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Abstract. The aim of this paper is threefold. First we prove a non-smooth atomic decom-
position theorem in some special Besov spaces. Secondly, using this result we deal with
pointwise multipliers in the respective function spaces. Thirdly, in a larger context we dis-
cuss the intimate relationship between pointwise multipliers on the one hand and some
fundamental notation of fractal geometry, such as self-similarity and porosity, on the other
hand.
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1. Introduction

Let n ∈ N and let Bs
p(R

n) = Bs
pp(R

n) be a special space of Besov type in Rn with

0 < p ≤ ∞ and s > σp = n

(
1

p
− 1

)
+

. (1.1)

Let ψ be an appropriate C∞ function in Rn with compact support such that

∑
l∈Zn

ψ(x − l) = 1, x ∈ Rn,

(resolution of unity). Then Bs
p, unif (Rn) and Bs

p, selfs (Rn) are the collections of
functions m such that

∥∥m |Bs
p,unif (Rn)

∥∥ = sup
l∈Zn

∥∥ψ(· − l) m |Bs
p(R

n)
∥∥ < ∞

and
∥∥m |Bs

p, selfs (Rn)
∥∥ = sup

l∈Zn , j∈N0

∥∥ψ(· − l) m(2− j ·) |Bs
p(R

n)
∥∥ < ∞, (1.2)
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respectively. Let M(Bs
p) be the set of all pointwise multipliers of Bs

p(R
n). One aim

of this paper is to prove the following assertion (Theorem 1):
(i) Let p and s as in (1.1). Then⋃

σ>s

Bσ
p, selfs (Rn) ⊂ M(Bs

p) ↪→ Bs
p, selfs (Rn). (1.3)

(ii) If, in addition, 0 < p ≤ 1, then

M(Bs
p) = Bs

p, selfs (Rn). (1.4)

(iii) If, in addition, either

0 < p ≤ 1, s ≥ n

p
or 1 < p ≤ ∞, s >

n

p
, (1.5)

then

M(Bs
p) = Bs

p, selfs (Rn) = Bs
p, unif (Rn). (1.6)

All spaces involved in (1.3), (1.4), (1.6), are multiplication algebras. The study of
pointwise multipliers is one of the key problems in the theory of function spaces.
It has attracted a lot of attention in the decades since starting with [22]. As far
as classical Besov spaces and (fractional) Sobolev spaces are concerned we refer
to [13] and, in particular, to [14]. Pointwise multipliers in general spaces

Bs
pq(R

n) and Fs
pq(R

n), where 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, (1.7)

have been studied in great detail in [17, Ch. 4], where one also finds many references
and historical comments, and in the more recent papers [18], and especially [19].
As for our own contributions we refer to [23, 2.8]; [24, 4.2]; where again one finds
detailed references. The equalities in (1.6) with (1.5) are more or less known (and
easy to prove) in the context of respective assertions for the more general spaces
in (1.7). In [14] (p = 1) and in [19] (0 < p ≤ 1) one also finds some cases of
(1.4), although the formulations given there are different (later on we give more
detailed references). Here we offer simple proofs: the main arguments cover only
a few lines. This simplicity applies also to the proofs of (1.6) and of the right-hand
side of (1.3).

As for the left-hand side of (1.3) we need non-smooth atoms. This is the second
aim of this paper. Recall that, say, the C∞ function ak,l with k ∈ N0 and l ∈ Zn is
called a (s,p)K -atom if

supp ak,l ⊂ Bk,l and
∣∣Dαak,l(x)

∣∣ ≤ 2−k(s− n
p )+|α|k

, (1.8)

where Bk,l is a ball centred at 2−kl with radius c2−k (for some c > 0) and |α| ≤ K ,
for every fixed K ∈ N with K > s. Then f ∈ Bs

p(R
n) with (1.1) admits the atomic

decomposition

f =
∑

k∈N0,l∈Zn

λkla
k,l(x), ‖λ |�p‖ =


∑

k,l

|λkl |p




1
p

< ∞ (1.9)
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with ∥∥ f |Bs
p(R

n)
∥∥ ∼ inf ‖λ |�p ‖, (1.10)

where the infimum is taken over all representations of type (1.9). This is a special
case of the atomic decomposition theorem in [25, Theorem 13.8, p. 75]. There
one also finds the necessary references to the literature, especially to [9] and [10],
which are of special relevance in the context of (1.9), (1.10). In order to prove the
left-hand side of (1.3) one can multiply (1.9) with a respective function m and ask
whether the functions mak,l are again building blocks which fit in this scheme.
This results in the problem of non-smooth atoms. We give a rough description. Let
p and s again be given by (1.1) and let σ > s. Then ak,l is called a (non-smooth)
(s,p)σ -atom if (1.8) is generalised by

supp ak,l ⊂ Bk,l and
∥∥ak,l |Bσ

p(R
n)

∥∥ ≤ 2k(σ−s). (1.11)

All (smooth) atoms in the literature satisfy these conditions. It is the second aim of
this paper to prove an atomic decomposition theorem of type (1.9), (1.10) based on
(1.11). This will be done in Theorem 2. [If p ≤ 1 then one can even choose σ = s
in (1.11) in good agreement with (1.4). But this does not say very much and is out
of our interest.] Afterwards one can prove the left-hand side of (1.3) again in a few
lines.

There are surely many applications both of non-smooth atomic decompositions
and of the simple criteria (1.3), (1.4), (1.6). We restrict ourselves to the question
under which circumstances the characteristic function χΩ of a, say, bounded do-
main Ω in Rn is a pointwise multiplier in Bs

p(R
n). By (1.2) and (1.3), (1.4), (1.6)

self-similarity properties of functions naturally enter the scene in connection with
pointwise multipliers. Now a second basic notation of fractal geometry also proves
to be useful. If Γ = ∂Ω satisfies a uniform porosity condition (uniform ball condi-
tion) then there is a number ε > 0 such that (Corollary 1 based on Theorem 3)

χΩ ∈ M(Bs
p), 0 < p < ∞, σp < s <

ε

p
. (1.12)

It is the main aim of this paper to shed new light on atomic decompositions based on
(1.11) and how they are symbiotically related to (s,p)-self-similarity of functions,
porosity of boundaries ∂Ω of domains Ω in Rn , and pointwise multipliers. This
broader point of view may justify our restriction to the technically simple spaces
Bs

p(R
n) with (1.1), although there is a good chance that some (but not all) of our

arguments can be extended to some spaces of type (1.7) as will be indicated at the
very end of this paper.

The plan of the paper is the following. In Section 2 we give the necessary
definitions, formulate and discuss our main results, mostly from the just outlined
broader point of view. Proofs are shifted to Section 3. In the complementary Sec-
tion 4 we collect a few assertions for the more general spaces Bs

pq(R
n) and Fs

pq(R
n)

which follow from the results in Section 2 and from known general properties of
pointwise multipliers in spaces of type (1.7) available in the literature. Again we
wish to emphasise the connections with some notation of fractal geometry. For ex-
ample, (1.12) can be extended by interpolation, duality and monotonicity to some
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spaces in (1.7), also with s = 0 and s < 0. But here we assume that the reader of
this complementary Section 4 is familiar with the theory of the spaces in (1.7).

2. Main results

2.1. Notation and definitions

We use standard notation. Let N be the collection of all natural numbers and
N0 = N ∪ {0}. Let Rn be a Euclidean n-space where n ∈ N; put R = R1; whereas
C is the complex plane. As usual, Z is the collection of all integers; and Zn where
n ∈ N, denotes the lattice of all points l = (l1, . . . ,ln) ∈ Rn with l j ∈ Z. Let Nn

0,
where n ∈ N, be the set of all multi-indices

α = (α1, . . . ,αn) with α j ∈ N0 and |α| =
n∑

j=1

α j .

Furthermore, L p(R
n) with 0 < p ≤ ∞ is the standard quasi-Banach space with

respect to the Lebesgue measure, quasi-normed by

∥∥ f |L p(R
n)

∥∥ =

∫
Rn

| f(x)|p dx




1
p

with the obvious modification if p = ∞. Let L loc
1 (Rn) be the collection of all

locally Lebesgue-integrable functions in Rn . We use the standard abbreviation

σp = n

(
1

p
− 1

)
+

= n

(
1

min(p,1)
− 1

)
where n ∈ N, 0 < p ≤ ∞. (2.1)

Furthermore, if f ∈ L loc
1 (Rn) then

(
∆1

h f
)
(x) = f(x + h) − f(x), where x ∈ Rn, 0 
= h ∈ Rn,

and, iteratively, ∆M
h = ∆1

h(∆
M−1
h ) if M − 1 ∈ N. We always assume that ψ is a

C∞ function in Rn with

ψ(x) > 0 if |x| < c, ψ(y) = 0 if |y| ≥ c, (2.2)

and ∑
l∈Zn

ψ(x − l) = 1 if x ∈ Rn, (2.3)

(resolution of unity) for some suitable c > 0 (one may choose, for example,
c = √

n). In this paper n ∈ N is fixed and all the spaces considered are defined
on Rn . This may justify our omission of Rn in the respective notation. Hence we
write L p and L loc

1 instead of L p(R
n) and L loc

1 (Rn), respectively, etc.



