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Abstract. A Pólya–Szegö principle for second-order derivatives is established. As a conse-
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1. Introduction and main results

A form of the Pólya–Szegö principle tells us that if G is any open bounded subset
of Rn , n ≥ 1 and u belongs to the Sobolev space W1,p

0 (G), with 1 ≤ p ≤ ∞, then
the symmetric rearrangement u� of u belongs to W1,p

0 (G�) and

‖|∇u�|‖L p(G�) ≤ ‖|∇u|‖L p(G) (1.1)

(see [4], [5], [8], [17], [20], [24], [28] [30]). Here, ∇u stands for the gradient of u,
|∇u| = (

∑n
i=1 u2

xi
)1/2, and G� is the ball centered at the origin and having the

same measure as G. An equivalent formulation of this principle amounts to the
following statement: whenever a function u belongs to W1,p

0 (G), its decreasing
rearrangement u∗ is locally absolutely continuous in (0,+∞) and

∥
∥nCn

1/nr1−1/n( − u∗′
(r)

)∥
∥

L p(0,|G|) ≤ ‖|∇u|‖L p(G), (1.2)

where Cn = πn/2/Γ(1 + n/2), the measure of the unit ball in Rn , prime denotes
derivative and |G| is the Lebesgue measure of G.

An extension of the Pólya–Szegö principle holds in any rearrangement invariant
space, i.e., roughly speaking, in any Banach function space where the norm of
a function depends only on the measure of its level sets. Indeed if X(G) is any
rearrangement invariant space endowed with the norm ‖ · ‖X(G), and u is any
function from the Sobolev space W1

0 X(G) of those weakly differentiable functions
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in G, vanishing on ∂G, such that |∇u| ∈ X(G), then u∗ is locally absolutely
continuous in (0,+∞) and

∥
∥nCn

1/nr1−1/n(−u∗′
(r))

∥
∥

X(0,|G|) ≤ ‖|∇u|‖X(G), (1.3)

where X(0, |G|) is the representation space of X(G) on (0, |G|) (see e.g. ([14])).
Moreover, equality holds in (1.3) if u is spherically symmetric. Recall that, besides
Lebesgue spaces, customary examples of rearrangement invariant spaces are pro-
vided by Lorentz, Zygmund and Orlicz spaces. Precise definitions and properties
concerning rearrangement invariant spaces and related topics coming into play in
this section and throughout the whole paper are contained in Section 2.

Among other applications, inequality (1.2) and its generalizations have proved
to be a very useful tool in the proof of (first-order) Sobolev-type inequalities
and embeddings, especially when their sharp form is in question – see e.g. [4],
[9], [10], [14], [16], [21], [24], [25], [30]. The reason is in that they enable us
to reduce n-dimensional problems to equivalent 1-dimensional ones. Actually, as
a consequence of (1.3), it is not difficult to see that the first-order Sobolev-type
inequality

‖u‖Y(G) ≤ K1‖|∇u|‖X(G), (1.4)

holds for every u ∈ W1
0 X(G) if and only if the Hardy-type inequality,

∥
∥
∥
∥

∫ |G|

s
φ(r)r−1+1/ndr

∥
∥
∥
∥

Y(0,|G|)
≤ K2‖φ(s)‖X(0,|G|), (1.5)

holds for every φ ∈ X(0, |G|). Here, X(G) and Y(G) are rearrangement invariant
spaces, and K1 and K2 are positive constants independent of u and φ, respectively.

It is well known that inequality (1.1) is not suitable for extensions to higher-
order derivatives. Indeed, second – and, a fortiori, higher-order derivatives of u�

cannot be estimated in terms of derivatives of u just because it may happen that
u� is not twice weakly differentiable even if u is very smooth. (Incidentally, let us
mention that a positive 1-dimensional result in this direction is proved in [13] in
the framework of functions whose second-order derivative is a bounded measure.)

The main objective of this paper is to show that, instead, a proper second-order
version of the Pólya–Szegö principle holds in a form patterned on (1.3), regarded
as an inequality between the X(G) norm of |∇u| and a weighted X(0, |G|) norm
of u∗′

. Such a version is what is really needed in view of applications to second-order
Sobolev inequalities. The result is achieved in Theorem 1.1 below and amounts to
an inequality between any rearrangement invariant X(G) norm of the second-order
derivatives of u and still a weighted X(0, |G|) norm of u∗′

, but with a different
weight.

In what follows, W2 X(G) denotes the second-order Sobolev space built upon
X(G), and W2

0 X(G) the subspace of W2 X(G) of those functions which vanish,
together with their gradient, on ∂G (see Subsection 2.3).
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Theorem 1.1. Let G be an open bounded subset of Rn, n ≥ 3, and let X(G) be
a rearrangement invariant space on G. Then a positive constant C(n), depending
only on n, exists such that

∥
∥C(n)r1−2/n( − u∗′

(r)
)∥
∥

X(0,|G|) ≤ ‖|∇2u|‖X(G), (1.6)

for every u ∈ W2
0 X(G). Here, ∇2u is the Hessian matrix of u and |∇2u| =

(
∑n

i, j=1 u2
xi x j

)1/2.

The key step in the proof of Theorem 1.1 is the rearrangement inequality pro-
vided by the next result. In fact, owing to a well-known property of rearrangement
invariant spaces ((2.8), Subsection 2.1), Theorem 1.1 immediately follows from:

Theorem 1.2. Let u be any compactly supported function from W2,1(Rn), n ≥ 3.
Then

C(n)

∫ s

0

[
(·)1−2/n( − u∗′

(·))]∗(r)dr ≤
∫ s

0
|∇2u|∗(r)dr for s ≥ 0, (1.7)

where C(n) is the same constant as in Theorem 1.1.

Let us notice that, unlike (1.3), inequality (1.6) does not have an isoperimetric
nature, in the sense that there does not exist a constant C(n) for which equality holds
in (1.6) whenever u is spherically symmetric. Therefore, one should not expect that
inequality (1.6) can be applied to find the best constants in Sobolev inequalities.
Nevertheless, it can be efficiently used to prove optimal results as far as function
spaces involved in Sobolev inequalities are concerned, thus providing a sharp
unified approach to second-order Sobolev-type embeddings. Indeed, inequality
(1.6) enables us to show that, in analogy with first-order inequalities like (1.4),
also second-order Sobolev inequalities involving rearrangement invariant norms
are equivalent to suitable 1-dimensional inequalities of a Hardy-type. This is the
content of:

Theorem 1.3. Let G be an open bounded subset of Rn, n ≥ 3, and let X(G) and
Y(G) be rearrangement invariant spaces on G. Then the following statements are
equivalent:

i) A positive constant K1 exists such that

‖u‖Y(G) ≤ K1‖|∇2u|‖X(G), (1.8)

for every u ∈ W2
0 X(G).

ii) A positive constant K2 exists such that

∥
∥
∥
∥

∫ |G|

s
φ(r)r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)
≤ K2‖φ(s)‖X(0,|G|), (1.9)

for every φ ∈ X(0, |G|).
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Remark 1. Theorem 1.1 holds even if G = Rn , and functions from W2 X(Rn)

having compact support are taken into account. Hence, a version of Theorem 1.3
can be proved for rearrangement invariant spaces X(Rn) and Y(Rn) on Rn: one has
just to replace G by Rn in i) and |G| by ∞ in ii), and to consider functions u and
φ with compact support in i) and ii), respectively.

Remark 2. Inequality (1.8) is equivalent to the continuous embedding

W2
0 X(G) −→ Y(G),

since ‖u‖W2
0 X(G) and ‖∇2u‖X(G) are equivalent norms on W2

0 X(G) – see Subsec-
tion 2.3.

Remark 3. Our results are stated for n ≥ 3, the case of interest in the present
setting. In fact, the problem of second-order Sobolev inequalities is trivial in the
2-dimensional case, since inequality (1.8) holds for every X(G) and Y(G) in that
case. This is a consequence of the Sobolev embedding

W2,1
0 (G) −→ L∞(G),

which holds for every bounded subset G ⊂ R2 (see [1, Theorem 5.4]), and of
the embeddings X(G) → L1(G) and L∞(G) → Y(G), which hold for every
rearrangement invariant spaces X(G) and Y(G) [6, Chap. 2, Corollary 6.7].

Remark 4. The standard second- (and higher-) order Sobolev inequality for
Lebesgue norms can be proved by iterating the first-order inequality. Let us stress,
however, that this approach may not lead to optimal results when more general
norms are taken into account.

It may be interesting to compare Theorems 1.1−1.3 with results in the same
spirit involving the Riesz potential or the Laplace operator. The second-order Riesz
potential operator I2 is defined at any locally integrable function f decaying fast
enough at infinity as

I2( f )(x) =
∫

Rn

f(y)

|x − y|n−2
dy for x ∈ Rn .

Owing to the O’Neil rearrangement inequality for convolutions [34, Lemma 1.8.8],

(I2( f ))∗(s) ≤ n

2
Cn

1−2/n

(

s−1+2/n
∫ s

0
f ∗(r)dr +

∫ ∞

s
f ∗(r)r−1+2/ndr

)

for s > 0.

(1.10)

Estimate (1.10) can be used to prove:

Theorem 1.4. Let G be an open bounded subset of Rn, n ≥ 3, and let X(G) and
Y(G) be rearrangement invariant spaces on G. Then the following statements are
equivalent:
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i) A positive constant K1 exists such that

‖I2( f )‖Y(G) ≤ K1‖ f ‖X(G), (1.11)

for every function f ∈ X(G) with compact support in G.
ii) A positive constant K2 exists such that inequality (1.9) and the inequality

∥
∥
∥
∥s−1+2/n

∫ s

0
φ(r)dr

∥
∥
∥
∥

Y(0,|G|)
≤ K2‖φ(s)‖X(0,|G|), (1.12)

hold for every φ ∈ X(0, |G|).
A standard representation formula tells us that

u(x) = 1

(2 − n)nCn
I2(∆u)(x) for a.e. x ∈ Rn, (1.13)

for every compactly supported function u on Rn, n ≥ 3, whose distributional
Laplacian ∆u is an integrable function (see e.g. [33, Theorem 3.2.3/2]). Combining
(1.13) and (1.10) yields

u∗(s) ≤ 1

2(n − 2)Cn
2/n

(

s−1+2/n
∫ s

0
|∆u|∗(r)dr +

∫ ∞

s
|∆u|∗(r)r−1+2/ndr

)

for s > 0. (1.14)

Hence, if u is any compactly supported function from W2,1(Rn),

u∗(s) ≤
√

n

2(n − 2)Cn
2/n

(

s−1+2/n
∫ s

0
|∇2u|∗(r)dr +

∫ ∞

s
|∇2u|∗(r)r−1+2/ndr

)

for s > 0. (1.15)

Now, estimate (1.15) implies that the Sobolev inequality (1.8) is true provided
that (1.9) and (1.12) are fulfilled. However, Theorem 1.3 ensures that the sole
validity of (1.9) is sufficient (and necessary) for (1.8) to hold. In other words,
Theorem 1.3 tells us that the first integral term on the right-hand side of (1.15)
turns out to be negligible in view of applications to rearrangement invariant norm
inequalities.

