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Abstract. In this paper we study transition layers in the solutions to the Allen-Cahn equation
in two dimensions. We show that for any straight line segment intersecting the boundary of
the domain orthogonally there exists a solution to the Allen-Cahn equation, whose transition
layer is located near this segment. In addition we analyze stability of such solutions and
show that it is completely determined by a geometric eigenvalue problem associated to the
transition layer. We prove the existence of both stable and unstable solutions. In the case
of the stable solutions we recover a result of Kohn and Sternberg [13]. As for the unstable
solutions we show that their Morse index is either 1 or 2.
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35B35, 35B40, 35B41

1. Introduction

In this paper we consider the following elliptic problem:

ε2∆u + f(u) = 0 in Ω,

∂nu = 0 on ∂Ω,
(1.1)

where f(u) = u(1 − u2), Ω ∈ R2 is a bounded domain with smooth boundary, ε

is a small parameter and ∂n denotes the derivative in the direction of the outward
normal. Equation (1.1) is know as the Allen-Cahn equation and was introduced in
[2] as a model describing the evolution of antiphase boundaries.

The stationary problem (1.1) and its parabolic counterpart have been a subject
of an extensive research for many years and now we have a very complete picture
of the development, existence and dynamics of transition layers in the solutions
to (1.1). In order to describe some of the known results we define the Allen-Cahn
functional

J(u) =
∫

Ω

[
ε2

2
|∇u|2 − F(u)

]
, F(u) = −1

4
(1 − u2)2.
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By PerΩ(A) we denote the perimeter of the set A ⊂ Ω. Intuitively the gradient flow
of J , in the limit as ε → 0, reduces to the gradient flow of PerΩ . It is known that the
gradient flow of PerΩ is simply the motion by mean curvature of ∂A. Summarizing:
transition layers in the Allen-Cahn flow evolve, as ε → 0, by their mean curvature.
On the level of formal asymptotics this fact was established in [17].

Chen in [5] and de Mottoni and Schatzman in [7] proved that initially developed
interfaces evolve by mean curvature as long as the classical solution to the mean
curvature flow exists. In [9,11] analogous results were proven assuming the exis-
tence of mean curvature flow in an appropriately generalized sense. Finally, Soner
[18] was able to prove those results for a large class of initial data.

Convergence of the Allen-Cahn equation to the mean curvature motion for the
interfaces intersecting the boundary was studied in [5] and in [12].

Since the Allen-Cahn flow shrinks interior interfaces to points, nontrivial sta-
tionary states to (1.1) are possible only if their transition layers intersect the bound-
ary and their mean curvature approaches 0 as ε → 0. This situation was studied
in [13]. The authors used Γ -convergence techniques to show a general result that
states that in a neighborhood of a local, isolated minimizer of PerΩ there exists
a local minimizer to the functional J . They further used this idea to show the
existence of stable solutions for (1.1) in two dimensional, non-convex domains,
such as a dumbbell. In [16] Padilla and Tonnegawa proved that local minimizers of
the Allen-Cahn equation necessary converge to local minimizers of the perimeter
functional.

In this paper we study the Allen-Cahn equation in two dimensions and show
that for any smooth, stationary and nondegenerate solution to the mean curvature
flow there is a corresponding stationary solution to the Allen-Cahn equation. This
result in some sense completes the results described above as it establishes the
connection between functionals J and PerΩ on the level of their critical points.

Throughout this paper we assume that a curve γ ∈ Ω, our candidate for an
interface, is such that:

(i) the curvature of γ is 0 (γ is a straight line segment);
(ii) γ intersects ∂Ω at exactly two points γ0, γ1 and at those points γ ⊥ ∂Ω;
(iii) γ is nondegenerate in the sense described below (see (1.6) to follow).

Our first goal is to prove the following:

Theorem 1.1. Let U be the unique heteroclinic solution to

Uηη + f(U) = 0, −∞ < η < ∞,

U(±∞) = ±1, U(0) = 0.
(1.2)

Let d(γ ; x, y) denote the signed distance of a point (x, y) ∈ Ω to the straight line
that contains γ . For each sufficiently small ε there exists a solution uε to (1.1) such
that

‖uε(x, y) − U(d(γ ; x, y)/ε)‖C0(Ω) ≤ Cε, (1.3)

where C > 0 is independent on ε.
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Our second goal is to analyze the stability of the solution described in Theo-
rem 1.1. More precisely we study the following eigenvalue problem:

ε2∆V + f ′(uε)V = −ΛV in Ω,

∂nV = 0 on ∂Ω.
(1.4)

The Morse index of uε is simply the number of negative eigenvalues of (1.4).
To state our result we need to define a geometric eigenvalue problem that, as

we will see, plays an important role in our considerations. Let κ∂Ω(γi), i = 0, 1 be
the curvatures of ∂Ω at the points of intersection with γ . Consider the following
eigenvalue problem

−θss = λθ, 0 < s < |γ |,
θκ∂Ω(γ0) + θs = 0, s = 0,

−θκ∂Ω(γ1) + θs = 0, s = |γ |,
(1.5)

where γ is parameterized by arclenght in such a way that s increases from γ0 to γ1

and ∂Ω is oriented counterclockwise from γ0 to γ1. We say that γ is nondegenerate if
(1.5) does not have a zero eigenvalue. This is equivalent to the following condition:

κ∂Ω(γ0) + κ∂Ω(γ1) − κ∂Ω(γ0)κ∂Ω(γ1)|γ | 
= 0. (1.6)

We can now state our second theorem.

Theorem 1.2. The Morse index of the solution to (1.1) described in Theorem 1.1
equals the number of negative eigenvalues of (1.5). Moreover for any k∗ > 0 there
exists εk∗ such that, for all ε ∈ (0, εk∗ ], if {Λk}k=1,...,k∗ are the first k∗ eigenvalues
of the linearized problem (1.4) then Λk = λkε

2 + o(ε2), where {λk}k=1,...,k∗ are the
first k∗ eigenvalues of (1.5).

Remark 1.1. We will distinguish 3 cases:

(1) The spectrum of (1.5) is positive-we refer to this case as the minimum axis
case.

(2) The spectrum of (1.5) contains one negative eigenvalue-we refer to this case
as the short axis case.

(3) The spectrum of (1.5) contains two negative eigenvalues-we refer to this case
as the long axis case.

By an explicit calculation one can show that (1.5) has at most two negative
eigenvalues. For example if both curvatures are negative then the spectrum is
positive. In this case γ is a local minimizer of the perimeter and this situation was
treated in [13].

If both curvatures are positive then:

• If 1
κ∂Ω(γ0)

+ 1
κ∂Ω(γ1)

> |γ | then (1.5) has one negative eigenvalue.

• If 1
κ∂Ω(γ0)

+ 1
κ∂Ω(γ1)

< |γ | then (1.5) has two negative eigenvalues.
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The terminology short and long axis case is used because of the special situation
when Ω is an ellipse-the case that originally motivated our study.

Obviously, except a degenerate case, any combination of the curvatures gives
rise to one of the three cases described above.

Some key ideas of our present work were greatly motivated by [1]. In this
paper the authors considered the dynamics of the mass conserving Allen-Cahn
equation. Starting from a one parameter family of approximate interfaces with
constant mean curvature intersecting the boundary they were able to construct an
approximate invariant manifold to the parabolic PDE consisting of small drops
moving along the boundary. Their construction relies on the fact that the interfaces
for the mass conserving Allen-Cahn equation evolve by volume-preserving mean
curvature flow [4].

At first sight it seems that in our case a family of translates of γ should
provide a one parameter family of interfaces, which then could be used to construct
an approximate solution to (1.1). This turns out not to be true. Main effort in
this paper is to construct a family of approximate interfaces that are appropriate
perturbations of γ and this is done in parallel with the process of constructing an
approximate invariant manifold to (1.1). Our construction depends heavily on the
geometric properties not only of the boundary at two points of intersection with
the interface but also on Ω itself.

Once the approximate invariant manifold is constructed the existence of so-
lutions to (1.1) is proved using a spectral estimate and the Lyapunov-Schmidt
reduction. Our results regarding the Morse index of the solution and the asymp-
totic behavior of the eigenvalues are a byproduct of this approach.

This paper is organized as follows: in Section 2 we construct an approximate
solution to the invariant manifold equation. In Section 3 we study the linearized
eigenvalue problem, and in Section 4 we give proofs of our main results. The paper
concludes with some remarks about possible generalizations of our results.

The author would like to thank Manuel del Pino, Patricio Felmer and Peter
Sternberg for the discussions during the preparation of this paper.

2. Approximate manifold equation

2.1. Statement of the problem

Throughout this paper C, c will denote generic constants whose values may vary
from line to line. Function U = U(η) will be the heteroclinic solution to (1.2) such
that U(±∞) = ±1.

In this section we will construct for each n > 1 a solution, up to order n in ε,
of the following problem:

ε2∆u + f(u) = c(ξ) · ∇ξu + gε in Ω,

∂nu = hε on ∂Ω.
(2.1)

The unknown functions here are: u = u(x, y, ξ), c = c(ξ), gε = gε(x, y, ξ) and
hε = hε(x, y, ξ). The above equation is to be valid for (x, y) ∈ Ω, |ξ| < δ, some
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δ > 0, with ξ ∈ R and c ∈ R in the minimum and short axis case and ξ ∈ R2

and c ∈ R2 in the long axis case. We speak of solution up to order n of (2.1) if
gε = O(εn) and hε = O(εn−1). We will denote such a solution by un or, if it does
not cause a confusion, by u.

The solution to (2.1) up to an arbitrary order will be constructed by using formal
asmptotics expansion techniques.

We will consider |ξ| < δ, where δ > 0 is an arbitrary but from now on fixed
number.

2.2. Preliminaries

In order to prepare for finding a solution to (2.1) we will first study some auxiliary
problems which are important in what follows.

Proposition 2.1. Equation

Vηη + f ′(U)V = Φ, −∞ < η < ∞,

has a unique solution if and only if

∫ ∞

−∞
ΦUη dη = 0.

Moreover if |Φ(η)| ≤ Ce−c|η| then |V(η)| ≤ Ce−c|η|, with similar estimates for the
derivatives.

Proposition 2.2. Consider

Vηη + Vµµ + f ′(U)V = Ψ, −∞ < η < ∞, 0 < µ < ∞,

Vµ = ψ, −∞ < η < ∞, µ = 0.
(2.2)

Assume that |Ψ(η,µ)| ≤ C min{e−c|η|, e−cµ} and |ψ(η)| ≤ Ce−c|η|. Problem (2.2)
has a unique solution if and only if

∫ ∞

0

∫ ∞

−∞
ΨUη dµdη =

∫ ∞

−∞
ψUη dη.