Non-smooth atoms and pointwise multipliers in function spaces 461

Definition 1. Let 0 < p ≤ ∞ and s > σp.

(i) Let, in addition, N ∈ N with N > s. Then Bs
p is the collection of all f ∈ L loc

1
such that

∥∥ f |Bs
p

∥∥ = ‖ f |L p‖ +



∫
|h|≤1

|h|−sp
∥∥∆N

h f |L p

∥∥p dh

|h|n




1
p

< ∞ (2.4)

(with the usual modification if p = ∞).
(ii) Let, in addition, ψ be the function according to (2.2), (2.3). Then Bs

p, unif is

the collection of all f ∈ L loc
1 such that

∥∥ f |Bs
p,unif

∥∥ = sup
l∈Zn

∥∥ψ(· − l) f |Bs
p

∥∥ < ∞, (2.5)

and Bs
p, selfs is the collection of all f ∈ L loc

1 such that

∥∥ f |Bs
p, selfs

∥∥ = sup
l∈Zn , j∈N0

∥∥ψ(· − l) f(2− j ·) |Bs
p

∥∥ < ∞. (2.6)

Remark 1. Recall that Bs
p = Bs

pp are special spaces of Besov type with the Hölder–
Zygmund spaces

Cs = Bs
∞ , s > 0,

as distinguished cases. The theory of the more general spaces Bs
pq and Fs

pq with
(1.7) has been developed in detail in [23] and [24]. They are quasi-Banach spaces,
always considered in the framework of tempered distributions S′ on Rn . As for
the above specific formulation in part (i) we refer to [24, Theorem 2.6.1, p. 140,
Corollary 2.6.1/1 and Remark 2.6.1/3 on p. 142]. For different values of N ∈ N
with N > s in (2.4) one gets equivalent quasi-norms. But this is unimportant for
our purpose and not indicated on the left-hand side of (2.4) [one may think of the
smallest admitted N]. In connection with pointwise multipliers, Bs

p, unif is a rather
natural construction, we refer to [17, 4.3.1, p. 150]. Finally, Bs

p, selfs describes the
(s,p)-self-similarity behaviour of f , where ψ(· − l) f(2− j ·) must be understood as
usual,

x → ψ(x − l) f(2− j x), x ∈ Rn, l ∈ Zn, j ∈ N0.

Hence it checks the quality of f in a 2− j-neighbourhood with respect to the lattice
2− j
Z

n . Of course, Bs
p, unif and Bs

p, selfs are quasi-Banach spaces.

2.2. Multipliers

Let A be one of the spaces in (1.7), where, with the exception of the complementary
Section 4, we are only interested in A = Bs

p as introduced in Definition 1(i). Then
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a locally integrable function m in Rn is called a multiplier for A if

f → m f generates a bounded map in A. (2.7)

Especially in the general case of the spaces from (1.7) one has to say more precisely
what this means. But we refer for this technical point to [17, 4.2]. In the literature,
multipliers are often denoted as pointwise multipliers, not to be mixed with Fourier
multipliers. But there are no Fourier multipliers in this paper. This may justify
calling them simply multipliers from now on. The collection of all multipliers
with respect to a given space A is denoted by M(A). Naturally quasi-normed, it
becomes a quasi-Banach space. It is a multiplication algebra: if m1 ∈ M(A) and
m2 ∈ M(A), then m1m2 ∈ M(A) and for some c > 0,

‖m1m2 |M(A)‖ ≤ c ‖m1 |M(A)‖ · ‖m2 |M(A)‖. (2.8)

More generally, a linear space M on Rn is called a multiplication algebra if
m1m2 ∈ M for all m1 ∈ M and m2 ∈ M. If, in addition, M is a quasi-Banach space
then (2.8) with M in place of M(A) is assumed to be valid.

We complement Definition 1 by

bs
p, selfs =

⋃
σ>s

Bσ
p, selfs, where 0 < p ≤ ∞, s > σp. (2.9)

In the proposition below, |x| + |h| � 2− j means that there is a suitable chosen
constant c > 0 with |x| + |h| ≤ c 2− j for all admitted x, h, j . Then it is clear what
is meant by �, also in other occurences.

Proposition 1. Let 0 < p ≤ ∞ and s > σp, where σp is given by (2.1).

(i) Let N ∈ N0 with N > s. Then Bs
p,selfs consists of all f ∈ L loc

1 such that

sup
l∈Zn , j∈N0

2− j(s− n
p )




∫
|x|+|h|�2− j

|h|−sp
∣∣∆N

h f(x + l2− j)
∣∣p dx dh

|h|n




1
p

+ sup
l∈Zn , j∈N0

2 j n
p




∫
|x|�2− j

| f(x + l2− j)|p dx




1
p

< ∞ (2.10)

(equivalent quasi-norms), with the usual modification if p = ∞. Furthermore,

Bs
p,selfs ↪→ L∞ (continuous embedding). (2.11)

(ii) Both Bs
p,selfs and bs

p,selfs are multiplication algebras.

Remark 2. We shift the proof to 3.1. As usual, ↪→ always stands for continu-
ous embedding between quasi-Banach spaces. Furthermore if A1 and A2 are two
quasi-Banach spaces then A1 = A2 means that they coincide as sets and that the
corresponding quasi-norms are equivalent to each other.
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Theorem 1. Let 0 < p ≤ ∞ and s > σp, where σp is given by (2.1).

(i) Then

bs
p,selfs ⊂ M(Bs

p) ↪→ Bs
p,selfs. (2.12)

(ii) In addition, let 0 < p ≤ 1. Then

M(Bs
p) = Bs

p,selfs. (2.13)

(iii) In addition, let

either 0 < p ≤ 1, s ≥ n

p
,

(2.14)
or 1 < p ≤ ∞, s >

n

p
.

Then

M(Bs
p) = Bs

p,selfs = Bs
p,unif . (2.15)

Remark 3. We shift the proof to 3.2. There is only one point where we cannot rely
immediately on properties for the spaces Bs

p available in the book literature. This
is the left-hand side of (2.12). Here we need non-smooth atomic decompositions
as obtained in the next subsection. Afterwards also the left-hand side of (2.12) is
a matter of a few lines. Let 1 < p < ∞ and let, temporarily, As

p be either Bs
p or

the (fractional) Sobolev spaces Hs
p. Then

M(As
p) = As

p,unif , 1 < p < ∞, s >
n

p
, (2.16)

is a classical result. In the case of Hs
p it goes back to [22] (1967). This has been

complemented by a corresponding assertion for Bs
p in [16, Corollary, p. 151] (1976),

essentially by interpolation. (2.16) can be extended to all spaces in (1.7) which are
multiplication algebras and which satisfy the so-called localisation principle. We
return to this point in our complementary remarks in 4.1. More details may be
found in [17, 4.6.4, p. 222, and 4.9.1, p. 247]. If 0 < p ≤ ∞ and s > σp then one
always has

M(Bs
p) ↪→ L∞ ∩ Bs

p, unif . (2.17)

This is well known and may be found explicitly stated in [19, Lemma 3, p. 213/214],
with references to the literature. In particular,

M(Bs
p) = Bs

p, unif

can only be expected in the case of (2.14), since otherwise Bs
p and Bs

p,unif are not
continuously embedded in L∞, [17, 4.6.4, pp. 221/222], with a reference to [21]
(dealing with all spaces (1.7), p < ∞ in the F-case). This is the point where one
has to step from uniform to the more subtle self-similar. Then we have at least
(2.11) in any case considered. Hence the right-hand side of (2.12) is a refinement
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of the known necessary condition (2.17). Some assertions of type (2.13) and also
of characterisations of Bs

p, selfs according to Proposition 1(i) are known, although
the formulations given are different (but they can be translated into each other). If
p = 1 and 0 < s 
∈ N then we refer to [14, 3.4.2, p. 140] (a formulation of this
result may also be found in [18, Theorem 2.9, pp. 299/300]). As for p < 1 (and
with some restrictions for p = 1) we refer to [19, 3.4.1, pp. 234–236, (and 3.4.2,
pp. 236–237, respectively)]. There are characterisations of type (2.13) with (2.10)
for M(Bs

p) with σp < s < 1, in the framework of the more general case of M(Fs
pq).

But in any case it has been stated clearly in [19] that it is easier to say something
about multipliers in spaces with p < 1 than in spaces with p > 1. The other asser-
tions of Theorem 1 and Proposition 1 seem to be new. But it is not our aim (neither
here nor in the complementing Section 4) to deal systematically with multipliers.
There is a huge literature spanning over decades which has been quoted especially
in [14]; [23, 2.8]; [24, 4.2]; [17, Ch. 4]; [18]; [19]. Our aim is different. On the one
hand we wish to make clear that the above assertions can be obtained rather easily
using existing results for the spaces in question, complemented by non-smooth
atomic decompositions. Secondly, and more importantly, we wish to emphasise
that, apparently, multipliers in function spaces are related to some fundamental
notation in fractal geometry such as self-similarity and (in the applications given
in 2.4) porosity of sets.