On the other hand, the first term on the right-hand side of (1.14) cannot be disre-
garded when dealing with norm inequalities between u and ∆u. Actually, equality
holds in (1.14) whenever ∆u is non-negative and radially decreasing, provided
that the constant 1

2(n−2)Cn
2/n is replaced by 1

n(n−2)Cn
2/n . A precise counterpart of

Theorem 1.3, when |∇2u| is replaced by ∆u, is given by the following result. In the
statement, W∆

0 X(G) denotes the space of those functions which vanish together
with their gradient on ∂G and such that ∆u ∈ X(G) (see Subsection 2.3).

Theorem 1.5. Let G be an open bounded subset of Rn, n ≥ 3, and let X(G) and
Y(G) be rearrangement invariant spaces on G. Then the following statements are
equivalent:



50 A. Cianchi

i) A positive constant K1 exists such that

‖u‖Y(G) ≤ K1‖∆u‖X(G), (1.16)

for every u ∈ W∆
0 X(G).

ii) A positive constant K2 exists such that inequalities (1.9) and (1.12) hold for
every φ ∈ X(0, |G|).
In conclusion, Theorems 1.3−1.5 tell us that, as long as rearrangement in-

variant norms are concerned, potential inequalities and inequalities involving the
Laplacian are equivalent, but they are not equivalent to full second-order Sobolev
inequalities. This discrepancy between ∇2u and ∆u is related to the fact that not
every rearrangement invariant norm of |∇2u| can be estimated in terms of the same
norm of ∆u. Loosely speaking, this estimate breaks down when the rearrangement
invariant norm is either close to the L1 norm or to the L∞ norm. To be specific,
such an estimate holds, for instance, in L p for every p ∈ (1,∞), by the Calderon–
Zygmund theorem on the boundedness of Riesz transforms, but neither holds for
p = 1 nor for p = ∞. More generally, a theorem due to Boyd [6, Chap. 3, Theo-
rem 5.18], implies that the norm of |∇2u| in a rearrangement invariant space X(G)

is equivalent to the same norm of ∆u if and only if the lower Boyd index iX > 1
and the upper Boyd index IX < ∞.

Theorems 1.3–1.5 also yield quantitative information about the gap between
potential and Laplacian inequalities on one side, and second-order Sobolev in-
equalities on the other side: they show that this gap is precisely due to the first
integral term on the right-hand sides of (1.10) and (1.14). Hence, the rearrange-
ment invariant spaces X(G) and Y(G) for which inequalities (1.8), (1.11) and
(1.16) are equivalent are exactly those where (1.9) implies (1.12). This is the case,
for instance, when the function hY , defined as the norm of the dilation operator on
Y(0, |G|) (see (2.12), Subsection 2.2) satisfies

∫

0
hY (t)t−2/ndt < ∞ (1.17)

[16, Theorem 4.4]. In particular, condition (1.17) is fulfilled when the lower Boyd
index iY of Y(G) exceeds n

n−2 .
Proofs of Theorem 1.2 and Theorem 1.3 will be given in Sections 3 and 4,

respectively. A sketch of the proofs of Theorems 1.4 and 1.5 can be found at
the end of Section 4. Section 5 contains some applications of Theorem 1.3: after
recovering a few classical and more recent Sobolev inequalities, new results are
derived, including an optimal embedding theorem for Orlicz–Sobolev spaces and
a characterization of those spaces of Sobolev-type which are embedded into the
space of bounded functions.

2. Background

We collect in this section some definitions, notations and properties about functions
and function spaces involved in our discussion.
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2.1. Rearrangements

Let f be a real-valued measurable function on a subset G of Rn . Then the distri-
bution function µ f of f is defined as

µ f (t) = |{x ∈ G : | f(x)| > t}| for t ≥ 0. (2.1)

The decreasing rearrangement f ∗ of f is the right-continuous non-increasing
function from [0,∞) into [0,∞] which is equimeasurable with f . Namely,

f ∗(s) = sup{t ≥ 0 : µ f (t) > s} for s ≥ 0. (2.2)

Notice that supp f ∗ ⊆ [0, |G|]. Since f ∗ is non-increasing, the function f ∗∗,
defined by

f ∗∗(s) = 1

s

∫ s

0
f ∗(r)dr for s ≥ 0, (2.3)

is also non-increasing and f ∗ ≤ f ∗∗.
It is easily seen that if g is any radial function on Rn having the form

g(x) = φ(Cn|x|n)

for some real-valued measurable function φ : [0,∞) → R, then

g∗ = φ∗. (2.4)

Hence, in particular, the spherically symmetric rearrangement f � of f , given by

f �(x) = f ∗(Cn|x|n), (2.5)

is a radially decreasing function about the origin which is equimeasurable with f .
A special case of the Hardy–Littlewood inequality tells us that

∫

E
| f |dx ≤

∫ |E|

0
f ∗(r)dr, (2.6)

for every measurable subset E of G. In fact, the stronger property,

sup
|E|=s

∫

E
| f |dx =

∫ s

0
f ∗(r)dr, (2.7)

holds for a.e. s ∈ [0, |G|].
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2.2. Rearrangement invariant spaces

Let G be a measurable subset ofRn , and let X(G) be a Banach space of measurable
real-valued functions in G, equipped with the norm ‖ · ‖X(G). We say that X(G)

is a rearrangement invariant Banach function space (briefly an r.i. space) if the
following properties are fulfilled:

i) if 0 ≤ g ≤ f a.e. in G and f ∈ X(G), then g ∈ X(G) and ‖g‖X(G) ≤
‖ f ‖X(G);

ii) if fn is a sequence such that 0 ≤ fn ↗ f a.e. in G and f ∈ X(G), then
‖ fn‖X(G) ↗ ‖ f ‖X(G);

iii) ‖χE‖X(G) < ∞ for every E ⊆ G with |E| < ∞; here, χE denotes the
characteristic function of the set E;

iv) for every E ⊆ G with |E| < ∞, there exists a constant C such that
∫

E fdx ≤
C‖ f ‖X(G) whenever f ∈ X(G);

v) if f ∈ X(G) and g∗ = f ∗, then g ∈ X(G) and ‖g‖X(G) = ‖ f ‖X(G).

A property of r.i. spaces states that

if f ∈ X(G) and
∫ s

0
g∗(r)dr ≤

∫ s

0
f ∗(r)dr for s ≥ 0, (2.8)

then g ∈ X(G) and ‖g‖X(G) ≤ ‖ f ‖X(G).

Given any r.i. space X(G), the set

X
′
(G) =

{

g : g is a real-valued measurable function in G and

∫

G
| fg|dx < ∞ for all f ∈ X(G)

}

is again an r.i. space endowed with the norm

‖g‖X′
(G)

= sup
f �=0

∫ | fg|dx

‖ f ‖X(G)

, (2.9)

and is called the associate space of X(G). In a sense, X
′
(G) plays a role of a dual

of X(G) in this framework, and it actually agrees with the topological dual of
X(G) in many situations. For every r.i. space X(G), (X

′
)
′
(G) = X(G). Equation

(2.9) obviously implies the Hölder-type inequality
∫

G
| fg|dx ≤ ‖ f ‖X(G)‖g‖X′

(G)
, (2.10)

for every f ∈ X(G) and g ∈ X
′
(G).

The representation space X(0, |G|) of an r.i. space X(G) is the unique r.i. space
on [0, |G|] such that

‖ f ‖X(G) = ‖ f ∗‖X(0,|G|), (2.11)
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for every f ∈ X(G). It is equipped with the norm

‖φ‖X(0,|G|) = sup
‖g‖

X
′
(G)

≤1

∫ |G|

0
φ∗(r)g∗(r)dr.

Let us notice that, for customary r.i. spaces, the norm in X(0, |G|) can be immedi-
ately computed from the norm in the original space X(G).

For each t > 0, the dilation operator Et is defined at a measurable function φ

on [0, |G|] as

Etφ(s) =
{

φ(st) if 0 ≤ s ≤ min{|G|, |G|/t}
0 if min{|G|, |G|/t} < s ≤ |G|. (2.12)

The operator Et is bounded on X(0, |G|) for every r.i. space X(G) and for every
t > 0; moreover, the norm h X(t) of Et on X(0, |G|) satisfies

h X(t) ≤ max{1, 1/t}. (2.13)

We define the lower Boyd index iX of X(G) as

iX = lim
t→0+

log(1/t)

log(h X(t))
. (2.14)

One has 1 ≤ iX ≤ ∞ for every r.i. space X(G). The index iX, and the corresponding
upper index IX , defined on taking the limit as t → +∞ in (2.14), play a role in the
theory of interpolation.

