now (E1, . . . , Em , J1 E1, . . . , J1 Em) be an orthonormal basis of Tx M such
that (E1, . . . , Ek, J1 E1, . . . , J1 Ek) is an orthonormal basis of D and, hence,
(Ek+1, . . . , Em, J1 Ek+1, . . . , J1 Em) is an orthonormal basis of T̄ M. Using the
previous identity, we find

2m H =
m∑

i=1

[
h(Ei, Ei) + h(JEi, JEi)

]

=
m∑

i=1

{[
ω3(J1 Ei) + ω2(Ei)

]
J2 Ei

[
ω2(J1 Ei) − ω3(Ei)

]
J3 Ei

}⊥

and hence

2m H =
m∑

i=1

{
(ω3 ◦ J1 + ω2)(Ei)J2 Ei − (ω2 ◦ J1 − ω3)(Ei)J3 Ei

}⊥

=
m∑

i=1

{ − (ω2 ◦ J2 + ω3 ◦ J3)(J2 Ei)J2 Ei − (ω2 ◦ J2 + ω3 ◦ J3)(J3 Ei)J3 Ei
}⊥

=
k∑

i=1

{ − (ω2 ◦ J2 + ω3 ◦ J3)(J2 Ei)J2 Ei − (ω2 ◦ J2 + ω3 ◦ J3)(J3 Ei)J3 Ei
}⊥

= −[
P rJ2D t1

]⊥

since (J2 E1, . . . , J2 Ek, J3 E1, . . . , J3 Ek) is an orthonormal basis of J2D . �
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Corollary 3.2. An almost complex submanifold M2m ⊂ M̃4n is minimal if the
1-form

χ := (ω3 ◦ J1 + ω2)|TM

vanishes on D for some adapted basis (J1, J2, J3).

Since for a Kähler submanifold (M2m , J1), the 1-forms ω2, ω3 vanish on M2m ,
we have the following corollary which was proved for n > 1 in [20], [2] and for
n = 1 in [17].

Corollary 3.3. A Kähler submanifold (M2m , J1) of a Riemannian manifold
(M̃4n , g̃) with a parallel quaternionic structure Q is minimal.

Moreover, as another corollary we get the following result, see also [8],
[17], [33].

Corollary 3.4. Let M2 be an oriented 2-dimensional submanifold of a 4-dimen-
sional oriented Riemannian manifold (M̃4, g̃) with the parallel quaternionic struc-
ture Q = g̃−1 ◦ Λ2+. Let J1 be the uniquely defined section of Q|M which leaves
TM2 invariant and induces the given orientation on it (by prop. 2.7). Then the
following conditions are equivalent:

1) (M2, J1) is Kähler,
2) (M2, J1) is minimal and supercomplex.

Proof. By Proposition 3.3, (M2, J1) is supercomplex if and only if (ω3 ◦ J1 −
ω2)|TM = 0. By Proposition 3.1 (3) it is minimal if and only if (ω3◦ J1+ω2)|TM = 0.
These two conditions imply ω2 |TM = ω3|TM = 0, i.e. (M2, J1) is Kähler. The
converse statement is clear. �

By the same proof one gets the following corollary.

Corollary 3.5. Let (M2, J1) be a supercomplex surface of a quaternionic Kähler
manifold (M̃4n , g̃, Q). Then it is minimal if and only if it is a Kähler submanifold.

The following proposition, which was proved in [2] (see Theorem 1.9), gives
a characterization of Kähler submanifolds between almost complex submanifolds
of a quaternionic Kähler manifold.

Recall that a quaternionic submanifold M of a quaternionic Kähler manifold
(M̃4n , g̃, Q) is totally geodesic.