2.3. Non-smooth atomic decompositions

Let k ∈ N0 and l ∈ Zn . Then

Bk,l = {
x ∈ Rn : |x − 2−kl| � 2−k} ,

are balls in Rn , where again, here and later on, � 2−k means ≤ c 2−k for some
suitably chosen c > 0, which is independent of all relevant ingredients, here k
and l. Let again 0 < p ≤ ∞, s > σp, and K ∈ N with K > s. Then K times
differentiable functions ak,l in Rn are called classical (s,p)K-atoms if

supp ak,l ⊂ Bk,l and |Dαak,l(x)| ≤ 2−k(s− n
p )+|α|k

, |α| ≤ K. (2.18)

Let

λ = {
λkl ∈ C : k ∈ N0 and l ∈ Zn} ,

and for 0 < p ≤ ∞,

‖λ |�p‖ =

 ∑

k∈N0,l∈Zn

|λkl |p




1
p

, (2.19)

with the usual modification if p = ∞. For fixed K one has the classical atomic
decomposition theorem saying that f ∈ L loc

1 is an element of Bs
p if, and only if, it

can be represented as

f =
∑
k,l

λkla
k,l(x), with ‖λ |�p‖ < ∞, (2.20)
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where ak,l are classical (s,p)K -atoms with (2.18). The series (2.20) coverges abso-
lutely in L loc

1 and even in some Lr with 1 < r ≤ ∞. Furthermore,∥∥ f |Bs
p

∥∥ ∼ inf ‖λ |�p‖, (2.21)

where the infimum is taken over all representations (2.20). In this formulation the
theorem is a special case of [25, Theorem 13.8, pp. 75/76]. But essentially, it goes
back to [9], [10]. We need a non-smooth generalisation of this assertion.

Definition 2. Let 0 < p ≤ ∞ and s > σp where σp is given by (2.1). Let
s < σ < ∞, k ∈ N0, and l ∈ Zn. Then ak,l ∈ Bσ

p is called an (s,p)σ -atom if

supp ak,l ⊂ Bk,l and
∥∥ak,l |Bσ

p

∥∥ ≤ 2k(σ−s). (2.22)

Remark 4. If σp < s < σ < n
p , then (s,p)σ -atoms might be unbounded. If σp <

s < σ < 1
p then appropriately normalised characteristic functions of cubes are

(s,p)σ -atoms and then (2.20) is a representation by step-functions. The above
definition makes sense for all 0 < p ≤ ∞ and s > σp. However the case of interest
in our context here is 1 < p ≤ ∞.

Proposition 2. Let 0 < p ≤ ∞ and s > σp, where σp is given by (2.1).

(i) Let K ∈ N and s < σ < K. Any classical (s,p)K-atom is an (s,p)σ -atom.
(ii) Let s < σ and let ak,l be an (s,p)σ -atom. Then∥∥ak,l |Bs

p

∥∥ ≤ 1 and
∥∥ak,l |L p

∥∥ ≤ 2−ks . (2.23)

Remark 5. Here ≤ 1 in (2.23) means that there are appropriate quasi-norms in Bσ
p

and Bs
p with this property. Otherwise one has to replace ≤ 1 by � 1 according to

our above agreement. We shift the proof of this proposition to 3.3.

Theorem 2. Let 0 < p ≤ ∞ and σp < s < σ , where σp is given by (2.1). Then
L loc

1 is an element of Bs
p if, and only if, it can be represented as

f =
∑
k∈N0

∑
l∈Zn

λkl ak,l(x) with ‖λ |�p‖ < ∞, (2.24)

where ak,l are (s,p)σ -atoms according to Definition 2. The series on the right-hand
side of (2.24) coverges absolutely in some Lr with 1 < r ≤ ∞. Furthermore,∥∥ f |Bs

p

∥∥ ∼ inf ‖λ |�p‖, (2.25)

where the infimum is taken over all representations (2.24).

Remark 6. We shift the proof of this theorem to 3.4. But we wish to clarify two
points now. Firstly, the insignificance of the theorem if p ≤ 1. In case of p ≤ 1, it
is well known, and also an immediate consequence of (2.4), that Bs

p is a p-Banach
spaces, which means that∥∥∥∥∥

∞∑
k=1

fk |Bs
p

∥∥∥∥∥
p

≤
∞∑

k=1

∥∥ fk |Bs
p

∥∥p
, fk ∈ Bs

p (2.26)
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(appropriate equivalent quasi-norms). Hence, by (2.24) and (2.23) we have that∥∥ f |Bs
p

∥∥p ≤ ‖λ |�p‖p.

Then (2.25) follows from part (i) of Proposition 2 and the classical atomic decom-
position theorem as described at the beginning of this subsection. Later on we need
the above theorem only in the case of p > 1.

Secondly, we clarify the convergence of the series in (2.24) in some Lr . Let p > 1.
Since s > 0 it follows by (2.23) and the support properties of ak,l according to
(2.22) that

‖ f |L p‖ ≤
∞∑

k=0

2−ks

(∑
l∈Zn

|λkl |p

) 1
p

� ‖λ |�p‖.

In particular, the series in (2.24) converges absolutely in L p (hence we may choose
r = p in the theorem). Let p ≤ 1. Since s > σp there is a number r with 1 < r ≤ ∞
such that

Bs
p ↪→ Lr, where s − n

p
≥ −n

r
.

This is a well-known embedding theorem, [23, p. 129], combined with a Paley–
Littlewood assertion for Lr , [23, p. 88] (but it is also an easy consequence of the
above classical atomic decomposition theorem). Then again it follows by (2.23),
(2.22) that

‖ f |Lr‖ ≤
∞∑

k=0

( ∑
l∈Zn

|λkl |r
) 1

r

≤ ‖λ |�p‖.

This shows that the series in (2.24) converges absolutely in Lr .

2.4. Characteristic functions as multipliers

Let χΩ be the characteristic function of the domain Ω inRn . One of the outstanding
problems in the theory of function spaces of type (1.7) and their special cases such
as (fractional) Sobolev spaces, classical Besov spaces, Hölder–Zygmund spaces,
Hardy spaces, bmo, etc., is the question under which circumstances and for which
of these spaces χΩ is a multiplier. As for the now older contributions we refer
to [23, 2.8.7, pp. 158–165]; [8]; [10, §13]; and the references given there. The
state-of-the-art in the middle of the nineties may be found in [17, 4.6.3, pp. 207–
221, 258]. More recent results (and again additional references) are given in [18,
Section 4]; [19, Section 4]; [27, Section 5]. Here we wish to contribute to this
question mainly as an application of Theorem 1 and, hence, restricted to Bs

p (but
we add a few comments concerning more general spaces in the complementary
Subsection 4.3). Furthermore we wish to hint on a connection between some
recent notation related to fractal geometry and multipliers in function spaces. It is
no restriction of generality assuming from the very beginning that the domains Ω
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in Rn considered are bounded. Of interest is the, then, compact boundary Γ = ∂Ω.
First we introduce some notation with respect to arbitrary compact sets Γ in Rn .
A ball centred at x ∈ Rn and of radius r > 0 is denoted by B(x,r).

Definition 3. Let Γ be a non-empty compact set in Rn.

(i) Let h : t → h(t) be a positive monotonically increasing function on the
interval (0,1]. Then Γ is called an h-set if there is a finite Radon measure µ

in Rn with

supp µ = Γ and µ(B(γ ,r)) ∼ h(r), γ ∈ Γ , 0 < r ≤ 1. (2.27)

(ii) Then Γ is said to be porous if there is a number η with 0 < η < 1, such that
one finds, for any ball B(x,r), centred at x ∈ Rn and of radius 0 < r < 1,
a ball B(y,ηr) with

B(y,ηr) ⊂ B(x,r) and B(y,ηr) ∩ Γ = ∅. (2.28)

(iii) Then Γ is said to be uniformly porous if it is porous and if it is an h-set
according to part (i) with respect to an admitted h.

Remark 7. We comment on part (i). We followed the notation introduced and
studied in [2], [3], [4]. Of course, ∼ in (2.27) means that the respective equivalence
constants are independent of γ and r. It comes out that for a given function h there
is a compact set Γ and a Radon measure µ with (2.27) if, and only if, there exists
an equivalent function h∗, h ∼ h∗, with

h∗(2− j−k)

h∗(2− j)
≥ 2−kn, for all j ∈ N0 and k ∈ N0. (2.29)

We refer to [2], [3]. The classical example of an admitted function h is given by
h(t) = td . Then Γ becomes a so-called d-set and one may choose µ = Hd |Γ , the
restriction of the Hausdorff measure Hd in Rn on Γ ,

supp µ = Γ , µ(B(γ ,r)) ∼ rd, γ ∈ Γ , 0 < r ≤ 1. (2.30)

Here 0 < d ≤ n, (d = 0 makes sense but it is not of interest). These d-sets have
been studied with great intensity, both in fractal geometry (with a slightly different
notation of what is called a d-set) and in the theory of function spaces. Details
may be found in [25, Section 3, pp. 5–7]. Perturbed d-sets, so-called (d,Ψ)-sets,
typically with Ψ(t) = | log ct|b, have been introduced in [6], [7], and considered in
detail in [15]. They are special h-sets. The theory of the related function spaces on
(d,Ψ)-sets and h-sets may be found in [15] and [4], respectively.

