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Abstract. Different problems in the theory of hyperbolic equations bases on function
spaces of Gevrey type are studied. Beside the original Gevrey classes, spaces defined by
the behaviour of the Fourier transform were also used to prove basic results about the well-
posedness of Cauchy problems for non-linear hyperbolic systems. In these approaches only
the algebra property of the function spaces was used to include analytic non-linearities. Here
we will generalize this dependence. First we investigate superposition operators in spaces
with exponential weights. Then we show in concrete situations how a priori estimates of
strictly hyperbolic type lead to the well-posedness of certain semi-linear hyperbolic Cauchy
problems in suitable function spaces with exponential weights of Gevrey type.
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1. Introduction

In the theory of quasi-linear hyperbolic equations the use of Gevrey spaces is an
essential idea for proving results about the well-posedness of the Cauchy problem.
In the basic paper [14] it was shown that there exists a relation between the
multiplicity of characteristic roots of the hyperbolic operator and the order of the
Gevrey space which guarantees well-posedness of the Cauchy problem. If the
multiplicity of characteristic roots does not exceed ν, then one can prove the well-
posedness for 1 ≤ s < ν/(ν − 1). Sometimes the critical case s = ν/(ν − 1) can
be included in possible classes of well-posedness, too. Let us explain this relation
with the aid of the Gevrey example [7]

utt − ux = 0, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (1.1)
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For this reason we introduce the Gevrey spaces A(s, β, m, �), s > 1, as the set




u ∈ L2(R

n) : ‖u‖s,β,m,� :=




∫

Rn

〈ξ〉2�
m eβ〈ξ〉1/s

m |F u(ξ)|2 dξ





1/2

< ∞





.

Here 〈 ξ 〉2
m = |ξ|2 + m2 and β is a positive constant, whereas � and m are non-

negative constants. The constant multiplicity of the characteristics of the hyperbolic
operator ∂2

t − ∂x is two. The explicit representation of the solution of (1.1) shows
that this Cauchy problem is well-posed iff s ≤ 2, where in the case s = 2 the
solution exists only locally in t.

To overcome the critical order ν/(ν − 1) one has to suppose Levi conditions.
These are relations between lower-order terms and the principal part of the operator.
To illustrate these relations let us consider

utt − t2muxx + btkux = 0, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.2)

where 0 ≤ k < m − 1; k, m are natural numbers. Due to [11] and [12] the Cauchy
problem (1.2) is well-posed iff s ≤ 2m−k

m−1−k .

Thus Gevrey spaces are an important tool for weakly hyperbolic Cauchy prob-
lems.

Nevertheless Gevrey spaces appear in a natural way in the strictly hyperbolic
theory, too. The paper [4] describes a connection between regularity of the coeffi-
cient a = a(t) in

utt − a(t)uxx = 0, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) (1.3)

and possible Gevrey spaces of well-posedness. If a(t) ≥ C > 0 and a ∈ Cα[0, T ],
0 < α < 1, then the Cauchy problem (1.3) is well-posed iff s ≤ 1

1−α
, where

in the case s = 1
1−α

the solution exists only locally in t. But the regularity of
a = a(t) up to t = 0 is not necessary as it is shown in the recent paper [5]. If
a(t) ≥ C > 0, a ∈ C1(0, T ] and the growth restriction |a′(t)| ≤ C

tq , q > 1, is
satisfied for t → +0, then (1.3) is well-posed iff s ≤ q

q−1 .
For the linear problems (1.1) to (1.3) the solvability behaviour in Gevrey classes

is completely known.
In the following we are interested in semi-linear Cauchy problems of type

(1.1) to (1.3) in the Gevrey spaces A(s, β, m, �). Let us restrict ourselves, for the
moment, to

utt − ux = f(x, t, u), u(x, 0) = ut(x, 0) ≡ 0. (1.4)

Vanishing data imply the dependence of f on t and x, too.
One possibility is to allow non-linearities of f with respect to u bases on

algebra properties of Gevrey-type spaces. The algebra property for A(s, β, m, �)

guarantees a possible analytical dependence of f with respect to u. Analyticity
means the Taylor expansion and consequently the algebra property brings a priori
estimates for such non-linear terms. To weaken the assumption of analyticity needs
the study of superposition operators in Gevrey spaces.



Hyperbolic equations 411

Question. Under which conditions on f one can find a continuous function g :
[0,∞) �→ [0,∞) such that

‖ f(u) |A(s, β, m, �)‖ ≤ ‖ u |A(s, β, m, �)‖ g(‖ u |A(s, β, m, �)‖) (1.5)

holds for all u ∈ A(s, β, m, �)?

There exist several results about compositions of Gevrey functions. The composi-
tion of two Gs functions remains Gs if the Gevrey space Gs(Ω), here Ω is an open
set, is defined by the Gevrey behaviour of functions on compact subsets (see Lions
and Magenes [16]). The composition of Gevrey functions defined on a fixed com-
pact set is investigated in Kajitani [13]. Furthermore, let us mention that Gramchev
and Rodino [8] and Gramchev and Yoshino [9] have studied composition maps in
Gevrey-type spaces by using scales of Banach spaces with norms

‖u‖ =
∑

α∈Zn+

T |α|

(α!)σ
∥
∥ Dα

x u |H�
2(R

n)
∥
∥. (1.6)

For the applications presented in Chapter 3 we shall need the estimate (1.5) and
even more, we will be interested also in the local Lipschitz continuity of the non-
linear operator u �→ f(u). All this will be done in Chapter 2. There we shall work
with more general spaces than A(s, β, m, �). The necessity of using modifications
of these classes arises even from the study of the corresponding linear problems.
Our approach is based on some special tools from Fourier analysis (division of the
phase space, use of micro-energies etc.) and this forces us to switch to the more
general scales.

The goal of this paper will be to prove well-posedness results in Gevrey-type
spaces for semi-linear problems for (1.1) to (1.3) (see (1.4) as a semi-linear version
of (1.1)). We will develop a unified approach to handle these problems. Let us
briefly sketch the main steps.

It turns out that we cannot restrict ourselves to the spaces A(s, β, m, �), but
we have to incorporate an extra function h = h(ξ, t) in the Gevrey-type weight.
Thus superposition operators are studied in spaces A(s, β, β′, m, �, h, T ) defined
in Chapter 2. Here β′ represents an additional parameter which, in a certain sense,
restricts the admissible functions h and T in a finite time. Each application leads to
its own function h = h(ξ, t). This function will be constructed in such a way that
the solution of the linear Cauchy problem

L u = f(x, t), u(x, 0) = ut(x, 0) ≡ 0 (1.7)

satisfies an a priori estimate of strictly hyperbolic type. This means that there exists
an, in general, pseudodifferential operator of first order H = H(Dx, t) such that

‖u‖ + ‖H(Dx, t)u‖ + ‖Dtu‖ ≤ C(T )‖ f ‖, (1.8)

where C(T ) tends to 0 if T tends to 0. For brevity we denote the norm of
A(s, β, β′, m, �, h, T ) by ‖ · ‖. Such an a priori estimate is known for solutions of
wave equations (energy estimates), where H(Dx, t) is equal to Dx . The regularity
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of f coincides with those ones of Dxu, Dtu. Thus it is reasonable to call it an a pri-
ori estimate of strictly hyperbolic type. For several classes of weakly hyperbolic
problems we will prove such estimates of strictly hyperbolic type (cf. with (3.4),
(3.13) and (3.23)).

Now let us demonstrate how (1.8) can be used to study

L u = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.9)

where L is a linear hyperbolic operator. Setting w := u − ϕ − tψ transforms (1.9)
to a Cauchy problem with homogeneous data and right-hand side
f(w + ϕ + tψ) − L(ϕ + tψ) =: g(w, ϕ, tψ).

We suppose:

• the linear problem (1.7) is well-posed in A(s, β, β′, m, �, h, T ) and its solution
satisfies (1.8);

• if w ∈ KR(0) = {w ∈ A(s, β, β′, m, �, h, T ) : ‖w‖ ≤ R}, then
‖ f(w + ϕ + tψ)‖ + ‖ f ′(w + ϕ + tψ)‖ ≤ C(R) (assumptions for ϕ,ψ and f
guarantee such an estimate).

Then the application of (1.8) to the linearized problem

L w = g(v, ϕ, tψ), w(x, 0) = wt(x, 0) ≡ 0

immediately gives the next conclusions:

For a given R there exists a constant T = T(R) such that the following properties
hold for the mapping P := L−1g(·, ϕ, tψ):

• P : v ∈ KR(0) → w ∈ KR(0) is continuous;
• P is Lipschitz continuous on KR(0).

Using C(T ) → 0 for T → 0 yields that P becomes a contraction on KR(0). By
Banach’s fixed point theorem we get the existence of a unique solution from KR(0)

for (1.9).
This approach is standard, thus we restrict our considerations in Chapter 3 to

how to derive only a priori estimates of strictly hyperbolic type.
As usual, c and C denote generic constants which may change from line to line.

By B(x, r) we denote a ball with centre in x and radius r. Further we will use the
notations ex and exp x simultaneously.

Acknowledgements. The authors express their gratitude to the referee for some constructive
hints which have helped us to improve the readibility of this paper.