Proposition 3.6. ([20], [2]) Let (M̃4n , g̃, Q) be a quaternionic Kähler manifold
with non zero scalar curvature and (M2m , J1) an almost complex submanifold of M̃
which is not a quaternionic submanifold. Then (M2m , J1) is a Kähler submanifold
if and only if the shape operator Aξ verifies the condition

AJ1ξ + J1 Aξ = 0 ∀ ξ ∈ TM⊥

or, equivalently, the second fundamental form h of M satisfies the condition

h(X, J1Y ) − J1h(X, Y ) = 0 ∀X, Y ∈ TM.(6)
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Definition 3.7. An almost complex submanifold (M2m , J1) of a quaternionic Käh-
ler manifold (M̃4n , g̃, Q) is called pluriminimal or (1, 1)-geodesic if one of the
following equivalent conditions holds:

i) the second fundamental form h of M satisfies

h(X, Y ) + h(JX, JY ) = 0 ∀X, Y ∈ TM;(7)

ii) for any normal direction ξ , the shape operator Aξ anticommutes with J =
J1|TM,

Aξ J + JAξ = 0 ∀ ξ ∈ TM⊥;(8)

iii) the complexification of the second fundamental form h has type (2,0)+(0,2),
i.e. h(1,1) = 0;

(For the notion of pluriminimal or (1, 1)-geodesic isometric immersion of an
almost Hermitian, in particular Kähler, manifold into a Riemannian manifold see
[35], Remark 2.9, and the references in [36], [14], [15]).

Since the condition (6) implies (7) and (8) implies that trAξ = 0, which shows
that the mean curvature vector vanishes, we have the following proposition.

Proposition 3.8. i) A pluriminimal almost complex submanifold (M2m , J1) is
minimal.

ii) A Kähler submanifold (M2m, J1)of a quaternionic Kähler manifold (M̃4n, g̃, Q)

is pluriminimal.

We do not know if (7) and (6) are equivalent in general but the following
proposition shows that it is true for supercomplex submanifolds.

Proposition 3.9. A supercomplex submanifold (M2m , J1) of a quaternionic Kähler
manifold (M̃4n , g̃, Q) with non zero scalar curvature is pluriminimal if and only if
it is a Kähler submanifold or a quaternionic (hence totally geodesic) submanifold,
and these cases cannot happen simultaneously.

Proof. Due to Corollary 3.4 and Proposition 3.6, it remains to prove only the
necessity of the condition for m > 1. Recall that for supercomplex submanifolds
one has (ω3 ◦ J1 −ω2)|TM = 0. Hence using (5), the condition (7) can be written as

[
ω2(X)J2Y − ω2(J1 X)J3Y − ω2(J1Y )J3 X + ω2(Y )J2 X

]⊥ = 0

for any X, Y ∈ TM. Assume that M is not a Kähler submanifold, i.e. there is a point
x ∈ M such that ω2|Tx M �= 0. Then for X = Y ∈ Tx M such that ω2(X) = 1,

ω2(J1 X) = 0 we get [J2 X]⊥ = 0 and hence also [J3 X]⊥ = 0. Now we take X as
above and Y in the kernel of ω2 and ω2 ◦ J1. Then we get [J2Y ]⊥ = [J3Y ]⊥ = 0.
This shows that J2Tx M = Tx M. Hence the (non empty) open submanifold M1 of
M defined by

M1 = {
x ∈ M | ω2|Tx M �= 0

}

is a quaternionic submanifold and J2Tx M1 = Tx M1 for x ∈ M1. On the other
hand the complementary set M2 has no interior point since a neighbourhood U
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of such point would be Kähler and hence, by Proposition 2.10, a totally complex
submanifold, i.e. J2TxU ⊥ TxU , x ∈ U . This shows that the closure of M1 is M
and M is a (totally geodesic) quaternionic submanifold. �

4. Natural lift of an almost complex submanifold to the twistor space

4.1. The twistor space Z of a Riemannian manifold (M̃4n , g̃) with a parallel
quaternionic structure Q. Recall that the twistor space Z of a Riemannian mani-
fold (M̃4n , g̃) with a parallel quaternionic structure Q is defined as the manifold
Z = {J ∈ Q | J2 = −Id} of all complex structures from Q. The natural projection
π : Z → M̃4n is a S2-bundle over M̃4n . Moreover, Z has a natural almost complex
structure J Z defined as follows. The connection in π : Z → M̃4n induced by
Levi–Civita connection defines a decomposition

