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1. Introduction

Let us consider an autonomous differential system

ẋ = P(x, y), ẏ = Q(x, y), (1)

where P(x, y) and Q(x, y) are C1 functions defined in an open connected subset
U of the real plane. We denote by W the vector field (P, Q).

Plane differential systems were widely studied for their relevance in applica-
tions. Several physical, chemical, biological systems can be successfully modelled
by means of systems of type (1) (see, e. g., [3]). In particular, the study of second
order O.D.E.s arising from mechanics or the study of electric circuits,

ẍ + h(x, ẋ) = 0, (2)

can be reduced to that of suitable plane systems. A main problem is that of studying
the existence and properties of oscillating solutions. With this purpose, different
methods have been used to study isolated periodic solutions or non-isolated ones.
The second case usually occurs when the system is integrable, as in the case of
systems generated by conservative forces. When the system has a stable equilibrium
position, as for the pendulum equations or for the Lotka–Volterra equations, this
leads us to consider a critical point O of (1) surrounded by cycles. In general,
an isolated critical point O of (1) is said to be a centre if it has a punctured
neighbourhood filled with non-trivial cycles. The stability of O does not imply that
of the cycles close to O. In fact, a non-isolated cycle is Liapunov stable if and only
if every neighbouring cycle has the same period. This motivates the definition of
isochronicity: a centre O is said to be isochronous if every orbit close enough to O
has the same minimal period. Isochronicity has been widely studied not only for
its physical meaning and for its role in stability theory, but also for its relationship
with bifurcation and boundary-value problems.
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When O is a centre, it is possible to construct a curve η that meets all the
cycles contained in a neighbourhood of O. If O is isochronous, then every such
a curve is crossed at equal time intervals by the solutions encircling O. When this
occurs, a curve η is said to be an isochronous section. In several cases such a curve
coincides with the line x = 0 or y = 0 (see [2]). If (2) models a physical system
and is studied by means of the equivalent system

ẋ = y, ẏ = −h(x, ẋ), (3)

this means that the position x = 0, or the speed y = ẋ = 0 are assumed at equal
time intervals.

Isochronous sections may appear also in non-integrable systems. A position
can be assumed at equal time intervals even in presence of friction, as in mechanical
systems, or in presence of energy dissipation associated with heat production, as
in electric circuits. In this case the system is characterized by the presence of
oscillations with decreasing width, performed at equal time intervals. Moreover,
isochronous oscillations may appear in a neighbourhood of a limit cycle Γ. If Γ is
attracting, this implies the existence of both oscillations with increasing width and
oscillations with decreasing width, all performed at equal time intervals.

In this paper we study isochronous sections of non-integrable plane systems,
trying both to prove the existence of such curves, and to identify them. We adapt
some techniques usually applied to studying centres’ isochronicity.

In the next section we consider isochronous sections in a neighbourhood of
critical points of focus type. We first look for transformations taking (1) into a new
system having, in polar coordinates, the form

ρ̇ = f(ρ, θ), θ̇ = g(θ) �= 0.

A simple argument shows the existence of isochronous sections. We show that
under hypotheses similar to those ones considered in [10], there exists a class of
Liénard equations

ẍ + f(x)ẋ + g(x) = 0, (4)

with isochronous damped oscillations.
Then we consider the commutators’ method, which is naturally related to

the definition of an isochronous section. We prove that if (1) has a non-trivial
commutator W1 with a star node at O, then every orbit of the commutator is an
isochronous section of (1). A wide collection of systems having a commutator of
the required form can be constructed starting from the systems listed in [2]. Several
systems have commutators with half-lines as orbits, so that isochronous sections
can be easily found.

The last section is devoted to the study of systems with limit cycles. In this case
isochronicity is associated with the existence of a non-constant periodic solution,
which is asymptotically approximated by neighbouring solutions. The existence
of an isochronous section ensures that the approximation occurs while performing
oscillations of the same period, coinciding with the period of the periodic solution.
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Such a situation was already considered in [6] in relation to the study of mathemat-
ical models of biological systems. In [6] the existence of isochronous sections was
proved for hyperbolic limit cycles. We give a sufficient condition for the existence
of an isochronous section in the absence of hyperbolicity. Also in this case we can
give an application to the study of a class of Liénard equations, for which we find
limit cycles with isochronous sections.

2. Isochronous sections at critical points

We start formalizing the intuitive idea of isochronicity, related to the existence of
curves met at equal time intervals.

For every z ≡ (x, y) ∈ R2, we denote by ψ(t, z) the solution of (1) such that
ψ(0, z) = z. We denote by −ψ the negative local flow defined by (1), −ψ(t, z) =
ψ(−t, z). Let (ρ, θ) denote the polar coordinates of a point in the plane. We denote
by ρ(ψ(t, z)), resp. θ(ψ(t, z)), the radius and the argument of ψ(t, z).