Our applications will include Lebesgue, Lorentz and Orlicz spaces. Recall that
the Lorentz space L p,q(G), with 1 < p < ∞ and 1 ≤ q ≤ ∞ or p = q = ∞, is
the r.i. space consisting of all real-valued measurable functions f in G for which
the quantity

‖ f ‖L p,q(G) =
{(

1
p

∫∞
0 (r1/p f ∗(r))q dr

r

)1/q
if q < ∞

supr>0 r1/p f ∗(r) if q = ∞
(2.15)

is finite. This quantity is a norm if q ≤ p; in general, it is equivalent to the norm
obtained on replacing f ∗ by f ∗∗ on the right-hand side of (2.15). The associate
space of L p,q(G) is, up to equivalent norms, L p′,q′

(G), where p′ = p
p−1 , the Hölder

conjugate of p, and q′ is defined analogously. The representation space of L p,q(G)

is obviously L p,q(0, |G|).
Given any Young function A, i.e. a non-decreasingconvex function from [0,∞)

into [0,∞] vanishing at 0, the Orlicz space L A(G) is defined as the collection of all

real-valued measurable functions f on G satisfying
∫

G A
( | f |

λ

)
dx < ∞ for some

λ > 0. L A(G), endowed with the Luxemburg norm

‖ f ‖L A(G) = inf

{

λ > 0 :
∫

G
A

( | f |
λ

)

dx ≤ 1

}

, (2.16)
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is an r.i. space. The associate space of L A(G) is, up to equivalent norms, the Orlicz
space L Ã(G), where Ã(s) = sup{rs − A(r) : r ≥ 0}, the Young conjugate of A.
Moreover, the representation space of L A(G) is L A(0, |G|).

For a comprehensive treatment of rearrangement invariant spaces we refer
to [6].

2.3. Spaces of Sobolev functions

Let G be an open subset of Rn and let X(G) be an r.i. space on G. We define the
first-order Sobolev space W1 X(G) built upon X(G) as

W1 X(G) = {
u : u is a weakly differentiable function from X(G) (2.17)

such that |∇u| ∈ X(G)
}
,

endowed with the norm ‖u‖W1X(G) = ‖u‖X(G)+‖|∇u|‖X(G). Similarly, the second-
order Sobolev space W2 X(G) is defined as

W2 X(G) = {
u : u is a twice weakly differentiable function from X(G) (2.18)

such that |∇u|, |∇2u| ∈ X(G)
}
,

and ‖u‖W2 X(G) = ‖u‖X(G) + ‖|∇u|‖X(G) + ‖|∇2u|‖X(G).
By Wk

0 X(G), k = 1, 2, we denote the subspace of Wk X(G) of those functions
whose continuation by 0 outside G is still k times weakly differentiable in the
whole of Rn . Since the Poincaré-type inequality

‖u‖X(G) ≤
( |G|

Cn

)1/n

‖|∇u|‖X(G) (2.19)

holds whenever |G| < ∞ and u ∈ W1
0 X(G) (see [14, Lemma 4.2]), ‖|∇u|‖X(G)

is a norm equivalent to ‖u‖W1 X(G) on W1
0 X(G). An application of (2.19) with u

replaced by |∇u| shows that ‖|∇2u|‖X(G) is a norm equivalent to ‖u‖W2 X(G) on
W2

0 X(G).
In the case when X(G) = L p(G), we adopt the usual notations Wk,p(G)

and Wk,p
0 (G), k = 1, 2, for Wk L p(G) and Wk

0 L p(G), respectively. Analogously,
when X(G) = L A(G), we write Wk,A(G) and Wk,A

0 (G), instead of Wk L A(G) and
Wk

0 L A(G).
The notation W∆

0 X(G) is employed for the space of those functions in G such
that the distributional Laplacian of their continuation by 0 outside G is an integrable
function in Rn which belongs to X(G).

2.4. Spaces of functions of BV type

Even if not a primary object of this paper, we shall be led, for technical reasons, to
deal also with functions of bounded variation.

Let G be an open bounded subset of Rn . A function u ∈ L1(G) is called
of bounded variation if its first-order distributional partial derivatives are signed
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Radon measures with finite total variation in G. The class of functions of bounded
variation on G will be denoted by BV(G). If u ∈ BV(G), the distributional gradient
Du of u is a vector-valued measure whose total variation ‖Du‖ is a finite measure
on G and

‖Du‖(G) = sup

{∫

G
u divΘdx : Θ ∈ C∞

0 (G,Rn), |Θ(x)| ≤ 1 for x ∈ G

}

.

We denote by BV 2(G) the space of functions u ∈ W1,1(G) whose second-order
distributional derivatives are signed Radon measures having finite total variation
in G. Thus, u ∈ BV 2(G) if and only if u ∈ W1,1(G) and uxi ∈ BV(G) for
i = 1, . . . , n. The Hessian of a function u from BV 2(G) is a matrix-valued
measure denoted by D2u.

Given u ∈ BV(G), the measure Du can be split into an absolutely continuous
part with respect to the Lebesgue measure and a singular part. The density of the
absolutely continuous part with respect to the Lebesgue measure will be denoted
by ∇u. Thus, in particular, dDu = ∇u dx if u ∈ W1,1(G).

The lower and upper approximate limits u− and u+ of a function u ∈ BV(G)

are defined as

u−(x) = sup{t ∈ R : D({u < t}, x) = 0}

and

u+(x) = inf {t ∈ R : D({u > t}, x) = 0},
respectively. Here, D(E, x) denotes the density of a measurable set E ⊂ Rn at
a point x ∈ Rn given by D(E, x) = limr→0+ |E∩B(x,r)|

|B(x,r)| , where B(x, r) is the ball of
radius r centered at x. The functions u− and u+ are finite almost everywhere with
respect to Hn−1, the (n − 1)-dimensional Hausdorff measure. In what follows, we
adopt the convention that u agrees with its precise representative, which is defined
as u−(x)+u+(x)

2 when u−(x) and u+(x) are both finite, and equals 0 otherwise. Recall
that, if u ∈ W1,1(G), then u−(x) = u+(x) for Hn−1 a.e. x ∈ G.

A set E ⊆ Rn is said to have finite perimeter if DχE is a (vector-valued) Radon
measure with finite total variation on Rn . The perimeter of E is defined as

P(E) = ‖DχE‖(Rn).

A measurable set E ⊆ Rn has finite perimeter if and only if its measure theoretic
boundary (also called essential boundary) ∂M E, defined as

∂M E = Rn \ {x ∈ Rn : D(E; x) = 0 or D(R \ E) = 0},
has finite (n − 1)-dimensional Hausdorff measure. Moreover,

P(E) = Hn−1(∂M E). (2.20)

We conclude by recalling two classical results in the theory of BV functions
which are basic for our analysis: the isoperimetric inequality and the coarea for-
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mula. The classical isoperimetric inequality states that

nCn
1/n |E|1−1/n ≤ P(E), (2.21)

for every set E ⊆ Rn of finite perimeter having finite measure.
The coarea formula tells us that if u ∈ BV(Rn), then its level sets {x ∈ Rn :

u(x) > t} have finite perimeter for a.e. t ∈ R and

‖Du‖(Rn) =
∫ +∞

−∞
P({u > t})dt. (2.22)

A generalized version of this formula ensures that if u ∈ W1,1(Rn) and f is any
Borel function on Rn , then

∫

Rn
f |∇u|dx =

∫ +∞

−∞

∫

{u=t}
fdHn−1(x)dt. (2.23)

Standard references for functions of bounded variation include [18], [24], [34]. An
updated thorough treatment of this topic is contained in [3].

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is carried out along the following lines. Our point of
departure is Lemma 3.3 below, providing an inequality involving u∗′

which differs
from (1.7) essentially in that

∫ s
0 r1−2/n(−u∗′

(r))dr appears on the left-hand side

instead of
∫ s

0 [(·)1−2/n(−u∗′
(·))]∗(r)dr. In a sense, such inequality is effective as

long as values of s close to 0 are taken into account. In the subsequent Lemma 3.4
we prove a version, under somewhat different assumptions, of a pointwise estimate
for u∗′

(s) in terms of
∫ s

0 |∆u|∗(r)dr contained in [31] (see also [23] for related
results). In view of our purposes, this estimate is accurate for values of s far away
from 0. An underlying idea behind the proofs of Lemmas 3.3–3.4 is to think of
W2,1(Rn) as embedded in BV 2(Rn). This allows us to employ certain fine properties
of functions of BV type, such as the results of [27] on the truncation of functions
from BV 2 and a theorem from [3] concerning piecewise BV functions. The last
step of the proof of Theorem 1.2 consists in a careful combined use of Lem-
mas 3.3–3.4.

We begin with two preliminary results. The first one, Lemma 3.1, substan-
tiates an application of the Gauss–Green theorem on the level sets of functions
from W2,1(Rn). The resulting formula will be used in both proofs of Lemmas 3.3
and 3.4.

Lemma 3.1. Let u be any compactly supported function from W2,1(Rn), n ≥ 1.
Then

∫

{|u|=t}
|∇u|dHn−1 = −

∫

{|u|>t}
sign(u)∆u dx for a.e. t > 0. (3.1)
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Proof. Given t > 0, define Ψ : R→ [0,∞) as Ψ(s) = max{s − t, 0}. It is easily
seen that

Ψ
′
(s) =






1 if s > t
1/2 if s = t
0 if s < t,

(3.2)

(recall that we are taking into account the precise representative of Ψ
′
) and that

D2Ψ = δt, (3.3)

the Dirac mass concentrated at t. Thus, Ψ is a Lipschitz continuous function
whose second-order derivative is a measure with finite total variation on R. Then
Theorem 2 of [27], applied on a bounded open subset Ω of Rn having a smooth
boundary and containing supp u, ensures that Ψ(u) ∈ BV 2(Rn). Moreover, formula
(0.32) of the same paper yields

∆(Ψ(u))(Rn) =
∫

R

∫

{u=s}
|∇u(x)|dHn−1(x)dD2Ψ(s) +

∫

Rn
Ψ

′
(u(x))∆u(x)dx.

(3.4)

Equation (3.3) implies that
∫

R

∫

{u=s}
|∇u(x)|dHn−1(x)dD2Ψ(s) =

∫

{u=t}
|∇u(x)|dHn−1(x). (3.5)

On the other hand, by (3.2),
∫

Rn
Ψ

′
(u)∆u dx =

∫

{u>t}
∆u dx + 1

2

∫

{u=t}
∆u dx =

∫

{u>t}
∆u dx for a.e. t > 0.

(3.6)

Notice that the second equality in (3.6) holds because |{u = t}| = 0, possibly
except countably many values of t.