Remark 8. We comment on parts (ii) and (iii) of Definition 3. Properties of sets of
the type (2.28) have been used by several authors and at several occasions under
different names. Here we followed [26, Definition 9.16, p. 138], where we called it
the ball condition. But to call such sets porous might be better and more suggestive.
It is in good agreement with the porosity of sets as considered in [12, 11.12, p. 156].
We proved in [26, 9.17, p. 138–139], that any compact porous set has Lebesgue
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measure zero. There and in [26, 9.19, pp. 140–141], one also finds further relevant
references. By [26, Proposition 9.18, pp. 139–140], an h-set Γ is porous (and hence
Γ is uniformly porous) if and only if, there is a positive number ε such that

h(2− j−k)

h(2− j)
� 2−k(n−ε) for all j ∈ N0 and h ∈ N0. (2.31)

This is a good agreement with (2.29). Recall that � 2−k(n−ε) means ≥ c 2−k(n−ε)

for some constant c > 0 which is independent of j and k. We have in any case
ε < n.

Recall that σp is always given by (2.1).

Theorem 3. (i) Let Ω be a bounded domain in Rn. Let 0 < p < ∞, σ > σp, and
let Γ = ∂Ω be an h-set according to Definition 3(i) with

sup
j∈N0

∞∑
k=0

2kσp

(
h(2− j)

h(2− j−k)
2−kn

)
< ∞. (2.32)

Let Bσ
p, selfs be the space introduced in Definition 1(ii). Then

χΩ ∈ Bσ
p, selfs. (2.33)

(ii) Let Ω be a bounded domain in Rnand let Γ = ∂Ω be uniformly porous
according to Definition 3(iii). Then there is a positive number ε such that

χΩ ∈ Bσ
p, selfs, where 0 < p < ∞ and σp < σ <

ε

p
. (2.34)

(iii) Let 1 ≤ n − 1 ≤ d < n. There exists a bounded star-like domain Ω in Rn

such that Γ = ∂Ω is a d-set according to (2.30),

χΩ ∈ Bσ
p, selfs, where 0 < p < ∞, σp < σ <

n − d

p
, (2.35)

and

χΩ 
∈ B
n−d

p
p , where 0 < p < ∞, σp <

n − d

p
. (2.36)

Remark 9. We shift the proof of this theorem to 3.5. But we add a few comments
now. By (2.29) the brackets in (2.32) are always uniformly bounded. Hence, (2.32)
asks for a qualified decay of these brackets with respect to k and uniformly in j .
Inserting h(t) = td one gets just (2.35), as it should be. Since Γ is the boundary
of a domain we always have n − 1 ≤ d ≤ n (excluding d = n in part (iii)). If the
boundary Γ = ∂Ω is a general h-set then one gets, as a by-product of the proof
given below, that

h(2− j)

h(2− j−k)
� 2(n−1)k, k ∈ N0, j ∈ N0.
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Hence by (2.32) we obtain that σp < σ < 1
p , as it should be. The number ε in part

(ii) is the same as in (2.31). Finally, part (iii) makes clear that the assertions are
sharp, at least in terms of Bs

p spaces and d-sets. Recall that a bounded domain Ω

is called star-like, say, with respect to the origin, if for any y ∈ Rn with |y| = 1
there is a positive number λ(y) such that λy with λ ≥ 0 belongs to Ω if, and only
if, 0 ≤ λ < λ(y). The proof given below also shows that

χΩ ∈ B
n−d

p
p∞, selfs and χΩ 
∈ B

n−d
p

pq if 0 < q < ∞,
n − d

p
> σp , (2.37)

where the first assertion holds for any bounded domain Ω whose boundaryΓ = ∂Ω

is a d-set, n − 1 ≤ d < n. This strengthens both (2.35) and (2.36). As said in the
introduction when it comes to spaces Bs

pq or Fs
pq with q 
= p, we assume that the

reader is familiar with the underlying theory for these spaces. We mention only
that Bs

p∞,selfs is given by (2.6) with Bs
p∞ in place of Bs

p.
Recall again that σp is given by (2.1).

Corollary 1. (i) Let Ω be a bounded domain in Rn. Let 0 < p < ∞, σ > σp, and
let Γ = ∂Ω be an h-set according to Definition 3(i) satisfying (2.32). Then

χΩ ∈ M(Bs
p), where 1 < p < ∞, 0 < s < σ,

and

χΩ ∈ M(Bσ
p ), where 0 < p ≤ 1, σ > n

(
1

p
− 1

)
.

(ii) Let Ω be a bounded domain in Rn and let Γ = ∂Ω be uniformly porous
according to Definition 3(iii). Then there is a positive number ε such that

χΩ ∈ M(Bs
p) where 0 < p < ∞, σp < s <

ε

p
. (2.38)

(iii) Let 1 ≤ n − 1 ≤ d < n. There exists a bounded star-like domain Ω in Rn

such that Γ = ∂Ω is a d-set according to (2.30),

χΩ ∈ M(Bs
p), where 0 < p < ∞, σp < s <

n − d

p
,

and

χΩ 
∈ M
(
B

n−d
p

p
)
, where 0 < p < ∞, σp <

n − d

p
.

Proof. This corollary is an immediate consequence of Theorem 1 and Theorem 3.
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3. Proofs

3.1. Proof of Proposition 1

Step 1. First we prove that (2.6) and (2.10) are equivalent quasi-norms. By (2.6),
(2.4), (2.3), and elementary multiplier assertions with respect to functions of type
ψ it follows that (with the usual modifications if p = ∞)

∥∥ f |Bs
p, selfs

∥∥p = sup
l, j

∥∥ψ f(2− j · +l 2− j) |Bs
p

∥∥p

∼ sup
l, j

[ ∫
|x|�1

∣∣ f(2− j x + l 2− j)
∣∣p

dx

+
∫

|x|+|h|�1

|h|−sp
∣∣∆N

h [ f(2− j · +l 2− j)]∣∣p dh dx

|h|n
]

∼ sup
l, j

[
2 jn

∫
|x|�2− j

∣∣ f(x + l 2− j)
∣∣p

dx

+ 2− j(sp−n)

∫
|x|+|h|�2− j

|h|−sp
∣∣∆N

h f(· + l 2− j)
∣∣p dh dx

|h|n
]
.

Hence, (2.6) and (2.10) are equivalent quasi-norms. This proves the first assertion
in part (i). As for (2.11) we have, for some c > 0 and all x ∈ Rn and j ∈ N0,

2 jn
∫

|h|�2− j

| f(x + h)|p dh ≤ c
∥∥ f |Bs

p, selfs

∥∥p
. (3.1)

Hence, the right-hand side of (3.1) is a uniform bound at all Lebesgue points of
| f(x)|p. This proves (2.11).

Step 2. We prove part (ii). Let f ∈ Bs
p, selfs and g ∈ Bs

p, selfs. According to [17,
4.6.4, Theorem 2, p. 222], and again by elementary multiplier assertions and (2.3)
we have

sup
l, j

∥∥ψ(· − l) f(2− j ·) g(2− j·)|Bs
p

∥∥
� sup

l, j

(‖ f |L∞‖ · ∥∥ψ(· − l) g(2− j·) |Bs
p

∥∥ + ‖g |L∞‖ · ∥∥ψ(· − l) f(2− j ·) |Bs
p

∥∥)
.

Using (2.11) it follows that Bs
p, selfs is a multiplication algebra. Then one obtains

by (2.9) that bs
p, selfs is also a multiplication algebra (we refer to our definition of

what is called a multiplication algebra between (2.8) and (2.9)).



Non-smooth atoms and pointwise multipliers in function spaces 471

3.2. Proof of Theorem 1

Step 1. We prove the right-hand side of (2.12). Let

g ∈ Bs
p , supp g ⊂ {y : |y| ≤ 1}. (3.2)

Then ∥∥g |Bs
p

∥∥ ∼ 2− j(s− n
p )

∥∥g(2 j·) |Bs
p

∥∥, j ∈ N0, (3.3)

where the equivalence constants are independent of g and j ∈ N0. This follows
from [26, 5.16, with 5.4, 5.5, pp. 66, 44, 45], and Bs

p = Fs
pp. Let m ∈ M(Bs

p) and
let ψ be given by (2.2). Then we obtain by (3.3),

∥∥ψ m(2− j ·) |Bs
p

∥∥ ∼ 2− j(s− n
p )

∥∥ψ(2 j ·) m |Bs
p

∥∥
≤ ∥∥m |M(Bs

p)
∥∥ 2− j(s− n

p )
∥∥ψ(2 j ·) |Bs

p

∥∥
�

∥∥m |M(Bs
p)

∥∥. (3.4)

The right-hand side of (2.12) is now a consequence of this estimate and (2.6).