Moreover

|V(η,µ)| ≤ C min{e−c|η|, e−cµ},
with similar estimates for the derivatives.

Proposition 2.1 is a well known result. For the proof of Proposition 2.2 we refer
the reader to [1,8].

In the sequel by λi we shall denote the eigenvalues and by θi , i = 1, . . ., the
corresponding eigenfunctions of (1.5).
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At each step in the process of constructing an approximate solution to (1.1)
solvability conditions in Proposition 2.1 and Proposition 2.2 lead to boundary value
problems which are of the following general type:

c0 · ∇ξϕ + b · Θ − ϕyy = A(y, ξ), 0 < y < 1, |ξ| < δ

h′′
0ϕ + ϕy = B0(ξ), y = 0, |ξ| < δ

h′′
1ϕ + ϕy = B1(ξ), y = 1, |ξ| < δ,

(2.3)

where

(Θ, c0) =
{

(θ1,−λ1ξ) in the minimum and short axis case,

(θ1, θ2,−λ1ξ1,−λ2ξ2), in the long axis case,
(2.4)

and the unknowns are ϕ and b. Function ϕ depends on y and the parameter ξ , and
b is a function of ξ . Constants h′′

0, h′′
1 satisfy the nondegeneracy condition

h′′
0 − h′′

1 + h′′
0h′′

1 
= 0. (2.5)

In what follows h′′
0 = κ∂Ω(γ0) and h′′

1 = −κ∂Ω(γ1). Assuming that |γ | = 1 (which
can be done without loss of generality) we see that conditions (1.6) and (2.5) are
equivalent.

Lemma 2.1. Let function A(y, ξ) be a polynomial with respect to ξ with coeffi-
cients that are Ck, k ≥ 1 functions of y, 0 < y < 1. Assume also that functions
B0(ξ), B1(ξ) are polynomials with respect to ξ . The maximum degree of polynomi-
als A(·, ξ), B0(ξ), B1(ξ) will be denoted by K.

There exists a solution (ϕ, b) to (2.3) with the following properties:

(i) Function ϕ is a C1,α function in ξ , with some α > 0, and Ck+2 function in y.
(ii) In the short axis case ϕ is a polynomial with respect to ξ of degree K and of

the following general form

ϕ(y, ξ) =
K∑

n=0

ϕn(y)ξn.

A similar formula holds in the long axis case.
(iii) Function b(ξ) is also a polynomial in ξ , such that b(0) = 0.

Proof. We claim that without loss of generality we can consider (2.3) with homo-
geneous boundary conditions. Indeed, let ϕ̄ = ϕ + my + b where

m = m(ξ) = −B1h′′
0 + B0h′′

1

h′′
0 − h′′

1 + h′′
1h′′

0

, b = b(ξ) = B1 − B0(h′′
1 − 1)

h′′
0 − h′′

1 + h′′
0h′′

1

.

Then ϕ̄ satisfies

c0 · ∇ξ ϕ̄ + b · Θ − ϕ̄yy = Ā(y, ξ), 0 < y < 1, |ξ| < δ,

h′′
0ϕ̄ + ϕ̄y = 0, y = 0, |ξ| < δ,

h′′
1ϕ̄ + ϕ̄y = 0, y = 1, |ξ| < δ,

(2.6)
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where Ā = A + c0 · ∇ξ (my + b). We observe that still Ā is a polynomial with
respect to ξ . The claim now follows.

Since (2.6) is a linear equation its solution can be built by taking a superposition
of a solution to

−ϕyy = A(y, 0), 0 < y < 1,

h′′
0ϕ + ϕy = 0, y = 0,

h′′
1ϕ + ϕy = 0, y = 1,

(2.7)

and a solution to (2.6) with the right hand side replaced by A(y, ξ)− A(y, 0). Thus,
to solve (2.3), it suffices to show that there exist solutions to (2.7) and to (2.3) with
A(y, 0) = 0.

We will first solve (2.7). Observe that by the Fredholm alternative and (2.5)
there exists a unique solution to this equation.

We will now solve (2.3) under the assumption that A(y, 0) = 0. We chose b by
setting:

bi =
∫ 1

0
Aθi dy,

where i = 1 in the minimum axis and short axis case and i = 1, 2 in the long axis
case. Since A(·, ξ) is a polynomial with respect to ξ and A(·, 0) = 0 therefore the
same is true for b. In addition the choice of b implies that ϕ is orthogonal to Θ in
L2(0, 1).

To find ϕ we consider separately the minimum axis, the short axis and the long
axis case.

Minimum axis case. We will solve for δ > ξ > 0 first. Introduce new variable
ξ = δe−λ1t . In terms of t, ϕ solves

ϕt − ϕyy = A(y, t) − b1(t)θ1.

Since we want to find any solution to (2.3) we will take ϕ(t, y) = 0, t = 0. From
the orthogonality condition it follows that

∫ 1

0
ϕθ1 dy = 0.

Using the assumption on A we also have

|A(y, t) − b1(t)θ1| ≤ Ce−λ1t,

hence
‖ϕ‖L2(0,1) ≤ Ce−λ1 t,

with similar estimates holding for other norms in (0, 1).
To prove the required regularity of ϕ with respect to ξ observe that we only

need to consider small ξ or, equivalently, large t. Let the expansion of ϕ in terms
of eigenvalues of (1.5) be given by

ϕ(t, y) =
∞∑

n=2

ϕn(t)θn(y),
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and corresponding expansion of the right hand side:

A(y, t) − b1(t)θ1 =
∞∑

n=2

an(t)θn(y).

Observe that since A(y, ξ) is a polynomial with respect to ξ and A(y, 0) = 0,

an(t) = an1ξ(t) + · · · + anmξm(t) = δan1e−λ1t + O(e−2λ1 t), as t → ∞.

One can calculate that

ϕn(t) =
∫ t

0
an(s)e

λn (s−t) ds.

And in particular, setting cn = min{2λ1,
λ1+λn

2 }, we get

ϕn = δan1e−λ1t

λn − λ1
+ O(e−cn t), ϕn,t = −λ1δan1e−λ1t

λn − λ1
+ O(e−cn t),

as t → ∞. Since ϕn,t = (−λ1ξ)ϕn,ξ , we get

ϕn,ξ = an1

λn − λ1
+ O(ξcn/λ1−1),

as ξ → 0+. Exactly the same result holds if we replace δ by −δ, hence the lemma
follows.

Short axis case. In this case it is more convenient to work directly with (y, ξ)
variables. By the choice of b1

A(y, ξ) − b1θ1 =
K∑

n=1

An(y)ξn,

∫ 1

0
θ1 An dy = 0, n = 1, . . . , K.

If we look for ϕ in the form

ϕ(y, ξ) =
K∑

n=1

ϕn(y)ξn,

then each ϕn solves
−nλ1ϕn − ϕn,yy = An.

From the orthogonality condition we can solve uniquely for ϕ1. When n > 1 then,
since nλ1 < 0, we can solve uniquely as well thanks to Fredholm alternative. The
rest of the lemma follows now immediately.

Long axis case. We proceed exactly as in the short axis case, i.e. we look for
a solution in the form

ϕ(y, ξ) =
n+m=K∑
n,m=1

φn,m(y)ξn
1 ξm

2 .

Again solvability follows from the orthogonality condition and Fredholm alterna-
tive. We omit the details.

The proof is complete. 
�
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We observe that in the minimum axis case even though the right hand side and
the boundary conditions in (2.3) are polynomials with respect to ξ , the solution
ϕ is not. A slight modification of the proof in the minimum axis case yields the
following:

Corollary 2.1. Consider the minimum axis case and assume that functions A, B0,
B1 are C1,α′

functions with respect to ξ , for some α′ > 0, and |A(·, ξ)− A(0, ξ)| ≤
C|ξ|, |ξ| < δ. Assume also that A is a Ck, k ≥ 1, function of y. There exists
a solution (ϕ, b) to (2.3) with the following properties:

(i) Function ϕ is a C1,α, for some α > 0, function in ξ and Ck+2 function in y,
which has the following general form

ϕ = ϕ̃(ξ, y) + ϕ∗(y),

where |ϕ̃| ≤ C|ξ|, |ξ| < δ.
(ii) Function b(ξ) is in C1,α′

and satisfies |b(ξ)| ≤ C|ξ|.

2.3. Inner expansion

From now on we will not distinguish between the minimum, short and long axis
cases unless it is specifically stated. As we will see most of the computations in all
those cases are exactly the same.

Observe that, after rescaling, we can always assume that |γ | = 1. We can
also assume that γ is contained in the upper half plane, in the half line y > 0
and that the intersection points of γ with ∂Ω are (x, y) = (0, 0) and (x, y) =
(0, 1), respectively. Then the usual Cartesian coordinates can be regarded as local
coordinates around γ , with y ∈ (0, 1) being the arc length of γ and x ∈ (−σ, σ)

being the signed distance to γ .
In what follows we will denote σ = ε1/2. We set Ωσ = (−σ, σ) × (0, 1).
By the inner expansion solution up order n we mean a function win =

win(x, y, ξ) which solves

ε2∆win + f(win) = c(ξ) · ∇ξw
in + gin

n in Ωσ, |ξ| < δ, (2.8)

where gin
n = O(εn+1) and c = c(ξ) is a function to be determined. Observe that

in (2.8) we do not insist that win satisfies the boundary condition. As we will see
in order to find the approximate solution to (2.1) we need to consider a boundary
layer expansion. This will be done in the next section.

To find the consecutive terms in the inner expansion up to order n we will
introduce a stretched variable as follows:

η = x − εφ

ε
, where φ = φ(y, ξ, ε) = ξ · Θ(y) +

n−2∑
i=1

εiφi(y, ξ).

We will assume that −∞ < η < ∞ although one should keep in mind that we
need (2.8) to be satisfied only for η = x−εφ

ε
with (x, y) ∈ Ωσ .
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Functions φi, i > 1 are at this point unknown and determining them is a part
of the inner expansion problem. In the sequel it will be convenient to denote

φ0(y, ξ) = ξ · Θ(y).

We now look for a solution to (2.8) in the form

win = win(η, y, ξ) =
n∑

i=0

εiwin
i (η, y, ξ), c(ξ) = ε2

n−2∑
i=0

εici(ξ),

where c0 is defined in (2.4).
In terms of the stretched variable η we have

win
ηη + f(win) = −win

η

(
c · ∇ξφ − ε2φyy

) − ε2φ2
yw

in
ηη + 2ε2φyw

in
ηy

−ε2win
yy + c · win

ξ + gin
n .