Observe now that ∇(Ψ(u)) is a vector-valued BV function in Rn , since Ψ(u) ∈
BV 2(Rn), and that ∇(Ψ(u)) vanishes in a neighborhood of ∂Ω, since u does. By
the Gauss–Green theorem for BV vector fields [34, Exercise 5.6],

∆(Ψ(u))(Rn) = div(∇(Ψ(u))(Ω) =
∫

∂Ω

∇(Ψ(u)) · υ dHn−1 = 0, (3.7)

where υ is the outward unit normal to ∂Ω and “·” denotes the scalar product in Rn .
From (3.4)–(3.7) we deduce

∫

{u=t}
|∇u|dHn−1 = −

∫

{u>t}
∆u dx for a.e. t > 0. (3.8)

Equation (3.8), applied to −u, yields
∫

{u=−t}
|∇u|dHn−1 =

∫

{u<−t}
∆u dx for a.e. t > 0. (3.9)

Equation (3.1) follows from (3.8)–(3.9). ��
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The second preliminary lemma is a borderline second-order Sobolev inequality
(of possible independent interest because of the sharp constant) and will be applied
in the proof of Lemma 3.3.

Lemma 3.2. Let n ≥ 3. Then

‖u‖
L

n
n−2 ,1

(Rn)
≤ 1

n(n − 1)Cn
2/n ‖D|∇u|‖(Rn), (3.10)

for every u ∈ BV 2(Rn). Equality holds in (3.10) when both u and |∇u| are radially
decreasing.

Proof. We have

‖|∇u|‖
L

n
n−1 ,1

(Rn)
=
∫ ∞

0
µ|∇u|(t)1−1/ndt ≤ 1

nCn
1/n

∫ ∞

0
P({|∇u| > t})dt (3.11)

= 1

nCn
1/n ‖D|∇u|‖(Rn),

where the first equation follows from (2.15), via Fubini’s theorem, the inequality is
due to the isoperimetric inequality (2.21), and the last equation is an application of
the coarea formula (2.22), with u replaced by |∇u|. Notice that in (3.11) we have
made use of the fact that |∇u| ∈ BV(Rn), since ∇u is a vector-valued BV function
and | · | is Lipschitz continuous. Notice also that equality holds in (3.11) when the
level sets {|∇u| > t} are balls for a.e. t > 0, and hence, in particular, when |∇u| is
radially decreasing.

On the other hand, a result from [2] ensures that

‖u‖
L

n
n−2 ,1

(Rn)
≤ 1

(n − 1)Cn
1/n ‖|∇u|‖

L
n

n−1 ,1
(Rn)

, (3.12)

and that equality holds in (3.12) if u and |∇u| are radially decreasing on Rn . The
conclusion follows from (3.11)–(3.12). ��
Lemma 3.3. Let u be any compactly supported function from W2,1(Rn), n ≥ 3.
Then

n(n − 1)Cn
2/n

∫ s

0
r1−2/n( − u∗′

(r)
)
dr ≤

∫ s

0
(|∇|∇u|| + |∆u|)∗(r)dr for s ≥ 0.

(3.13)

Proof. Given t > 0, define Φ : R → R as Φ(s) = sign(s)max{|s| − t, 0},
a Lipschitz function. By Theorem 2 of [27], Φ(u) ∈ BV 2(Rn). Thus, we may
apply inequality (3.10), with u replaced by Φ(u), and get

‖Φ(u)‖
L

n
n−2 ,1

(Rn)
≤ 1

n(n − 1)Cn
2/n

‖D|∇Φ(u)|‖(Rn). (3.14)

Let us first estimate the right-hand side of (3.14) from above. Since Φ(u) ∈
BV 2(Rn), then ∇Φ(u) is a vector-valued BV function and, since | · | is Lipschitz
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continuous, |∇Φ(u)| ∈ BV(Rn). By the chain rule for Sobolev functions (see e.g.
[34, Theorem 2.1.11]),

|∇Φ(u)(x)| = |∇u(x)|χ{|u|>t}(x) for a.e. x ∈ Rn . (3.15)

The set {|u| > t} has finite perimeter for a.e. t > 0, since u ∈ BV(Rn). Moreover,
|∇u| ∈ W1,1(Rn), inasmuch as u ∈ W2,1(Rn). Combining all these facts enables
us to apply Theorem 3.84 of [3] and obtain

‖D|∇Φ(u)|‖(Rn) =
∫

{|u|>t}
|∇|∇u||dx +

∫

∂M {|u|>t}
|∇u|dHn−1 for a.e. t > 0.

(3.16)

Notice that in (3.16) we have made use of the fact that ∂M{|u| > t} agrees, up
to a set of Hn−1 measure 0, with the so-called reduced boundary of {|u| > t} [3,
Theorem 3.61].

Since u ∈ W1,1(Rn), one has

Hn−1(∂M{|u| > t}� {|u| = t}) = 0 for a.e. t > 0 (3.17)

[8, Equation (19)]. From (3.16)–(3.17) and from Lemma 3.1 we get

‖D|∇Φ(u)|‖(Rn) ≤
∫

{|u|>t}
|∇|∇u||dx −

∫

{|u|>t}
sign(u)∆u dx for a.e. t > 0.

(3.18)

Inequality (3.18) implies, via (2.6),

‖D|∇Φ(u)|‖(Rn) ≤
∫ µu (t)

0
(|∇|∇u|| + |∆u|)∗(r)dr for a.e. t > 0. (3.19)

We next evaluate the left-hand side of (3.14). An application of Fubini’s theorem
shows that

‖Φ(u)‖
L

n
n−2 ,1

(Rn)
=
∫ ∞

t
µu(τ)

1−2/ndτ for t > 0. (3.20)

We claim that
∫ ∞

t
µu(τ)

1−2/ndτ =
∫ µu (t)

0
r1−2/n

(− u∗′
(r)

)
dr for t > 0. (3.21)

Indeed, it is easily seen, by an application of De la Vallée–Poussin theorem on the
change of variables, that

∫ ∞

t
µu(τ)

1−2/ndτ =
∫ µu (t)

0
µu(u

∗(r))1−2/n
( − u∗′

(r)
)
dr for t > 0. (3.22)

Here we have made use of the fact that u∗(µu(t)) = t for t > 0, since u∗ is
continuous on [0,∞). Now, a set F ⊂ [0,∞) exists such that:
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i) [0,∞)� F = ⋃
i∈I (αi , βi), where I is a countable set of indices;

ii) (αi , βi) ∩ (α j , β j) = ∅ if i �= j;

iii) u∗ is constant on each (αi , βi) and hence, in particular, u∗′ ≡ 0 on each
(αi , βi);

iv) µu(u∗(s)) = s for s ∈ F

(see e.g. [8, proof of Lemma 2.4]). Thus,

∫ µu (t)

0
µu(u

∗(r))1−2/n
(− u∗′

(r)
)
dr =

∫

F∩[0,µu (t)]
µu(u

∗(r))1−2/n
( − u∗′

(r)
)
dr

=
∫

F∩[0,µu (t)]
r1−2/n( − u∗′

(r)
)
dr =

∫ µu (t)

0
r1−2/n(− u∗′

(r)
)
dr for t > 0.

(3.23)

Equation (3.21) follows from (3.22)–(3.23). Combining (3.14), (3.19), (3.20) and
(3.21) yields

n(n − 1)Cn
2/n

∫ µu (t)

0
r1−2/n( − u∗′

(r)
)
dr (3.24)

≤
∫ µu (t)

0
(|∇|∇u|| + |∆u|)∗(r)dr for a.e. t > 0.

Inequality (3.24) immediately implies (3.13) if s ∈ Im(µ), owing to the continuity
of µ from the right. If s /∈ Im(µ), then there exists t0 ≥ 0 such that µ(t0) <

s ≤ µ(t0−). Since u∗ ≡ t0 on (µ(t0), µ(t0−)), then u∗′ ≡ 0 on (µ(t0), µ(t0−)).
Consequently, by (3.24),

n(n − 1)Cn
2/n

∫ s

0
r1−2/n( − u∗′

(r)
)
dr

= n(n − 1)Cn
2/n

∫ µu (t0)

0
r1−2/n( − u∗′

(r)
)
dr

≤
∫ µu (t0)

0
(|∇|∇u|| + |∆u|)∗(r)dr ≤

∫ s

0
(|∇|∇u|| + |∆u|)∗(r)dr.

Thus, (3.13) holds in this case too. ��
Lemma 3.4. Let u be any compactly supported function from W2,1(Rn), n ≥ 2.
Then

n2Cn
2/ns1−2/n( − u∗′

(s)
) ≤ 1

s

∫ s

0
|∆u|∗(r)dr for a.e. s ≥ 0. (3.25)

Proof. Formula (2.23) implies that

µu(t) = |{|∇u| = 0} ∩ {|u| > t}| +
∫ ∞

t

∫

{|u|=τ}
1

|∇u(x)|dHn−1(x)dτ for t > 0.
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Hence, if t1 > t2 > 0,

µu(t2) − µu(t1) ≥
∫ t1

t2

∫

{|u|=t}
1

|∇u(x)|dHn−1(x)dt. (3.26)

Hölder’s inequality gives

Hn−1({|u| = t})2 ≤
(∫

{|u|=t}
1

|∇u(x)|dHn−1(x)dt

)

(∫

{|u|=t}
|∇u(x)|dHn−1(x)dt

)

for t > 0. (3.27)

Thus, by Lemma 3.1 and by inequality (2.6),

Hn−1({|u| = t})2 ≤
(∫

{|u|=t}
1

|∇u(x)|dHn−1(x)dt

)(∫

{|u|>t}
−sign(u)∆udx

)

≤
(∫

{|u|=t}
1

|∇u(x)|dHn−1(x)dt

)(∫ µu (t)

0
|∆u|∗(r)dr

)

for a.e. t > 0. (3.28)

On the other hand, the isoperimetric inequality (2.21) applied to the set {|u| > t}
and equations (2.20) and (3.17) yield

nCn
1/nµu(t)

1−1/n ≤ Hn−1({|u| = t}) for a.e. t > 0. (3.29)

From (3.26), (3.28) and (3.29) one gets

µu(t2) − µu(t1) ≥ n2Cn
2/n

∫ t1

t2

µu(t)
2−2/n

∫ µu (t)
0 |∆u|∗(r)dr

dt

≥ n2Cn
2/n(t1 − t2)µu(t1)

2−2/n

∫ µu (t2)

0 |∆u|∗(r)dr
. (3.30)