TzZ = Vz ⊕ Hz(9)

of the tangent space at a point z = J ∈ Z into vertical and horizontal subspaces.
The complex structure J Z

z at z is defined by

J Z
z (X) = Jv Xv + π−1

∗ ◦ J ◦ π∗ Xh

where X = Xv + Xh is the decomposition of a vector X ∈ TzZ, Jv is the natural

complex structure of a fiber S2 = CP1 and π∗ : Hz
∼=→ Tπ(z)M̃ is the natural

projection.
The complex structure J Z is integrable if n > 1 or if n = 1 and (M̃4, g̃) is

anti-self-dual.
The horizontal distribution H is J Z -invariant. Moreover if (M̃4n , g̃, Q) is

a quaternionic Kähler manifold with non zero scalar curvature then the horizontal
distribution H is an holomorphic contact distribution, see [37].

4.2. Natural lift of an almost complex submanifold. Let (M2m , J1) be an almost
complex submanifold of a Riemannian manifold (M̃4n , g̃) with a parallel quater-
nionic structure Q. Then the map

J1 : M � x �→ J1|x ∈ Z

is a section of the twistor bundle Z|M = π−1(M) → M. The submanifold
J1(M) ⊂ Z is called the natural lift of the almost complex submanifold (M2m, J1).
In general J1(M) is not a complex submanifold of Z. To state the condition when
this is true, we need the following definition.

Definition 4.1. A submanifold N of a manifold Z with an almost complex structure
J is called complex if the tangent bundle TN is J-invariant and the restriction J|TN
is an integrable complex structure on N.
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Theorem 4.2. Let M be a 2m-dimensional submanifold of a quaternionic Kähler
manifold (M̃4n , g̃, Q) and

J1 : M → N = J1(M) ⊂ Z

M � x �→ J1|x

a section of the twistor bundle over M. Then N = J1(M) is a complex submanifold
of Z if and only if (M, J1) is a supercomplex submanifold of M̃4n

Proof. The proof is based on the following lemmas.

Lemma 4.3. Let (M2m , J1) be an almost complex submanifold of the quaternionic
Kähler manifold (M̃4n , g̃, Q). Then (M2m , J1) is a supercomplex submanifold if
and only if for any point x ∈ M there exists a quaternionic connection ∇U in
a neighbourhood U of x in M̃ such that

∇U
X J1 = 0 , ∇U

X J2 = ω(X)J3 , ∇U
X J3 = −ω(X)J2 ∀X ∈ TM.(10)

Proof. By Proposition 2.3, (M, J1) is a supercomplex submanifold if and only if for
an adapted basis (J1, J2, J3) defined in a neighbourhood U ⊂ M̃ and Levi–Civita
connection ∇̃ we have

∇̃X J1 = ω3(X)J2 − ω2(X)J3, X ∈ T M̃

where

(ω3 ◦ J1 − ω2)|TM = 0.(11)

On the other hand, recall that any quaternionic connection ∇′ can be obtained by
modifying the connection ∇̃ as follows

∇′ = ∇̃ + Sξ

where ξ is a 1-form on U and the (1,2)-tensor Sξ is defined by

Sξ
X = ξ(X)Id + X ⊗ ξ −

∑

α

ξ(Jα X)Jα −
∑

α

Jα X ⊗ (ξ ◦ Jα).