(2.9)

We set

P(win, φ, c) = −win
η

(
c · ∇ξφ − ε2φyy

) − ε2φ2
yw

in
ηη + 2ε2φyw

in
ηy

−ε2win
yy + c · win

ξ .

Observe that P is a polynomial with respect to ε, win
η ,win

ηη,w
in
ηy, w

in
yy, w

in
ξ , ∇ξφ,

φy, φyy and c. In addition if all those functions are polynomials with respect to ξ

or C1,α functions of ξ so is P.
We will also expand f(win)

f(win) = f
(
win

0

) + f ′(win
0

)(
win − win

0

) + 1
2 f ′′(win

0

)(
win − win

0

)2

+ 1
6 f ′′′(win

0

)(
win − win

0

)3
.

0th order expansion. Comparing terms of order 0 in ε we obtain that win
0 satisfies

win
0,ηη + f

(
win

0

) = 0, −∞ < η < ∞, (2.10)

and thus we take win
0 = U .

1st order expansion. Including win
1 term in the formal expansion for win and solv-

ing an appropriate equation one finds that necessarily win
1 ≡ 0. We omit this

calculation here.

2nd order expansion. Taking into account win
0 = U we get for win

2 the following
equation:

win
2,ηη + f ′(U)win

2 = −Uη(c0 · Θ − ξ · Θyy) − Uηη(ξ · Θy)
2, −∞ < η < ∞.

(2.11)

From Proposition 2.1 a unique solution to (2.11) exists, provided that
∫ ∞

−∞
U2

η (c0 · Θ − ξ · Θyy) dη = 0,

which holds if c0 is taken as in (2.4).
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It follows that win
2 is a polynomial in ξ and it satisfies the following inequality

∣∣win
2

∣∣ ≤ C|ξ|2e−c|η|, (2.12)

with some c > 0. Similar estimates hold for the derivatives of win
2 .

k > 2 order expansion. Expanding P in terms of powers of ε we find that the
coefficient of εk, Pk, takes form

Pk = −[Uη(c0 · ∇ξφk−2 + ck−2 · Θ − φk−2,yy) + 2Uηηξ · Θyφk−2,y]
+Qk,

where Qk is a polynomial in win
i,η, w

in
i,ηηw

in
i,ηy, w

in
i,yy, w

in
i,ξ for 0 ≤ i ≤ k − 2, in

φi,∇ξφi, φi,y, φi,yy and in ci , 0 ≤ i ≤ k − 3.
In a similar manner we can write the kth order term in the expansion of f(win),

which does not include win
k , in the form Rk = Rk(w

in
0 , . . . , win

k−2), where Rk is
a polynomial function of its arguments.

We require that win
k satisfies the following equation

win
k,ηη + f ′(U)win

k = −[Uη(c0 · ∇ξφk−2 + ck−2 · Θ

−φk−2,yy) + 2Uηηξ · Θyφk−2,y] + Qk + Rk.
(2.13)

Summarizing the above we have

Lemma 2.2. Assume that wi , 0 ≤ i ≤ k − 2 are smooth functions of (η, y) and
that |wi | ≤ Ce−c|η| with similar estimates holding for partial derivatives. Assume
further that φi , 0 ≤ i ≤ k − 3 are smooth functions of y.

In the minimum axis case we also assume that the functions mentioned above,
as well as ci , 0 ≤ i ≤ k − 3 are C1,α, for some α > 0, functions of ξ and in the
short and long axis case we assume that those functions are polynomials in ξ .

Then Qk, Rk are smooth functions of (η, y) and C1,α functions of ξ in the short
axis case and polynomials in ξ in the short and long axis case. Moreover the
following estimate holds:

|Qk|, |Rk| ≤ Ce−c|η|.

From now on we will assume that all the functions involved in the asymptotic
expansion depend on the parameter ξ the way it was described above.

Taking into account the solvability condition for the second order expansion
we then obtain the following solvability condition for (2.13):

c0 · ∇ξφk−2 + ck−2 · Θ − φk−2,yy =
∫ ∞
−∞(Qk + Rk) dη∫ ∞

−∞ U2
η dη

. (2.14)

In order to solve (2.14) and determine win
k uniquely we need to solve for (ck−2, φk−2)

first. This requires finding boundary conditions for φk−2 and we will do it in the
next section.
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2.4. Boundary layer expansion

We will construct the boundary layer expansion near γ0. The procedure is the same
near γ1.

In order to define the boundary layer expansion we first have to extend functions
φi for y < 0. Denoting the extension by the same symbol we set

φi(y, ξ) =
{

φi(y, ξ), 1 > y > 0,

∑n+1
k=0 φ

(k)
i (0, ξ)yk, y ≤ 0.

In a similar manner we can extend φi , for y > 1. Observe that for each i = 0, . . . , n
this extension is a Cn+1 function in y.

Since σ = ε1/2, we can assume that B(0, σ) ∩ ∂Ω can be represented as
a graph of function y = h0(x); likewise, in a σ-neighborhood of (1, 0), ∂Ω can
be represented as a graph of y = h1(x). We clearly have h′

0(0) = 0 = h′
1(0) and

κ∂Ω(γ0) = h′′
0(0), κ∂Ω(γ1) = −h′′

1(0).
As calculations near γ0, γ1 are very similar we will only consider the boundary

layer expansion near γ0. For brevity we set h = h0.
In B(0, σ) ∩ ∂Ω we can change variables

η = x − εφ

ε
, µ = y − h(x)

ε
,

where φ = ∑
εiφi and φi’s are the extended functions defined above. The change

of variables we introduced here is not the standard change of variables used in
determining boundary layer expansions and sometimes it is referred to as corner
expansion.

Lemma 2.3. Assume that φ = ∑n
i≥0 εiφi and φi are n + 1 times differentiable as

functions of y. Then for each j, 1 ≤ j ≤ n we have
∣∣x − ε(η + φ0(0)) − ∑ j

i=2 εi Xi(η,µ)
∣∣ ≤ C jε

j+1(1 + |η| + µ) j+1,∣∣y − εµ − ∑ j
i=2 εiYi(η,µ)

∣∣ ≤ C jε
j+1(1 + |η| + µ) j+1,

where Xi , Yi are polynomials in (η,µ) with coefficients depending on φi(y), i =
0, . . . , j −1, h(x) and their derivatives up to order j at y = 0, x = 0, respectively.
Constant C j depends on L∞ norms of derivatives of φi(y) i = 0, . . . , j , and h(x)

up to order j + 1.

We omit a straightforward proof of this lemma. Observe that with the help of
Lemma 2.3 we can express functions of (x, y) as functions of (η,µ).

For each M > 0 we define a C∞ cut-off function

τ M(µ) =




1, µ ≥ 2M,

0 < τ M < 1, M < µ < 2M,

0, µ ≤ M.

Notice that for each sufficiently large M there exists a constant CM such that
µ > M implies y > CMε > 0, provided that |x| = σ ≤ ε1/2.
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Remark 2.1. In order to find the boundary layer expansion near γ1 we need to set
µ = h1(x)−y

ε
and define a cut-off function, analogous to τ M , appropriately. Below,

with a slight abuse of notation, we will use symbols µ and τ M for those extensions.

We look for the solution to (2.1) near γ0 in the form

wbd = τ Mwin + (1 − τ M )U + εvbd,

where win is the inner expansion contribution from the previous section and vbd is
the boundary layer contribution which is still to be determined.

Using (2.1) and substituting we obtain that near γ0 function vbd = vbd(η,µ, ξ)

should satisfy

ε2∆vbd + f ′(U)vbd = c · ∇ξv
bd + ε−1(1 − τ M )c · ∇ξU + ε−1 Nbd

− 2ε∇τ M · ∇(win − U) − ε(win − U)∆τ M

+ ε−1gbd
n ,

(2.15)

where

Nbd = 1
2 f ′′(U){τ M(win − U)2 − [τ M(win − U) + εvbd]2}
+ 1

6 f ′′′(U){τ M(win − U)3 − [τ M(win − U) + εvbd]3},
and gbd

n = O(εn+1). In addition we also require boundary conditions, namely

∂nv
bd = −ε−1(∂nU − hbd

n

)
, near γ0, (2.16)

where hbd
n = O(εn) is a function to be determined.

We will now express (2.15) and (2.16) in terms of the stretched variables (η,µ).
Calculating directly we obtain that (2.15) takes form

vbd
ηη + vbd

µµ + f ′(U)vbd = p + q + ε−1gbd
n , (2.17)

where

p(vbd, φ, c) = − vbd
η

(
c · ∇ξφ − ε2φyy

) − ε2φ2
yv

bd
ηη − (h′)2vbd

µµ

+ 2(h′ + εφy)v
bd
ηµ + εh′′vbd

µ − ε2φyyv
bd
η + c · vbd

ξ

+ ε−1 Nbd
1 (vbd),

Nbd
1 (vbd) = ε2

2 f ′′(U)(vbd)2 + ε3

6 f ′′′(U)(vbd)3,

and

q(U, win, τ M, φ, c) = − ε−1(1 − τ M )Uηc · ∇ξφ

+ 2ε−1τ M
µ

[
(h′ + φy)(w

in − U)η − win
y

]
− ε−1(win − U)

{[(h′)2 + 1]τ M
µµ − εh′′τ M

µ

}
+ ε−1

(
Nbd − Nbd

1

)
.
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Lemma 2.4. Assume that win = ∑n
i=0 εiwin

i is a smooth function of η, y and
vin = ∑n

i=0 εivin
i is a smooth function of (η,µ). Moreover suppose that φ satisfies

the assumptions of Lemma 2.3. Then p and q have expansions

p =
n∑

i=i

εi pi + εn+1 p̃n+1, q =
n∑

i=1

εiqi + εn+1q̃n+1

where pi’s are polynomials in terms of η,µ and vbd
0 , . . . , vbd

i−1 and their derivatives,
and qi’s are polynomials in terms of η,µ, win

2 , . . . , win
i−1, vbd

0 , . . . , vbd
i−1 and their

derivatives. The coefficients of pi and qi depend on φ0, . . . , φi−1 and the derivatives
of those functions up to order n at y = 0. In addition if vbd

j , win
j , φ j, c j , j =

0, . . . , i − 1 are C1,α functions or polynomials in ξ so is pi , qi .
Furthermore if |win

j | ≤ Ce−c|η| and |vbd
j | ≤ C min{e−c|η|, e−cµ}, 0 ≤ j ≤ i−1,

with similar estimates for the derivatives then

|pi|, |qi| ≤ C min{e−c|η|, e−cµ}.
Analogous estimates hold for the error terms p̃n+1, q̃n+1.