Inequality (3.30) implies that

−u∗(s2) − u∗(s1)

s2 − s1
n2Cn

2/ns1
2−2/n ≤

∫ s2

0
|∆u|∗(r)dr, (3.31)

for every s2 > s1 > 0. Indeed, let F and (αi, βi), i ∈ I , be subsets of [0,∞)

satisfying properties i)–iv) as in the proof of Lemma 3.3. If s1, s2 ∈ F, then (3.31)
follows from (3.30) with ti = u∗(si), i = 1, 2, since µu(u∗(si)) = si . Assume
now that s1, s2 ∈ [0,∞) � F = ∪i∈I (αi, βi). If s1, s2 ∈ (αi, βi) for some i ∈ I ,
then (3.31) trivially holds because the left-hand side vanishes. If, on the contrary,
s1 ∈ (αi, βi) and s2 ∈ (α j, β j) for some i �= j , then, by (3.31) with s2 = α j ∈ F
and s1 = βi ∈ F, we have

−u∗(α j) − u∗(βi)

α j − βi
n2Cn

2/nβi
2−2/n ≤

∫ α j

0
|∆u|∗(r)dr.
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Hence, since s2 − s1 ≥ α j − βi , and u∗(βi) = u∗(s1) ≥ u∗(s2) = u∗(α j) we
get (3.31). A similar argument leads to (3.31) also in the case when s1 ∈ F and
s2 ∈ [0,∞) � F, or viceversa. Passing to the limit in (3.31) as s2 → s1+ yields
the conclusion. ��

We are now in a position to accomplish the proof of Theorem 1.2:

Proof of Theorem 1.2. The main step consists in showing that a constant C(n),
depending only on n, exists such that

C(n)

m∑

i=1

∫ bi

ai

r1−2/n( − u∗′
(r)

)
dr ≤

∫ ∑m
i=1(bi−ai )

0
|∇2u|∗(r)dr, (3.32)

for every finite family of intervals (ai, bi), i = 1, . . . , m, with 0 < a1 < b1 ≤
a2 < b2 ≤ · · · ≤ am < bm < ∞.

Let j be any fixed index ∈ {1, . . . , m}. By Lemma 3.4,

∑

i≥ j

∫ bi

ai

r1−2/n( − u∗′
(r)

)
dr ≤ 1

n2Cn
2/n

∫ ∞

0
χ∪i≥ j (ai ,bi )(r)

1

r

∫ r

0
|∆u|∗(s)ds dr

= 1

n2Cn
2/n

∫ ∞

0
|∆u|∗(s)

∫ ∞

s

1

r
χ∪i≥ j (ai ,bi )(r)dr ds.

(3.33)

We claim that
∫ ∞

0
|∆u|∗(s)

(∫ ∞

s

1

r
χ∪i≥ j (ai ,bi )(r)dr

)

ds ≤


1 +
∑

i≥ j

log

(
bi

ai

)



∫ ∞

0
|∆u|∗(s)χ[

0,
∑

i≥ j (bi −ai )
](s)ds. (3.34)

To verify (3.34), observe that, given any pair of locally integrable functions α, β :
(0,∞) → [0,∞), the inequality

∫ ∞

0
h(s)α(s)ds ≤ K

∫ ∞

0
h(s)β(s)ds (3.35)

holds for every non-increasing function h : (0,∞) → [0,∞) and for some
constant K , if and only if, for the same constant,

∫ R

0
α(s)ds ≤ K

∫ R

0
β(s)ds for R ≥ 0. (3.36)

Indeed, (3.35) implies (3.36) on choosing h = χ(0,R); conversely, on assum-
ing, without loss of generality, that lims→+∞ h(s) = 0 and writing h(s) =∫∞

0 χ(0, µh (t))(s)dt for a.e. s ∈ (0,∞), inequality (3.35) follows from (3.36) via
Fubini’s theorem.
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Thus, inequality (3.34) will be proved if we show that

∫ R

0

∫ ∞

s

1

r
χ∪i≥ j (ai ,bi )(r)drds

≤
(

1 +
∑

i≥ j

log

(
bi

ai

))∫ R

0
χ[

0,
∑

i≥ j (bi−ai )
](s)ds for R ≥ 0. (3.37)

After an application of Fubini’s theorem to the integral on the left-hand side,
inequality (3.37) reads

∫ R

0
χ∪i≥ j (ai ,bi )(s)ds + R

∫ ∞

R

1

s
χ∪i≥ j (ai ,bi )(s)ds

≤


1 +
∑

i≥ j

log

(
bi

ai

)


min





R,

∑

i≥ j

(bi − ai)





for R ≥ 0. (3.38)

For any fixed R > 0, we may assume, if necessary on splitting one of the intervals
(ai, bi) into two subintervals, that an index iR exists such that biR ≤ R ≤ aiR+1.
Inequality (3.38) can be written as

∑

j≤i≤iR

(bi − ai) + R
∑

i>max{ j−1,iR}
log

(
bi

ai

)

≤


1 +
∑

i≥ j

log

(
bi

ai

)


min





R,

∑

i≥ j

(bi − ai)





. (3.39)

Hereafter sums are taken to be 0 whenever they are extended to an empty set of

indices. First, suppose that min
{

R,
∑

i≥ j(bi − ai)
}

= R. Then

∑

j≤i≤iR

(bi − ai) + R
∑

i>max{ j−1,iR}
log

(
bi

ai

)

≤ R + R
∑

i≥ j

log

(
bi

ai

)

=


1 +
∑

i≥ j

log

(
bi

ai

)


min





R,

∑

i≥ j

(bi − ai)





.

Thus, (3.39) holds. Assume now that min
{

R,
∑

i≥ j(bi − ai)
}

= ∑
i≥ j(bi − ai).

One has

∑

i>max{ j−1,iR}
log

(
bi

ai

)

=
∫ ∞

R

1

s
χ∪i>max{ j−1,iR }(ai ,bi )(s)ds

≤ 1

R

∫ ∞

R
χ∪i>max{ j−1,iR }(ai ,bi )(s)ds = 1

R

∑

i>max{ j−1,iR}
(bi − ai).
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Hence,
∑

j≤i≤iR

(bi − ai) + R
∑

i>max{ j−1,iR}
log

(
bi

ai

)

≤
∑

j≤i≤iR

(bi − ai) +
∑

i>max{ j−1,iR}
(bi − ai) =

∑

i≥ j

(bi − ai)

≤


1 +
∑

i≥ j

log

(
bi

ai

)



∑

i≥ j

(bi − ai)

=


1 +
∑

i≥ j

log

(
bi

ai

)


min





R,

∑

i≥ j

(bi − ai)





.

Thus, (3.39) holds in this case as well. Inequality (3.34) is proved.
Inequalities (3.33)–(3.34) imply that

∑

i≥ j

∫ bi

ai

r1−2/n(−u∗′
(r))dr ≤

1 +∑
i≥ j log

(
bi
ai

)

n2Cn
2/n

∫ ∑
i≥ j (bi −ai )

0
|∆u|∗(r)dr.

(3.40)

If
∑m

i= j log
(

bi
ai

)
≤ 1, then inequality (3.32) immediately follows on choosing

j = 1 in (3.40), since |∆u| ≤ √
n|∇2u|.

If, on the contrary,
∑m

i= j log
(

bi
ai

)
> 1, then it is easily seen that an index j0

and a positive number c j0 exist such that a j0 ≤ c j0 ≤ b j0 and

1 < log

(
b j0

c j0

)

+
∑

i> j0

log

(
bi

ai

)

≤ 2. (3.41)

On applying (3.40) with j = j0, replacing a j0 by c j0 and making use of the second
of inequalities (3.41), we get

∫ b j0

c j0

r1−2/n( − u∗′
(r)

)
dr +

∑

i> j0

∫ bi

ai

r1−2/n( − u∗′
(r)

)
dr

≤
1 + log

(
b j0
c j0

)
+∑

i> j0
log

(
bi
ai

)

n2Cn
2/n

∫ (b j0−c j0 )+∑
i> j0

(bi −ai )

0
|∆u|∗(r)dr

≤ 3

n2Cn
2/n

∫ (b j0−c j0 )+∑
i> j0

(bi−ai )

0
|∆u|∗(r)dr. (3.42)

On the other hand,

log

(
b j0

c j0

)

+
∑

i> j0

log

(
bi

ai

)

=
∫ ∞

c j0

1

s
χ(c j0 ,b j0 )∪(∪i> j0 (ai ,bi ))(s)ds

≤ 1

c j0



(b j0 − c j0) +
∑

i> j0

(bi − ai)



 ,
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whence, by the first of inequalities (3.41),

c j0 < (b j0 − c j0) +
∑

i> j0

(bi − ai).

Thus, by Lemma 3.3,

∑

1≤i< j0

∫ bi

ai

r1−2/n( − u∗′
(r)

)
dr +

∫ c j0

a j0

r1−2/n( − u∗′
(r)

)
dr

≤
∫ c j0

0
r1−2/n( − u∗′

(r)
)
dr ≤ 1

n(n − 1)Cn
2/n

∫ c j0

0
(|∇|∇u|| + |∆u|)∗(r)dr

≤ 1

n(n − 1)Cn
2/n

∫ (b j0−c j0 )+∑
i> j0

(bi−ai )

0
(|∇|∇u|| + |∆u|)∗(r)dr. (3.43)

Combining (3.42)–(3.43) yields

m∑

i=1

∫ bi

ai

r1−2/n
( − u∗′

(r)
)
dr

≤
(

1

n(n − 1)Cn
2/n + 3

n2Cn
2/n

)∫ (b j0−c j0 )+∑
i> j0

(bi−ai )

0
(|∇|∇u|| + |∆u|)∗(r)dr

≤ 5

n2Cn
2/n

∫ ∑m
i=1(bi−ai )

0
(|∇|∇u|| + |∆u|)∗(r)dr. (3.44)

From a version of the chain rule for vector-valued Sobolev functions [22, Theo-
rem 2.1], one infers that |∇|∇u|| ≤ |∇2u| a.e. on Rn . Hence, inequality (3.44)
implies (3.32).