Step 2. We prove the left-hand side of (2.12) under the assumption that Theorem 2
is valid (which will be proved in 3.4). Let m ∈ Bσ

p, selfs for some σ > s. Let

f(x) =
∑
k,l

λkl ak,l(x), ‖λ |�p‖ ∼ ∥∥ f |Bs
p

∥∥, (3.5)

be an optimal classical atomic decomposition of f ∈ Bs
p according to (2.20),

(2.19), where ak,l are C∞ classical (s,p)K -atoms with σ < K . Then we wish to
prove that m ak,l in

(m f )(x) =
∑
k,l

λkl (mak,l)(x), (3.6)

after normalisation, are (s,p)σ -atoms according to Definition 2. The support con-
dition in (2.22) is obvious. If l = 0 then we put ak = ak,0. We may assume
that

supp ak(2−k·) ⊂
{

y : |y| ≤ c

2

}
, k ∈ N0,

where c is the same positive constant as in (2.2). In particular it follows by (classical)
multiplier assertions as proved in [24, Corollary 4.2.2, p. 205], that for some C > 0,

∥∥∥∥ak(2−k·)
ψ

| M(Bσ
p)

∥∥∥∥ ≤ C 2−k(s− n
p ) for all k ∈ N0.

Using this observation and (3.2), (3.3) with σ in place of s we obtain that
∥∥mak |Bσ

p

∥∥ ∼ 2k(σ− n
p )

∥∥m(2−k·) ak(2−k·) |Bσ
p

∥∥
� 2k(σ−s)

∥∥ψ m(2−k·) |Bσ
p

∥∥ . (3.7)
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In the case of ak,l with l ∈ Zn one has (3.7) with ak,l and ψ(· − l) in place of ak

and ψ, respectively. Hence, by (2.6),

∥∥mak,l |Bσ
p

∥∥ � 2k(σ−s)
∥∥m |Bσ

p, selfs

∥∥, l ∈ Zn, k ∈ N0, (3.8)

and, according to Definition 2, it follows that mak,l are (s,p)σ -atoms multiplied
with the indicated constant. By Theorem 2 and (3.5) we obtain that

∥∥m f |Bs
p

∥∥ � ∥∥m |Bσ
p, selfs

∥∥ · ∥∥ f |Bs
p

∥∥, f ∈ Bs
p.

This proves the left-hand side of (2.12).

Step 3. We prove (ii). Let p ≤ 1 and m ∈ Bs
p, selfs. We have (3.5), (3.6), and (3.8)

now with σ = s. In particular, mak,l are uniformly bounded functions in Bs
p. We

apply (2.26) and obtain that

∥∥m f |Bs
p

∥∥p �
∑
k,l

|λkl |p
∥∥ mak,l |Bs

p

∥∥p

�
∥∥m |Bs

p, selfs

∥∥p · ∥∥ f |Bs
p

∥∥p
. (3.9)

Then (2.13) follows from (3.9) and the right-hand side of (2.12).

Step 4. We prove (iii). In the complementary Subsection 4.1 we wish to extend
(2.15) to some other spaces in (1.7). To prepare this comment now we put A = Bs

p.
If p and s are restricted by (2.14), then A is a multiplication algebra,

‖ fg |A‖ � ‖ f |A‖ · ‖g |A‖, f ∈ A, g ∈ A, (3.10)

and satisfies the localisation principle,

‖ f |A‖ ∼
(∑

l∈Zn

‖ψ(· − l) f |A‖p

) 1
p

, f ∈ A, (3.11)

(usual modification if p = ∞), where ψ is given by (2.2), (2.3). The first assertion,
(3.10), may be found in [23, Theorem 2.8.3, pp. 145–146], including some refer-
ences. (The formulation given there must be corrected in the case of s = 0, p = ∞,
but this is not of relevance here. We refer in this connection to [21] and also to [17,
Theorem 4.6.4/1, pp. 221–222].) The localisation principle (3.11) has been proved
in [24, Theorem 2.4.7, pp. 124–125]. Actually, (3.11) is a characterisation:

If ψ(· − l) f ∈ A and if the right-hand side of (3.11) is finite, then f ∈ A and we
have (3.11).

We refer to [24, Remark 2.4.7/4, p. 129]. One may also replace ψ in (3.11)
by ψ2. Based on these observations and (3.10), (3.11), the proof of (2.15) is rather
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simple. Let m ∈ Bs
p, unif according to (2.5). Then, assuming p < ∞, and again

A = Bs
p,

‖m f |A‖p ∼
∑
l∈Zn

∥∥ψ2(· − l)m f |A∥∥p

� sup
l̃

‖ψ(· − l̃ )m |A‖p ·
∑
l∈Zn

‖ψ(· − l) f |A‖p

� ‖m |Aunif‖p · ‖ f |A‖p (3.12)

(with the obvious modification if p = ∞). This proves m ∈ M(A). Conversely
if m ∈ M(A), then m ∈ Aunif follows from the right-hand side of (2.12) and the
obvious embedding Aselfs ↪→ Aunif . This also completes the proof of (2.15).

3.3. Proof of Proposition 2

Step 1. We prove (i). Let ak,l be a classical (s,p)K -atom according to (2.18). We
may assume l = 0 and we put ak = ak,0. Then it follows that

∥∥ ak(2−k·) |Bσ
p

∥∥ � 2−k(s− n
p )

, k ∈ N0.

Using (3.2), (3.3) with σ in place of s we get

∥∥ak |Bσ
p

∥∥ ∼ 2k(σ− n
p )

∥∥ak(2−k·) |Bσ
p

∥∥ � 2k(σ−s), k ∈ N0.

Hence ak, and also ak,l with l ∈ Zn , are (s,p)σ -atoms.

Step 2. We prove (ii). It is sufficient to deal with ak, hence l = 0. Again we apply
(3.2), (3.3), and get

∥∥ak |Bs
p

∥∥ ∼ 2k(s− n
p )

∥∥ak(2−k·) |Bs
p

∥∥
� 2k(s− n

p )
∥∥ak(2−k·) |Bσ

p

∥∥
� 2−k(σ−s)

∥∥ak |Bσ
p

∥∥ � 1.

This proves the first assertion in (2.23). The proof of the second assertion follows
by the same arguments with L p in place of Bs

p.

3.4. Proof of Theorem 2

We have the atomic decomposition theorem (2.20), (2.21) based on classical
(s,p)K -atoms according to (2.18). By Proposition 2(i) classical (s,p)K -atoms are
special (s,p)σ -atoms. Hence it remains to prove that

∥∥ f |Bs
p

∥∥ � ‖λ |�p‖, f =
∑
k,l

λkl ak,l, (3.13)



474 H. Triebel

for any atomic decomposition (2.24) based on arbitrary (s,p)σ -atoms ak,l. For
this purpose we expand each function ak,l(2−k·) optimally in Bσ

p with respect to

classical (σ,p)K -atoms b j,w
k,l where σ < K ,

ak,l(2−kx) =
∞∑
j=0

∑
w∈Zn

η
k,l
jw b j,w

k,l (x), x ∈ Rn, (3.14)

with

supp b j,w
k,l ⊂ B j,w,

∣∣∣Dαb j,w
k,l (x)

∣∣∣ ≤ 2− j(σ− n
p )+|α| j

, |α| ≤ K , (3.15)

and


∑

j,w

∣∣ηk,l
jw

∣∣p




1
p

∼ ∥∥ak,l(2−k·) |Bσ
p

∥∥ � 2−k(s− n
p )

. (3.16)

The last estimate is again a consequence of (3.2), (3.3) with σ in place of s, and
(2.22),

∥∥ak,l(2−k·) |Bσ
p

∥∥ ∼ 2−k(σ− n
p )

∥∥ak,l |Bσ
p

∥∥ ≤ 2−k(s− n
p )

.

Hence,

ak,l(x) =
∞∑
j=0

∑
w∈Zn

η
k,l
jw b j,w

k,l (2kx),

where the functions b j,w
k,l (2k·) are supported by balls of radius ∼ 2−k− j . By (3.15)

we have ∣∣∣Dαb j,w
k,l (2kx)

∣∣∣ = 2k|α|
∣∣∣(Dαb j,w

k,l

)
(2kx)

∣∣∣
≤ 2( j+k)|α| 2− j(σ− n

p )

= 2( j+k)|α| 2−( j+k)(s− n
p ) 2−( j+k)(σ−s) 2k(σ− n

p )
.