The proof of this lemma involves expressing functions of (x, y) in terms of
(η,µ) by using Lemma 2.3, using Taylor polynomials to expand expressions for p
and q in terms of powers of ε, grouping terms with equal powers of ε and finally
using induction. We omit the details.

Since near γ0 we have n = (h′,−1)/
√

1 + (h′)2, we get

−vbd
µ + vbd

η (h′ + εφy) − (h′)2vbd
µ = −Uη(ε

−1h′ + φy) + hbd
n

√
1 + (h′)2. (2.18)

Lemma 2.5. Assuming that vbd = ∑n
i=0 εivbd

i we have at µ = 0

vbd
i,µ = Uη[(η + φi(0))h′′(0) + φi,y(0)] + ri, i = 0, . . . , n,

where functions ri are polynomials with respect to η, vbd
j , 0 ≤ j ≤ i − 1 and their

derivatives with coefficients depending on φ j(y), 0 ≤ j ≤ i − 1, as well as their
derivatives at y = 0. Moreover if |vbd

j (η, 0)| ≤ Ce−c|η|, with similar estimates for
the derivatives, 0 ≤ j ≤ i − 1, then |ri | ≤ Ce−c|η|.

0th order boundary layer expansion. For vbd
0 we obtain

vbd
0,ηη + vbd

0,µµ + f ′(U)vbd
0 = 0, −∞ < η < ∞, 0 < µ < ∞,

vbd
0,µ = Uη[h′′(0)(η + ξ · Θ(0)) + ξ · Θy(0)], −∞ < η < ∞, µ = 0.

(2.19)

Using Proposition 2.2 we derive the following compatibility condition

h′′(0)ξ · Θ(0) + ξ · Θy(0) = 0. (2.20)

Taking into account h′′(0) = κ(γ0) we obtain the first boundary condition in (1.5).
Clearly similar considerations near γ1 lead to the second boundary condition in
(1.5).
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Since the right hand side of the boundary condition in (2.19) decays exponen-
tially in η therefore by Proposition 2.2 we obtain that the unique solution to (2.19)
satisfies

∣∣vbd
0

∣∣ ≤ C min{e−c|η|, e−cµ}, (2.21)

with similar estimates for the derivatives.

k > 0 order boundary expansion. For vbd
k , k > 0 we get

vbd
k,ηη + vbd

k,µµ + f ′(U)vbd
k = pk + qk, −∞ < η < ∞, 0 < µ < ∞,

vbd
k,µ = Uη[h′′(0)(η + φk(0)) + φk,y(0)] + rk, −∞ < η < ∞, µ = 0.

(2.22)

Thanks to the solvability condition in Proposition 2.2 this leads to:

h′′(0)φk(0) + φk,y(0) = η0

[∫ ∞

0

∫ ∞

∞
(pk + qk)Uη dηdµ −

∫ ∞

−∞
rkUη dη

]
,

(2.23)

where η0 = (
∫ ∞
−∞ U2

η dη)−1. We observe here that solvability condition (2.23) has
form

h′′(0)φk(0) + φk,y(0) = Bk,0(ξ),

where Bk,0 is a C1,α function (in the minimum axis case) or a polynomial with
respect to ξ (in the short and long axis case) provided that all the functions involved
in definition of pk, qk and rk are C1,α functions of ξ or polynomials in ξ respectively.

Clearly a similar solvability condition can be derived at y = 1 so that we get

h′′
0(0)φk + φk,y = Bk,0(ξ), y = 0,

h′′
1(0)φk + φk,y = Bk,1(ξ), y = 1.

(2.24)

2.5. Approximate solution in Ω

Summarizing the results of the two previous subsections we notice that:

(1) In order to determine kth term wbd
k in the asymptotic expansion of the inner

solution w we need to know φk−2, ck−2 first.
(2) Functions φk−2, ck−2 are obtained from solvability conditions involving win

i ,

vbd
i , 0 ≤ i ≤ k − 3, and lower order terms of φ, c.

(3) These solvability conditions allow for solving not only for win
k but also for

vbd
k−2.

These facts are the basis for setting up an induction proof of the next lemma.

Lemma 2.6. Let σ = ε1/2 and τ M be the function defined above. Let CM be
a constant such that τ M(µ) = 0 implies either CMε > y or y > 1 − CMε.



32 M. Kowalczyk

For each n > 2 there exist c(ξ) = ε2 ∑n−2
i=0 εici(ξ), |ξ| < δ such that:

(i) For each 0 ≤ i ≤ n − 2, ci(ξ) is a C1,α function of ξ such that |ci(ξ)| ≤ C|ξ|
in the minimum axis case and a polynomial in ξ such that ci(0) = 0 in the
short and long axis case.

(ii) Function win = ∑n
i=0 εiwin

i solves the inner expansion problem, i.e. for each
|ξ| < δ,

∆win + f(win) = c · ∇ξw
in + gin

n in (−σ, σ) × (CMε, 1 − CMε),

with win = U(η) + ∑n
i=2 εiwin

i (η, y, ξ), gbd
n = O(εn+1). Here

η = x − εφ

ε
, φ = φ(y, ξ) = ξ · Θ +

n−2∑
i=1

εiφi,

and function φ is a smooth function in y and C1,α, for some α > 0, function
in ξ in the minimum axis case, and a polynomial in ξ with smooth coefficients
depending on y in the short and long axis case. Moreover the following
estimates hold

|win
i | ≤ Ce−c|η|, i = 2, . . . , n,

|gin
n | ≤ Cεn+1e−c|η|,

(2.25)

with similar statements for the derivatives of win
i .

(iii) There exists a positive constant τ , independent on ε such that function wbd =
τ Mwin + (1 − τ M )U + εvbd, solves the boundary layer problem up to order
n − 1 i.e.

∆wbd + f(wbd) = c · ∇ξw
bd + gbd

n , in Ωσ ∩ {dist (·, ∂Ω) < 2τ},
∂nw

bd = hbd
n , on ∂Ω ∩ {|x| < σ},

where vbd = ∑n−2
i=0 εivbd

i .
In addition∣∣vbd

i

∣∣ ≤ C min{e−c|η|, e−cµ}, i = 0, . . . , n − 2,∣∣gbd
n

∣∣ ≤ Cεn min{e−c|η|, e−cµ},∣∣hbd
n

∣∣ ≤ Cεn−1e−c|η|,

(2.26)

with similar estimates for the derivatives.

Proof. We prove this lemma by induction.
Let n = 1. With the choice of φ0 = ξ · Θ and the choice of c0 in (2.4) we

can satisfy the solvability conditions and solve for w2 and v0 as it is described in
previous sections. The rest of the statements of the lemma are easily verified in this
case by using Proposition 2.1, Proposition 2.2 and Lemma 2.1.

Assume now that for some k > 1 the lemma is true for all n < k. We will show
that one can find wk, vk−2, φk−2, ck−2.
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From Lemma 2.2 and (2.14) it follows that in order to solve for φk−2, ck−2 we
need to solve

c0 · ∇ξφk−2 + ck−2 · Θ − φk−2,yy = Ak(y, ξ) (2.27)

where Ak is a function satisfying the assumptions of Corollary 2.1 in the short axis
case and Lemma 2.1 in the long axis case.

From Lemma 2.4, Lemma 2.5 and (2.24) we get the boundary conditions for
φk−2:

h′′
0(0)φk−2 + φk−2,y = Bk−2,0(ξ), y = 0,

h′′
1(0)φk−2 + φk−2,y = Bk−2,1(ξ), y = 1,

(2.28)

where Bk−2, j(ξ), j = 0, 1 satisfy the assumption of Corollary 2.1 in the minimum
axis case and Lemma 2.1 in the short and long axis case. Consequently we can solve
uniquely (2.27) and (2.28) for φk−2, ck−2 and those functions satisfy the assertions
of the lemma.

Now we solve for win
k and vbd

k−2. We observe that from Proposition 2.1 and
Proposition 2.2 we get exponential decay estimates for win

k and vbd
k−2.

Finally we observe that the reminder term gin
k = Qk+1 + Rk+1 and thus (2.25)

is satisfied thanks to Lemma 2.2.
Analogous statements are also easily proven for gbd

k and hbd
k . Notice that gbd

k =
τ M gin

k + g̃bd
k . It suffices to observe now that functions hbd

k , g̃bd
k result from replacing

h0, h1 and φ by polynomials in (η,µ) in (2.15) and (2.18). Since functions h0, h1, φ

are smooth, replacing them with Taylor expansions of order k − 1 introduces error
terms of the form εk O(|η|k + µk). In addition those error terms are multiplied by
polynomials in terms of U , win

i , vbd
i−2, i = 2, . . . , k and their derivatives and since

those functions decay exponentially in terms of |η| and µ we obtain estimates
(2.26).

The proof of the lemma is complete. 
�
We need to define smooth cut-off functions in order to “connect” both expan-

sions. Let τ be the constant in the statement of Lemma 2.6. Let χ1, χ2 be C∞(Ω)

cut-off functions such that

χ1 =



1 if |x| < σ/2, dist (·, ∂Ω) > 2τ/3,

0 ≤ χ1 ≤ 1 if σ/2 ≤ |x| < σ, τ/3 < dist (·, ∂Ω) < 2τ/3,

0 otherwise,

χ2 =



1 if |x| < σ/2, dist (·, ∂Ω) < τ/3,

0 ≤ χ2 ≤ 1 if σ/2 ≤ |x| < σ, τ/3 ≤ dist (·, ∂Ω) < 2τ/3,

0 otherwise.

In addition we assume that χ1(x, y) + χ2(x, y) ≡ 1 for |x| ≤ σ/2 and all y.
We define now an approximate solution to (2.1) u by

u = χ1w
in + χ2w

bd + (1 − χ1 − χ2)U(|x|/ε).
Using Lemma 2.6 we can prove the following:
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Proposition 2.3. Let win be the solution of the inner expansion problem up to
order n and wbd be the solution of the boundary layer problem up to order n. Then
function u is the solution of (2.1) up to order n with error terms satisfying

|gε| ≤ Cεne−c|x|/ε, |hε| ≤ Cεn−1e−c|x|/ε.

Moreover c = ε2(c0 + O(ε)).