Now, given any open set A ⊂ (0,∞) having finite measure, there exists
a sequence of sets Ak ⊂ (0,∞), which are the finite union of open intervals,
satisfying Ak ⊂ Ak+1 ⊂ A for k ∈ N and limk→∞ |A � Ak| = 0. Thus, by (3.32),

C(n)

∫

Ak

r1−2/n
( − u∗′

(r)
)
dr ≤

∫ |Ak |

0
|∇2u|∗(r)dr ≤

∫ |A|

0
|∇2u|∗(r)dr.

Hence, passing to the limit as k → ∞,

C(n)

∫

A
r1−2/n

( − u∗′
(r)

)
dr ≤

∫ |A|

0
|∇2u|∗(r)dr, (3.45)

by the monotone convergence theorem. Finally, on approximating from the outside
any given set E ⊂ (0,∞) having finite measure by a monotone sequence of open
sets, applying (3.45) to these sets and passing to the limit, one gets

C(n)

∫

E
r1−2/n

( − u∗′
(r)

)
dr ≤

∫ |E|

0
|∇2u|∗(r)dr. (3.46)

Inequality (1.7) follows from (3.46), owing to equation (2.7). ��



66 A. Cianchi

4. Proofs of Theorems 1.3–1.5

With Theorem 1.1 in place, the derivation of the second-order Sobolev inequality
(1.8) from the 1-dimensional inequality (1.9) is more or less straightforward, and
is the same as the derivation of (1.4) from (1.5), via (1.3), in the case of first-order
inequalities. In that case, the reverse implication is also not difficult, since equality
holds in (1.3) whenever u is sperically symmetric. Instead, the fact that (1.8) implies
(1.9) is not obvious. The next two lemmas concerning 1-dimensional inequalities
will be needed in the proof of this implication.

Lemma 4.1. Let l ∈ (0,+∞] and let Z(0, l) be any r.i. space on (0, l). Let p > 1.
Then

∥
∥
∥
∥s1−1/p

∫ l

s
φ(r)dr

∥
∥
∥
∥

Z(0,l)

≤ p

p − 1
‖s2−1/pφ(s)‖Z(0,l), (4.1)

for every measurable function φ such that s2−1/pφ(s) ∈ Z(0, l).

Proof. Consider the linear operator T defined as

Tψ(s) = s1−1/p
∫ l

s
r−2+1/pψ(r)dr for s ∈ (0, l),

at any measurable function ψ in (0, l) for which the integral converges. The operator
T is bounded in L1(0, l), with norm ≤ p

2p−1 , since

‖Tψ‖L1(0,l) =
∫ l

0

∣
∣
∣
∣s

1−1/p
∫ l

s
ψ(r)r−2+1/pdr

∣
∣
∣
∣ ds

≤
∫ l

0
|ψ(r)|r−2+1/p

(∫ r

0
s1−1/pds

)

dr = p

2p − 1
‖ψ‖L1(0,l).

Moreover, T is bounded on L∞(0, l) with norm ≤ p
p−1 , since

‖Tψ‖L∞(0,l) = sup
0≤s≤l

s1−1/p

∣
∣
∣
∣

∫ l

s
ψ(r)r−2+1/pdr

∣
∣
∣
∣

≤ ‖ψ‖L∞(0,l) sup
0≤s≤l

s1−1/p
∫ ∞

s
r−2+1/pdr = p

p − 1
‖ψ‖L∞(0,l).

A theorem by Calderón (see e.g. [6, Chap. 3, Theorem 2.12]) then ensures that T
is bounded on Z(0, l) with norm ≤ max

{ p
2p−1 ,

p
p−1

} = p
p−1 . Hence, (4.1) follows.

��
Lemma 4.2. Let l ∈ (0,+∞] and let Z(0, l) be any r.i. space on (0, l). Then

∥
∥
∥
∥

∫ l

s
φ(r)dr

∥
∥
∥
∥

Z(0,l)

≤ 4

∥
∥
∥
∥

∫ l

s
φ(r)

(
1 − s

r

)
dr

∥
∥
∥
∥

Z(0,l)

, (4.2)

for every non-negative measurable function φ, vanishing outside (0, l/2), and such
that

∫ l
s

(
1 − s

r

)
φ(r)dr ∈ Z(0, l).
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Proof. We begin by showing that
∥
∥
∥
∥

∫ l

s
φ(r)dr

∥
∥
∥
∥

Z(0,l)

≤ 2

∥
∥
∥
∥χ[0,l/2](s)

∫ l

2s
φ(r)dr

∥
∥
∥
∥

Z(0,l)

, (4.3)

for every non-negative measurable function φ, vanishing outside (0, l/2), which
renders the right-hand side finite. In order to prove (4.3), let us introduce a new
space, denoted by Z(0, l/2), consisting of those measurable functions ψ on (0, l/2)

for which the quantity

‖ψ‖Z(0,l/2) = ‖ψ∗‖Z(0,l) (4.4)

is finite (obviously, Z(0, l/2) = Z(0, l) if l = ∞). It is not difficult to verify that
Z(0, l/2) is an r.i. space equipped with the norm ‖·‖Z(0,l/2) (notice that, in particular,
the verification of property ii), Subsection 2.2, requires that 0 ≤ ψn

∗ ↗ ψ∗ when
0 ≤ ψn ↗ ψ, and this is true, owing to Proposition 1.7, Chapter 2 of [6]). The
dilation operator E1/2 defined as in (2.12) is bounded on Z(0, l/2) and, by (2.13),
its norm ≤ 2. Thus,

∥
∥
∥
∥

∫ l

s
φ(r)dr

∥
∥
∥
∥

Z(0,l/2)

≤ 2

∥
∥
∥
∥

∫ l

2s
φ(r)dr

∥
∥
∥
∥

Z(0,l/2)

. (4.5)

Since φ ≥ 0 and φ ≡ 0 outside (0, l/2), then, by (4.4),
∥
∥
∥
∥

∫ l

s
φ(r)dr

∥
∥
∥
∥

Z(0,l/2)

=
∥
∥
∥
∥

∫ l

s
φ(r)dr

∥
∥
∥
∥

Z(0,l)

(4.6)

and
∥
∥
∥
∥

∫ l

2s
φ(r)dr

∥
∥
∥
∥

Z(0,l/2)

=
∥
∥
∥
∥χ(0,l/2)(s)

∫ l

2s
φ(r)dr

∥
∥
∥
∥

Z(0,l)

. (4.7)

Inequality (4.3) is a consequence of (4.5)–(4.7). The conclusion follows from (4.3)
and from the fact that

∫ l

s
φ(r)

(
1 − s

r

)
dr ≥

∫ l

2s
φ(r)

(
1 − s

r

)
dr ≥ 1

2

∫ l

2s
φ(r)dr,

if 0 ≤ s ≤ l/2 and φ ≥ 0. ��
Proof of Theorem 1.3. Assume that ii) holds. One has

‖u‖Y(G) = ‖u∗‖Y (0,|G|) =
∥
∥
∥
∥

∫ |G|

s

( − u∗′
(r)

)
dr

∥
∥
∥
∥

Y(0,|G|)
. (4.8)

Notice that the last equality holds because, by the first-order Pólya–Szegö principle,
u∗ is locally absolutely continuous and vanishes at |G|. Inequality (1.9), implies
that

∥
∥
∥
∥

∫ |G|

s

( − u∗′
(r)

)
dr

∥
∥
∥
∥

Y(0,|G|)
≤ K2

∥
∥r1−2/n

( − u∗′
(r)

)∥
∥

X(0,|G|). (4.9)

Combining (4.8)–(4.9) with Theorem 1.1 yields (1.8) with K1 = K2/C(n).
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Assume now that i) holds. We may suppose, without loss of generality, that
0 ∈ G. Let σ be a positive number not exceeding |G|/2 and so small that the ball
centered at 0 and having measure σ is contained in G. Given any non-negative
function φ ∈ X(0, |G|), with supp φ ⊆ [0, σ], define the function U : Rn →
[0,∞) as

U(x) =
∫ ∞

Cn |x|n

∫ ∞

r
φ(t)t−2+2/ndt dr for x ∈ Rn. (4.10)

Since U is radially decreasing,

U(x) = U�(x) = U∗(Cn|x|n) for x ∈ Rn (4.11)

and

U∗(s) =
∫ ∞

s

∫ ∞

r
φ(t)t−2+2/ndt dr for s > 0. (4.12)

Clearly, U has compact support in G. Moreover, U is twice weakly differentiable
and

∇U(x) = −
(

nCn |x|n−2
∫ ∞

Cn |x|n
φ(r)r−2+2/ndr

)

x, (4.13)

∇2U(x) =
(

n2Cn
2|x|−2φ(Cn |x|n)

− n(n − 2)Cn|x|n−4
∫ ∞

Cn |x|n
φ(r)r−2+2/ndr

)

x ⊗ x

− nCn |x|n−2

(∫ ∞

Cn |x|n
φ(r)r−2+2/ndr

)

In, (4.14)

for a.e. x ∈ Rn . Here, ⊗ stands for the tensor product and In denotes the n × n unit
matrix. Since |x ⊗ x| = |x|2 and |In| = √

n, we get from (4.14),

|∇2U(x)| ≤ n2Cn
2/nφ(Cn|x|n)

+ n(n + √
n − 2)Cn|x|n−2

∫ ∞

Cn |x|n
φ(r)r−2+2/ndr for a.e. x ∈ Rn . (4.15)

Thus,

‖|∇2U|‖X(G) ≤ n2Cn
2/n

∥
∥φ(Cn |x|n)∥∥X(G)

+ n(n + √
n − 2)Cn

∥
∥
∥
∥|x|n−2

∫ ∞

Cn|x|n
φ(r)r−2+2/ndr

∥
∥
∥
∥

X(G)

= n2Cn
2
∥
∥(φ(Cn| · |n))∗(s)∥∥X(0,|G|)

+ n(n + √
n − 2)Cn

∥
∥
∥
∥

(

| · |n−2
∫ ∞

Cn|·|n
φ(r)r−2+2/ndr

)∗
(s)

∥
∥
∥
∥

X(0,|G|)
.

(4.16)
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By (2.4),

(φ(Cn| · |n))∗(s) = φ∗(s)

and

(

| · |n−2
∫ ∞

Cn |·|n
φ(r)r−2+2/ndr

)∗
(s)

=
(

Cn
−1+2/n(·)1−2/n

∫ ∞

·
φ(r)r−2+2/ndr

)∗
(s) for s ≥ 0.