Then

∇′
X J1 = ω′

3(X)J2 − ω′
2(X)J3 ∀X ∈ T M̃

where

ω′
2 = ω2 − 2ξ ◦ J2, ω′

3 = ω3 − 2ξ ◦ J3,

see [1], Prop. 3.6 and p. 51, and also [4]. Moreover

∇′
X J1 = 0, ∀ X ∈ TM ⇔ (ω2 − 2ξ ◦ J2)|TM = (ω3 − 2ξ ◦ J3)|TM = 0

that is

∇′
X J1 = 0, ∀ X ∈ TM ⇔ ω3 ◦ J1|TM = ω2|TM = 2ξ ◦ J2|TM
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[1], Prop. 5.3. Hence, the existence of a connection ∇′ = ∇U satisfying (10)
implies (11). On the other hand let (M, J1) be a supercomplex submanifold. Then
we modify the connection ∇̃ on the open domain U ,

where an adapted basis (J1, J2, J3) is defined, as ∇U = ∇̃ + Sθ with

θ = −1

4
(ω2 ◦ J2 + ω3 ◦ J3).

Then ∇U verifies (10). �
We need the following known characterization of the covariant derivative of

a tensor field.

Lemma 4.4. Let Z be a manifold with a linear connection ∇ and π : W → Z
a ∇-invariant tensor bundle on Z. Let γ(t) be a curve in Z and A(t) a section of
π along γ . We may consider the vertical component Ȧ(t)vert of the tangent vector
Ȧ(t) of the curve A(t) ⊂ W as a vector of the fiber Wγ(t). Then

∇
dt

A(t) = Ȧ(t)vert .

Corollary 4.5. Let H ⊂ TW be the horizontal distribution of the connection
∇ in π induced by the linear connection ∇. Let M be a submanifold of Z and
πM : WM = π−1(M) → M the restriction of the bundle π : W → Z to M.
A section A ∈ Γ(WM ) is parallel along M, (∇X A = 0, ∀X ∈ TM), if and only
if the image A(M) = {Ax, x ∈ M} ⊂ W is a horizontal submanifold, that is
TA(M) ⊂ H .

Proof. The horizontal lift A(t) of a curve γ(t) ⊂ M to W with A(0) = w ∈ W
is naturally identified with a parallel section of π along γ(t) and the horizontal
subspace Hw consists of the tangent vectors at w of such lifts. If the section
A ∈ Γ(WM ) is parallel, then the horizontal lift of a curve γ(t) is the restriction of
the section A to γ(t). Hence, the tangent space to A(M) at a point A(x), x ∈ M,
is a horizontal subspace, T A(M) ⊂ H . Conversely, if A(M) is a horizontal
submanifold, then for any curve γ(t) ⊂ M the restriction of the section A to γ(t)
is the parallel section of W along γ(t). Hence, ∇γ ′(t) A = 0. This shows that the
section A is parallel along M. �
Proof of Theorem 4.2. Let (M, J1) be a supercomplex submanifold of M̃4n . Then
by Lemma 4.3 there exists a local quaternionic connection ∇U which preserves J1.
It induces a local connection in the twistor bundle Z. Denote by HU the local
horizontal distribution of ∇U in the twistor space Z. By S. Salamon [38] the
horizontal space HU

z ⊂ TzZ is a complex subspace with respect to the complex
structure J Z and the map

π∗ : HU
z → Tπ(z)M̃

is an isomorphism of complex spaces with respect to the complex structures J Z |HU
z

and Jz, where Jz is the complex structure in Tπ(z)M̃ associated with z ∈ Z. For any
point x ∈ U ∩ M one has

π∗TJ1(x) J1(M) = Tx M ⊂ Tx M̃
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and Tx M is invariant under the complex structure Jz = J1|x . By Lemma 4.4 the lift
J1(M) ⊂ Z is a horizontal submanifold with respect to ∇U , that is TJ1(x) J1(M) ⊂
HU

J1(x). Since Tx M is a JJ1(x)-invariant subspace, the tangent space TJ1(x) J1(M) is
J Z -invariant subspace. Note that if n = 1 then m = 1 and the restriction J Z

|TN is
automatically an integrable complex structure. If n > 1 then J Z is an integrable
complex structure and in both cases J1(M) is a complex submanifold.