The proof of this proposition is fairly standard and we shall omit it. We only
notice that the exponential estimate for vbd in (2.26) plays an important role
in matching win and wbd in the intermediate region where y ∈ (τ/3, 2τ/3)∪
(1 − 2τ/3, 1 − τ/3).

3. Eigenvalue analysis

In this section we shall consider the following eigenvalue problem:

ε2∆V + f ′(u)V = −ΛV, in Ω,

∂n V = 0, on ∂Ω,
(3.1)

where u is a solution to (2.1). We notice that the eigenvalues and eigenvectors of
(3.1) are, strictly speaking, different than the eigenvalues and eigenvectors which
are the subject of Theorem 1.2. Nevertheless, as we shall see later, the two are close
to each other provided that u is the approximation of high enough order.

The analysis of (3.1) follows the lines developed in [1].
In the sequel we will denote

LV = ε2∆V + f ′(u)V.

We will also use Λk, Vk, k = 1, . . . to denote the eigenvalues and eigenvectors of
(3.1).

Let ψ0 = εux. Let Ων = {dist ((x, y), γ) < ν} ∩ Ω. We will take ν = ν(ε) =
ε(ln ε)2. We will not emphasize the dependence of ν on ε unless necessary.

Lemma 3.1. The following formulas hold:

Lψ0 = Uηηc · Θ + Rε in Ων,

∂nψ0 = −h′′
0(0)ψ0 + rε

0 on ∂Ων near γ0,

∂nψ0 = h′′
1(0)ψ0 + rε

1 on ∂Ων near γ1,

where |Rε| ≤ Cε3e−c|η|, |rε
i | ≤ Cεe−c|η|, i = 0, 1.

Proof. We can write u = U(η)+εu1, where u1 = u1(η,µ, y) and |u1| ≤ Cεe−c|η|,
with similar estimates for the derivatives. Differentiating (2.1) with respect to x
and multiplying by ε we get

Lψ0 = εc · ∇ξux + εgε
x = Uηηc · Θ + Rε,

as claimed.
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We now need to compute ∂nux on ∂Ω. We have near γ0 with h0 = h,

ψ0 = uη − uµh′(x) = Uη + εvbd
0,η − εvbd

0,µh′(x) + O(ε2)e−c|η|.

Using the boundary condition for vbd
0 we get

∂nψ0|γ0
= Uηη[h′′

0(0)(η + φ) + φy] − vbd
0,µη + O(ε)e−c|η|

= Uηη[h′′
0(0)(η + ξ · Θ) + ξ · Θy] − vbd

0,µη + O(ε)e−c|η|

= −Uηh′′
0(0) + O(ε)e−c|η|.

Similarly near γ1 we get (since n = (−h′
1, 1)/

√
1 + (h′

1)
2)

∂nψ0|γ1
= Uηh′′

1(0) + O(ε)e−c|η|

= ψ0h′′
1(0) + O(ε)e−c|η|.

This completes the proof. 
�
We introduce new variables in Ων, (x, y) �→ (x, z) by

(x, z) =
(

x,
y − h0(x)

h1(x) − h0(x)

)
.

Notice that z = z(x, y); conversely we can write y = y(x, z). For any function
Φ = Φ(x, y) on Ων we have

∫
Ων

Φ(x, y) dxdy =
∫ ν

−ν

∫ 1

0
Φ(x, z)[1 + j1(x, z)] dxdz, | j1(x, z)| ≤ Cν2.

(3.2)

We also have for any function Ψ(x, z), z = z(x, y),

∂Ψ
∂y = Ψz[1 + j2(x, z)], | j2(x, z)| ≤ Cν2,

∂Ψ
∂x = Ψx + Ψz j3(x, z), | j3(x, z)| ≤ Cν.

(3.3)

We define an infinite subspace of L2(Ων) by

X = {
ψ ∈ L2(Ων) | ψ(x, y) = ψ0(x, y)θ(z), z = z(x, y)

}
.

We will first analyze the bilinear form

Bν(ψ1, ψ2) =
∫

Ων

[
ε2∇ψ1 · ∇ψ2 − f ′(u)ψ1ψ2

]
,

for ψi ∈ X.
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Lemma 3.2. Let ψ∗ = ψ0θ
∗, ψ∗∗ = ψ0θ

∗∗ ∈ X. The following formula holds:

Bν(ψ
∗, ψ∗∗) = ε2α0

[
h′′

1(0)θ∗(1)θ∗∗(1) − h′′
0(0)θ∗(0)θ∗∗(0) +

∫ 1

0
θ∗

z θ∗∗
z

+ O(ε)

∫ 1

0
(|θ∗|2 + |θ∗∗|2 + |θ∗

z |2 + |θ∗∗
z |2)

]
,

where α0 = ∫
Ων

ψ2
0 .

Proof. We have

Bν(ψ
∗, ψ∗∗) = ε2

∫
∂Ων

ψ∗∂nψ
∗∗ dS −

∫
Ων

ψ∗Lψ∗∗ = I + II.

We first compute the boundary integral I . Observe that for each ψ = ψ0θ ∈ X we
have by Lemma 3.1 and (3.3)

∂nψ = [ − h′′
0(0)ψ0 + rε

0

]
θ(0) + ψ0∂nθ, near γ0,

∂nψ = [
h′′

0(1)ψ0 + rε
1

]
θ(1) + ψ0∂nθ, near γ1,

hence

I = ε2α0
[
θ∗(1)θ∗∗(1)h′′

1(1) − θ∗(0)θ∗∗(0)h′′
0(0)

][1 + O(ε)]
+ ε2

∫
∂Ων

ψ2
0θ∗∂nθ

∗∗ dS.

We also have by Lemma 3.1 and integration by parts

II = −
∫

Ων

θ∗θ∗∗ψ0Lψ0 − ε2
∫

Ων

[2∇ψ0 · ∇θ∗∗ + ψ0∆θ∗∗]ψ0θ
∗

= −
∫ 1

0

∫ ν

−ν

θ∗θ∗∗[ψ0Uηηc · ∇ξ (ξ · Θ) + Rεψ0
][1 + O(ν2)] dxdz

+ε2
∫

Ων

ψ2
0∇θ∗ · ∇θ∗∗ − ε2

∫
∂Ων

ψ2
0θ∗∂nθ

∗∗ dS

= −II ′ + II ′′ − ε2
∫

∂Ων

ψ2
0θ∗∂nθ

∗∗ dS.

Since
∫ ν

−ν
ψ0Uηη dx = O(e−cν/ε),

|II ′| ≤ Cε3α0

∫ 1

0
|θ∗θ∗∗|.

By a straightforward calculation we get

II ′′ = ε2α0

(∫ 1

0
θ∗

z θ∗∗
z dz

)
[1 + O(ν2)].

Combining expressions for I, II, II ′, II ′′ we complete the proof of the lemma. 
�
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Corollary 3.1. The following estimate holds for any ψ = ψ0θ ∈ X:

ε2
∫ 1

0
θ2

z ≤ Cε−1Bν(ψ,ψ) + Cε

∫
Ων

ψ2.

This follows directly from Lemma 3.2 if we set θ∗ = θ∗∗ = θ and use

∫ 1

0
θ2 ≤ Cε−1

∫
Ων

ψ2.

Let Xk−1, k = 1, . . . denote the collection of k − 1 dimensional subspaces
of X. We define

µk = max
S∈Xk−1

min
ψ∈S⊥

‖ψ‖L2 (Ων)
=1

Bν(ψ,ψ).

Let

J(θ, θ) = h′′
1(0)θ2(1) − h′′

0(0)θ2(0) +
∫ 1

0
θ2

z dz.

From the Lemma 3.2 above there exists a positive constant C0 such that

µk ≤ ε2α0 max
S∈Xk−1

min
ψ∈S⊥

‖ψ‖L2 (Ων)
=1

[
J(θ, θ) + C0ε‖θ‖2

H1(0,1)

]
,

µk ≥ ε2α0 max
S∈Xk−1

min
ψ∈S⊥

‖ψ‖L2 (Ων)
=1

[
J(θ, θ) − C0ε‖θ‖2

H1(0,1)

]
.

Observe that for any functions ψi = ψ0ϑi ∈ X, i = 1, 2, we have

∫
Ων

ψ1ψ2 =
∫ 1

0
ϑ1ϑ2

{∫ ν

−ν

ψ2
0 [1 + j1(x, z)] dx

}
dz

= α0

∫ 1

0
ϑ1ϑ2[1 + kε(z)] dz,

where kε = O(ε). It follows that the eigenvalue problem associated to J(θ, θ) −
C0ε‖θ‖2

H1(0,1)
has form

−ϑzz(1 − C0ε) + C0εϑ = µ∗ϑ(1 + kε),

h′′
0(0)ϑ(0) + ϑz(0) = 0,

h′′
1(0)ϑ(1) + ϑz(1) = 0.

(3.4)

Clearly, a similar problem can be derived for J(θ, θ) + C0ε‖θ‖2
H1(0,1)

. Since (3.4)
is just a regular perturbation of (1.5), one can prove:

Lemma 3.3. For each positive integer K there exists εK > 0 such that for each
ε ∈ (0, εK ] and each k = 1, . . . , K the following estimate holds

µk = ε2λk[1 + O(ε)].
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We will now analyze Bν(ψ
⊥, ψ⊥), where ψ⊥ ∈ X⊥ and the orthogonal com-

plement is taken in L2(Ων).
We begin with the following lemma:

Lemma 3.4. Let Ψε ∈ H1(−ν/ε, ν/ε) be functions such that

∫ ν/ε

−ν/ε

UηΨε = o(1), as ε → 0.

There exists a constant δ∗ > 0 such that

∫ ν/ε

−ν/ε

[|Ψε,η|2 − f ′(U)Ψ 2
ε

] ≥ δ∗
∫ ν/ε

−ν/ε

Ψ 2
ε .

Proof. Since this is a well known statement we will only indicate the main steps in
the proof. We first notice that Uη is the only element in the kernel of the following
linear operator:

LV = Vηη + f ′(U)V, −∞ < η < ∞.

This follows from the fact that Uη > 0, hence Uη is the principal eigenfunction,
which in addition must be simple.

Taking the above for granted we argue by contradiction to prove the assertion
of the lemma. We assume that there exists a sequence {εn}n=1,... such that

∫ ν/εn

−ν/εn

[|Ψεn,η|2 − f ′(U)Ψ 2
εn

] ≤ 1

n

∫ ν/εn

−ν/εn

Ψ 2
εn

. (3.5)

Without loss of generality we can further assume that ‖Ψ 2
εn

‖L2(−ν/εn ,ν/εn) = 1. We
then have ‖Ψ 2

εn
‖H1(−ν/εn ,ν/εn) ≤ C and thus we can pass to the limit obtaining

Ψ ∈ H1(−∞,∞) such that
∫ ∞
−∞ UηΨ = 0 and

∫ ∞

−∞

[|Ψη|2 − f ′(U)Ψ 2] ≤ 0.