2. Composition operators on spaces with exponential weights

2.1. Some general classes of functions

Our energy estimates will force us to deal with the following very general classes
of functions.
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Definition 2.1. Let s > 0 and suppose T, β > 0 and β′, �, m ≥ 0. Furthermore,
let

h : Rn × [0, T ) �→ R

be a measurable function satisfying

|h(ξ, t)| ≤ β′ 〈 ξ 〉1/s
m , (2.1)

for all ξ and all t ∈ [0, T ) and with some β′ < β.

(i) A(s, β, β′, m, �, h, T ) denotes the set of all complex-valued functions u =
u(x, t), defined on Rn × [0, T ), u(·, t) ∈ L2(R

n) for each t < T and such that

‖ u |A(s, β, β′, m, �, h, T )‖

= sup
0<t<T

(∫

Rn
〈 ξ 〉2�

m exp
(
β 〈 ξ 〉1/s

m + h(ξ, t)
) |F u(ξ, t)|2dξ

)1/2

is finite.
(ii) By AR(s, β, β′, m, �, h, T ) we denote the subspace of real-valued functions in

A(s, β, β′, m, �, h, T ) equipped with the same norm.

The symbol F has always been understood as the Fourier transform with respect
to the space variable x (in contrast to the time variable t).

Remark 2.1. The condition (2.1) guarantees that the elements of A(s, β, β′, m,

�, h, T ) have an exponentially decaying Fourier transform (for fixed t).

Remark 2.2. The scale is monotone with respect to s, β, β′, m, h and T in an
obvious way.

Remark 2.3. Let us mention that most of our methods used to derive estimates
for composition operators defined on AR(s, β, β′, m, �, h, T ) do not extend to
A(s, β, β′, m, �, h, T ).

Agreement. If there is no danger of confusion we shall write simply A instead of
A(s, β, β′, m, �, h, T ).

2.2. Function spaces with exponential weights. I

In Subsections 2.2–2.7 we shall study composition and multiplication in a simpli-
fied situation. Later, in Subsections 2.8–2.13 we shall investigate the problem in
those spaces we have introduced in Subsection 2.1. Finally, in Subsection 2.14 we
add a few comments about the sharpness of the results obtained in the preceeding
subsections.

The capital letters A, B, D, E, . . . (except C) are used to denote specific con-
stants and are fixed throughout this article.
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Here we normalize the Fourier transform as follows:

F u(ξ) = (2π)−n/2
∫

Rn
e−ixξ u(x) dx,

which results in

F (u ∗ v)(ξ) = (2π)n/2 F u(ξ) F v(ξ). (2.2)

If not otherwise stated, all functions are defined on Rn . So, Rn is dropped in our
notations.

Definition 2.2. Let 0 < s < ∞. Then As denotes the set of all complex-valued
functions u in L2 such that

‖ u |As‖ =
(∫

Rn
|F u(ξ)|2 e|ξ|1/s

dξ

)1/2

< ∞.

The subspace of the real-valued functions is denoted by ARs .

Remark 2.4. The classes As are special cases of the more general scale Bp,k

investigated, e.g., in Björck [2].

Remark 2.5. It holds As ⊂ A(s, 1, 0, 0, 0, 0,∞), where the zero in place of h
denotes the function identically zero (in addition we use the convention f(x) =
f(x, t) for all t). At several places in non-linear analysis spaces with a norm

‖ u ‖β =
(∫

Rn
|F u(ξ)|2 eβ|ξ|1/s

dξ

)1/2

< ∞,

for a fixed β > 0 occur. All results derived below for As will be true for these
more general classes (this may be seen by a simple change of coordinates). Only
for simplicity of the presentation do we fix β = 1.

Remark 2.6. The scale is monotone with respect to s. For any ε > 0 we have

As ↪→ As+ε ↪→ L2.

Here the symbol ↪→ indicates continuous imbedding.

Remark 2.7. Let us mention that these embeddings are not compact. For simplicity
consider As ↪→ L2. We use the following simple construction. Denote by XI the
characteristic function of the set I . We put ψ(t) = X[0,1/2](t)−X[−1/2,0](t), t ∈ R.
Now, for given ϕ ∈ C∞

0 (Rn−1) consider the family

v j(ξ) := 2 j/2 ψ(2 jξ1) ϕ(ξ2, . . . , ξn), j = 0, 1, . . . .

Define u j = F v j , then u j, j = 0, 1, . . . is a bounded family in As. Because
of the pairwise orthogonality of the u j in L2(R

n) it can not contain a conver-
gent subsequence. This remark immediately extends to the general situation of
A(s, β, β′, m, �, h, T ) ↪→ A(s + ε, γ, γ ′, m ′, �′, h′, T ).
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Remark 2.8. If we have a bounded family u j, j = 0, 1, . . . in As, then these
functions are uniformly bounded and equicontinuous. The Arzela–Ascoli theorem
yields that for any compact set Ω ⊂ Rn there exists a subsequence {u j�}∞�=0 which
converges uniformly on K . Of course, one can not replace K by an unbounded set.
An example is given by

u j(x) := F −1[ψ(ξ1) ϕ(ξ2, . . . , ξn)
]
(x1 − j, x2, . . . , xn), j = 0, 1, . . . .

This argument can be applied in the general situation A(s, β, β′, m, �, h, T ), too.

Lemma 2.1. (i) The space As becomes a Banach space with respect to ‖ · |As‖.
(ii) The elements of As are C∞-functions satisfying

‖ Dαu|L∞‖ ≤ (2π)−n/4

√

s
Γ((2|α| + n) s)

Γ(n/2)
‖ u |As‖, (2.3)

for all u ∈ As and all α ∈ Nn
0 .

Proof. Because of ξα F u(ξ) ∈ L2 for all α, we conclude the existence of Dαu for
all α and its continuity. Let ωn = 2 πn/2 (Γ(n/2))−1. Then, using

Dαu(x) = (2π)−n/2
∫

eixξ (iξ)α F u(ξ) dξ,

we find

|Dαu(x)| ≤ (2π)−n/2‖ u |As‖
(∫

e−|ξ|1/s |ξ|2|α| dξ

)1/2

and
∫

e−|ξ|1/s |ξ|2|α| dξ = ωn

∫ ∞

0
e−r1/s

r2|α|+n−1 dr

= ωn s
∫ ∞

0
e−t ts(2|α|+n)−1 dt

= ωn s Γ(s(2|α| + n)).

This proves (2.3). ��
Having established the estimate (2.3) one can compare the spaces As with the
classical Gevrey spaces.

Definition 2.3. Let s ≥ 1. The function u belongs to Gs if u ∈ C∞(Rn) and for
every compact subset K of Rn there exists a positive constant C such that, for all
α and x ∈ K,

|Dαu(x)| ≤ C|α|+1 (α!)s.

Lemma 2.2. Let s ≥ 1. Then As ⊂ Gs holds.
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Proof. The lemma becomes a consequence of elementary calculations based on
Stirling’s formula. ��
Remark 2.9. Functions in Gs need not be in L2. For that reason there can’t be
a direct converse of Lemma 2.2. However, if we restrict ourselves to functions with
compact support, then there is a partial converse. Let supp u be compact and let
u ∈ Gs, s > 1. Then there exists a constant c and some ε > 0 such that

|F u(ξ)| ≤ c e−ε |ξ|1/s
,

cf. Rodino [19, Theorem 1.6.1]. If we put

Gs
0 = {

u ∈ Gs : supp u is compact
}
,

then Gs
0 ⊂ Aσ for all s < σ follows.

Of crucial importance for us will be a good estimate for products in As.

Theorem 2.1. The spaces As are algebras with respect to pointwise multiplication
if and only if s > 1.

Proof. Step 1. Let s > 1. For u and v in As we can apply (2.2). This yields

‖ u v |As‖ ≤ (2π)−n/2
[(∫ ∣

∣
∣
∣

∫

|η−ξ|≤|η|
F u(ξ − η) F v(η) dη

∣
∣
∣
∣

2

e|ξ|1/s
dξ

)1/2

+
(∫ ∣

∣
∣
∣

∫

|η−ξ|>|η|
F u(ξ − η) F v(η) dη

∣
∣
∣
∣

2

e|ξ|1/s
dξ

)1/2]

= I1 + I2.

Let δ = δ1/s. Lemma 4.2 from the Appendix yields

I1 ≤
∥
∥
∥
∥

∫

|F u(ξ − η) e
1
2 |ξ−η|1/s | |F v(η) e

1
2 |η|1/s | e− 1

2 δ |ξ−η|1/s
dη

∣
∣
∣
∣L2(R

n, ξ)

∥
∥
∥
∥

=
∥
∥
∥
∥

∫

|F u(τ) e
1
2 |τ |1/s | |F v(ξ − τ) e

1
2 |ξ−τ |1/s | e− 1

2 δ |τ |1/s
dτ

∣
∣
∣
∣L2(R

n, ξ)

∥
∥
∥
∥

≤ ‖ v |As‖
∫

|F u(τ)| e
1
2 (|τ |1/s−δ |τ |1/s) dτ

≤ ‖ u |As‖ ‖ v |As‖
(∫

e−δ |τ |1/s
dτ

)1/2

, (2.4)

where we used the Minkowski inequality and Hölder inequality in the last two
steps. Similarly we can proceed in case of I2 and obtain

I2 ≤ ‖ u |As‖ ‖ v |As‖
(∫

e−δ |τ |1/s
dτ

)1/2

.