Conversely, assume that N = J1(M) is a complex submanifold of (Z, J Z ).
The tangent space TzZ, z ∈ J1(M), has the decomposition

TzZ = T vert
z ⊕ Hz

into the direct sum of two J Z -invariant subspaces. Hence the projection HN ⊂
Hz of the J Z -invariant subspace Tz N onto Hz is J Z -invariant. This implies, by
definition of J Z , that the projection π∗Tz N = π∗HN ⊂ Tx M, where x = π(z), is
invariant with respect to the complex structure Jz = J1(x) = J1|x associated with
z ∈ N = J1(M). This shows that (M, J1) is an almost complex submanifold, that
is J1Tx M = Tx M, ∀x ∈ M. Moreover the almost complex structure J = J1|TM is
integrable since π : N → M is a J-equivariant diffeomorphism of the complex
manifold (N, J Z |TN) onto (M, J ). �
Corollary 4.6. Let N ⊂ Z be a complex submanifold such that the projection
π : N → M = π(N) is a diffeomorphism. Then M is a supercomplex submanifold
of (M̃4n , g̃, Q) and any supercomplex submanifold of (M̃4n , g̃, Q) has such form.

Remark. In case of an oriented Riemannian 4-manifold (M̃4, g̃) with the parallel
quaternionic structure Q = g̃−1 ◦ Λ2+ the natural almost complex structure J Z on
the twistor space Z = {J ∈ Q|J2 = −Id} defined on (9) is integrable if and only
if (M̃4, g̃) is anti-self-dual [7]. Nevertheless the above proof still works and gives
the following result.

Proposition 4.7. Let (M̃4, g̃) be an oriented 4-dimensional Riemannian manifold
and Z its twistor space with the projection π : Z → M̃4. Then there exists a natural
one to one correspondence between complex surfaces N2 ⊂ Z (i.e. J Z TN = TN)
such that π|N2 : N2 → M2 = π(N2) is a diffeomorphism and supercomplex
surfaces M2 ⊂ M̃4: the natural lift N2 = J1(M2) of a supercomplex surface
M2 ⊂ M̃4 is a complex surface (called also a pseudo-holomorphic curve) in Z
such that M2 = π(N2).

5. Natural lift of Kähler submanifolds to the twistor space

5.1. Now we will assume that (M̃4n , g̃, Q) is a quaternionic Kähler manifold
with non zero scalar curvature and π : Z → M̃4n is its twistor fibration. We will
consider Z as a complex manifold equipped with the natural (pseudo-)Kähler–
Einstein metric gZ , see [7], Th. 14.80, Remark 14.86 b). Then the projection π

is a (pseudo-)Riemannian submersion with totally geodesic fibers Zx, x ∈ M̃4n ,
isometric to the standard sphere S2. The horizontal distribution H is a holomor-
phic contact distribution, that is there exists a local holomorphic 1-form θ such that
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H = Ker θ and θ ∧dθn does not vanish. The following theorems give a characteri-
zation of the natural lift of Kähler submanifolds of a quaternionic Kähler manifold
with non zero scalar curvature.

Theorem 5.1. (see also [40]) Let (M2m , J1) be a Kähler submanifold of a quater-
nionic Kähler manifold (M̃4n , g̃, Q) with non zero scalar curvature. The natural
lift N = J1(M2m) ⊂ Z is a holomorphic horizontal submanifold of the twistor
space. Conversely, any holomorphic horizontal submanifold N ⊂ Z locally defines
a Kähler submanifold M = π(N): this means that if U ⊂ N is an open submani-
fold of N such that the projection π : U → W = π(U) is a diffeomorphism then
(W, J1), where J1 is the section π−1 : W → U, is a Kähler submanifold of M̃4n .