Hence,

‖|∇2U|‖X(G) ≤ n2Cn
2/n‖φ∗(s)‖X(0,|G|)

+ n(n + √
n − 2)C2/n

n

∥
∥
∥
∥

(

(·)1−2/n
∫ ∞

·
φ(r)r−2+2/ndr

)∗
(s)

∥
∥
∥
∥

X(0,|G|)
= n2Cn

2/n‖φ(s)‖X(0,|G|)

+ n(n + √
n − 2)C2/n

n

∥
∥
∥
∥s1−2/n

∫ ∞

s
φ(r)r−2+2/ndr

∥
∥
∥
∥

X(0,|G|)
, (4.17)

inasmuch as X(0, |G|) is an r.i. space. Since we are assuming that supp φ ⊆
[0, σ] ⊆ [0, |G|], Lemma 4.1 implies that

∥
∥
∥
∥s1−2/n

∫ ∞

s
φ(r)r−2+2/ndr

∥
∥
∥
∥

X(0,|G|)
≤ n

n − 2
‖φ(s)‖X(0,|G|).

Consequently,

‖|∇2U|‖X(G) ≤ n2Cn
2/n 2n + √

n − 4

n − 2
‖φ(s)‖X(0,|G|), (4.18)

whence U ∈ W2
0 X(G). By (1.8), (4.12) and (4.18), one gets, after an application

of Fubini’s theorem,

∥
∥
∥
∥

∫ |G|

s
φ(r)

(
1 − s

r

)
r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)
≤ 4K1n2Cn

2/n‖φ(s)‖X(0,|G|), (4.19)

for every non-negative φ ∈ X(0, |G|) with supp φ ⊆ [0, σ]. Hence, by Lemma 4.2,

∥
∥
∥
∥

∫ |G|

s
φ(r)r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)
≤ 16K1n2Cn

2/n‖φ(s)‖X(0,|G|), (4.20)

for every non-negative φ ∈ X(0, |G|) with supp φ ⊆ [0, σ].
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Now, let φ be any function from X(0, |G|). Then
∥
∥
∥
∥

∫ |G|

s
φ(r)r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)

≤
∥
∥
∥
∥

∫ |G|

s
χ[0,σ](r)φ(r)r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)

+
∥
∥
∥
∥

∫ |G|

s
χ[σ,|G|](r)φ(r)r−1+2/ndr

∥
∥
∥
∥

Y (0,|G|)
. (4.21)

We have
∥
∥
∥
∥

∫ |G|

s
χ[σ,|G|](r)φ(r)r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)
≤ σ−1+2/n

∥
∥
∥
∥

∫ |G|

s
|φ(r)|dr

∥
∥
∥
∥

Y(0,|G|)

≤ σ−1+2/n‖1‖Y(0,|G|)
∫ |G|

0
|φ(r)|dr ≤ σ−1+2/n‖1‖Y (0,|G|)‖1‖

X
′
(0,|G|)‖φ‖X(0,|G|).

(4.22)

Notice that the last inequality is due to (2.10). On estimating the first term on the
right-hand side of (4.21) by (4.20) (with φ replaced by χ[0,σ]|φ|) and the second
term by (4.22), inequality (1.9) follows. ��
Proof of Theorem 1.4, sketched. Assume that ii) holds. Then, inequalities (1.10),
(1.12) and (1.9) imply that (1.11) holds for every function f ∈ X(G) having
support in G.

Conversely, assume that i) holds and suppose, without loss of generality, that
0 ∈ G. Let σ be a positive number such that the ball centered at 0 and having
measure σ is contained in G. Given any non-negative function φ ∈ X(0, |G|) with
supp φ ⊆ [0, σ], define the function f : Rn → [0,∞) as f(x) = φ(Cn |x|n), so
that supp f ⊆ G and, by (2.4), f ∗ = φ∗. It is not difficult to show that

I2( f )(x) ≥ 22−nCn
1−2/n

(
1

(Cn|x|n)1−2/n

∫ Cn |x|n

0
φ(r)dr +

∫ |G|

Cn |x|n
φ(r)r−1+2/ndr

)

for |x| ≤ (|G|/Cn)
1/n .

(4.23)

On taking the decreasing rearrangement of both sides of (4.23) and making use of
(2.4), we get

‖(I2( f ))∗(s)‖Y (0,|G|) ≥

22−nCn
1−2/n

∥
∥
∥
∥s−1+2/n

∫ s

0
φ(r)dr +

∫ |G|

s
φ(r)r−1+2/ndr

∥
∥
∥
∥

Y(0,|G|)
. (4.24)

Combining (1.11) and (4.24) tells us that inequalities (1.12) and (1.9) hold for
every non-negative φ ∈ X(0, |G|) with supp φ ⊆ [0, σ]. The general case can be
treated on writing φ(s) = φ(s)χ[0,σ](s) + φ(s)χ[σ,|G|](s) and arguing as at the end
of the proof of Theorem 1.3. ��
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Proof of Theorem 1.5, sketched. Assume that ii) holds. Then, inequalities (1.14),
(1.12) and (1.9) imply that (1.16) holds for every u ∈ W∆

0 X(G).
Conversely, assume that i) is in force and, with no loss of generality, that 0 ∈ G.

Let σ be a positive number such that the ball centered at 0 and having measure 4σ is
contained in G. Let ψ be any function from X(0, |G|) such that supp ψ ⊆ [0, 4σ],
ψ ≥ 0 in [0, σ], ψ = 0 in (σ, 2σ] and ψ(s) = −ψ(4σ −s) for s ∈ (2σ, 4σ]. Hence,
in particular,

∫ s
0 ψ(r)dr ≥ 0 for s ∈ [0, 4σ] and

∫ s
0 ψ(r)dr = 0 for s ∈ [4σ, |G|].

Define the function V : Rn → [0,∞) as

V(x) = 1

n2Cn
2/n

∫ |G|

Cn |x|n
r−2+2/n

∫ r

0
ψ(t)dt dr.

Then V has compact support in G and

V ∗(s) = 1

n2Cn
2/n

∫ |G|

s
r−2+2/n

∫ r

0
ψ(t)dt dr.

Moreover, ∆V(x) = ψ(Cn |x|n) for a.e. x ∈ G, whence |∆V |∗ = ψ∗, by (2.4), and
V ∈ W∆

0 X(G). Hence, on applying inequality (1.16) with u = V , one gets

K1‖ψ(s)‖X(0,|G|) ≥
∥
∥
∥
∥

1

n2Cn
2/n

∫ |G|

s
r−2+2/n

∫ r

0
ψ(t)dtdr

∥
∥
∥
∥

Y(0,|G|)
. (4.25)

Our assumptions on ψ ensure that
∫ |G|

s
r−2+2/n

∫ r

0
ψ(t)dtdr ≥ χ[0,2σ](s)

∫ 2σ

s
r−2+2/n

∫ r

0
ψ(t)dtdr

= n

n − 2
χ[0,2σ](s)

(

(s−1+2/n − (2σ)−1+2/n)

∫ s

0
ψ(r)dr

+
∫ 2σ

s
ψ(r)(r−1+2/n − (2σ)−1+2/n)dr

)

≥ n(1 − 2−1+2/n)

n − 2
χ[0,σ](s)

(

s−1+2/n
∫ s

0
χ[0,σ](r)ψ(r)dr

+
∫ |G|

s
χ[0,σ](r)ψ(r)r−1+2/ndr

)

for s ∈ [0, |G|]. (4.26)

Notice that the last two integrals are both non-negative for s ∈ [0, |G|].
Now, let φ be any function from X(0, |G|). We have

∥
∥
∥
∥s−1+2/n

∫ s

0
φ(r)dr

∥
∥
∥
∥

Y (0,|G|)

≤
∥
∥
∥
∥χ[0,σ](s)s−1+2/n

∫ s

0
φ(r)dr

∥
∥
∥
∥

Y(0,|G|)
+
∥
∥
∥
∥χ[σ,|G|](s)s−1+2/n

∫ s

0
φ(r)dr

∥
∥
∥
∥

Y(0,|G|)
.

(4.27)

Denote by φ the function defined in [0, |G|] as φ(s) = |φ(s)| if s ∈ [0, σ], φ(s) = 0
if s ∈ (σ, 2σ], φ(s) = −φ(4σ − s) if s ∈ (2σ, 4σ] and φ(s) = 0 otherwise. Since
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φ satisfies the same assumptions as ψ, we may apply (4.25) and (4.26) with ψ

replaced by φ to estimate the first norm on the right-hand side of (4.27) and get

∥
∥
∥
∥χ[0,σ](s)s−1+2/n

∫ s

0
φ(r)dr

∥
∥
∥
∥

Y (0,|G|)
≤
∥
∥
∥
∥χ[0,σ](s)s−1+2/n

∫ s

0
χ[0,σ](r)φ(r)dr

∥
∥
∥
∥

Y (0,|G|)

≤ n − 2

n(1 − 2−1+2/n)

∥
∥
∥
∥

∫ |G|

s
r−2+2/n

∫ r

0
φ(t)dtdr

∥
∥
∥
∥

Y(0,|G|)

≤ K1n(n − 2)Cn
2/n

(1 − 2−1+2/n)
‖φ(s)‖X(0,|G|) ≤ 2K1n(n − 2)Cn

2/n

(1 − 2−1+2/n)
‖φ(s)‖X(0,|G|). (4.28)

The second norm on the right-hand side of (4.27) can be estimated in terms
of ‖φ(s)‖X(0,|G|) via an argument analogous to that used to estimate corresponding
quantities in the proofs of Theorems 1.3–1.4. Hence, (1.12) follows.

Inequality (1.9) can be proved in a similar way, on exploiting inequalities
(4.25)–(4.26) again. ��

5. Applications

The first part of this section is devoted to showing how well-known Sobolev-type
inequalities can be easily recovered via Theorem 1.3. New inequalities are derived
in the second part.