This proves the ‘if’ part of the theorem.
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Step 2. Let s ≤ 1. We choose u ≡ v and

F u(ξ) e|ξ|1/s/2 = 1

(1 + |ξ|)α , α >
n

2
.

Then u ∈ As. First we consider s < 1. Now we apply Lemma 4.3 from the
Appendix (L is the constant appearing there). Observe that |ξ − η| and |η| are
bounded by (L + 1/2)|ξ| on B(ξ/2, L|ξ|). Consequently we obtain

‖ u2 |As‖2

≥
∫

|ξ|≥1

∣
∣
∣
∣

∫

B(ξ/2,L |ξ|)
e(−|ξ−η|1/s−|η|1/s+|ξ|1/s)/2 1

(1 + |ξ − η|)α
1

(1 + |η|)α dη

∣
∣
∣
∣

2

dξ

≥ c
∫

|ξ|≥1
vol

(
B(ξ/2, L|ξ|)2 1

|ξ|4α
dξ

≥ c
∫ ∞

1
r3n−1−4α dr = ∞,

if α ≤ 3n/4. Finally we consider s = 1. Here we apply Lemma 4.4 with c = 1.
Arguing similarly as in case s < 1, but replacing the ball B(ξ/2, L|ξ|) by the set Eξ

and using |η| + |ξ − η| ≤ |ξ| + 1 on Eξ , we find

‖ u2 |As‖2 ≥ e−1/2
∫

|ξ|≥1

∣
∣
∣
∣

∫

Eξ

1

(1 + |ξ − η|)α
1

(1 + |η|)α dη

∣
∣
∣
∣

2

dξ

≥ c
∫ ∞

1
r2n−4α dr = ∞,

if α ≤ (2n + 1)/4. This proves the theorem. ��
The algebra property in case s > 1 implies the existence of a constant M such that

‖ u v |As‖ ≤ M ‖ u |As‖ ‖ v |As‖ (2.5)

holds for all u and v. Next we are interested in certain subalgebras of As which
will allow us to replace M by a smaller constant. Let

PR = {ξ ∈ Rn : |ξi | ≤ R, i = 1, . . . , n}, R > 0.

We shall decompose the complement of such a cube into 2n parts by

PR(ε) = {ξ ∈ Rn : sign ξ j = (−1)ε j , j = 1, . . . , n } \ PR ,

where ε = (ε1, . . . , εn), ε j ∈ {0, 1}. Fix ε. Let us suppose supp F u, supp F v ⊂
PR(ε). Then

supp (F u ∗ F v) ⊂ {ξ + η : ξ ∈ supp F u, η ∈ supp F v}
and hence supp F (u v) ⊂ PR(ε).
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Theorem 2.2. Let s > 1. Let ε = (ε1, . . . , εn), ε j ∈ {0, 1}, j = 1, . . . , n, be fixed
and suppose R > 0. Let δ = 2 − 21/s. The spaces

As(ε, R) = {u ∈ As : supp F u ⊂ PR(ε)}
are subalgebras of As and

‖ u v |As‖ ≤ D ‖ u |As‖ ‖ v |As‖
holds for all u, v ∈ As(ε, R), where

D =
(

s ωn δ−sn
∫ ∞

δ R1/s
e−y ysn−1 dy

)1/2

. (2.6)

Proof. There is not a big difference between the proofs of Theorem 2.1 and Theo-
rem 2.2. The additional information about u is used in the last step of (2.4) only.
One obtains

I1 ≤ ‖ u |As‖ ‖ v |As‖
(∫

PR(ε)

e−δ |τ |1/s
dτ

)1/2

.

A similar argument, but now with respect to v, has to be applied for the estimate
of I2. In view of

∫

PR(ε)

e−δ |τ |1/s
dτ ≤

∫

|τ |>R
e−δ |τ |1/s

dτ

= ωn

∫ ∞

R
rn−1 e−δ r1/s

dr

= s ωn

∫ ∞

R1/s
tsn−1 e−δ t dt

= s ωn δ−sn
∫ ∞

δ R1/s
e−y ysn−1 dy

the result follows. ��

2.3. The mapping u �→ eiu − 1 in spaces with exponential weights. I

As we shall see later the main part of the theory for the general operator
T f : u �→ f ◦ u will be taken by the particular case u �→ eiu − 1. For that
reason we study this operation in great detail. It will be of great service for us
to investigate u �→ eiu − 1 under additional assumptions on u in the frequency
domain. Up to now we have to restrict ourselves to real-valued functions.

2.3.1. Extra conditions on the spectrum – Part I. We suppose supp F u ⊂ PR(ε)

for some fixed ε = (ε1, . . . , εn), ε j ∈ {0, 1}, j = 1, . . . , n. Under this assumption
Theorem 2.2 implies

‖ eiu − 1 |As‖ =
∥
∥
∥
∥

∞∑

�=1

(iu)�

�!
∣
∣
∣
∣As

∥
∥
∥
∥ ≤

∞∑

�=1

‖ u |As‖� D�−1

�! = 1

D

(
eD ‖ u |As‖ − 1

)
.

(2.7)
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2.3.2. Extra conditions on the spectrum – Part II. Next we suppose supp F u ⊂
PR and u to be real-valued. We shall make use of the following splitting:

eiu(x) − 1 =
r∑

�=1

(iu(x))�

�! +
∞∑

�=r+1

(iu(x))�

�! = g1(x) + g2(x).

Then it holds that

supp F g1 ⊂ [−Rr, Rr]n.

Let I be the set of all n-tuple ε = (ε1, . . . , εn) such that ε j ∈ {0, 1}, j = 1, . . . , n.
In view of

F (eiu − 1)(η) = (2π)−n/2
∫

e−ixη g2(x) dx, η �∈ [−Rr, Rr]n,

we introduce the following decomposition:

‖ eiu − 1 |As‖ =
(
∑

ε∈I

∫

PRr (ε)

. . . dη +
∫

PRr

. . . dη

)1/2

= (
T 2

1 + T 2
2

)1/2
, (2.8)

where

T 2
1 =

∑

ε∈I

∫

PRr (ε)

∣
∣
∣
∣

∞∑

�=r+1

i� (F u�)(η)

�!
∣
∣
∣
∣

2

e|η|1/s
dη

and

T 2
2 =

∫

[−Rr,Rr]n
| F (eiu(x) − 1)(η) |2 e|η|1/s

dη.

The estimate of T2. The function h(t) = eit − 1 is Lipschitz continuous and
h(0) = 0. Hence, the corresponding composition operator maps L2 into L2 and
has a norm bounded by the Lipschitz constant of h. We obtain

T 2
2 ≤ e(

√
n Rr)1/s ‖ eiu − 1 |L2‖2 ≤ e(

√
n Rr)1/s ‖ u |L2‖2 ≤ e(

√
n Rr)1/s ‖ u |As‖2. (2.9)

Remark 2.10. The inequality (2.9) is the only place where we make use of the fact
that u has to be real-valued.

The estimate of T1. To estimate T1 we apply Theorem 2.1. This leads to

T1 ≤
∞∑

�=r+1

1

�! ‖ u� |As‖ ≤
∞∑

�=r+1

M�−1

�! ‖ u |As‖� = 1

M

∞∑

�=r+1

(M ‖ u |As‖)�
�! ,

(2.10)

where M is the constant from (2.5). Next we choose r as a function of ‖ u |As‖.
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Step 1. We assume M ‖ u |As‖ > 1. Suppose

3 M ‖ u |As‖ ≤ r ≤ 3 M ‖ u |As‖ + 1. (2.11)

From Stirling’s formula we know �! = Γ(� + 1) ≥ �� e−�
√

2π�. Hence

∞∑

�=r+1

(M ‖ u |As‖)�
�! ≤

∞∑

�=r+1

(
r

�

)� ( e

3

)� 1√
2π�

≤
∞∑

�=r+1

(
e

3

)�

≤ 3

3 − e
.

Inserting this in our previous estimate we find

T1 ≤ c (2.12)

as long as r is chosen as in (2.11).

Step 2. We assume M ‖ u |As‖ ≤ 1. Then we may choose r = 0 (which means
T2 = 0) ending up with

T1 ≤
∞∑

�=1

(M ‖ u |As‖)�
�! ≤ e M ‖ u |As‖. (2.13)

Summarizing, we have proved

‖ eiu − 1 |As‖ ≤ c ‖ u |As‖
(
1 + ebR1/s‖u|As‖1/s )1/2

, (2.14)

where c and b are positive numbers independent of u, r and R, cf. (2.8)–(2.13).

2.4. Estimates of eiu − 1 for general u. I

We start with a decomposition of u in the frequency domain. To this end let χR,ε(η)

denote the characteristic function of the set PR(ε) and χR(η) the characteristic
function of the cube PR. Further, let

uε(x) = F −1[χR,ε(η) F u(η)](x) and u0(x) = F −1[χR(η) F u(η)](x).

Hence

u(x) = u0(x) +
∑

ε∈I

uε(x).