One can also prove using (3.5) that there exist constants M0, α0 > 0 such that for
each M > M0 we have

∫
η>M

Ψ 2
εn

≤ Ce−α0(M−M0)

∫
η<M0

Ψ 2
εn

(we shall not do it here but refer the reader to the proof of Lemma 3.8 where
a similar fact is proven). This guarantees that ‖Ψ‖L2(−∞,∞) > 1/2. We now obtain
a contradiction with the fact that Uη is the unique eigenfunction corresponding to 0,
the principal eigenvalue of L. 
�

We can now state a counterpart of Lemma 3.4 in our setting.
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Lemma 3.5. There exists a constant ν0 > 0, independent on ε such that

Bν(ψ
⊥, ψ⊥) > ν0

∫
Ων

|ψ⊥|2,

for ψ⊥ ∈ X⊥. Moreover, ν0 > 0 can be chosen such that

Bν(ψ
⊥, ψ⊥) > ν0

∫
Ων

(ε2|∇ψ⊥|2 + |ψ⊥|2).

Proof. We will argue by contradiction. Assume that for each positive integer n
there exists εn and ψ⊥

n ∈ X⊥, ‖ψ⊥
n ‖2

L2(Ων)
= εn such that

Bν(ψ
⊥
n , ψ⊥

n ) ≤ εn

n
.

We then have for each function θ = θ(z)

∫ ν/εn

ν/εn

∫ 1

0
ψ⊥

n Uηθ(z) dzdη = o(1), as n → ∞,

hence almost everywhere in (0, 1) we have

∫ ν/εn

ν/εn

ψ⊥
n Uη dη = o(1).

Likewise we get for all n

∫ ν/εn

−ν/εn

(ψ⊥
n )2 < ∞,

∫ ν/εn

−ν/εn

|ψ⊥
n,η|2 < ∞

almost everywhere in (0, 1). Using Lemma 3.4 we then have

∫ ν/εn

−ν/εn

[|ψ⊥
n,η|2 − f ′(U)(ψ⊥

n )2] ≥ δ∗
∫ ν/εn

−ν/εn

(ψ⊥
n )2.

Integrating the above formula with respect to z over (0, 1) we get

εn

n
≥ Bν(ψ

⊥
n , ψ⊥

n ) ≥ εn

∫ 1

0

∫ ν/εn

−ν/εn

[|ψ⊥
n,η|2 − f ′(U)(ψ⊥

n )2] + o(εn)

≥ εnδ
∗
∫ 1

0

∫ ν/εn

−ν/εn

(ψ⊥
n )2 + o(εn) = δ∗εn + o(εn).

Dividing by εn and letting n → ∞ we obtain a contradiction. This proves the first
estimate of the lemma. The proof of the second estimate is left to the reader. 
�
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Lemma 3.6. For any ψ ∈ X ∩ span {θiψ0 | i = 1, . . . , k}, φ⊥ ∈ X⊥ and any
κ ∈ (0, 1/2) the following estimates hold:

Bν(ψ, φ⊥) ≤ CεκBν(ψ,ψ) + Cε2+κ

∫
Ων

ψ2

+
∫

Ων

(
ε2+κ |∇φ⊥|2 + ν0

4
|φ⊥|2

)
,

Bν(ψ + φ⊥, ψ + φ⊥) ≥ Bν(ψ,ψ)[1 + O(ε1/4)] + Cε9/4‖ψ‖2
L2(Ων)

+ν0

2
‖φ⊥‖2

H1
ε (Ων)

,

where ‖φ⊥‖2
H1

ε (Ων)
= ∫

Ων
(ε2|∇φ⊥|2 + |φ⊥|2).

Proof. By a straightforward calculation we have

Bν(ψ, φ⊥) = ε2
∫

∂Ων

φ⊥∂nψ dS −
∫

Ων

φ⊥Lψ. (3.6)

We also get

∫
Ων

φ⊥∆ψ =
∫

Ων

[φ⊥θ∆ψ0 + 2φ⊥∇θ · ∇ψ0 + φ⊥ψ0∆θ]

=
∫

∂Ων

φ⊥ψ0∂nθ dS

+
∫

Ων

[φ⊥θ∆ψ0 + φ⊥∇θ · ∇ψ0 − ψ0∇θ · ∇φ⊥].

We will consider I = ∫
Ων

ψ0∇θ · ∇φ⊥. We have, using (3.3)

I =
∫

Ων

{
ψ0θzφ

⊥
z z2

y + θzφ
⊥
x O(ν)

} =
∫

Ων

ψ0θzφ
⊥
z + O(ν)

∫
Ων

|θz||∇φ⊥|.

Since φ⊥ ∈ X⊥ therefore for each function g = g(z) we have

0 =
∫

Ων

ψ0θzφ
⊥g(z) = ε

∫ ν/ε

−ν/ε

∫ 1

0
ψ0θzφ

⊥g(z)
[
1 + jε

1(η, z)
]

dzdη,

where

| jε
1|, | jε

1,z| ≤ Cν.

Since g is arbitrary therefore for each z ∈ (0, 1) we have

∫ ν/ε

−ν/ε

ψ0θzφ
⊥[

1 + jε
1(η, z)

]
dη = 0.
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Differentiating this last formula with respect to z we get

∫ ν/ε

−ν/ε

ψ0θzφ
⊥
z

[
1 + jε

1(η, z)
]

dη = −
∫ ν/ε

−ν/ε

ψ0θzzφ
⊥[

1 + jε
1(η, z)

]
dη

−
∫ ν/ε

−ν/ε

ψ0θzφ
⊥ jε

1,z(η, z) dη

−
∫ ν/ε

−ν/ε

ψ0,zθzφ
⊥[

1 + jε
1(η, z)

]
dη

= −
∫ ν/ε

−ν/ε

ψ0θzφ
⊥ jε

1,z(η, z) dη

+
∫ ν/ε

−ν/ε

ψ0,zθzφ
⊥[

1 + jε
1(η, z)

]
dη.

Integrating now with respect to z we obtain

∣∣∣∣
∫

Ων

ψ0θzφ
⊥
z

∣∣∣∣ ≤ C
∫

Ων

|θz||φ⊥|.

Consequently,

I ≤ C
∫

Ων

|θz||φ⊥| + Cν

∫
Ων

|θz||∇φ⊥|.

We now need to estimate II = ∫
∂Ων

φ⊥θ∂nψ0 dS. Since near γ0 we have

∂nψ0 = −h′′
0(0)Uη + rε

0 = −h′′
0(0)ψ0 + r̃ε

0, where |r̃ε
0| ≤ εe−c|η|,

with a similar estimate near γ1, therefore

II =
2∑

i=1

∫
∂Ων∩B(γi ,ν)

φ⊥θ∂nψ0 dS + O(e−cν/ε)

∫
∂Ων∩{|x|=ν}

φ⊥θ dS

=
2∑

i=1

∫ ν

−ν

(−1)iψ0φ
⊥θh′′

i−1(0)

√
1 + (h′

i−1)
2 dx

+O(e−cν/ε)

∫
∂Ων∩{|x|=ν}

φ⊥θ dS

=
2∑

i=1

∫ ν

−ν

(−1)iψ0φ
⊥θh′′

i−1(0)
[√

1 + (h′
i−1)

2 − 1
]

dx

+O(e−cν/ε)

∫
∂Ων∩{|x|=ν}

φ⊥θ dS

= O(ν2)

∫
∂Ων

φ⊥θ dS.
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Using a trace inequality we find, for each α > 0,
∫

∂Ων

|φ⊥||θ| dS ≤ α

∫
∂Ων

|φ⊥|2 dS + C

α

∫
∂Ων

θ2 dS

≤ Cα

∫
Ων

[|∇φ⊥|2 + ν−1|φ⊥|2]

+ C

α

[∫ 1

0
θ2 + θ2(1) + θ2(0)

]
,

hence

II ≤ Cαν2
∫

Ων

[|∇φ⊥|2 + ν−1|φ⊥|2] + Cν2

α

∫ 1

0

(
θ2

z + θ2). (3.7)

Furthermore we need to estimate III = ∫
Ων

φ⊥∇θ∇ψ0. We have

∇θ∇ψ0 = θz[∇z∇ψ0] = O(1)θz,

hence

III ≤
∫

Ων

|θz||φ⊥|.

Taking α = ε−3κ/2, κ ∈ (0, 1/2) and using Corollary 3.1 we get from (3.6) and
estimates on I, II, III ,

Bν(ψ, φ⊥) ≤ ε2

∣∣∣∣
∫

∂Ων

φ⊥θ∂nψ0 dS

∣∣∣∣ +
∫

Ων

|φ⊥||θ||Lψ0|

+ Cε2
∫

Ων

|θz|[ν|∇φ⊥| + |φ⊥|]

≤ Cε2ν2
∫

∂Ων

|φ⊥||θ| dS

+ C
∫

Ων

ε2[(|θz| + |θ|)|φ⊥| + ν|θz||∇φ⊥|]

≤ Cε3+κ

∫ 1

0

(|θz|2 + |θ|2) + ε3−2κ

∫
Ων

|∇φ⊥|2 + ν0

4

∫
Ων

|φ⊥|2

≤ CεκBν(ψ,ψ) + Cε2+κ

∫
Ων

ψ2

+
∫

Ων

(
ε3−2κ |∇φ⊥|2 + ν0

4
|φ⊥|2

)
.

The first assertion of the lemma follows from the above. The second follows by
taking κ = 1/4. 
�

Let Σk−1 denote the collection of k − 1 dimensional subspaces of L2(Ων). We
define

µ∗
k = max

S∈Σk−1
min
Ψ∈S⊥

‖Ψ‖L2 (Ων)
=1

Bν(Ψ,Ψ).
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We will decompose Ψ = ψ+φ⊥, where ψ ∈ X, φ⊥ ∈ X⊥. Let θ1, . . . , θk−1 be the
eigenfunctions of (1.5) and let Sk−1 = span {ψ0θi, i = 1, . . . , k − 1}. If Ψ ∈ S⊥

k−1
then

0 =
∫

Ων

Ψψ0θi =
∫

Ων

ψψ0θi, i = 1, . . . , k − 1.