Proof. By Theorem 4.2, the natural lift J1(M) of a Kähler submanifold M2m is
a complex submanifold of Z of complex dimension m and by Corollary 4.5 it is
horizontal. Viceversa, let N ⊂ Z be a holomorphic horizontal submanifold of Z
such that the projection π : N → M is a diffeomorphism. Then by Theorem 4.2
(M = π(N), J1), where J1 = π−1 : M → N, is a complex submanifold of M̃4n

and by Corollary 4.5 the section J1 of Q is parallel along M, that is (M, J1) is
Kähler. �

5.2. Maximal Kähler submanifolds of a quaternionic Kähler manifold and Legen-
drian submanifolds of the twistor space. We use Theorem 5.1 to describe maximal
Kähler submanifolds (M2n, J1) of a quaternionic Kähler manifold (M̃4n, g̃, Q) with
non zero scalar curvature. Recall that a holomorphic n-dimensional submanifold
L ⊂ Z is called a Legendrian submanifold if it is tangent to the contact distri-
bution H (in other words L is a maximal integral submanifold of the holomorphic
contact structure H). According to Theorem 5.1, the natural lift L = J1(M) is a
2n-dimensional holomorphic horizontal submanifold of the twistor space that is
a holomorphic Legendrian submanifold. Moreover the projection π : L → M is
a diffeomorphism. We study such Legendrian submanifolds more carefully.

Proposition 5.2. Let L be a Legendrian submanifold of (Z,H). Then the projec-
tion π : L → M = π(L) is a local isometry and the pre-image π−1(x) of any
point x ∈ M consists either from one point Jx or from two points (Jx,−Jx) which
are antipodal points of the fiber Zx = S2

x ⊂ Qx.

Proof. The projection π|L is a local isometry since Tz L, z ∈ L is a horizontal
subspace of Z and π∗ : Hz → Tπ(z)M̃ is an isometry by the definition of the
metric gZ .

Choose a neighbourhood U of a point z ∈ L such that π : U → W = π(U) is
an isometry. Then U = J1(W ) is the natural lift of an almost complex submanifold
(W, J1). Moreover the section J1 of Q|W is parallel along W by Corollary 4.5
and hence (W, J1) is a Kähler submanifold. By Corollary 2.11 the section J1 is
canonically defined on W up to a sign. This implies that the pre-image π−1(w)∩ L
of w ∈ W is contained in (J1|w,−J1|w). �
Definition 5.3. We say that a Legendrian submanifold L ⊂ Z is of type 1
(respectively type 2) if all fibers of the projection π : L → M = π(L) consist of 1
point (respectively, 2 points).
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Proposition 5.4. A Legendrian submanifold L ⊂ Z which is complete with respect
to the Kähler metric induced by gZ is either of type 1 or type 2.

Proof. The proof follows from the lemma below.

Lemma 5.5. ([10], Lemma 1.32) Let π : L → M = π(L) be a local isometry of
Riemannian manifolds. If L is complete then π is a covering. �

The following Proposition gives sufficient conditions for a Legendrian sub-
manifold L of Z to be of type 1.

Proposition 5.6. Let M̃4n , n > 1, be a quaternionic Kähler manifold with non
zero scalar curvature. A complete connected Legendrian submanifold L of the
twistor space Z is of type 1 if the local De Rham decomposition of L has no
hyperKähler (in particular, locally flat) factor.

Proof. From the Berger list of irreducible holonomy groups of Riemannian mani-
folds, it follows that under the above assumptions the normalizer NO(2n) H of the
restricted holonomy group H of L in the orthogonal group is contained in U(n).
Hence any Riemannian manifold M which is locally isometric to L is also Kähler.
In particular the locally defined parallel section J1 on M = π(L) is globally de-
fined. Since L is connected, it coincides with the natural lift J1(M) and π : L → M
is a diffeomorphism. �

As a corollary of the Theorem 5.1 we have the following description of maximal
Kähler submanifolds of a quaternionic Kähler manifold.