Immediately one obtains

‖ u |As‖2 = ‖ u0 |As‖2 +
∑

ε∈I

‖ uε |As‖2. (2.15)
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Moreover, with an appropriate counting of the uε we find

eiu − 1 =
2n+1∑

�=1

∑

0≤ j1< j2<... < j�≤2n

(eiu j1 − 1) . . . (eiu j� − 1),

cf. Lemma 4.6 from the Appendix. Employing this decomposition, Theorem 2.1
yields

‖ eiu − 1 |As‖ ≤
2n+1∑

�=1

∑

0≤ j1< j2<...< j�≤2n

M�−1 ‖ eiu j1 − 1 |As‖ . . . ‖ eiu j� − 1 |As‖.

(2.16)

In addition, (2.7) and (2.15) give

‖ eiu jr − 1 |As‖ ≤ 1

D

(
eD ‖ u |As‖ − 1

)
(2.17)

for any admissible choice of jr and (2.14), (2.15) lead to

‖ eiu0 − 1 |As‖ ≤ c ‖ u |As‖
(
1 + ebR1/s‖ u |As‖1/s )

, (2.18)

for appropriate c, b > 0.
Our next step consists of choosing R in dependence of ‖ u |As‖. Here we try to

arrive at a point where the right-hand sides in (2.17) and (2.18) are of the same size.
Recall that D = D(R) has been defined in (2.6). The function D(R) is a strictly
monotone positive function satisfying limR→∞ D(R) = 0 and D(0) > 1. Assume
‖ u |As‖ > 1. Then we define R by the equation

D(R) = ‖ u |As‖(1/s)−1, (2.19)

which is always possible by our preceding remarks. Reformulating (2.19) by
using the notations from Lemma 4.5 in the Appendix we obtain

√
c f(δ R1/s) =

‖ u |As‖(1/s)−1, i.e. R = δ−s
(
g(‖u|As‖(2/s)−2/c)

)s
. Lemma 4.5 yields

R ≤ C

((

2 − 2

s

)

log ‖ u |As‖ + log c

)s

(2.20)

with c and C independent of u. All together we got the following result:

Theorem 2.3. Let s > 1.

(i) There exist constants c and a (depending on n and s only) such that

‖ eiu − 1|As‖ ≤ c

{
ea ‖ u |As‖1/s log ‖ u |As‖ if ‖ u |As‖ > 1 ;
‖ u |As‖ if ‖ u |As‖ ≤ 1 ; (2.21)

holds for all u ∈ ARs .
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(ii) The mapping u �→ eiu − 1 is locally Lipschitz continuous (considered as
a mapping of ARs into As).

(iii) Let u ∈ ARs be fixed. Define g(ξ) = eiu(x)ξ − 1, ξ ∈ Rn. Then g : Rn �→ As is
continuous.

Proof. Step 1. Proof of (i). If ‖ u |As‖ > 1 inequality (2.21) becomes a conse-
quence of (2.16)–(2.20). If ‖ u |As‖ ≤ 1 we choose R = 1. Then (2.16)–(2.18)
imply the desired inequality.

Step 2. Proof of (ii). Local Lipschitz continuity follows from the identity

eiu − eiv = (eiv − 1) (ei(u−v) − 1) + (ei(u−v) − 1),

the algebra property of As and part (i).

Step 3. Proof of (iii). By Step 1 we know that g(ξ) ∈ As (considered as a function
in x). The continuity follows from the identity used in Step 2, the algebra property
of As and part (i). ��
Remark 2.11. Observe that (2.5) implies

‖ eiu − 1 |As‖ ≤ 1

M

(
eM ‖ u |As‖ − 1

)

like in (2.7). The essential difference between (2.21) and the later estimate consists
of the exponent of ‖ u |As‖. If u has a small norm both estimates are comparable
but not in the case of large norms.

Remark 2.12. Part (i) of Theorem 2.3 in a somewhat weaker form has been proved
by Bourdaud [3], himself inspired by the work of Leblanc [15]. The decomposition
technique used in the proof of Theorem 2.3 has been taken over from these papers.

2.5. Composition operators on spaces with exponential weights. I

Now we are in a position to investigate the non-linear operator T f : u �→ f ◦ u,
which we call the composition operator. Our main tool here will be the Minkowski
inequality in the context of Banach spaces. In what follows we denote by µ a finite
complex measure and by |µ| its total variation.

Theorem 2.4. Let s > 1. Let µ be a complex measure on R such that

L1(λ) =
∫

R

eλ |ξ|1/s log |ξ| d|µ|(ξ) < ∞, (2.22)

for any λ > 0, and such that µ(R) = 0. Let f be the inverse Fourier transform
of µ. Then f is an infinitely differentiable function and the composition operator
T f maps ARs into As.
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Proof. From (2.22) we deduce easily that
∫

R

d |µ|(ξ) < ∞. Hence µ is a finite

measure and the condition µ(R) = 0 makes sense. Let us define

f(t) = 1√
2π

∫

R

eiξt dµ(ξ).

A further use of (2.22) yields
∫

R

|(iξ) j | d |µ|(ξ) < ∞, for all j ∈ N. Then f is a

C∞ function and we have

f(t) = 1√
2π

∫

R

[eiξt − 1] dµ(ξ).

Let u ∈ ARs . An application of Theorem 2.3 yields

‖ eiu − 1 |As‖ ≤ c ea ‖u |As‖1/s log ‖u |As‖,

whatever ‖u |As‖ is (the above constant c may be larger than that of (2.21)).
Denote by µr and µi the real and the imaginary part of µ, respectively. These

measures are signed measures having a Jordan decomposition. This means

µ(E) = µr(E) + i µi(E) = µ+
r (E) − µ−

r (E) + i (µ+
i (E) − µ−

i (E)),

for all measurable sets E, see e.g. [1]. For brevity let ν be one of these four measures
on the right-hand side. Then ν(E) ≤ |µ|(E) for all measurable sets E, cf. e.g. [1].
Let g be the function defined in Theorem 2.3(iii). We interpret the integral

∫
[
eiu(x)ξ − 1

]
dν(ξ) =

∫

g(ξ) dν(ξ)

as a Bochner integral with values in As. Because g is continuous, cf. Theo-
rem 2.3(iii), it is also integrable (the measure ν is finite). In this context we may
apply the Minkowski inequality, cf. [6], which implies

‖
∫

[
eiu(x)ξ − 1

]
dν(ξ) |As‖ ≤

∫

R

‖eiξu − 1| As‖ d|µ|(ξ).

For |ξ| ≥ e, we have

|ξ|1/s‖u |As‖1/s log ‖ξu |As‖ ≤ (‖u |As‖1/s (1 + log+ ‖u |As‖)
) |ξ|1/s log |ξ|.

Hence
∫

|ξ|≥e
‖eiξu − 1| As‖ d|µ|(ξ) < ∞.

The integral for |ξ| < e is easily seen to be finite. Because of

√
2π f(u(x)) =

∫

g(ξ) dµ+
r (ξ) −

∫

g(ξ) dµ−
r (ξ)

+ i
∫

g(ξ) dµ+
i (ξ) − i

∫

g(ξ) dµ−
i (ξ),

an application of the triangle inequality completes the proof. ��
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Remark 2.13. Observe that we do not require that f is real valued.

For the convenience of the reader we formulate two consequences separately.

Corollary 2.1. Let s > 1. Let g : R �→ C be a bounded function such that

lim|ξ|→∞
|ξ|1/s log |ξ|

log |g(ξ)| = 0. (2.23)

Assume, moreover, that
∫

R

g(ξ) dξ = 0. Let f be the inverse Fourier transform of g.

Then f is an infinitely differentiable function and the composition operator T f

maps ARs into As.

Proof. We note first that the boundedness of g and the condition (2.23) imply that
lim|ξ|→∞ g(ξ) = 0. Let λ > 0. By (2.23), there exists N > 0 such that

2λ|ξ|1/s log |ξ| ≤ log
1

|g(ξ)| for |ξ| > N.

Then

∫

|ξ|>N
eλ|ξ|1/s log |ξ||g(ξ)| dξ ≤

∫

|ξ|>N
e−λ|ξ|1/s log |ξ| dξ < ∞.

��
Similarly one can proceed in the periodic situation.

Corollary 2.2. Let s > 1. Let (ck)k∈Z be a sequence of complex numbers such that

lim|k|→∞
|k|1/s log |k|

log |ck| = 0. (2.24)

Assume, moreover, that
∑

k∈Z
ck = 0 and define f(t) =

∑

k∈Z
ckeikt . Then f is an in-

finitely differentiable function and the composition operator T f maps ARs into As.

Remark 2.14. Corollary 2.2 is mainly contained in Bourdaud [3], see also
Leblanc [15]. Let us refer also to Gramchev and Yoshino [9] for some Gevrey
composition estimates for functions defined on the unit circle. But as mentioned in
the introduction in [9], different scales of Gevrey-type spaces are considered.

2.6. Nemytskij operators on spaces with exponential weights. I

Let d ≥ 2 be a natural number. Let f : Rd �→ C be a continuous function. Then
we are interested in the action of the Nemytskij operator associated with f and
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given by

T f (u1, . . . , ud ) = f(u1, . . . , ud ).

Theorem 2.5. Let s > 1. Let

H(ξ1, ξ2, . . . , ξd ) = exp
( d∑

k=1

|ξk|1/s log(1 + |ξk|)
)
.