Definition 1. We say that an isolated critical point O of (1) is a centre if there
exists a neighbourhood U of O such that every non-critical orbit starting at a point
of U is a cycle. We say that an isolated critical point O of (1) is a focus if there
exists a neighbourhood U of O containing no cycles, and such that for every non-
critical orbit ψ(t, z) starting at a point z ∈ U, the function θ(ψ(t, z)) is increasing
(decreasing) and diverging to +∞ (−∞). We say that an isolated critical point O
of (1) is a star node if the linear part of (1) at O has equal non-zero real eigenvalues.

Definition 2. Let O be an isolated critical point of (1). Let η : [0,+∞) → R
2 be

a C1 curve such that lims→+∞ η(s) = O. Then we say that η is an isochronous
section of (1) at O if either ψ or −ψ has the following property:

There exists T > 0 such that ∀ z ∈ η, one has:

(i) ψ(nT, z) ∈ η, for every positive integer n;
(ii) ψ(t, z) �∈ η, for t > 0, t �= nT.

Remark 1. If a system has a centre or a focus at O and an isochronous section η

in a neighbourhood of O, then every curve s �→ ψ(t, η(s)), with 0 < t < T , is
an isochronous section of the system at O. Hence, if a system has an isochronous
section, then it has infinitely many isochronous sections.

The definition of an isochronous section is based on set-theoretical properties,
hence it is invariant by bijections. In the next lemma we show the existence of
invariant sections when the system can be transformed into a system of a special
form.

From now on, we place the critical point O at the origin (0, 0). Let U be
a neighbourhood of O. We say that a transformation Λ : U → R

2 is a local
diffeomorphism at O if there exists a neighbourhood U ′ ⊂ U such that Λ is
a diffeomorphism between U ′ and Λ(U ′).
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Lemma 1. Let O be a focus for (1). If there exists a local diffeomorphism Λ at O
taking (1) into a system having, in polar coordinates, the form

ρ̇ = f(ρ, θ), θ̇ = g(θ) �= 0, (5)

then (1) has an isochronous section at O.

Proof. It is sufficient to show that (5) has an isochronous section. Let us consider
a ray Rφ = {(ρ, θ) : θ = φ}. O is a focus, hence Rφ is crossed infinitely many
times by a solution of (5) as t goes to +∞ (−∞). The time passing between two
consecutive intersections is

T =
∫ 2π

0

dθ

|g(θ)| .

The value of such an integral does not depend on ρ, hence it is the same for all the
solutions starting at a point of Rφ close enough to the origin. 
�

Under the hypotheses of Lemma 1, the isochronous sections of (1) are the
counter-images of rays, that is the curves Λ−1(Rφ), φ ∈ [0, 2π). Systems of the
type (5) were considered in [4], in order to study the isochronicity of centres.
Centres of such systems were called uniformly isochronous centres.

A special case of Lemma 1 occurs when (1) can be linearized, that is, when
there exists a local diffeomorphismat O taking (1) into a linear system. If the system
is analytic, this is possible under rather general hypotheses, as a consequence of
a theorem by Poincaré [1]. We report here a simplified version of such a theorem,
concerned with plane foci.

Theorem 1 (Poincaré). Let (1) be analytic. Assume the origin to be a focus of (1).
If the eigenvalues of (1) at O have a non-zero real part, then there exists a local
analytic diffeomorphism at O that linearizes (1).

If the eigenvalues at a focus have a non-zero real part, the focus is said to be
strong; otherwise, the focus is said to be weak. Theorem 1 shows that every strong
focus of an analytic system has isochronous sections. In order to study cases not
covered by Theorem 1, in the following we shall be concerned with analytic weak
foci, or with non-analytic foci.

In the next theorem we consider the generalized Liénard equations (4) where
f(x), g(x) are C1 functions defined in a neighbourhood of the origin. Such equations
are usually studied by means of the equivalent systems

ẋ = y, ẏ = −g(x) − y f(x), (6)

and

ẋ = y − F(x), ẏ = −g(x), (7)

where F′(x) = f(x), F(0) = 0. When studying isochronicity, it is more convenient
to consider a third system equivalent to (4). Let us set

I(x) =
∫ x

0
s f(s)ds.
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Then the system we consider is

ẋ = y − xB(x), ẏ = −C(x) − yB(x), (8)

where

B(x) =
{

I(x)/x2, x �= 0
f(0)/2, x = 0

C(x) =
{

g(x) − xB(x)2, x �= 0
0, x = 0.