Replacing j + k by j we obtain that

ak,l(x) = 2k(σ− n
p )

∑
j≥k

∑
w∈Zn

η
k,l
j−k,w 2− j(σ−s) d j,w

k,l (x), (3.17)

where d j,w
k,l are classical (s,p)K -atoms supported by balls of radius ∼ 2− j . We

insert (3.17) into the expansion in (3.13). We fix j ∈ N0 and w ∈ Zn , and collect
all non-vanishing terms d j,w

k,l in the expansions (3.17). We have k ≤ j . Furthermore
multiplying (3.14), if necessary, with suitable cut-off functions it follows that there
is a natural number N such that for fixed k only at most N points l ∈ Zn contribute
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to d j,w
k,l . We denote this set by ( j,w,k). Hence its cardinality is at most N, where N

is independent of j , w, k. Then

d j,w(x) =
∑

k≤ j 2k(σ− n
p ) ∑

l∈( j,w,k) η
k,l
j−k,w λk,l d j,w

k,l (x)∑
k≤ j 2k(σ− n

p ) ∑
l∈( j,w,k)

∣∣ηk,l
j−k,w

∣∣ · |λkl |
are correctly normalised classical (s,p)K -atoms located in a ball of radius ∼ 2− j

centred at 2− jw. Let

ν j,w = 2− j(σ−s)
∑
k≤ j

2k(σ− n
p )

∑
l∈( j,w,k)

∣∣ηk,l
j−k,w

∣∣ · |λkl |. (3.18)

Then it follows by (3.17) inserted in the expansion (3.13), the classical atomic
decomposition

f(x) =
∞∑
j=0

∑
w∈Zn

ν jw d j,w(x).

Let 0 < ε < σ − s. Then we obtain by (3.18) that (assuming p < ∞)

|ν jw|p �
∑
k≤ j

∑
l∈( j,w,k)

2−( j−k)p(σ−s−ε) 2k(s− n
p )p ∣∣ηk,l

j−k,w

∣∣p |λkl |p.

Summation over j ∈ N0 and w ∈ Zn results in

∞∑
j=0

∑
w∈Zn

|ν jw|p �
∞∑

k=0

∑
l∈Zn

|λkl |p
∑
j≥k

∑
w∈Zn

2k(s− n
p )p ∣∣ηk,l

j−k,w

∣∣p
,

� ‖λ |�p‖p,

where we used (3.16). Then we obtain (3.13) by the classical atomic decomposition
theorem. If p = ∞ then one has to modify the arguments in the usual way.

3.5. Proof of Theorem 3

Step 1. We prove part (i). We may assume that diam Ω < 1. Let

Ωk = {
x ∈ Ω : 2−k−2 ≤ dist (x,Γ ) ≤ 2−k

}
, k ∈ N0,

and let
{
ϕk

l : k ∈ N0 ; l = 1, . . . ,Mk
} ⊂ C∞

0 (Ω)

be a resolution of unity,

∑
k∈N0

Mk∑
l=1

ϕk
l (x) = 1, if x ∈ Ω, (3.19)
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with

supp ϕk
l ⊂ {

x : ∣∣x − xk
l

∣∣ � 2−k
} ⊂ Ωk,

and

∣∣Dαϕk
l (x)

∣∣ � 2|α|k, |α| ≤ K ,

where K ∈ Nwith K > σ . It is well known and can be proved easily that resolutions
of unity with the required properties exist. Of interest is that the minimal number
Mk ∈ N0 is needed. First we remark that µ with (2.27) satisfies the so-called
doubling condition; this is a consequence of (2.29). Then it follows by (2.27) that

Mk h(2−k) � 1, k ∈ N0. (3.20)

We rewrite (3.19) as

χΩ(x) =
∞∑

k=0

2k(σ− n
p )

Mk∑
l=1

2−k(σ− n
p )

ϕk
l (x), x ∈ Rn, (3.21)

where 2−k(σ− n
p )

ϕk
l are classical (σ,p)K -atoms. Hence,

∥∥χΩ |Bσ
p

∥∥p ≤
∞∑

k=0

2k(σ− n
p )p Mk �

∞∑
k=0

2kσp

(
2−kn

h(2−k)

)
< ∞. (3.22)

This proves χΩ ∈ Bσ
p . Next we wish to show that χΩ ∈ Bσ

p, selfs. By (2.6) it is
sufficient to deal with

χΩ(2− j ·)ψ, assuming 0 ∈ 2 jΓ , where j ∈ N0.

Let µ j be the image measure of µ with respect to the dilations y → 2 j y. Let Bc

be the ball of radius c > 0, centred at the origin, where c is the same number as in
(2.2). Then we have,

µ j
(
Bc ∩ 2 jΓ

) ∼ h
(
2− j

)
, j ∈ N0.

Now we can repeat the above arguments with Bc ∩ 2 jΩ and Bc ∩ 2 jΓ in place of
Ω and Γ , respectively. Let M j

k be the counterpart of the above number Mk . Then

M j
k h

(
2− j−k

)
� h

(
2− j

)
, j ∈ N0, k ∈ N0,

is the generalisation of (3.20) we are looking for. Now we can repeat the arguments
resulting in (3.21) and (3.22). By (2.32) we obtain (2.33).

Step 2. We prove (ii). Since Γ is uniformly porous we have (2.31) for some h and
some ε > 0. Then (2.32) is satisfied if σp < ε. This proves (2.34).
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Step 3. We prove (iii) and (2.37). Let Γ be a d-set with n − 1 ≤ d < n. Hence,
h(t) ∼ td , and we have (2.31) with ε = n − d. Then (2.35) is a consequence of
(2.34). As for the first assertion in (2.37) for arbitrary d-sets Γ = ∂Ω we mention
that

sup
j∈N0;k∈N0

2kσp

(
h

(
2− j

)
h

(
2− j−k

) 2−kn

)
< ∞, σ = n − d

p
, h(t) ∼ td,

is the adequate counterpart of (2.32) for Bσ
p∞ in place of Bσ

p . We refer to [25,
Theorem 13.8, p. 75], as far as the underlying classical atomic decompositions
are concerned. This proves the first assertion in (2.37) by the same arguments
as above. As for (2.36) and the second assertion in (2.37) we use the star-like
bounded domain Ω constructed in [25, 16.3, 16.4, pp. 122–123], based on the
preceding Theorem 16.2 in [25, pp. 120–122]. The boundary Γ = ∂Ω is a d-set
with n − 1 < d < n. (There is no problem to incorporate d = n − 1 here, but this
is the case of a smooth boundary, or of a cube, where the corresponding assertion
is well known, [23, Remark 2.8.4/2, p. 149], and [17, Lemma 4.6.3/2, p. 209].
Hence we assume now that d > n − 1.) By the arguments given in [25, 16.4], it is
sufficient to deal with cylindrical domains Ω in Rn ,

Ω = {
x = (x ′,xn) : x ′ ∈ Q′, 0 < xn < f(x ′)

}
,

where Q′ is, say, the unit cube in Rn−1 centred at the origin, and the interesting
part of the boundary, now denoted by Γ , is the graph of the function f(x ′),

Γ = {
(x ′, f(x ′)) : x ′ ∈ Q′} .

Here f(x ′) is a typical fractal lacunary construction

xn = f(x ′) =
∞∑
j=1

f j(x ′), f j(x ′) = 2−ν j s
∑

l∈Zn−1

ω(2ν j x ′ − l), (3.23)

where d = n − s; hence 0 < s < 1; ν j ∼ 2c j for some c > 0, and ω is the classical
bump function,

ω(x ′) = e
− 1

1−|2x′ |2 if |x ′| <
1

2
; ω(x ′) = 0 if |x ′| ≥ 1

2
.

We refer for details to [25, pp. 121–122]. Let

Γ j = {
(x ′, f j(x ′)) : x ′ ∈ Q′} , j ∈ N0.

Comparing the near-by slices

Ω j = {
x = (x ′,xn) ∈ Ω : 0 < γn − xn < 2−ν j s with γ = (x ′,γn) ∈ Γ

}
and

Ω j = {
x = (x ′,xn) ∈ Ω : 0 < γn − xn < 2−ν j s with γ = (x ′,γn) ∈ Γ j

}
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then it follows that

|Ω j| ∼ |Ω j | ∼ 2−ν j s, j ∈ N0, (3.24)

where the equivalence constants are independent of j . This follows from the lacu-
nary construction in (3.23): the terms fk with k < j are too tame and the terms fk

with k > j are too small to influence (3.24). We refer to [25, p. 121–122], where
we substantiated these admittedly somewhat vague arguments. Even more, Ω j and
Ω j differ from each other by a marginal set, compared with (3.24), uniformly in j .
Let, temporarily, Q(x,r) be a cube in Rn centred at x ∈ Rn and of side-length
r > 0. Let Ωc = Rn\Ω. There is a constant a > 0 such that

|Q(x,a2−ν j ) ∩ Ω| ∼ |Q(x,a2−ν j ∩ Ωc| ∼ 2−nν j , x ∈ Ω j, j ∈ N0.