Let µ be a complex measure on Rd such that

L2(λ1, . . . , λd ) =
∫

Rd
H(λ1ξ1, λ2ξ2, . . . , λdξd) d|µ|(ξ) < ∞, (2.25)

for any (λ1, . . . , λd ), λk > 0, k = 1, . . . , d and suppose µ(Rd) = 0. Let f be the
inverse Fourier transform of µ. Then f is an infinitely differentiable function and
the associated Nemytskij operator T f maps (ARs )d into As.

Proof. By assumption

f(t1, t2, . . . , td ) = f(t1, t2, . . . , td ) − f(0, . . . , 0)

= (2π)−d/2
∫

Rd

[
ei

∑d
k=1 ξk tk − 1

]
dµ(ξ).

An application of the Minkowski inequality yields

‖ T f (u) |As‖ ≤ 4
∫

Rd

∥
∥ ei

∑d
k=1 ξk uk(x) − 1 |As(R

n, x)
∥
∥ d|µ|(ξ).

Now we can proceed by means of Lemma 4.6 from the Appendix, and Theorem 2.3.
��

2.7. Nemytskij operators on spaces with exponential weights. II

Let d be a natural number. Let f : Rd+n �→ C be a continuous function. Here the
operator of interest is defined as

T f (u1, . . . , ud )(x) = f(x1, . . . , xn, u1(x), . . . , ud(x)). (2.26)

There is not much difference to the situations treated before.

Theorem 2.6. Let s > 1. Let

H(ξ1, ξ2, . . . , ξd+n) = e|(ξ1,... ,ξn)|1/s/2 exp
( d∑

k=1

|ξk|1/s log(1 + |ξk|)
)
.

Let µ be a complex measure on Rd+n such that

L3(λ1, . . . , λd ) =
∫

Rd+n
H(ξ1, . . . , ξn, λ1ξn+1, . . . , λdξd+n) d|µ|(ξ) < ∞,

(2.27)

for all λ1, . . . , λd > 0. Define f as the inverse Fourier transform of µ and suppose
f(x1, . . . , xn, 0, . . . , 0) ∈ As. Then the Nemytskij operator T f , defined in (2.26)

maps (ARs )d into As.
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Proof. As above

f(t1, . . . , td+n) = f(t1, . . . , td+n) − f(t1, . . . , tn, 0, . . . , 0)

+ f(t1, . . . , tn, 0, . . . , 0)

= (2π)−(d+n)/2
∫

Rd+n

[
ei

∑d+n
k=n+1 ξk tk − 1

]
ei

∑n
j=1 ξ j t j dµ(ξ)

+ f(t1, . . . , tn, 0, . . . , 0) .

Application of the triangle and Minkowski inequalities yields

‖T f (u)|As‖ ≤ 4
∫

Rd+n

∥
∥
∥

(
ei

∑d+n
k=n+1 ξk uk(x) − 1

)
ei

∑n
j=1 ξ j x j

∣
∣
∣As(R

n, x)

∥
∥
∥ d|µ|(ξ)

+ ‖ f(x, 0)|As‖.

The function ei
∑n

j=1 λ j x j is a pointwise multiplier for As for any λ = (λ1, . . . , λn).
More exactly we have

‖ eiλx u(x) |As‖2 =
∫

|F u(ξ)|2 e|λ+ξ|1/s
dξ ≤ e|λ|1/s ‖ u |As‖2

since 0 < 1/s < 1. Now we can proceed by means of Theorem 2.3. ��
Remark 2.15. As usual, the resulting conditions on f(x, y) to ensure boundedness
of the operator u �→ f(x, u(x)) are weaker than those which guarantee the same
property for (u1, u2) �→ f(u1, u2).

2.8. Function spaces with exponential weights. II

Here we turn back to the general classes A introduced in Subsection 2.1.
There are two obvious consequences of the definition. Any u ∈ A satisfies

‖ u(·, t) |L2(R
n)‖ ≤ ‖ u |A‖.

Moreover, the partial Fourier transform (with respect to the x-variable) of such
a function belongs to L1 (if either m > 0 or m = 0 and � = 0) and

∫

|F u(ξ, t)| dξ ≤ ‖ u |A‖
(∫

〈 ξ 〉−2�
m exp

( − β 〈 ξ 〉1/s
m − h(ξ, t)

)
dξ

)1/2

.

Consequently, for fixed t, we can use the formula

F (u ∗ v)(ξ, t) = (2π)n/2 F u(ξ, t) F v(ξ, t). (2.28)

The role of the parameter β′ is to control that A(s, β, β′, m, �, h, T ) is not too far
from the classes As treated before.

Lemma 2.3. (i) The space A becomes a Banach space with respect to the norm
‖ · |A‖.
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(ii) The elements of A are C∞-functions with respect to x and satisfy

sup
0<t<T

∥
∥ Dα

x u(·, t)
∣
∣L∞

∥
∥ ≤ E ‖ u |A‖,

for all u ∈ A and all α ∈ Nn
0 . Here E does not depend on u and α.

Proof. One may follow the proof of Lemma 2.1. ��

Again crucial are good estimates for products in A. We need a further abbreviation.
We put

‖ u |A(t)‖ =
(∫

Rn
〈 ξ 〉2�

m exp
(
β 〈 ξ 〉1/s

m + h(ξ, t)
) |F u(ξ, t)|2 dξ

)1/2

.

Observe that A(t) is a Banach space for each fixed t.

Theorem 2.7. Let δ1/s = 2 − 21/s. Let either m > 0 or m = � = 0. Suppose

h(ξ, t) − h(ξ − η, t) − h(η, t) ≤ γ δ1/s min(〈 ξ − η 〉m , 〈 η 〉m)1/s, (2.29)

for all ξ and η and some 0 ≤ γ < β. Then A becomes an algebra with respect to
pointwise multiplication. It holds that

‖ u v |A‖ ≤ F ‖ u |A‖ ‖ v |A‖, (2.30)

with some constant F. The estimate (2.30) remains true if we replace A by A(t).

Proof. We follow the arguments used in the proof of Theorem 2.1. Let

k(ξ, t) = 〈 ξ 〉2�
m exp

(
β 〈 ξ 〉1/s

m + h(ξ, t)
)
. (2.31)

Then, with C depending on m and �, we find, by using (2.29), the inequality

k(ξ, t)

k(ξ − η, t) k(η, t)
≤ C e−(β−γ) δ1/s min(〈 ξ−η 〉m, 〈 η 〉m)1/s

,

cf. Lemma 4.2 from the Appendix. For u and v in A we can apply (2.28). This
yields

‖ u v |A‖ ≤ sup
0<t<T

(∫ ∣
∣
∣
∣

∫

|η−ξ|≤|η|
F u(ξ − η, t) F v(η, t) dη

∣
∣
∣
∣

2

k(ξ, t) dξ

)1/2

+ sup
0<t<T

(∫ ∣
∣
∣
∣

∫

|η−ξ|>|η|
F u(ξ − η, t) F v(η, t) dη

∣
∣
∣
∣

2

k(ξ, t) dξ

)1/2

= sup
0<t<T

I1(t) + sup
0<t<T

I2(t)).
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Then

I1(t) ≤
∥
∥
∥
∥

∫

|F u(ξ − η, t)
√

k(ξ − η, t)| |F v(η, t)
√

k(η, t)|
√

k(ξ, t)√
k(ξ − η, t)

√
k(η, t)

dη

∣
∣
∣
∣L2(R

n, ξ)

∥
∥
∥
∥

≤ C ‖ v |A(t)‖
∫

|F u(ζ, t)|
√

k(ζ, t) e−(β−γ) δ1/s 〈 ζ 〉1/s
m dζ

≤ ‖ u |A(t)‖ ‖ v |A(t)‖
(∫

e−(β−γ) δ1/s 〈 ζ 〉1/s
m dζ

)1/2

.

Similarly we can proceed in the case of I2 and obtain

I2(t) ≤ C ‖ u |A(t)‖ ‖ v |A(t)‖
(∫

e−(β−γ) δ1/s 〈 ζ 〉1/s
m dζ

)1/2

.

This proves (2.30). ��
Remark 2.16. We give a more handsome sufficient condition for h to satisfy (2.29).
We suppose |h(ξ, t)| ≤ β′ 〈 ξ 〉1/s

m for all ξ and all t (see (2.1)), and

|h(ξ, t) − h(η, t)| ≤ β′ 〈 ξ − η 〉1/s
m . (2.32)

Then h satisfies (2.29) if

2 β′ < β δ1/s. (2.33)

First, let min(〈 ξ − η 〉m, 〈 η 〉m) = 〈 ξ − η 〉m . We find

|h(ξ − η, t) + h(η, t) − h(ξ, t)| ≤ |h(ξ − η, t)| + |h(η, t) − h(ξ, t)|
≤ β′ 〈 ξ − η 〉1/s

m + β′ 〈 ξ − η 〉1/s
m .

Second, consider min(〈 ξ − η 〉m , 〈 η 〉m) = 〈 η 〉m . As above

|h(ξ − η, t) + h(η, t) − h(ξ, t)| ≤ |h(η, t)| + |h(ξ − η, t) − h(ξ, t)|
≤ β′ 〈 η 〉1/s

m + β′ 〈 η 〉1/s
m .