Remark 2. In [10], under the hypothesis f(0) = 0, g(0) = 0, it was proved
that if f and g are C1 functions, then also B(x) and C(x) are of class C1. The
same conclusion holds if f(0) �= 0. In particular, B(x) = f(0)

2 + f ′(0)x
3 + o(x),

C(x) = g(x) − f(0)2x
4 + o(x).

In the next theorem we assume the origin to be a stable focus, so that the
solutions exist for all t > 0. Similar statements can be proved if the origin is an
unstable focus.

We denote by y+ the positive y semi-axis {x = 0, y > 0}; by y− the negative

y semi-axis {x = 0, y < 0}. We set ε =
√

g′(0) − f(0)2

4 .

Theorem 2. Let f, g ∈ C1(R,R), g(0) = 0, g′(0) > 0. Let O be a stable focus
of (7). Assume that there exists ν > 0 such that C(x) = νx.

Then ν = g′(0) − f(0)2

4 = ε2, and:

(i) the rays Zφ = (τ cos φ, ετ sin φ), τ > 0, are isochronous sections of (8);
(ii) the curves Lφ = (τ cos φ, ετ sin φ + F(τ cos φ) − τ cos φB(τ cos φ)), τ > 0,

are isochronous sections of (7);
(iii) the curves Sφ = (τ cos φ, ετ sin φ−τ cos φB(τ cos φ)), τ > 0, are isochronous

sections of (6).

A solution of (8) ((7), (6)), starting at a curve Zφ (resp. Lφ, Sφ), at time t crosses
the curve Zφ−εt (resp. Lφ−εt , Sφ−εt ). In particular, y+ and y− are isochronous
sections of (6), (7) and (8). A complete revolution around the origin takes time 2π

ε
.

A solution starting at a point of y+ crosses y− after time π
ε

.

Proof. We have f(x) = f(0) + o(1), hence xB(x)2 = f(0)2

4 x + o(x). If C(x) = νx,

then νx = g(x) − f(0)2

4 x + o(x) = g′(0)x − f(0)2

4 x + o(x) that implies ν =
g′(0) − f(0)2

4 .

(i) First we study isochronous sections of (8). By the hypothesis the system (8)
appears as follows:

ẋ = y − xB(x), ẏ = −C(x) − yB(x) = −νx − yB(x).

Performing the linear change of variables u = x, v = y
ε
, we get the system

u̇ = εv − uB(u), ẏ = −εu − vB(u), (9)
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whose angular speed is θ̇ = −ε. Now we can apply Lemma 1, in order to prove
that rays are isochronous sections. A solution starting at a point of the ray ζφ of
equations u = τ cos φ, v = τ sin φ, τ > 0, after time t, is on the ray ζφ−εt .

Applying the inverse transformation, x = u, y = εv, we prove that the rays
x = τ cos φ, y = ετ sin φ, τ > 0, are isochronous sections of (8). Moreover,
a solution starting at a point of the ray Zφ, after time t, is on the ray Zφ−εt .

(ii) The transformation (x, y) �→ (x, y + F(x) − xB(x)) takes (8) into (7). The ray
Zφ is taken into the curve Lφ ≡ {(x, y) : x = τ cos φ, y = ετ sin φ + F(τ cos φ) −
τ cos φB(τ cos φ), τ > 0}. As in the previous point, a solution starting at a point of
the curve Lφ, after time t, is on the curve Lφ−εt .

(iii) The transformation (x, y) �→ (x, y − F(x)) takes (7) into (6). The curve Lφ is
taken into the curve Sφ ≡ {(x, y) : x = τ cos φ, y = ετ sin φ − τ cos φB(τ cos φ),

τ > 0}. As in point (i), a solution starting at a point of the curve Sφ, after time t, is
on the curve Sφ−εt .

In all of these cases, choosing φ = ±π
2 , one obtains the semi-axes y+ and

y− as isochronous sections. Moreover, since the angular speed of (9) is θ̇ = −ε,
a complete revolution around the origin is performed in time 2π

ε
. Passing from y+

to y− requests half time, that is π
ε

. 
�
For cos φ �= 0, the curves Lφ are contained in the graphs of the functions

y = εx tan φ + F(x) − xB(x). Such graphs can be split into two distinct curves,
y = εx tan φ + F(x) − xB(x), x > 0 and y = εx tan φ + F(x) − xB(x), x < 0, by
removing the origin. Such curves are the isochronous sections.

Similarly, for cos φ �= 0, the curves Sφ are contained in the graphs of the
functions y = εx tan φ − xB(x), which can be split into the isochronous sections
by removing the origin.

Theorem 2 has a simple physical interpretation. When the origin is a stable
focus and C(x) = νx, the physical system modelled by (4) goes through infinitely
many damped oscillations, touching the position x = 0 at equal time intervals of
width π√

g′(0)− f(0)2
4

.