Let 0 < n−d
p < 1 (this is always the case if 1 ≤ p < ∞). Then in a generalisation

of (2.4) the space Bσ
pq with σ = n−d

p = s
p and 0 < q < ∞ can be quasi-normed by

∥∥g |Bσ
pq

∥∥ = ‖g |L p‖

+



∫
|h|≤1

|h|−σq


 ∫
Rn

|g(x + h) − g(x)|p dx




q
p

dh

|h|n




1
q

.

Let g = χΩ , x ∈ Ω j , |h| ∼ 2−ν j , and x + h ∈ Ωc. Then it follows that
∫
Ω j

|χΩ(x + h) − χΩ(x)|p dx � 2−sν j , j ∈ N0.

Since σ = s
p we obtain that

∫

|h|∼2−ν j

|h|−σq


 ∫
Rn

|χΩ(x + h) − χΩ(x)|p dx




q
p

dh

|h|n � 1, j ∈ N0,

and, consequently,

χΩ 
∈ B
n−d

p
pq , 0 < q < ∞. (3.25)

If p < 1 then it might happen that one needs second differences in (2.4) and its
generalisation to Bσ

pq , but not any more since

n

(
1

p
− 1

)
<

n − d

p
= s

p
, hence

s

p
<

sn

n − s
<

n

n − 1
≤ 2

(recall that n ≥ 2). Now one can repeat the above arguments with second differences
and, say, x ∈ Ω, |h| ∼ 2−ν j , x + h ∈ Ωc, x − h ∈ Ωc. Then one again gets (3.25).
Finally we remark that (2.36) is an immediate consequence of (3.25).
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4. Complements

In this section we collect a few results for the more general spaces Bs
pq and Fs

pq
(always defined on Rn , where n ∈ N is fixed) which can be obtained easily from
the assertions proved so far for the special spaces Bs

p = Bs
pp = Fs

pp, and from
known general observations available in the literature. We do not develop any new
specific techniques. Furthermore it is assumed that the reader of these complements
is familiar with the theory of the spaces Bs

pq and Fs
pq as developed in the books of

the author and in [17]. We recall only that

Hs
p = Fs

p,2, with 0 < p < ∞ and s ∈ R,

are the Sobolev–Hardy spaces.

4.1. Homogeneity, multiplication algebras, and the localisation principle

The proofs of the right-hand side of (2.12) and of (2.15) with (2.14) in Theorem 1
are based on some properties of the spaces A = Bs

p: the homogeneity assertion
(3.2), (3.3), the localisation principle in (3.11), and the observation that A = Bs

p is
a multiplication algebra according to (3.10) if p and s are restricted by (2.14). In
other words if the space

A = Fs
pq, with 0 < p < ∞, 0 < q ≤ ∞, s ∈ R,

complemented by

Fs
∞∞ = Bs

∞∞ = Cs, s ∈ R,

has one or several of these properties then the corresponding arguments can be
carried over immediately. Recall that Bs

p = Bs
pp = Fs

pp. Obviously, Aunif and
Aselfs are defined by (2.5) and (2.6) with A in place of Bs

p. As before, M(A) is the
collection of all multipliers m according to (2.7).

Corollary 2. (i) Let

A = Fs
pq with 0 < p ≤ ∞, 0 < q ≤ ∞, s > n

(
1

min(p,q)
− 1

)
+

,

(4.1)

where q = ∞ if p = ∞. Then

M(A) ↪→ Aselfs ↪→ Aunif . (4.2)

(ii) Let

A = Fs
pq with (2.14) and 0 < q ≤ ∞, (4.3)

where q = ∞ if p = ∞. Then

M(A) = Aunif . (4.4)
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(iii) Let A be given by (4.3) and let, in addition, s > n( 1
q − 1)+. Then

M(A) = Aselfs = Aunif .

Proof. Step 1. By [26, 5.16, with 5.4, 5.5, pp. 66, 44, 45], we have the homogeneity
property (3.2), (3.3) with A given by (4.1) (q = ∞ always, if p = ∞) in place
of Bs

p. Then the first inclusion in (4.2) follows from (3.4) with A in place of Bs
p.

The second inclusion is obvious by definition.

Step 2. By [17, 4.6.4, pp. 221–222], and the references given there, Fs
pq is a mul-

tiplication algebra if, and only if, s, p, q are restricted as in (4.3). Furthermore
by [24, 2.4.7, p. 124], all spaces Fs

pq satisfy the localisation principle. Then (4.4)
follows from (3.12) and (3.4) with j = 0 and A in place of Bs

p. Finally, part (iii) is
a consequence of parts (i) and (ii).

Remark 10. References to the relevant literature may be found in Remark 3. We
repeat that part (ii), including the above proof, is known, [17, Theorem 4.9.1/1,
p. 247], and [1]. One may ask whether (4.4) also holds for other spaces. Then
A ↪→ L∞ is necessary. But in the case of A = Fs

pq this coincides with (4.3); we
refer again to [17, Theorem 4.6.4/1, pp. 221–222]. If A = Bs

pq then, of course,
again A ↪→ L∞, and hence s ≥ n

p is necessary for (4.4). But the above arguments
cannot be applied since Bs

pq satisfies the localisation principle if, and only if,
p = q, [24, Theorem 2.4.7, pp. 124–125]. Nevertheless it has been proved in [20]
that

M(Bs
pq) = Bs

pq, unif , if 1 ≤ p ≤ q ≤ ∞ and s >
n

p
. (4.5)

On the other hand one can apply the above arguments to other spaces which are
multiplication algebras and which satisfy the localisation principle, for example,
to C̊s being the completion of the Schwartz space S = S(Rn) in Cs, where s > 0.
Then it comes out that

M(C̊s) = C̊s
unif � Cs

unif = M(Cs) = Cs, s > 0. (4.6)

In particular, M(C̊s) and M(Cs) = Cs are different. This observation can be
extended to (in obvious notation)

M
(

F̊s
p∞

)
= F̊s

p∞, unif � Fs
p∞, unif = M

(
Fs

p∞
)
, 0 < p < ∞, s >

n

p
, (4.7)

and

M
(

B̊s
p∞

)
� M

(
Bs

p∞
)
, 0 < p ≤ ∞, s >

n

p
. (4.8)

On the other hand, we have

M
(

B̊s
∞q

)
= M

(
Bs

∞q

)
, 0 < q < ∞, s ∈ R. (4.9)
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Here � in (4.7), (4.8) comes from the fact that there are functions in Bs
p∞ and

Fs
p∞ which cannot be approximated locally by smooth functions in the respective

spaces: we may assume n = 1. Let

f(x) = |x|s− 1
p χ(x) with χ ∈ C∞

0 (R), χ(0) = 1.

By [23, Proposition 2.8.4, pp. 147–148], or by atomic arguments,

f ∈ Bs
p∞(R) ↪→ Cs− 1

p (R), 0 < p ≤ ∞,

but it cannot be approximated by smooth functions in these spaces. In the case of
the F-spaces we refer, for a corresponding assertion, to [26, Proposition 5.6, p. 46].
On the other hand by atomic or subatomic decompositions it follows that functions
belonging to Bs∞q with q < ∞ can be approximated locally by smooth functions,
which results in (4.9). These observations correct corresponding assertions in [17,
Lemma 4.9, pp. 246–247], within a larger context.

4.2. Duality and interpolation

Let A = Bs
pq or A = Fs

pq . If p < ∞ and q < ∞, then the dual A′ of A can be
interpreted in the usual way within the dual pairing (S,S′) of the Schwartz space
S = S(Rn) and its dual, the space of tempered distributions S′ = S′(Rn). We refer
to [23, 2.11], and [17, 2.1.5]. This can be extended to the spaces with p = ∞ and/or
q = ∞, where one has to replace A by Å, the completion of S in A. Extending the
notation Å to all spaces, and hence Å = A if p < ∞, q < ∞, one has

M
(

Å
)

↪→ M

((
Å
)′)

by standard arguments. If, in addition, A is a Banach space, and hence p ≥ 1 and
q ≥ 1, one may ask whether

M
(

Å
)

= M

((
Å
)′)

or not. This is the case if Å = A is reflexive, and hence 1 < p < ∞ and 1 < q < ∞,
but otherwise this is not true in general, in contrast with a corresponding remark
in [16, p. 144]. Since(

C̊s
)′ = B−s

1 and
(
B−s

1

)′ = Cs, s ∈ R, (4.10)

(4.6) is a counter-example. As for (4.10) we refer to [23, Theorem 2.11.2, p. 178, and
formula (12), p. 180]. Another possibility is to use real or complex interpolation: if
m is a multiplier for two spaces A0 and A1 of the scales Bs

pq and Fs
pq then it is also

a multiplier for all complex interpolation spaces [A0,A1]θ and all real interpolation
spaces (A0,A1)θ,q with 0 < θ < 1 and 0 < q ≤ ∞. All this is well known and we
do not describe in detail what can be done if one applies duality and interpolation to
the results in Section 2. We restrict ourselves to two assertions which complement
Theorem 1(i) and Corollary 1(ii).
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Corollary 3. Let 0 < p ≤ ∞ and 0 < q ≤ ∞.