Again we are interested in certain subalgebras of A. Let PR and PR(ε) be defined
as in Subsection 2.1.

Theorem 2.8. Let s > 1. Let either m > 0 or m = � = 0. Further, let ε =
(ε1, . . . , εn), ε j ∈ {0, 1}, j = 1, . . . , n, be fixed and suppose R > 0. Suppose h
satisfies (2.29). Then

A(ε, R) = {u ∈ A : supp F u ⊂ PR(ε)}
are subalgebras of A and

‖ u v |A‖ ≤ K ‖ u |A‖ ‖ v |A‖ (2.34)
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holds for all u, v ∈ A(ε, R), where

K ≤ C

(

ωn ((β − γ) δs)
−sn

∫

(β−γ) δ1/s R1/s
e−y ysn−1 dy

)1/2

,

and C does not depend on u, v and R. Again the estimate (2.34) remains true if
we replace A by A(t).

Proof. There is no difference between the proof of Theorem 2.7 and Theorem 2.8.
��

2.9. The mapping u �→ eiu − 1 in spaces with exponential weights. II

We continue with the investigation of u �→ eiu for u ∈ AR.

2.9.1. Extra conditions on the spectrum – Part I. We suppose supp F u(·, t) ⊂
PR(ε) for fixed t and for some fixed ε = (ε1, . . . , εn), ε j ∈ {0, 1}, j = 1, 2, . . . , n.
Under this assumption Theorem 2.8 implies

‖ eiu − 1 |A(t)‖ =
∥
∥
∥
∥

∞∑

�=1

(iu)�

�!
∣
∣
∣
∣A(t)

∥
∥
∥
∥ ≤

∞∑

�=1

‖ u |A(t)‖� K �−1

�!

≤ 1

K

(
eK ‖ u |A(t)‖ − 1

)
.

2.9.2. Extra conditions on the spectrum – Part II. Next we suppose supp F u(·, t)
⊂ PR for fixed t and use the following splitting:

eiu(x,t) − 1 =
r∑

�=1

(iu(x, t))�

�! +
∞∑

�=r+1

(iu(x, t))�

�! = g1(x, t) + g2(x, t),

cf. Subsection 2.3.2. Then it holds that

supp F g1(·, t) ⊂ [−Rr, Rr]n.

Again we apply the abbreviation (2.31). With

T 2
1 (t) =

∑

ε∈I

∫

PRr (ε)

∣
∣
∣
∣

∞∑

�=r+1

i� (F u�(·, t))(η)

�!
∣
∣
∣
∣

2

k(η, t) dη

and

T 2
2 (t) =

∫

[−Rr,Rr]n
| F (eiu(x,t) − 1)(η) |2 k(η, t) dη,

we obtain the decomposition

‖ eiu − 1 |A(t)‖ = (
T 2

1 (t) + T 2
2 (t)

)1/2
. (2.35)
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The estimate of T2(t). Again we may use the argument that the composition operator
associated with the function h(y) = eiy − 1 and restricted to real-valued functions
maps L2 into L2, and we obtain

T 2
2 (t) ≤ sup

η∈[−Rr,Rr]n
k(η, t)

∥
∥ eiu(·,t) − 1

∣
∣L2(R

n, x)
∥
∥2

≤ sup
η∈[−Rr,Rr]n

k(η, t) ‖ u(·, t) |L2‖2

≤ sup
η∈[−Rr,Rr]n

k(η, t) ‖ u |A(t)‖2. (2.36)

Observe

sup
η∈[−Rr,Rr]n

k(η, t) ≤ (m2 + n (Rr)2)� eβ (
√

n Rr)1/s
.

The estimate of T1(t). To estimate T1 we apply Theorem 2.7. This leads to

T1(t) ≤
∞∑

�=r+1

1

�! ‖ u�(·, t) |A(t)‖ ≤
∞∑

�=r+1

F�−1

�! ‖ u(·, t) |A(t)‖�

≤ 1

F

∞∑

�=r+1

(F ‖ u(·, t) |A(t)‖)�
�! , (2.37)

where F is the constant from (2.30). Next we choose r as a function of ‖u(·, t)|A(t)‖.

Step 1. We assume F ‖ u(·, t) |A(t)‖ > 1. Suppose

3 F ‖ u |A(t)‖ ≤ r ≤ 3 F ‖ u |A(t)‖ + 1. (2.38)

Stirling’s formula yields

∞∑

�=r+1

(F ‖ u(·, t) |A(t)‖)�
�! ≤ 3

3 − e
.

Inserting this in our previous estimate we find

T1(t) ≤ c, (2.39)

as long as r is chosen as in (2.38).

Step 2. We assume F ‖ u(·, t) |A(t)‖ ≤ 1. Then we may choose r = 0 (which
means T2 = 0) ending up with

T1(t) ≤
∞∑

�=r+1

(F ‖ u(·, t) |A(t)‖)�
�! ≤ e M ‖ u(·, t) |A(t)‖. (2.40)

Summarizing we have proved

‖ eiu(·,t) − 1 |A(t)‖ ≤ c ‖ u(·, t) |A(t)‖ (1 + ebR1/s‖u(·,t)|A(t)‖1/s )1/2
,

where c and b are positive numbers independent of t, f , r and R, cf. (2.35)–(2.40).



Hyperbolic equations 431

2.10. Estimates of eiu − 1 for general u. II

There is no difficulty in applying the same procedure for fixed t as in Subsection 2.4.
Similarly to there we obtain

‖ eiu(·,t) − 1 |A(t)‖

≤
2n+1∑

�=1

∑

0≤ j1<...< j�≤2n

F�−1 ‖ eiu j1 (·,t) − 1 |A(t)‖ . . .‖ eiu j� (·,t) − 1 |A(t)‖,

and

‖ eiu jr (·,t) − 1 |A(t)‖ ≤ 1

K

(
eK ‖ u |A(t)‖ − 1

)
,

for any admissible choice of jr . Further

‖ eiu0(·,t) − 1 |A(t)‖ ≤ c ‖ u(·, t) |A(t)‖ (1 + ebR1/s‖u(·,t)|A(t)‖1/s )
,

for appropriate c, b > 0. Keeping t fixed we may proceed in choosing R as before,
see Subsection 2.4. All together we got the following:

Proposition 2.1. Let either m > 0 or m = � = 0. Suppose s > 1 and suppose
h satisfies (2.29). Then there exist constants c and a (depending on n and s only)
such that

‖ eiu(·,t) − 1|A(t)‖ ≤ c

{
ea ‖ u(·,t) |A(t)‖1/s log ‖ u(·,t) |A(t)‖ if ‖ u(·, t) |A(t)‖ > 1 ;
‖ u |A(t)‖ if ‖ u(·, t) |A(t)‖ ≤ 1 ;

holds for all u ∈ AR and all 0 < t < T.

2.11. Composition operators on spaces with exponential weights. II

As long as (2.29) is satisfied and t is fixed, all assertions of Subsections 2.5–2.7
have immediate counterparts.

Theorem 2.9. Let either m > 0 or m = � = 0 and let s > 1. Let h satisfy (2.29).
Suppose µ is a complex measure such that µ(R) = 0 and such that (2.22) is
satisfied. Define f as the inverse Fourier transform of µ. Then the composition
operator T f maps AR into A.

Proof. By assumption,

f(y) = f(y) − f(0) = 1√
2π

∫ ∞

−∞

[
eiξy − 1

]
dµ(ξ).
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An application of Proposition 2.1 and the Minkowski inequality yield

‖ T f (u(x, t)) |A(t)‖ =
∥
∥
∥
∥

1√
2π

∫ ∞

−∞
[eiξu(x,t) − 1] dµ(ξ)

∣
∣
∣
∣A(t)

∥
∥
∥
∥

≤ 4
∫ ∞

−∞
‖ eiξu(·,t) − 1 |A(t)‖ d|µ|(ξ)

≤ c
∫

exp
(

a ‖ ξ u(·, t) |A(t)‖1/s log(1 + ‖ ξ u(·, t) |A(t)‖)
)

d|µ|(ξ),

which is sufficient for our purpose. ��
Again we formulate a few consequences separately.

Corollary 2.3. Let either m > 0 or m = � = 0, and suppose s > 1. Let h satisfy
(2.29). Suppose g : R→ C is a function satisfying

∫
g(ξ) dξ = 0 and (2.23). Then

the composition operator T f maps AR into A.

Similarly one can proceed in the periodic situation.

Corollary 2.4. Let either m > 0 or m = � = 0, and suppose s > 1. Let h
satisfy (2.29). Let {ck}k∈Z be a sequence of complex numbers satisfying (2.24) and∑∞

k=−∞ ck = 0. Define f(t) = ∑
k∈Z ck eikt . Then the composition operator T f

maps AR into A.

For further use we prove the next result:

Corollary 2.5. Under the conditions of Theorem 2.9 the composition operator T f

maps balls of radius R in AR into balls of radius R′.

Proof. In the proof of Theorem 2.9 only ‖ u |A‖ influences the estimate. The
resulting condition depends monotonically on this norm. ��

2.12. Nemytskij operators on spaces with exponential weights. III

The same method as in the preceding subsection works. Let d ≥ 2 be a natural
number. Let f : Rd �→ C be a continuous function.