Theorem 5.7. There exists a natural one to one correspondence between maximal
Kähler submanifolds (M2n , J1) of a quaternionic Kähler manifold (M̃4n , g̃, Q)

with non zero scalar curvature and Legendrian submanifolds L of type 1 of the
twistor space Z: the natural lift L = J1(M) of a Kähler submanifold (M2n , J1) is
a Legendrian submanifold of type 1 and, conversely, the projection M = π(L)

of a Legendrian submanifold L of type 1 is a Kähler submanifold such that
J1(M) = L.

This theorem reduces the construction of Kähler submanifolds of M̃4n to the
construction of Legendrian submanifolds of Z. To construct Legendrian submani-
folds it is sufficient to find local holomorphic coordinates u, p1, . . . , pn, q1, . . . , qn ,
called Darboux coordinates, such that the holomorphic 1-form

θ = du −
∑

pidqi(12)

is a contact form, that is Kerθ = H . Such Darboux coordinates exist by the
holomorphic Darboux theorem (see [27]).

In terms of appropriate Darboux coordinates any Legendrian submanifold lo-
cally has the form

L = L F = {
u = F(qi), pi = ∂F/∂qi

}

where F = F(qi) is a holomorphic function called generating function of the
Legendrian submanifold. The projection π(L) of a Legendrian submanifold L
gives a maximal Kähler submanifold of the quaternionic Kähler manifold M̃4n and
the projection π(N) of a complex submanifold N ⊂ L is a Kähler submanifold of
M̃4n and any Kähler submanifold can be obtained by such construction.
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6. Maximal Kähler submanifolds of HPn

We saw that the description of Kähler submanifolds of a quaternionic Kähler
manifold of non zero scalar curvature reduces to the construction of Darboux
coordinates.

R. Bryant constructed such Darboux coordinates on the twistor space CP3

of the quaternionic Kähler manifold M̃ = S4 ≡ HP1 which led to his famous
construction of superminimal surfaces in S4 (see [8]). Remark that superminimal
surfaces M2 in an oriented 4-dimensional Riemannian manifold (M̃4, g̃) are the
same as maximal Kähler submanifolds of the manifold (M̃4, g̃, Q) with the parallel
quaternionic structure Q = g̃ ◦Λ+ (see [17], and also [33], Prop. 1). We will show
that Bryant’s construction of Darboux coordinates has a natural generalization to
the case M̃4n = HPn .

Recall that the twistor space Z of the (right) quaternionic projective spaceHPn

is the complex projective space CP2n+1 with the natural projection

π : CP2n+1 −→ HPn

given by

CP2n+1 � [
w0, . . . , w2n+1] �→ [

x0, . . . , xn
] ∈ HPn

where xk = w2k + jw2k+1, k = 0, . . . , n, (w0, . . . , w2n+1) ∈ C2n+2 − {0} and
1, i, j, k is the standard basis of H.

The Riemannian metric h = gZ of CP2n+1 is the Fubini-Study metric given by

h = (dw · dw̄)(w · w̄) − (dw · w̄)(w · dw̄)

(w̄ · w)2

where w · t = ∑2n+1
i=0 wi t̄ i is the canonical Hermitian product of vectors w =

(w0, . . . , w2n+1), t = (t0, . . . , t2n+1) ∈ C2n+1.
The complex contact structure of CP2n+1 is induced by the complex 1-form

ψ =
n∑

k=0

(
w2kdw2k+1 − w2k+1dw2k),

defined on C2n+2 − {0}, through the projection

π : C2n+2 − {0} → CP2n+1,

see [26]. More precisely, 1-form ψ induces the local contact form θ i on the co-
ordinate domain Wi = {wi �= 0}, i = 0, 1, . . . , 2n + 1 as follows. Let (z0 =
w0(wi)−1, . . . , ẑi, . . . , z2n+1 = w2n+1(wi)−1) be the non-homogeneous coordi-
nates in the domain Wi ( where the symbol “hat” means that the corresponding
term is omitted ). Substituting wk = wi zk for k �= i in ψ, we conclude that the
restriction ψ|Wi is conformal to the following contact form

θ i = (−1)i+1dzi −
n∑

k=1,k �=[i/2]

(
z2k+1dz2k − z2kdz2k+1).
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We verify now that the contact distribution H = ker θ i is the holomorphic
distribution on CP2n+1 orthogonal to the fibre of the twistor fibration CP2n+1 →
HPn .