(i) Let s > σp, where σp is given by (2.1). Then

bs
p, selfs ⊂ M(Bs

pq).

(ii) Let Ω be a bounded domain in Rn and let Γ = ∂Ω be uniformly porous
according to Definition 3(iii). Then there is a number ε, 0 < ε < n, such that

χΩ ∈ M
(
Bs

pq

)
, where max

(
ε

(
1

p
− 1

)
, n

(
1

p
− 1

))
< s <

ε

p
.

(4.11)

Proof. Step 1. Let m ∈ bs
p, selfs and hence m ∈ Bσ

p, selfs for some σ > s according
to (2.9). By Theorem 1(i) this function m generates a linear and bounded operator
in all spaces Bs

p with σp < s < σ , and also in all interpolation spaces. This covers,
in particular, all spaces Bs

pq with σp < s < σ and 0 < q ≤ ∞, [23, Theorem 2.4.2,
p. 64].

Step 2. By (2.38) and

(
Bs

p

)′ = B−s
p′ , 1 ≤ p < ∞,

1

p
+ 1

p′ = 1, s ∈ R,

[23, 2.11.2, p. 178], it follows that

χΩ ∈ M
(
Bs

p

)
, 1 < p ≤ ∞, − ε

(
1 − 1

p

)
< s < 0.

The rest is again a matter of interpolation.

Remark 11. In [17, 4.9], and in [18], [19], one finds what is known about multipliers
in the spaces Bs

pq and Fs
pq . Of special interest is the case s = 0. Here we refer to

the recent paper [11]. By the above arguments one obtains the following assertion:
let b0

p, selfs be given by (2.9) with s = 0. Then

b0
p, selfs ⊂ M

(
B0

pq

)
, 1 < p < ∞, 0 < q ≤ ∞.

4.3. Porosity and monotonicity

Let 1 ≤ p ≤ ∞ and let m ∈ M(Bs
pq) for some s > 0 and some q with 0 < q ≤ ∞.

Then it follows by real interpolation between Bs
pq and L p (recall M(L p) = L∞)

that

m ∈ M
(
Bσ

pu

)
with 0 < σ < s, 0 < u ≤ ∞.

In the case of the spaces Fs
pq one can use complex interpolation between Fs

pq and L p,
but the outcome is unsatisfactory. Nevertheless there are also some monotonicity
assertions for M(Fs

pq) based on other means. We refer to [18, Lemma 2.14, p. 300],
and [19, Lemma 7, p. 222]. Our aim here is different. We wish to complement the
Corollaries 1(ii) and 3(ii), and to shed more light on the interplay between porosity
and characteristic functions as multipliers. Recall that in the case of F-spaces we
always assume q = ∞ if p = ∞.



Non-smooth atoms and pointwise multipliers in function spaces 483

Corollary 4. Let Ω be a bounded domain in Rn.

(i) Let Γ = ∂Ω be uniformly porous according to Definition 3(iii). Then there is
a number ε, 0 < ε < n, such that

χΩ ∈ M
(
Fs

pq

)
, if 0 < p ≤ q ≤ ∞, max

(
ε

(
1

p
− 1

)
, n

(
1

p
− 1

))
< s <

ε

p
,

(4.12)

and

χΩ ∈ M
(
Fs

pq

)
, if 1 < p < ∞, 1 ≤ q ≤ ∞, ε

(
1

p
− 1

)
< s <

ε

p
. (4.13)

(ii) Let Γ = ∂Ω be porous according to Definition 3(ii) (not necessarily uniformly
porous). Then

χΩ ∈ M
(
F0

pq

)
, if 1 < p < ∞, 1 ≤ q ≤ ∞. (4.14)

Proof. We prove part (i). Recall that Fs
pp = Bs

pp = Bs
p. Hence, (4.12) with p = q

follows from (4.11). Since Γ is porous we can apply the monotonicity assertion
in [27, Proposition 5.7(i)], extending (4.12) from q = p to all q with p ≤ q ≤ ∞.
Furthermore, (4.13) and part (ii) of the above corollary follow from the parts (ii)
and (iii) of Proposition 5.7 in [27].

Remark 12. Since

Hs
p = Fs

p,2, 1 < p < ∞, s ∈ R,

are the (fractional) Sobolev spaces, it follows by (4.13) that the uniform porosity
of Γ = ∂Ω ensures that χΩ is a multiplier in some of these spaces provided that

ε

(
1

p
− 1

)
< s <

ε

p
, for some ε > 0 and 1 < p < ∞.

In the case of s = 0 we have H0
p = L p, hence (4.14) with q = 2 is obvious.

4.4. Self-similarity and multipliers

Let A be one of the spaces Bs
pq or Fs

pq in Rn with

0 < p ≤ ∞, 0 < q ≤ ∞, s ≥ σp = n

(
1

p
− 1

)
+

(q = ∞ if p = ∞ in the F-case). Recall that M(A) is the algebra of all multipliers,
whereas Aunif and Aselfs are defined by (2.5) and (2.6) with A in place of Bs

p. By
the above considerations it makes sense to ask for which of these spaces one has

M(A) = Aselfs and/or Aunif = Aselfs.
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Corollary 5. (i) Let A be either Bs
pq or Fs

pq with 0 < p ≤ ∞, 0 < q ≤ ∞ (where
q = ∞ if p = ∞ in the F-case) and s > σp. Then A is a multiplication
algebra if, and only if,

Aunif = Aselfs. (4.15)

(ii) One has

M(A) = Aselfs (4.16)

in each of the following cases:

A = Bs
p with 0 < p ≤ 1, s > n

(
1

p
− 1

)
; (4.17)

A = Fs
pq with (2.14), 0 < q ≤ ∞, (q = ∞ if p = ∞); (4.18)

A = Bs
pq with 1 ≤ p ≤ q ≤ ∞, s >

n

p
; (4.19)

A = L p with 1 ≤ p ≤ ∞.

Proof. Step 1. We prove (i). Let s > σp and let A be one of the spaces Bs
pq or Fs

pq .
Then

‖ f |A‖ = ‖ f | •
A‖ + ‖ f |L p‖, f ∈ A,

is an equivalent quasi-norm in A, where ‖ f | •
A‖ is the quasi-norm of the cor-

responding homogeneous space
•
A. We refer for details and explanations to [24,

Theorem 2.3.3, p. 98], and [5, p. 33]. Then

‖ f(λ·) |A‖ ∼ λ
s− n

p ‖ f | •
A‖ + λ

− n
p ‖ f |L p‖, f ∈ A, λ > 0. (4.20)

Let now A be a multiplication algebra. Then we have

A ↪→ L∞ and ‖ψ(2 j · −l) |A‖ � 2 j(s− n
p )

, j ∈ N0, l ∈ Zn. (4.21)

As for the first embedding we refer to [17, Theorem 1 in 4.6.4, pp. 221–222],
and [21, Remark 3.3.2, p. 114]. The second assertion follows from (3.2), (3.3) and
interpolation. Then we obtain by (4.20), (4.21) that

‖ψ(· − l) f(2− j ·) |A‖ ∼ 2− j(s− n
p ) ‖ψ(2 j · −l) f | •

A‖ + 2 j n
p ‖ψ(2 j · −l) f |L p‖

� 2− j(s− n
p ) ‖ψ(2 j · −l) |A‖ · ‖ f |Aunif‖ + ‖ f |L∞‖

� ‖ f |Aunif‖. (4.22)

This proves (4.15). Conversely, if we have (4.15), then it follows by the first
equivalence in (4.22) that

2 jn
∫
Rn

|ψ(2 j · −l)|p | f(y)|p dy � ‖ f |Aunif‖p, f ∈ A,



Non-smooth atoms and pointwise multipliers in function spaces 485

p < ∞. Hence, as at the end of Step 1 in Subsection 3.1, the right-hand side
is a uniform bound at the Lebesgue points of | f(x)|p, and, consequently, A ↪→
L∞. By the same references as in connection with (4.21) it follows that A is
a multiplication algebra.

Step 2. We prove (ii). We have (4.16) in the cases (4.17)–(4.19) by (2.13), (4.4),
(4.5), combined with (4.15) in the latter cases. Finally,

L p, selfs = L∞ = M(L p), 1 ≤ p ≤ ∞,

follows as above again from the arguments at the end of Step 1 in Subsection 3.1.

Remark 13. If A is either Bs
pq or Fs

pq with

0 < p ≤ ∞, 0 < q ≤ ∞, s ≥ n

(
1

p
− 1

)
+

,

(q = ∞ if p = ∞ in the F-case) then the question of whether (4.16) is valid or not
makes sense. But if s > n

p then we have (4.15) and if, in addition, 1 ≤ q < p ≤ ∞,
then (4.16) is not valid. We refer to [1, p. 162], and to [20, 4.5]. In other words
possible candidates for (4.16) are Bs

pq with q ≥ p and Fs
pq .
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