From Lemma 3.6 it follows then

µ∗
k ≥ min

Ψ∈S⊥
k−1‖Ψ‖L2 (Ων)

=1

Bν(Ψ,Ψ)

≥ min
Ψ∈S⊥

k−1
‖ψ‖2

L2(Ων)
+‖φ⊥‖2

L2(Ων)
=1

{
Bν(ψ,ψ)[1 + O(ε1/4)] − ε9/4

∫
Ων

ψ2

+ν0

2

∫
Ων

|φ⊥|2
}

≥ min
Ψ∈S⊥

k−1
‖ψ‖2

L2(Ων)
+‖φ⊥‖2

L2(Ων)
=1

{
λkε

2[1 + O(ε1/4)]
∫

Ων

ψ2 + ν0

2

∫
Ων

|φ⊥|2
}

≥ λkε
2[1 + O(ε1/4)].

On the other hand assume that for each δ > 0 there exists k − 1 dimensional
subspace Sδ such that

min
Ψ∈S⊥

δ‖Ψ‖L2(Ων)
=1

Bν(Ψ,Ψ) ≥ ε2(λk + δ).

Suppose that Sδ = span {ψ0ϑi + φ⊥
i , i = 1, . . . , k − 1}. (Some of the components

ϑi’s may be equal to 0). It follows that there exists a vector ψ̃ = ψ0ϑ̃ such
that ψ̃ ∈ S⊥

δ , ‖ψ̃‖L2(Ων) = 1 and in addition
∫
Ων

ψ0ϑi ϑ̃ = 0. Thus ψ̃ ∈ S⊥
m−1,

Sm−1 = span {ψ0ϑi, ϑi 
= 0}, where m ≤ k. We can assume that

Bν(ψ̃, ψ̃) = min
ψ∈Sm−1

Bν(ψ,ψ) ≥ min
Ψ∈S⊥

δ‖Ψ‖L2 (Ων)
=1

Bν(Ψ,Ψ).

We then have by Lemma 3.3

ε2(λk + δ) ≤ Bν(ψ̃, ψ̃) ≤ ε2(λm + Cε),

a contradiction. Thus we have proved:

Lemma 3.7. The following estimate holds:

ε2(λk − Cε1/4) ≤ µ∗
k ≤ ε2(λk + Cε).
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We will now consider the linearized operator and it associated bilinear form
on the whole domain Ω. More precisely let (Vk,Λk) denote the eigenvectors and
eigenvalues of (3.1). Let

B(ψ1, ψ2) =
∫

Ω

ε2∇ψ1∇ψ2 − f ′(u)ψ1ψ2.

We will show that for any constant M > 0 and any k such that λk < M + 1 the kth
eigenvalue of (3.1) satisfies Λk = ε2λk +o(ε2). Before we do that we need a lemma
which basically states that the critical eigenvectors of (3.1) (i.e. corresponding to
eigenvalues of order ε2) decay exponentially away from the transition layer.

Lemma 3.8. Let M > 0 be fixed and let Λk be an eigenvalue of (3.1) satisfying
Λk < Mε2. There exists positive constant β, independent on ε and such that

∫
|x|>R

[ε2|∇Vk|2 + |Vk|2] ≤ Ce−βR/ε‖Vk‖2
H1

ε (Ω)
, ∀R > 0. (3.8)

Proof. We fix k and denote Vk ≡ V , Λk = Λ. For each β > 0 we define a function

V β = eβx/εV.

Calculating directly we obtain

LV β = −(Λ + β2)V β + 2εβ∂xV β.

Multiplying the above equation by V β and integrating by parts we get

−B(V β, V β) + ε2
∫

∂Ω

V β∂n V β dS = −(Λ + β2)‖V β‖L2(Ω) + 2εβ

∫
Ω

V β∂x V β.

(3.9)

We will first deal with the boundary integral above. Using a trace inequality and
∂nV = 0 we find

∣∣∣∣ε2
∫

∂Ω

V β∂nV β dS

∣∣∣∣ =
∣∣∣∣εβ

∫
∂Ω

|V β|2nx dS

∣∣∣∣
≤ Cβε‖V β‖H1(Ω)‖V β‖L2(Ω) + Cβε‖V β‖2

L2(Ω)

≤ 1

4
ε2‖V β‖2

H1(Ω)
+ Cβ(β + ε)‖V β‖2

L2(Ω)
.

From (3.9) we get

ε2

4

∫
Ω

|∇V β|2 −
∫

Ω

[ f ′(u) + Λ + Cβ(β + ε)]|V β|2 ≤ 0. (3.10)

Observe that, since Λ < Mε2, there exist positive constants R0, β0 and c0 such that

f ′(u) + Λ + Cβ(β + ε) < −c0, |x| > R0ε, 0 < β < β0.
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Thus we have for each R > R0ε

ε2

4

∫
|x|>R

|∇V β|2 + c0

∫
|x|>R

|V β|2 ≤ C
∫

|x|≤R0ε

[
ε2|∇V β|2 + |V β|2].

Taking β0 smaller if necessary we obtain
∫

x>R
eβx/ε

[
ε2|∇V |2 + |V |2] ≤ C‖V‖2

H1
ε (Ω)

. (3.11)

Modifying the constant on the right hand side of the above estimate we can extend
(3.11) for 0 ≤ R ≤ R0ε.

An analogous to (3.11) estimate can be proven in the region x < −R if we take
V β = e−βx/ε and repeat the above argument.

Estimate (3.8) follows now immediately. 
�
Lemma 3.9. Let M > λ1 be fixed and let k∗ = max{k | λk < M}. Let ψk =
αkψ0θk, where αk is chosen such that ‖ψk‖L2(Ων) = 1. Then for each k ≤ k∗ we
have

Λk = λkε
2[1 + O(ε1/4)],

‖Vk − ψk‖2
L2

ε(Ων)
≤ Cν.

(3.12)

Proof. We will prove the result using the induction with respect to k. Let k =
1 ≤ k∗.

We first define a C∞(Ω) cut-off function χν as follows

χν =



1 Ω ∩ {|x| ≤ ν/2},
0 < χν < 1 Ω ∩ {ν/2 < |x| ≤ ν},
0 Ω ∩ {ν < |x|}.

Consider a test function Ψ = ψ1χν. Using Lemma 3.3 and Corollary 3.1 we find

B(Ψ,Ψ) ≤ Bν(ψ1, ψ1) + Ce−cν/ε
∫ 1

0

[
ε2|θ1,z|2 + |θ1|2

]

≤ Bν(ψ1, ψ1)[1 + O(e−cν/ε)] + Ce−cν/ε‖ψ1‖2
L2(Ων)

≤ λ1ε
2[1 + O(ε1/4)].

Thus we conclude that

Λ1 ≤ λ1ε
2(1 + O(ε1/4)). (3.13)

Observe that, since ‖V1‖L2(Ω) = 1, we have ‖V1‖H1
ε (Ω) ≤ C. From Lemma 3.8 we

get

B(V1, V1) ≥ Bν(V1, V1) − Ce−βν/ε‖V1‖2
H1

ε (Ω)

≥ λ1ε
2‖V1‖L2(Ων)[1 + O(ε1/4)] − Ce−βν/ε‖V1‖2

L2(Ω)

≥ λ1ε
2‖V1‖L2(Ω)[1 + O(ε1/4)].

(3.14)
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From (3.13) and (3.14) we get

Λ1 = λ1ε
2[1 + O(ε1/4)]. (3.15)

Hence we have proven the first of the inequalities in (3.12) in the case k = 1. To
show the rest of (3.12) let W1 = V1χν. Since supp W1 ⊂ Ων therefore we can
decompose

W1 = a1ψ1 + ψ̃ + ψ̃⊥, ψ̃ ∈ X,

∫
Ων

ψ1ψ̃ = 0, ψ̃⊥ ∈ X⊥.

We can calculate
LW1 = Λ1W1 + ε2 Pν,

where
Pν = V1∆χν + 2∇V1 · ∇χν.

Multiplying the above equation by ψ̃ + ψ̃⊥ and integrating by parts we get

Bν(a1ψ1, ψ̃ + ψ̃⊥) + Bν(ψ̃ + ψ̃⊥, ψ̃ + ψ̃⊥) = Λ1
(‖ψ̃‖2

L2(Ων)
+ ‖ψ̃⊥‖2

L2(Ων)

)

+ ε2
∫

Ων

(ψ̃ + ψ̃⊥)Pν. (3.16)

We have

Bν(a1ψ1, ψ̃ + ψ̃⊥) = Bν(a1ψ1, ψ̃) + Bν(a1ψ1, ψ̃
⊥). (3.17)

Using Lemma 3.2 one can show that for any functions ψ∗ =ψ0θ
∗, ψ∗∗ =ψ0θ

∗∗ ∈X
we have

Bν(ψ
∗, ψ∗∗) = ε2α0

[
h′′

1(0)θ∗(1)θ∗∗(1) − h′′
0(0)θ∗(0)θ∗∗(0) +

∫ 1

0
θ∗

z θ∗∗
z dz

]

+O(ε)
[
Bν(ψ

∗, ψ∗) + ε2‖ψ∗‖2
L2(Ων)

+ Bν(ψ
∗∗, ψ∗∗)

+ ε2‖ψ∗∗‖2
L2(Ων)

]
, (3.18)

where we have made use of Corollary 3.1 as well. We also have

0 =
∫

Ων

ψ1ψ̃ = α0

{∫ 1

0
θ1θ̃[1 + O(ν)] dz

}
.

It follows from (3.18) with ψ∗ = ψ1 and ψ∗∗ = ψ̃ that

Bν(a1ψ1, ψ̃) = O(ε)a2
1

[
Bν(ψ1, ψ1) + εν‖ψ1‖2

L2(Ων)

]
+ O(ε)

[
Bν(ψ̃, ψ̃) + εν‖ψ̃‖2

L2(Ων)

]
. (3.19)

From Lemma 3.8 we get

‖Pν‖L2(Ων) ≤ Ce−βν/2ε. (3.20)
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By Lemma 3.6 and (3.16), (3.19), (3.20) we get, since |a1| ≤ 1,
[
λ2ε

2(1 + O(ε1/4)) − Λ1
]‖ψ̃‖2

L2(Ων)
+ C‖ψ̃⊥‖2

H1
ε (Ων)

≤ Cε2ν. (3.21)

Since Λ1 = λ1ε
2(1 + O(ε1/4)) and λ2 − λ1 > 0, we get

‖ψ̃‖2
L2(Ων)

+ ‖ψ̃⊥‖2
H1

ε (Ων)
≤ Cν (3.22)

hence

|a1| ≥ ‖V1‖L2(Ων) − ‖W1 − V1‖L2(Ων) − ‖ψ̃‖L2(Ων) − ‖ψ̃⊥‖L2(Ων)

≥ 1 − O(ν1/2).
(3.23)

The second part of (3.12) follows now from (3.22) and (3.23).
Assume now that (3.12) holds for k = 1, . . . , m and that m < k∗. We will show

that (3.12) holds for (Λm+1, Vm+1).
Let

ψν = ψm+1χν −
m∑

k=1

Vk

∫
Ων

Vkψm+1χν.