On the domain W0 = {w0 �= 0} ⊂ CP2n+1 we have the non homogeneous
complex coordinates

zi = wi(w0)−1, i = 1, . . . , 2n + 1,

and on the projection U0 = {x0 �= 0} ⊂ HPn the non-homogeneous quaternionic
coordinates

ξα = xα(x0)−1, α = 1, . . . , n.

With respect to the complex coordinates z = (z1, . . . , z2n+1) on W0 the Hermitian
metric of CP2n+1 can be written as h = ∑

i, j dzihi j̄dz j̄ where z j̄ = z j and

hi j̄ = (1 + z · z)δi j̄ − zī z j

(1 + z̄ · z)2
.

Since two points [1, z1, . . . , z2n+1], [1, z1′
, . . . , z2n+1 ′] ∈ W0 ⊂ CP2n+1 have

the same projection in HPn , if and only if there exists a quaternion q = η + jξ ,
where η, ξ ∈ C, such that






1 + jz1′ = (
1 + jz1

)
q ≡ (

η − z̄1ξ
) + j

(
z1η + ξ

)

z2′ + jz3′ = (
z2 + jz3

)
q ≡ (

z2η − z3ξ
) + j

(
z3η + z̄2ξ

)

. . . . . .

z2n ′ + jz2n+1′ = (
z2n + jz2n+1

)
q ≡ (

z2nη − z2n+1ξ
) + j

(
z2n+1η + z̄2nξ

)

(and hence, in particular, η = z̄1ξ+1), the parametric equations of the fiber through
the point z0 = (z1

0, z2
0, z3

0, · · · , z2n
0 , z2n+1

0 ) of W0 are





z1(λ) = z1
0 + (

1 + z1
0 z̄1

0

)
λ,

z2(λ) = z2
0 + (

z2
0z̄1

0 − z̄3
0

)
λ,

z3(λ) = z3
0 + (

z3
0z̄1

0 + z̄2
0

)
λ

. . . . . .

z2n(λ) = z2n
0 + (

z2n
0 z̄1

0 − z̄2n+1
0

)
λ,

z2n+1(λ) = z2n+1
0 + (

z2n+1
0 z̄1

0 + z̄2n
0

)
λ,

where λ ∈ C.
Hence the non vanished holomorphic vector field

v = (
1 + z1z̄1) ∂

∂z1
+

n∑

k=1

[
(
z2k z̄1 − z̄2k+1) ∂

∂z2k
+ (

z2k+1 z̄1 + z̄2k) ∂

∂z2k+1

]
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is tangent to the fibers of π and defines a trivialization of the vertical bundle V.
It is easy to check that the (1, 0) form dual to v under the Fubini-Study metric is
θ = θv = h ◦ v given by

θv = |z · z̄|−1

[

dz1 −
n∑

k=1

(
z2k+1dz2k − z2kdz2k+1)

]

.

where |z · z̄| = 1 + z1z1̄ + · · · + z2n+1 z̄2n+1, and it is proportional to

θ1 = dz1 −
n∑

k=1

(
z2k+1dz2k − z2kdz2k+1)

which is the local holomorphic contact form defining on W0 the complex contact
structure of Z = CP2n+1.

In the new coordinates





u = z1 + ∑n
k=1 z2kz2k+1,

pk = 1
2 z2k+1,

qk = z2k

θ1 takes the Darboux form

θ1 = du −
n∑

k=1

pkdqk.

Hence any holomorphic function u = f(q1, . . . , qn) defines a Legendrian subman-
ifold L f = {u = f(qk), pk = ∂ f

∂qk }.
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