The classical second-order Sobolev inequality

‖u‖
L

n p
n−2p (G)

≤ K1‖|∇2u|‖L p(G) (5.1)

for u ∈ W2,p
0 (G), with 1 ≤ p < n/2, follows from Theorem 1.3 thanks to the Bliss

inequality

∥
∥
∥
∥

∫ |G|

s
φ(r)r−1+2/ndr

∥
∥
∥
∥

L
n p

n−2p (0,|G|)
≤ K2‖φ(s)‖L p(0,|G|)

(see e.g. [30]).
The Sobolev inequality in the finer scale of Lorentz spaces takes the form

‖u‖
L

n p
n−2p ,q

(G)
≤ K1‖|∇2u|‖L p,q(G), (5.2)

for u ∈ W2
0 L p,q(G), with 1 < p < n/2 and 1 ≤ q ≤ ∞. When q = 1, inequality

(5.2) can be derived from Theorem 1.3 by an application of Fubini’s theorem;
when q > 1, one may replace f ∗ by f ∗∗ in (2.15) and make use of the two Hardy
inequalities

(∫ |G|

0

∣
∣
∣
∣s

n−2p
n p s−1+2/n

∫ s

0
φ(r)dr

∣
∣
∣
∣

q ds

s

)1/q

≤ K2

(∫ |G|

0

∣
∣s1/pφ(s)

∣
∣q ds

s

)1/q
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and
(∫ |G|

0

∣
∣
∣
∣s

n−2p
n p

∫ |G|

s
φ(r)r−1+2/ndr

∣
∣
∣
∣

q
ds

s

)1/q

≤ K2

(∫ |G|

0

∣
∣s1/pφ(s)

∣
∣q ds

s

)1/q

(see e.g. [6, Chap.3, Lemma 3.9])
A limiting case of inequality (5.1) when p = n/2 is provided by the Trudinger–

Strichartz inequality

‖u‖
ExpL

n
n−2 (G)

≤ K1‖|∇2u|‖Ln/2(G), (5.3)

for u ∈ W2,n/2
0 (G) [29], where ‖ · ‖

ExpL
n

n−2 (G)
stands for the Luxemburg norm

associated with the Young function A(s) = es
n

n−2 − 1. This norm is equivalent to
the quantity sup0<s<|G|

u∗(s)
(1+log(|G|/s))1−2n [6, Chap. 4, Lemma 6.12]. Thus, inequality

(5.3) follows from Theorem 1.3, inasmuch as

sup
0<s<|G|

∣
∣
∣
∫ |G|

s r−1+2/nφ(r)dr
∣
∣
∣

(1 + log(|G|/s))1−2n
≤ ‖φ‖Ln/2(0,|G|),

by Hölder’s inequality.
A slightly stronger result than (5.3) (the best possible, in fact, in the framework

of r.i. spaces, as far as the target space is concerned – see [15]) is the inequality
(∫ |G|

0

(
u∗(s)

1 + log(|G|/s)

)n/2 ds

s

)2/n

≤ K1‖|∇2u|‖Ln/2(G), (5.4)

for u ∈ W2,n/2
0 (G), which appears in [7],[19] (see also [24] for results related

to a first-order version). By Theorem 1.3, inequality (5.4) is reduced to the 1-
dimensional inequality

(∫ |G|

0

∣
∣
∣
∣

∫ |G|

s
φ(r)r−1+2/ndr

∣
∣
∣
∣

n/2

(1 + log(|G|/s))−n/2 ds

s

)2/n

≤ K2

(∫ |G|

0
|φ(s)|n/2ds

)2/n

,

a weighted Hardy inequality (see e.g. Lemma 2.10.3 of [34]).

We now present some new results relying on Theorem 1.3. We shall give only an
outline of the proofs, and we shall refer to other papers where a detailed treatment
of the 1-dimensional inequalities that one is lead to consider can be found.

Let us begin with inequalities in Orlicz–Sobolev spaces. Given any Young
function A and any real number p > 1 such that the function

Hp(r) =
(∫ r

0

(
t

A(t)

) 1
p−1

dt

) p−1
p

(5.5)
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is finite for r ≥ 0, define the Young function A p as

A p(s) = A ◦ Hp
−1(s) for s ≥ 0. (5.6)

Then we have:

Theorem 5.1. Let G be an open bounded subset of Rn, n ≥ 3. Let A be a Young
function such that the function Hn/2 is finite in [0,∞). Then there exists a constant
K1, depending only on n, such that

‖u‖
L An/2 (G)

≤ K1‖|∇2u|‖L A(G), (5.7)

for every u ∈ W2,A
0 (G). Moreover, L An/2 (G) cannot be replaced by any smaller

Orlicz space on the left-hand side of (5.7).

Theorem 5.1 is a consequence of Theorem 1.3 and of the Hardy-type inequality
∥
∥
∥
∥

∫ |G|

s
φ(r)r−1+1/pdr

∥
∥
∥
∥

L Ap (0,|G|)
≤ K2‖φ(s)‖L A(0,|G|), (5.8)

which is sharp as far as the target Orlicz space L Ap(0, |G|) is concerned. Inequality
(5.8) is proved in Lemma 1 of [10] with A p replaced by an equivalent Young
function (for such equivalence, see e.g. Lemma 2 of [12]).

Remark 5. Theorem 5.1 can be extended to the case when the integral on the
right-hand side of (5.5) diverges: one has just to replace A by any Young function,
equivalent near infinity, which makes the integral converge. Indeed, since |G| < ∞,
the norm in the Orlicz space L A(G) is turned into an equivalent one after such
a replacement. However, in that case, the constant K1 appearing in (5.7) also
depends on |G|.
Remark 6. Inequality (5.7) is equivalent to the integral inequality

∫

G
An/2

(
|u(x)|

K1
(∫

G A(|∇2u|)dy
)2/n

)

dx ≤
∫

G
A(|∇2u|)dx, (5.9)

for every u ∈ W2,A
0 (G). Actually, (5.7) follows from (5.9) by the very definition

of the Luxemburg norm, whereas (5.9) follows on replacing A(s) by A(s)∫
G A(|∇2u|)dx

in (5.7).

Remark 7. The first-order version of Theorem 5.1 is proved in [11] (see also [10]
for an equivalent formulation). The conclusion is that there exists a constant K1

such that

‖u‖L An (G) ≤ K1‖|∇u|‖L A(G),

for every u ∈ W1,A
0 (G).

A special case of Theorem 5.1 is singled out in the next theorem, whose first-
order version goes back to [32].
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Theorem 5.2. Let G and A be as in Theorem 5.1. Then there exists a constant K1

such that

‖u‖L∞(G) ≤ K1‖|∇2u|‖L A(G),

for every u ∈ W2,A
0 (G), if and only if

∫ ∞ (
t

A(t)

) 2
n−2

dt < ∞. (5.10)

Indeed, L An/2 (G) = L∞(G) if and only if An/2(s) ≡ ∞ for large s, and this is
equivalent to (5.10).

More generally, the following characterization of those r.i. spaces X(G), for
which W2

0 X(G) is continuously embedded into L∞(G), holds.

Theorem 5.3. Let G be an open bounded subset of Rn, n ≥ 3, and let X(G) be an
r.i. space on G. Then:

i) A positive constant K1 exists such that

‖u‖L∞(G) ≤ K1‖|∇2u|‖X(G), (5.11)

for every W2
0 X(G), if and only if

‖r−1+2/n‖
X

′
(0,|G|) < ∞.

ii) Ln/2,1(G) is the largest r.i. space X(G) which renders (5.11) true.

After reducing inequality (5.11) to a 1-dimensional inequality by means of
Theorem 1.3, the proof of Theorem 5.3 is analogous to that of the first-order
version contained in Theorem 3.5 of [14].

We conclude with two theorems extending to second-order Sobolev inequalities
some recent results from [16] and [26]. They provide a characterization of the
optimal range Y(G) in inequality (1.8) when the domain space X(G) is given, and,
under some additional assumption, of the optimal domain when the range is given.
In some concrete situations, they enable us to find an explicit representation of the
norms in the optimal spaces.

Let us first take into account the optimal range problem. Given any set G ⊂ Rn

having finite measure, any r.i. space X(G) and any real number α > 1, define the
space Z X,α(G) as the collection of those measurable functions f on G such that

‖r1/α f ∗∗(r)‖
X

′
(0,|G|) < ∞.

The space Z X,α(G), endowed with the norm

‖ f ‖Z X,α(G) = ‖r1/α f ∗∗(r)‖
X

′
(0,|G|),

is an r.i. space. This is an easy consequence of properties i)−v), Subsection 2.2, of
X(G) (see [16, Theorem 4.5], for details). Then we have:
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Theorem 5.4. Let G be any open bounded subset of Rn, n ≥ 3, and let X(G) be
an r.i. space on G. Set

Xn/2(G) = Z
′
X,n/2(G).

Then a constant K1 exists such that

‖u‖Xn/2(G) ≤ K1‖|∇2u|‖X(G), (5.12)

for every u ∈ W2
0 X(G). Moreover, Xn/2(G) cannot be replaced by any smaller r.i.

space on the left-hand side of (5.12).

We finally consider the optimal domain problem. Let G be any subset of Rn

having finite measure. Let Y(G) be an r.i. space on G and let β be a real number
> 1 such that the operator Tβ , defined as

Tβφ(s) = s−1/β sup
s≤r≤|G|

r1/βφ∗(r) for s ∈ (0, |G|)

at a measurable function φ on [0, |G|], is bounded on Y
′
(0, |G|). Then [26, Theo-

rem 5] the space Yβ(G) of those functions f on G satisfying
∥
∥
∥
∥

∫ |G|

s
f ∗(r)r−1+1/βdr

∥
∥
∥
∥

Y(0,|G|)
< ∞ (5.13)

is an r.i. space endowed with a norm ‖ f ‖Yβ(G) equivalent to the quantity on the
left-hand side of (5.13).

Theorem 5.5. Let G be any open bounded subset of Rn, n ≥ 3, and let Y(G) be

any r.i. space on G such that Tn/2 is bounded on Y
′
(0, |G|). Then a constant K1

exists such that

‖u‖Y(G) ≤ K1‖|∇2u|‖Yn/2(G), (5.14)

for every u ∈ W2
0 X(G). Moreover, Yn/2(G) cannot be replaced by any larger r.i.

space on the right-hand side of (5.14).

Starting from Theorem 1.3, the proofs of Theorem 5.4 and Theorem 5.5 follow
the same steps as in Theorem 4.5 of [16] and in Theorem 5 of [26], respectively.
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