A noticeable feature of Theorem 2 is the possibility of finding a dissipation
that transforms non-isochronous plane systems into systems with isochronous
oscillations. For instance, given the equation

ẍ + x + x5 = 0,

it is sufficient to choose f(x) = 4x2 in order to have an isochronous system,

ẍ + 4x2ẋ + x + x5 = 0. (10)

Standard arguments show that the origin is a focus. Notice that the eigenvalues of
the system at O are ±i, hence Theorem 1 does not apply. The isochronous sections
Lφ of the system (7) are contained in the curves y = x tan φ+ x3

3 . The isochronous
sections Sφ of the system (6) are contained in the curves y = x tan φ − x3.
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Under the hypotheses of Theorem 2, the systems (9), (8), (7), (6) have just one
critical point, since, for system (9), one has θ̇ = −ε.

Assume (1) to be analytic. By applying Poincaré’s theorem, one can prove the
existence of a transformation Λ taking (1) into a linear one,

ẋ = ax + by ẏ = cx + dy. (11)

The system (11) commutes with

ẋ = x, ẏ = y, (12)

whose orbits are just rays. The inverse transformation Λ−1 takes the orbits of (12)
into orbits of a system commuting with (1). Such orbits are isochronous sections
of (1).

It is natural to ask whether the orbits of a commutator are always isochronous
sections of (1). If true, this would allow us to avoid the restrictions related to
the hypotheses of Poincaré’s theorem, so also considering non-analytic systems.
Also, Poincaré’s theorem proves only the existence of a linearization, but does not
show how to construct it. On the other hand, if a commutator was known, then
its orbits would give the desired sections. Since several couples of commuting
systems possess symmetry properties (see [2]), often it would be possible to find
the isochronous sections as symmetry axes.

Here we adapt the commutators’ method, in order to find isochronous sections.
We first examine the conditions for a couple of linear systems to be non-trivial
commutators. Let us consider a second linear system

ẋ = αx + βy ẏ = γx + δy. (13)

Lemma 2. The linear systems (11) and (13) commute if and only if the matrix
(

a − d b c
α − δ β γ

)
(14)

has rank ≤ 1.

Proof. The commutativity conditions are
{

(bγ − cβ)x + (aβ + bδ − bα − dβ)y = 0,

(cα + dγ − aγ − cδ)x + (cβ − bγ)y = 0.
(15)

Equating to zero the coefficients of x and y, one obtains the conditions
∣∣∣∣ b c
β γ

∣∣∣∣ =
∣∣∣∣ b a − d
β α − δ

∣∣∣∣ =
∣∣∣∣ c a − d
γ α − δ

∣∣∣∣ = 0, (16)

which are equivalent to the condition of the statement. 
�
Lemma 3. Assume the linear systems (11) and (13) commute. If (a − d, b, c) �=
(0, 0, 0), then they are transversal at non-critical points only if (a−d)2 +4bc < 0.
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Proof. The transversality condition for (11) and (13) is

(aγ − αc)x2 + (aδ + bγ − αd − βc)xy + (bδ − βd)y2 �= 0, ∀ (x, y) �= (0, 0).

By the commutativity condition of the previous lemma, there exists µ �= 0 such
that (α − δ, β, γ) = µ(a − d, b, c). Hence α = µ(a − d) + δ. Substituting such
a value into the transversality condition, we obtain

c(µd − δ)x2 + (δ − µd)(a − d)xy + b(δ − µd)y2 �= 0, ∀ (x, y) �= (0, 0).

One cannot have δ − µd = 0, otherwise (11) and (13) would be parallel. Hence
the above condition reduces to

−cx2 + (a − d)xy + by2 �= 0, ∀ (x, y) �= (0, 0),

which holds if and only if (a − d)2 + 4bc < 0. 
�
If (a − d, b, c) = (0, 0, 0), then (11) is the radial system

ẋ = ax ẏ = ay, (17)

which commutes with every linear system. Elementary computations show that in
this case the transversality condition of (17) and (13) reduces to (α−δ)2 +4βγ < 0,
which is the condition of the above lemma, stated for system (13).

Lemma 4. If the linear systems (11) and (13) are non-trivial commutators, then
O is either a centre, or a focus, or a star node of (11).

Proof. Assume O is not a star node for (11), so that (a − d, b, c) �= (0, 0, 0). The
eigenvalues of (11) are

λ1,2 = a + d ± √
(a − d)2 + 4bc

2
.

By the above lemma, one has (a − d)2 + 4bc < 0, hence the eigenvalues have
a non-zero imaginary part, so that O can only be a centre or a focus. 
�

In the next theorem we show that under suitable hypotheses the orbits of
a commutator are isochronous sections of a given system.