Theorem 2.10. Let either m > 0 or m = � = 0, and suppose s > 1. Let h satisfy
(2.29). Let

H(ξ1, ξ2, . . . , ξd ) = exp
( d∑

k=1

|ξk|1/s log(1 + |ξk|)
)
.

Suppose that µ is a complex measure such that µ(Rd) = 0 and (2.25) is satisfied.
Then the Nemytskij operator T f maps (AR)d into A.

Similarly as above we can derive the following fact:

Corollary 2.6. Under the conditions of Theorem 2.10 the Nemytskij operator T f

maps a ball in (AR)d with radius R into a ball in A with radius R′.
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2.13. Nemytskij operators on spaces with exponential weights. IV

Let d be a natural number. Let f : Rd+n �→ C be a continuous function.

Theorem 2.11. Let either m > 0 or m = � = 0, and suppose s > 1. Let h satisfy
(2.29). Let

H(ξ1, ξ2, . . . , ξd+n) = e|(ξ1,... ,ξn)|1/s/2 exp
( d∑

k=1

|ξk|1/s log(1 + |ξk|)
)
.

The inverse Fourier transform f of the complex measure µ should satisfy
f(x1, . . . , xn, 0, . . . , 0) ∈ A and suppose that (2.27) holds. Then the Nemytskij
operator T f , defined in (2.26) maps (AR)d into A.

For later use we add the following:

Corollary 2.7. Under the conditions of Theorem 2.11 the Nemytskij operator T f

maps balls with radius R in (AR)d into balls in A with radius R′.

As described in the introduction we need at least local Lipschitz continuity of the
Nemytskij operator for our applications. It seems that such an argument to derive
this property as used in case of the mapping u �→ eiu − 1, see Theorem 2.3, is
not available in the general situation. For that reason we have to strengthen the
conditions with respect to f . Let f(x) = f(x1, . . . , xn+d). To have a compact
notation let x ′ = (x1, . . . , xn+d−1). Recall the classical identity

f(x ′, y) − f(x ′, z) =
(y − z)

∫ 1

0

(
∂ f

∂xn+d
(x ′, y + Θ(z − y)) − ∂ f

∂xn+d
(x1, . . . , xn, 0, . . . , 0)

)

dΘ

+ ∂ f

∂xn+d
(x1, . . . , xn, 0, . . . , 0) (y − z),

and of course its obvious counterparts for the other variables. Further, let M(A)

denote the set of all pointwise multipliers of A. We equip this space with the
natural norm; because of the algebra property we know A ↪→ M(A). Again as
a consequence of the Minkowski inequality and the algebra property of A we can
derive the local Lipschitz continuity of T f by making assumptions on the first-order
derivatives of f .

Corollary 2.8. Suppose that for j = n + 1, . . . , n + d the first-order derivatives
∂ f
∂x j

of f satisfy the conditions of Theorem 2.11 except ∂ f
∂x j

(x, 0, . . . , 0) ∈ A. This

condition is replaced by

∂ f

∂x j
(x, 0, . . . , 0) ∈ M(A). (2.41)
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Then the Nemytskij operator T f is locally Lipschitz continuous, in particular there
exists a non-decreasing function ψ such that

‖ T f (u1, . . . ,ud ) − Tf (v1, . . . , vd ) |A‖
≤ max

j=1,... ,d
‖ u j − v j |A‖ψ( max

j=1,... ,n
‖ u j |A‖ + ‖ v j |A‖)

holds for all u1, . . . , ud, v1, . . . , vd ∈ AR.

Remark 2.17. Observe that in the most simple situation f = f(u), the condition
(2.41) becomes superfluous because constants are always in M(A).

2.14. A few comments on the sharpness of the results obtained in 2.5

Here we shall discuss the sharpness of our sufficient conditions in Theorem 2.4.

Proposition 2.2. Let s > 1. Let f : R → C be a function such that T f maps
ARs (Rn) into As(R

n). Then f belongs to the Gevrey class Gs. In particular, if f is

compactly supported, then F f(ξ) = O(e−α|ξ|1/s
) for some α > 0.

Proof. Let Q = [a, b]× [−1, 1]n−1. According to the known properties of Gevrey
classes, cf. e.g. [19, Example 1.4.9], there exists a function ϕ ∈ As(R

n) such that
ϕ(x) = x1 on Q. By assumption we have f ◦ϕ ∈ As(R

n) ⊂ Gs(Rn), cf. Lemma 2.2.
Since f(t) = ( f ◦ ϕ)(t, x2, . . . , xn) on Q, we see at once that f ∈ Gs(R). The
behaviour of the Fourier transform of f follows from [19, 1.6.1], cf. Remark 2.9.

��
Remark 2.18. Let s > 1. Let f : R→ C be a function such that T f maps ARs (Rn)

into As(R
n). Then f need not be in As(R), cf. Corollary 2.2.

Let Es (resp. Es,0) be the set of functions (resp. compactly supported functions)
which act on ARs . Now consider Fs := ⋃

s′<s Gs′
0 (R).

Lemma 2.4. Let s > 1.

(i) The inclusions

Fs =
⋃

s′<s

Gs′
0 ⊂ Es,0 ⊂ Gs

0.

hold.
(ii) We have the equivalence

f ∈ Es ⇔ f ϕ ∈ Es,0, for all ϕ ∈ Fs.

Proof. By Remark 2.7 and Theorem 2.4, we know that Fs ⊂ Es,0. The second
inclusion has been proved in Proposition 2.2. Further, Fs contains cut-off functions
(since Gs−ε contains those functions). Since As ⊂ L∞ this shows that for each
u ∈ ARs there exists a cut-off function ϕ such that f ◦ u = ( f ϕ)◦ u. This is enough
to establish (ii). ��
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Remark 2.19. Let s > 1. Let g : R �→ C be a bounded function such that

g(ξ) = e−|ξ|1/s log |ξ| log log |ξ|,

for large ξ and
∫

R

g(ξ) dξ = 0. Let f be the inverse Fourier transform of g. Then

the composition operator Tf maps ARs into As, cf. Corollary 2.1. Observe that
f ∈ Gs but f �∈ Gs′

for any s′ < s. Further, if we compare this with the necessary
condition stated in Proposition 2.2 there remains a gap of logarithmic order only.

3. Applications

Here we follow our philosophy explained in the introduction. We shall derive the
a priori estimate (1.8) in certain well-adapted classes of functions. As a second step
we shall investigate how these classes fit into our theory developed in Section 2.
To avoid confusion we shall denote the spaces induced by the linear problem with
B(α, β, γ, . . . , ω), where α, β, . . . are certain parameters.

3.1. The Gevrey example

Let us consider

utt − ux = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (3.1)

This is a model problem for weakly hyperbolic operators with characteristics of
constant multiplicity. It remains to study

utt − ux = f(x, t), u(x, 0) = ut(x, 0) ≡ 0. (3.2)

But this Cauchy problem is equivalent to

vtt − iξv = F f, v(ξ, 0) = vt(ξ, 0) ≡ 0, v = F u. (3.3)

We can represent the solution of (3.3) in the form

v(ξ, t) =
t∫

0

X(t, s, ξ)F f(ξ, s)ds,

where the kernel function X = X(t, s, ξ) satisfies, for 0 ≤ s ≤ t, 0 ≤ t ≤ T, the
estimate

|X(t, s, ξ)| ≤ (t − s) exp
(〈ξ〉1/2

1 (t − s)
)
.

Choosing

N �,T (ξ, t) = exp
(〈ξ〉1/2

1 (2T − t)
)〈ξ〉�1
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and defining B(�, T ) as the space of all functions satisfying

‖ f ‖�,T := sup
0<t<T

(∫ ∞

−∞
N 2

�,T (ξ, t)|F f(ξ, t)|2 dξ

) 1
2

< ∞,

straightforward calculations lead to

‖u‖�,T ≤ T 2 ‖ f ‖�,T .

Using

∂tF u(ξ) =
t∫

0

∞∑

k=0

(χ(ξ)(t − s))2k

(2k)! F f(ξ, s) ds,

χ(ξ)F u(ξ) =
t∫

0

∞∑

k=0

(χ(ξ)(t − s))2k+1

(2k + 1)! F f(ξ, s) ds,

then the same estimates as above lead to the next strictly hyperbolic-type estimate
for the solution of (3.2):

‖u‖�,T + ‖〈Dx〉 1
2 u‖�,T + ‖Dtu‖�,T ≤ C T 1/2 ‖ f ‖�,T . (3.4)

There is no difficulty in identifying B(�, T ) as A(2, 4T, 2T, 1, �, h, T ), where
h(ξ, t) = −2t 〈ξ〉1/2

1 . The function h satisfies (2.29). This can be checked directly
through Lemma 4.2 from the Appendix.

Using Corollaries 2.3, 2.7 and 2.8 we arrive at the following existence and
uniqueness result for (3.1) with life span [0, T0], where T0 appears due to the
non-linear structure of the problem.