From Lemma 3.8 and the inductive assumption it follows that

‖ψν‖2
L2(Ων)

= 1 + O(ν),

hence we have

Λm+1 = min
V⊥Vk,k=1,...m
‖V‖L2(Ω)

=1

B(V, V ) ≤ B(ψν,ψν)‖ψν‖−2
L2(Ων)

≤ Bν(ψm+1, ψm+1)[1 + O(ν)]
≤ λm+1ε

2[1 + O(ε1/4)]. (3.24)

Define now functions

Wν = Vm+1χν −
m∑

k=1

ψk

∫
Ων

ψkVm+1χν.

From Lemma 3.8 we get

‖Wν‖2
L2(Ων)

= 1 + O(ν),

and thus we can estimate

λm+1ε
2 ≤ Bν(Wν, Wν)[1 + O(ν)]

≤ [B(Vm+1, Vm+1) + O(e−cν/ε)][1 + O(ν)]
≤ Λm+1[1 + O(ν)].

(3.25)

Combining (3.24) and (3.25) we obtain the first inequality in (3.12) holds for Λm+1.
In order to prove the second of the estimates in (3.12) for Vm+1 we argue

similarly as in the proof for V1. We omit the details.
The proof of the lemma is complete. 
�
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Corollary 3.2. (i) Let ψk, k = 1, . . . , m be functions defined in the statement
of Lemma 3.9 and let ψν

k = ψkχν. Assume that v satisfies
∫
Ω

vψν
k = 0,

k = 1, . . . , m. Then

B(v, v) ≥ Λm+1[1 + O(ν)]‖v‖2
L2(Ω)

.

(ii) Assume that v satisfies
∫
Ω

vuξi = 0, i = 1 in the minimum and short axis case
and i = 1, 2 in the long axis case. Then we have

B(v, v) ≥ Λ2[1 + O(ε1/4)]‖v‖2
L2(Ω)

, minimum and short axis case,

B(v, v) ≥ Λ3[1 + O(ε1/4)]‖v‖2
L2(Ω)

, long axis case.

Proof. We will prove part (i) of this lemma. Proof of (ii) is similar and is left to
the reader. We define

ṽ = v −
m∑

k=1

Vk

∫
Ω

vVk.

From our assumption and Lemma 3.9 it follows
∣∣∣∣
∫

Ω

vVk

∣∣∣∣ ≤ Cν1/2‖v‖L2(Ω).

Furthermore

B(ṽ, ṽ) ≥ Λm+1‖ṽ‖2
L2(Ω)

≥ Λm+1‖v‖2
L2(Ω)

[1 + O(ν)].
On the other hand

B(ṽ, ṽ) = B(v, v) −
m∑

k=1

Λk

(∫
Ω

vVk

)2

.

Our assertion now follows. 
�

4. Existence of and stability of stationary states

Proof of Theorem 1.1. The main idea of the proof is to use the method of Lyapunov-
Schmidt reduction. For that we need two steps:

(1) Solve (1.1) in the orthogonal complement of ∇ξu, for each fixed ξ .
(2) Find a particular value of ξ for which the Lagrange multiplier c(ξ) is equal

to 0.

Step 1. Let F(u) = − 1
4 (1 − u2)2. It is well know that u is a solution to (1.1) if and

only if u is a critical point of

J(u) =
∫

Ω

[
ε2

2
|∇u|2 − F(u)

]
.
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Let un be an approximate solution up to order n, n > 5 to (2.1). We will show that
for each ξ there exists a function vn = vn(x, y, ξ, ε) such that

inf
ṽ⊥∇ξ un

‖ṽ‖L2(Ω)
≤ε4

J(un + ṽ) = J(un + vn)

and

‖vn‖L2(Ω) ≤ Cε(n+3)/2. (4.1)

For each ṽ we can write

J(un + ṽ) = J(un) + DJ(un)ṽ + B(ṽ, ṽ) + N (ṽ),

where N (ṽ) = ∫
Ω

(un ṽ3 + 1
4 ṽ4). We first observe that

inf
ṽ⊥∇ξ un

‖ṽ‖L2(Ω)
≤ε4

J(un + ṽ) ≤ J(un). (4.2)

On the other hand we have

DJ(un)ṽ = ε2
∫

∂Ω

ṽhε −
∫

Ω

ṽLun

= ε2
∫

∂Ω

ṽhε − c ·
∫

Ω

ṽ∇ξun −
∫

Ω

ṽgε

= ε2
∫

∂Ω

ṽhε −
∫

Ω

ṽgε,

hence, using a trace inequality, we get

DJ(un)ṽ ≥ −ε2‖hε‖L∞(Ω)‖ṽ‖L1(∂Ω) − ‖ṽ‖L2(Ω)‖gε‖L2(Ω)

≥ −Cε2‖hε‖L∞(Ω)‖ṽ‖L2(Ω) − ‖ṽ‖L2(Ω)‖gε‖L2(Ω)

≥ −Cεn+5.

(4.3)

Furthermore we have

N (ṽ) ≥ −C
(‖ṽ‖3

L3(Ω)
+ ‖ṽ‖4

L4(Ω)

)

≥ −C(1 + ‖ṽ‖H1(Ω)‖ṽ‖L2(Ω))‖ṽ‖H1(Ω)‖ṽ‖2
L2(Ω)

≥ −Cε4
(
1 + ε4‖ṽ‖H1(Ω)

)‖ṽ‖H1(Ω)‖ṽ‖L2(Ω)

≥ −Cε3‖ṽ‖2
H1

ε (Ω)
.

(4.4)

Now, if vn is a minimizer of J(un+ṽ) then, from (4.2), (4.3), (4.4) and Corollary 3.2,
it follows

Cεn+5 ≥ B(vn, vn) − Cε3‖vn‖2
H1

ε (Ω)

≥ Λm[1 + O(ε1/4)]‖v‖2
L2(Ω)

,
(4.5)
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where m = 2 in the minimum and short axis case and m = 3 in the long axis case.
From Lemma 3.9 we conclude (4.1). As an easy corollary we obtain

‖vn‖H1(Ω) ≤ Cε(n+1)/2. (4.6)

Step 2. Since, for n > 5, we have n+3
2 > 4 therefore the minimizer vn obtained

in Step 1 is a weak (and, by elliptic regularity, classical) solution to the following
problem

ε2∆(un + vn) + f(un + vn) = c̃ · ∇ξun, in Ω,

∂nv
n = −∂nun, on ∂Ω,∫

Ω
vn∇ξun = 0,

where c̃ is a Lagrange multiplier. We can write the above equation in the form

Lvn = (c̃ − c) · ∇ξun − gε + N(vn), (4.7)

where N(vn) = 2un(vn)2 + (vn)3. Multiplying (4.7) by Vm , m = 1 in the minimum
and short axis case and m = 1, 2 in the long axis case, integrating by parts, using∣∣∣∣

∫
Ω

VmLvn

∣∣∣∣ ≤ Cε(n+5)/2,

∫
Ω

un
ξ j

Vm = −ε1/2δm j + O(ε1/2ν),

and estimates (4.1), (4.6) we obtain

|c̃ − c| ≤ Cε(n+4)/2. (4.8)

Clearly c0(0) = 0. Since, λm 
= 0 (where m = 1 in the minimum and short axis case
and m = 1, 2 in the long axis case) therefore using (4.8) and the definition of c0, by
a standard topological degree argument we obtain c̃(ξ̃) = 0 for some ξ̃, |ξ̃| < Cε.
Consequently, un(ξ̃) + vn(ξ̃) is a solution to (1.1). Moreover |φ(ξ̃, y)| ≤ Cε and
thus

‖un(η, y, ξ̃) − U(x/ε)‖C0(Ω) ≤ Cε.

Standard elliptic regularity and (4.6) give

‖vn‖Wk,2 (Ω) ≤ Cε(n+3)/2−k. (4.9)

Setting k = 2 we conclude (1.3). The proof of the theorem is complete. 
�
Proof of Theorem 1.2. Using estimate (4.9) with k = 2 and taking n > 5 we obtain

‖vn‖C0(Ω) ≤ Cε(n−1)/2 ≤ Cε5/2.

Consequently the linear operator

ε2∆V + f ′(un + vn)V = Λ̃V

is a O(ε5/2) perturbation of L. The statement of the theorem follows from Lem-
ma 3.9 by a straightforward argument. We omit the details. 
�
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5. Concluding remarks-generalizations

In this paper for simplification we have chosen f to be a cubic nonlinearity.
Our results can be generalized when f is a bistable, smooth nonlinearity with
polynomial growth at ∞ by using Taylor’s expansion of f .

Another possible and straightforward generalization is to consider an interface
consisting of multiple, isolated straight line segments. One can construct the ap-
proximate invariant manifold by “gluing” manifolds of the separate components.
It can be easily done due to the fact that away from the interface the solution to the
approximate invariant manifold equation converges at an exponential rate to ±1.
In other words-isolated interfaces interact very weakly with one another.

The works of Bronsard and Stoth [3] and Nakashima and Tanaka [14] suggest
that there are solutions with interfaces that collapse onto each other as ε → 0
(phantom interfaces). Their interaction is stronger and should influence the asymp-
totics.

A more difficult than our setting situation happens if two straight line segments
intersect at the right angle-this corresponds to a nonsmooth, stationary solution to
the mean curvature flow. We expect that a solution to (1.1) can be constructed in
this case, as suggested by [6], however our method in its present form does not
apply. Similar in the spirit problem is to consider the vector valued Allen-Cahn
equation with triple well potential F. Flores and Padilla constructed in this case
stationary solutions of Morse index 2 [10] by using a variational approach.

5.1. Added in proof

In the recent work Pacard and Ritoré [15] proved a generalization of the existence
result presented here. Namely, they showed that any nondegenerate minimal hy-
persurfaces in (n + 1), n ≥ 1, Riemanian manifold is a nodal set of a solution to
the Allen-Cahn equation. The key idea in their approach is to invert the linearized
operator in carefully chosen weighted spaces.
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