Theorem 3. If the vector field W has a focus O and a non-trivial commutator W1

with a star node at O, then every orbit of W1contained in a neighbourhood of O is
an isochronous section of W.

Proof. Since the origin is a focus for W , there exists a neighbourhood U of O
such that for every W-solution starting at a point z ∈ U , limt→+∞ θ(t, z) = +∞.
On the other hand, possibly considering −W1 instead of W1, there exists a neigh-
bourhood U ′ of O such that for every W1-solution starting at a point z ∈ U ′,
lims→+∞ ρ(s, z) = 0. Without loss of generality we can assume U = U ′. All
the W- and W1-solutions starting at points of U = U ′ exist for all positive times,
hence the flows commute in U = U ′. Moreover, all the W1-solutions tend to the
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origin having a limit tangent. Let us choose arbitrarily any of such solutions, η.
Since η has a limit tangent at O, every W-solution ψ starting at a point z of η

meets η infinitely many times. Let η(S, z) = ψ(T, z) be the first intersection of
η and ψ after z = η(0, z) = ψ(0, z). In other words, for all σ ∈ (0, S), for all
τ ∈ (0, T ), η(σ, z) �= ψ(τ, z). Moreover, by the transversality of two vector fields,
the arcs of solutions ψ(t, z), t ∈ [0, T ], η(s, z), s ∈ [0, S] bound a region which
is positively invariant both for W and for W1. Hence ψ(t, z) cannot meet the arc
η(s, z), s ∈ (0, S) for any value of t ∈ R. Similarly, η(s, z) cannot meet the arc
ψ(t, z), t ∈ (0, T ) for any value of s ∈ R.

(i) By the commutativity, one has

ψ(2T, z) = ψ(T, η(S, z)) = η(S, ψ(T, z)) = η(2S, z).

Similarly, one proves that, for every positive integer n,

ψ(nT, z) = η(nS, z).

Hence, property (i) of Definition 2 holds.

(ii) Assume by absurd that there exists w = η(s, z) = ψ(t, z), with t > 0, t �= nT
for every positive integer n. Let m be a positive integer such that mT < t <

(m + 1)T . There exists no positive integer k such that s = kS, otherwise ψ(t, z) =
η(s, z) = η(kS, z) = ψ(kT, z), with t �= kT . Hence there exists a positive integer
k such that kS < s < (k + 1)S. Let us set τ = t − mT , σ = s − kS. As in
point (i), one proves that for every integer n such that both nτ ≤ (m + 1)T and
nσ ≤ (k+1)S, one has ψ(−nτ,w) = η(−nσ,w). Since τ < T , σ < S, there exists
a positive integer h such that 0 < hτ < (m + 1)T , 0 < hσ < (k + 1)S and either
0 < hτ < T , or 0 < hσ < S. Then ψ(−hτ,w) = η(−hσ,w), that contradicts the
fact that η(s, z) cannot meet the arc ψ(t, z), t ∈ (0, T ) for any value of s ∈ R. 
�

Poincaré’s theorem cannot be applied to non-analytic systems. In some cases
we can apply the next corollary. In the next corollary we show that every system
with a focus and a non-trivial commutator has a commutator with a star node,
hence, it has an isochronous section. As in [9], we say that {Wφ, φ ∈ [0, 2π)}, is
a complete family of commuting vector fields if {Wφ, φ ∈ [0, 2π)}, is a complete
family of rotated vector fields and for every couple φ, φ′ ∈ [0, 2π), the vector fields
Wφ, Wφ′ commute.

Corollary 1. If the vector field W has eigenvalues with non-zero real part at a focus
O and a non-trivial commutator W1, then it has an isochronous section.

Proof. It is sufficient to show that W has a non-trivial commutator with a star node
at O. Without loss of generality, we can assume O to be stable. By Theorem 1.4
in [9] the complete family Wφ = W cos φ + W1 sin φ, φ ∈ [0, 2π), contains an
isochronous centre. Let W2 be the corresponding vector field. Let us consider
the second complete family of commuting fields defined by W∗

φ = W cos φ +
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W2 sin φ, φ ∈ [0, 2π). There exists a linear transformation Λ taking W2 into a vector
field V2 having linear part at O of the form

(
0 1

−1 0

)
. (18)

The transformation Λ takes the family W∗
φ into the complete family of commuting

vector fields Vφ = V cos φ + V2 sin φ, where V is the vector field obtained from W
by means of Λ.

By Lemma 2, the linear part of V at O is of the form
(

a b
−b a

)
, a �= 0, (19)

so that the linear part of Vφ at O is
(

a cos φ b cos φ + sin φ

−b cosφ − sin φ a cos φ

)
. (20)

Its eigenvalues are the solutions to the equation

(λ − a cos φ)2 + (b cos φ + sin φ)2 = 0. (21)

For φ = arctan(−b) the above matrix has the double real eigenvalue λ = a cos φ.
The corresponding vector field Varctan(−b) has a star node at O. Let W3 be the vector
field obtained from Varctan(−b) by means of the inverse transformation Λ−1. W3

is a non-trivial commutator of W , having a star node at O. Then we can apply
Theorem 3. 
�

If the eigenvalues of W at a focus O have zero real part, then the complete
family of the theorem does not necessarily contain a star node. In fact, the systems

ẋ = y, ẏ = −x,

and

ẋ = y + x(x2 + y2), ẏ = −x + y(x2 + y2), (22)

commute, but the complete family they generate does not contain any singular
point of node type. In this case it is possible to find a commutator of (22) whose
orbits are rays,

ẋ = x(x2 + y2), ẏ = y(x2 + y2). (23)

We cannot say that such a system has a star node at O because its eigenvalues at O
are zero. On the other hand, since the angular speed of (22) is identically 1, then
the orbits of (23) are isochronous sections of (22).

Using complete families it is easy to construct systems having foci with
isochronous sections. In fact, assume W to have an isochronous centre at O,
and W1 to be a non-trivial commutator such that O is a star node for W1. Argu-
ing as in Corollary 1 one shows that every vector field of the complete family



Non-periodic isochronous oscillations in plane differential systems 497

Wφ = W cos φ + W1 sin φ, φ �= 0, π/2, π, 3π/2, has a focus at O, and com-
mutes with W1. The orbits of W1 are isochronous sections for the vector fields
Wφ. For example, we can take a couple of conjugate harmonic functions P(x, y) =
−y+p(x, y) and Q(x, y) = x+q(x, y), vanishing at the origin. Taking W ≡ (P, Q)

and W1 ≡ (−Q, P) we have a couple of commuting vector fields ([11], [2]). By
theorem 1.3 in [8], W has a centre at O. Then every vector field of the family
Wφ = W cos φ + W1 sin φ, φ �= 0, π/2, π, 3π/2, has a focus with isochronous
sections, given by the orbits of W1. Since usually such systems have symmetry
axes, it is easy to find at least one isochronous section.

This is the case for the system,

ẋ = y + x + x2 − 2xy − y2, ẏ = −x + y + x2 + 2xy − y2, (24)

having the following system as a commutator:

ẋ = x − 2xy, ẏ = y + x2 − y2. (25)

The system (24) has an unstable focus at (0,0) and a stable focus at (0,1). The
system (25) has two star foci at (0,0) and (0,1). The orbits of (25) are isochronous
sections of (24). The orbits of the system (25) are symmetric with respect to the
y-axis, which is an invariant line. The y-axis contains three isochronous sections
of (24), i.e. the half-line {x = 0, y > 1}, isochronous section at (0,1), the half-
line {x = 0, y < 0}, isochronous section at (0,0), and the open line segment
{x = 0, 0 < y < 1}, which is an isochronous section for both foci.

Linearizations of such systems are known, but not easy to use in order to find
isochronous sections for the vector fields of the family Wφ (see [7], section 6).

In some cases we can prove the existence of isochronous sections without using
symmetry. This is the case for the system,

ẋ = −y + x + 3xy − y2 + xy2 − x2y,

ẏ = x + y + xy + 2y2 + y3 − x2 − xy2,
(26)

having the following system as a commutator:

ẋ = x − x2 + 2xy − x2 y, ẏ = y − x2 − xy + y2 − xy2. (27)

The system (27) has a star focus at the origin. The y-axis is an invariant line for
(27), since x divides ẋ. The two y-semi-axes are isochronous sections of (26),
which has an isochronous focus at the origin.

Such an example has been obtained by choosing a1 = 1, a2 = 1, c2 = 0
in Table 28 ([2], p. 63), then summing the vector fields of the centre and its
commutator. For every choice of the coefficients in Table 28, the sum of the
commuting vector fields gives a system with an isochronous focus at O. So far, no
linearizations are known for such systems.
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3. Isochronous sections of limit cycles

Looking for isochronous oscillations of plane systems, we are led to consider also
the behaviour of a system in the neighbourhoodof a cycle. Since we do not consider
only analytic systems, we can also have cycles Γ bounding period annuli, orbitally
stable on one side, attracting or repelling on the opposite side.

Definition 3. Let Γ be a cycle of (1). Let η : [0, ε) → R
2 be a C1 curve such

that η(0) ∈ Γ, η(s) �∈ Γ for s > 0. Then we say that η is a one-sided isochronous
section of (1) at Γ if either ψ or −ψ has the following property: there exists T > 0
such that ∀ ψ(t, z) solution of (1), with z ∈ η, one has:

(i) ψ(nT, z) ∈ η, for every positive integer n;
(ii) ψ(t, z) �∈ η, for t > 0, t �= nT.

If η : (−ε, ε) → R
2 is a C1 curve such that η(0) ∈ Γ, η(s) �∈ Γ for s �= 0,

we say that η is an isochronous section of (1) at Γ if both η : [0, ε) → R
2 and

χ(s) = η(−s) : [0, ε) → R
2 are one-sided isochronous sections at Γ, lying on

opposite sides of Γ.

From the definition it is evident that T is Γ’s minimal period. If Γ has an
isochronous section, then it has infinitely many isochronous sections, obtained
from η by means of the time maps ψ(t, ·), 0 < t < T .

Remark 3. One-sided isochronous sections have been introduced in order also to
consider cycles with different stability properties on opposite sides. For such cycles,
neighbouring solutions could exist for all t > 0 on one side of Γ, for all t < 0 on
the opposite side of Γ.

The orbital stability of limit cycles can be studied by means of its characteristic
multipliers (see, e.g. [3]). If the characteristic multipliers of a limit cycle do not
have modulus 1, then the limit cycle is said to be hyperbolic. The existence of
isochronous sections for hyperbolic limit cycles has been proved in [6]. Proving
that a limit cycle is hyperbolic may be difficult, since limit cycles are often found by
applying the Poincaré–Bendixson theory, which gives a rough information about
the localization of the limit cycle. Moreover, semi-stable cycles are not hyperbolic,
so that a different technique is required in order to study isochronicity phenomena
close to a semi-stable cycle.

Studying limit cycles, we cannot consider linearizations, because linear systems
do not have limit cycles. Also, commutators are not useful, since if a system has
a non-trivial commutator, then it has no limit cycles (the argument of theorem 4.5 (b)
in [11] extends to non-orthogonalcommutators). The only argument of the previous
section that can be applied to the study of isochronous sections of cycles is that of
Lemma 1.

Lemma 5. Let Γ be a limit cycle of (1). If there exists a diffeomorphism Λ defined
in a neighbourhood of Γ, taking (1) into a system having, in polar coordinates, the
form

ρ̇ = f(ρ, θ), θ̇ = g(θ) > 0, (28)

then (1) has an isochronous section at Γ.
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Proof. The proof is similar to that of Lemma 1. 
�
Slightly modifying the hypotheses of Theorem 2, we can prove the existence

of cycles with isochronous sections for a class of Liénard systems.
Let us set G(x) = ∫ x

0 g(s)ds. As in the proof of Theorem 2, we set ε =√
g′(0) − f(0)2

4 .

Theorem 4. Let f, g ∈ C1(R,R), g(0) = 0, g′(0) > 0. Assume that:

(1) there exists constants c, κ1 > 0 such that xF(x) > 0 for |x| > κ1, and either
F(x) > c for x > κ1, or F(x) < −c for x < −κ1;

(2) there exists κ2 > 0 such that xF(x) < 0 for 0 < |x| < κ2;
(3) there exists ν > 0 such that C(x) = νx.

Then every cycle of (6), (7), (8) has two one-sided isochronous sections on opposite
sides. Moreover, there exists, at least, a stable cycle with an isochronous section. The
statements (i), (ii), (iii) of Theorem (2) hold, considering Zφ, Lφ, Sφ as isochronous
sections at the limit cycle. In particular, y+ and y− are isochronous sections of
(6), (7) and (8). A complete revolution around the origin takes time 2π

ε
. A solution

starting at a point of y+ crosses y− after time π
ε

.

Proof. One can work as in Theorem 2, proving that (8) can be transformed into
a system with constant angular speed θ̇ = −ε. There exists a unique critical point,
so that if a cycle exists, it surrounds the origin. Rays are isochronous sections of
every cycle. Which kind of isochronous section depends on the stability properties
of the cycle (see Remark 3).

As for the existence of a cycle with a (bilateral) isochronous section, let us
set V(x, y) = y2 + 2G(x). Since g′(0) > 0, V is positive definite at the ori-
gin. By assumption (2), the derivative of V(x, y) along the solutions of (7) is
V̇ (x, y) = −2g(x)F(x) ≥ 0 in a neighbourhood of O, hence the origin is nega-
tively asymptotically stable.

The hypotheses of Theorem 3.1 in [5] hold. In fact, as in Theorem 2, if
C(x) = νx, then g(x) = ε2x + xB(x)2, so that xg(x) = ε2x2 + x2 B(x)2 > 0
for all x �= 0, and by assumption (1) the inequalities (3.3)–(3.5) in [5] hold. As
for the integral condition in the hypotheses of theorem 3.1 of [5], by condition (1)
above we have

∫ +∞
0 ( f(x) + |g(x)|)dx ≥ κ3 + ∫ +∞

0 |g(x)|dx, where κ3 is some
constant. Moreover∫ +∞

0
|g(x)|dx =

∫ +∞

0

(
ε2x + xB(x)2) dx ≥ ε2

∫ +∞

0
xdx = +∞.

Similarly, one can prove that
∫ −∞

0 ( f(x) + |g(x)|)dx = −∞.
As a conclusion, the solutions of (6), (7), (8) are ultimately bounded. This,

together with the uniqueness of the critical point and its negative stability, shows
the existence of an attracting annulus A, having two limit cycles as a boundary.

Since y+ is an isochronous sections, there exists a Poincaré map Π(y) (we
identify the point (y, 0) with the number y), defined in a neighbourhoodof A∩y+ ≡
[y1, y2]. One has Π(y1) − y1 = Π(y2) − y2 = 0. If Π(y) ≡ y on [y1, y2], then A
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is a period annulus, and every cycle in A is stable, with y+ and y− as isochronous
sections. In particular, the cycles passing through (0, y1) and (0, y2) are stable limit
cycles.

Hence, let us assume that there exists y0 ∈ [y1, y2], such that Π(y0) − y0 �= 0.
Without loss of generality, we may assume that Π(y0) − y0 > 0. Let us set F :=
{y ∈ [y1, y2] : Π(y) − y > 0} and y∗ := sup F. By construction, Π(y∗) − y∗ = 0
and, for all y ∈ [y∗, y2], Π(y) − y ≤ 0. Hence the solution Γ∗ passing through
(0, y∗) is an externally stable cycle.

As for its internal stability, either Π(y) − y > 0 in a left neighbourhood
of y∗, that implies internal asymptotic stability of Γ∗, or there exists a sequence y∗

n
converging to y∗, such that Π(y∗

n)− y∗
n = 0. In this case there exist infinitely many

cycles Γ∗
n , passing through the points (0, y∗

n), accumulating on Γ∗. This gives the
internal (non asymptotic) stability of Γ∗. 
�
Corollary 2. Let f, g be analytic, g(0) = 0, g′(0) > 0. Assume that the hypotheses
of Theorem (4) hold. Then there exists an asymptotically stable limit cycle with an
isochronous section.

Proof. If f and g are analytic, then Poincaré’s map is analytic, hence its fixed points
cannot accumulate. This implies that A contains finitely many cycles. Working as
in the previous proof, one shows that one of them is asymptotically stable. 
�

By choosing f(x) = 6x4 − 4x2 we get an example of a Liénard system with
a limit cycle having y+ and y− as isochronous sections,

ẋ = y, ẏ = (4x2 − 6x4)y − x − x5 + 2x7 − x9.

Also in this case we can give a family of isochronous sections covering a punctured
neighbourhood of the equilibrium position. Since ε = 1, the curves Sφ are contained
in the graphs of the functions y = x tan(φ) + x3 − x5. Removing the origin from
such graphs one obtains couples of isochronous sections.

When considering the equivalent Liénard system,

ẋ = y − 6x5

5
+ 4x3

3
, ẏ = −x − x5 + 2x7 − x9,

couples of isochronous sections Lφ can be obtained from the graphs of the functions

y = x tan(φ) + x5

5 − x3

3 by removing the origin.
Such systems are equivalent to the equation

ẍ + (6x4 − 4x2)ẋ + x + x5 − 2x7 + x9 = 0,

whose solutions assume the position x = 0 at time intervals of width π.
More generally, if a solution starts at time 0 with initial conditions (x0, x ′

0)

satisfying x ′
0 = x0 tan(φ) + x3

0 − x5
0, then at time t its position and speed (xt, x ′

t)

satisfy x ′
t = xt tan(φ − t) + x3

t − x5
t , but for φ − t = π

2 + kπ, k integer.
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7. Mardes̆ić, P., Rousseau C., Toni, B.: Linearization of isochronous centers. J. Differ.

Equations 121, 67–108 (1995)
8. Mazzi, L., Sabatini, M.: Commutators and linearizations of isochronous centers. Rend.

Mat. Acc. Lincei, IX. Ser. 11, 81–98 (2000)
9. Sabatini, M.: Dynamics of commuting systems on two-dimensional manifolds. Ann.

Mat. Pura Appl., IV. Ser. 173, 213–232 (1997)
10. Sabatini, M.: On the period function of Liénard systems. J. Differ. Equations 152,

467–487 (1999)
11. Villarini, M.: Regularity properties of the period function near a centre of a planar

vector field. Nonlinear Anal., Theory Methods Appl. 19, 787–803 (1992)