Theorem 3.1. Let us consider

utt − ux = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

under the following assumptions:

• the data ϕ,ψ satisfy
∫ ∞

−∞
exp

(
T1 〈ξ〉1/2

1

) 〈ξ〉�1
(|F ϕ(ξ)|2 + |F ψ(ξ)|2) dξ < ∞

for some T1 > 0;
• f : R→ C is an infinitely differentiable function and f(0) = 0;
• the Fourier transform F f of f is an integrable function and there exists a non-

negative constant c such that

|F f(ξ)| ≤ c e−|ξ|1/2(log |ξ|) log log |ξ|, for large |ξ|.
Then the Cauchy problem has a unique solution u ∈ B(�, T0) for T0 sufficiently

small. The derivatives (see (3.4)) 〈Dx〉 1
2 u and Dtu belong to B(�, T0), too.
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3.2. Weakly hyperbolic equations with Gevrey-type Levi conditions

Our weakly hyperbolic model problem with characteristics of variable multiplicity
is

utt − λ(t)2uxx − b(t)ux = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (3.5)

As in Section 3.1 it remains to derive an a priori estimate of type (1.8) for

utt − λ(t)2uxx − b(t)ux = f(x, t), u(x, 0) = ut(x, 0) ≡ 0. (3.6)

We follow ideas from Ishida and Yagdjian [10]. Levi conditions of Gevrey-type
allow us to prove well-posedness in Gevrey spaces of order s > 2.

Let us formulate the assumptions for the coefficients λ = λ(t) and b = b(t):

(A1) λ(0) = λ′(0) = 0, λ′(t) > 0, λ ∈ C1[0, T ];

(A2) c0
λ(t)

Λ(t)
≤ λ′(t)

λ(t)
≤ c1

λ(t)

Λ(t)
s

s−1
, c0 >

s

2s − 2
, c1 ≥ c0, Λ(t) =

t∫

0

λ(τ)dτ;

(A3) |b(t)| ≤ C
λ(t)2

Λ(t)
s

s−1
, b ∈ C[0, T ].

After partial Fourier transformation we get from (3.6)

vtt + λ(t)2ξ2v − ib(t)ξ v = F f, v(ξ, 0) = vt(ξ, 0) ≡ 0. (3.7)

We divide
{
(ξ, t) ∈ (R \ {0}) × (0, T ]} into two zones using the relation

Λ(tξ )
s

s−1 〈ξ〉m = N, 〈ξ〉m := (ξ2 + m2)
1
2 . The relation defines in an implicit

way a function tξ = t(〈ξ〉m). To a fixed chosen N and given T we determine m
such that T = t(〈0〉m).

We define the so-called pseudodifferential zone by

Zpd := {
(ξ, t) ∈ (R \ {0}) × (0, T ] : Λ(t)

s
s−1 〈ξ〉m ≤ N

}
,

and the so-called hyperbolic zone by

Zhyp := {
(ξ, t) ∈ (R \ {0}) × (0, T ] : Λ(t)

s
s−1 〈ξ〉m ≥ N

}
.

3.2.1. Representations of the solutions. In Zpd we use the auxiliary function

ρ2(ξ, t) = 1 + 〈ξ〉m
λ(t)2

Λ(t)
s

s−1
. Setting W = (ρ(t, ξ)v, ∂tv)

T we get from (3.7)

∂t W − A W = F, W(ξ, 0) = 0,

where

A =
(

∂tρ
ρ

ρ

ib(t)ξ−λ(t)2ξ2

ρ
0

)

, F =
(

0

F f

)

.
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Introducing the fundamental matrix Z = Z(t, σ, ξ) as the solution of

∂t Z − A Z = 0, Z(σ, σ, ξ) = I, for 0 ≤ σ ≤ t ≤ tξ ,

we obtain the representation

W(ξ, t) =
t∫

0

Z(t, σ, ξ)F(ξ, σ)dσ, for 0 ≤ t ≤ tξ . (3.8)

In Zhyp we set U = (λ(t)ξ v, Dtv)
T and get from (3.7)

DtU −
(

Dtλ
λ

λ(t)ξ
λ(t)ξ − ib(t)

λ(t) 0

)

U =
(

0

−F f

)

.

With the diagonalizer M and the transformation V := MU , where

M := 1

2

(
1 −1
1 1

)

, A :=
(

Dtλ
λ

λ(t)ξ
λ(t)ξ − ib(t)

λ(t) 0

)

the last system of the first order can be transferred to

Dt V = M Dt U = MAU + M

(
0

−F f

)

= MAM−1V + M

(
0

−F f

)

.

But

MAM−1 =
(−λ(t)ξ 0

0 λ(t)ξ

)

+ 1

2

(
Dtλ
λ

+ i b
λ

Dtλ
λ

+ i b
λ

Dtλ
λ

− i b
λ

Dtλ
λ

− i b
λ

)

.

Consequently, we arrive at the system with diagonal main part

∂t V − D V − B V = F,

where

D :=
(−iλ(t)ξ 0

0 iλ(t)ξ

)

, B := 1

2λ

(
λ′ − b λ′ − b
λ′ + b λ′ + b

)

, F := 1

2

(
F f

−F f

)

.

If X = X(t, σ, ξ) denotes the fundamental matrix for this system (compare with
Z = Z(t, σ, ξ) from (3.8) in Zpd), then the solution U = U(ξ, t) can be represented
in the form

U(ξ, t) = M−1

t∫

tξ

X(t, σ, ξ)F(ξ, σ)dσ + M−1 X(t, tξ , ξ)M U(ξ, tξ ).

Finally,

M U(ξ, tξ ) = M

(
λ(tξ )ξ

ρ(ξ,tξ )
ρ(ξ, tξ )v

1
i ∂tv

)

= Y(ξ, tξ )W(ξ, tξ )
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and the representation (3.8) leads to

U(ξ, t) = M−1

t∫

tξ

X(t, σ, ξ)F(ξ, σ)dσ

+ M−1 X(t, tξ , ξ)Y(ξ, tξ )

tξ∫

0

Z(tξ , σ, ξ)F(ξ, σ)dσ,

(3.9)

for tξ ≤ t ≤ T , where

Y(ξ, tξ ) := 1
2





λ(tξ )ξ

ρ(ξ,tξ )
− 1

i
λ(tξ )ξ

ρ(ξ,tξ )
1
i



 .

3.2.2. Energy estimates for the solution. We suppose the existence of L and K
such that

(A4) ‖Z(t, σ, ξ)‖ ≤ C exp(L(t, σ, ξ));
(A5) ‖X(t, σ, ξ)‖ ≤ C exp(K(t, σ, ξ));

and

(A6) L(t, σ, ξ) + L(σ, τ, ξ) = L(t, τ, ξ), K(t, σ, ξ) + K(σ, τ, ξ)

= K(t, τ, ξ) for τ ≤ σ ≤ t.

Let us define the weight

N s,β,l(ξ, t) =
{

exp
(
β〈ξ〉1/s

m
)〈ξ〉l

m exp
(
L(tξ , t, ξ) + K(T, tξ , ξ)

)
, 0 ≤ t ≤ tξ ;

exp
(
β〈ξ〉1/s

m
)〈ξ〉l

m exp(K(T, t, ξ)), tξ ≤ t ≤ T.

Taking account of (A4), (A6) and (3.8) gives

|W(ξ, t)|2N 2
s,β,l(ξ, t) ≤ C(T )

t∫

0

‖Z(t, σ, ξ)‖2|F(ξ, σ)|2N 2
s,β,l(ξ, t)dσ

≤ C(T )

t∫

0

exp(2L(t, σ, ξ))|F(ξ, σ)|2N 2
s,β,l(ξ, t)dσ

= C(T )

t∫

0

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dσ.

Integration over {ξ : |ξ| ≤ R0(t)}, where R0(t) is defined by Λ(t)
s

s−1 〈R0(t)〉m = N,
gives

∫

|ξ|≤R0(t)

|W(ξ, t)|2N 2
s,β,l(ξ, t)dξ ≤ C(T )

t∫

0

∫

R

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dξ dσ. (3.10)
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To get an a priori estimate from (3.9) we need ‖Y(ξ, tξ )‖ ≤ CN . This follows from
the definition of tξ = t(〈ξ〉m) and from

|λ(tξ )ξ|
ρ(ξ, tξ )

= λ(tξ )|ξ|
√

1 + 〈ξ〉m
λ(tξ )2

Λ(tξ )
s

s−1

≤ λ(tξ )〈ξ〉m
√

1 + 〈ξ〉2
mλ(tξ )2

N

≤ CN .

This allows us to estimate, for tξ ≤ t ≤ T ,

|U(ξ, t)|2N 2
s,β,l(ξ, t) ≤ C(T )

t∫

tξ

exp(2K(t, σ, ξ))|F(ξ, σ)|2N 2
s,β,l(ξ, t)dσ

+ CN (T ) exp(2K(t, tξ , ξ))

tξ∫

0

exp(2L(tξ , σ, ξ))|F(ξ, σ)|2N 2
s,β,l(ξ, t)dσ.

The assumption (A6) implies

|U(ξ, t)|2N 2
s,β,l(ξ, t) ≤ C(T )

t∫

tξ

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dσ

+ CN(T )

tξ∫

0

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dσ

≤ CN (T )

t∫

0

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dσ.

Integration over {ξ : |ξ| ≥ R0(t)} gives

∫

|ξ|≥R0(t)

|U(ξ, t)|2N 2
s,β,l(ξ, t)dξ ≤ CN (T )

t∫

0

∫

R

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dξ. (3.11)

The estimates (3.10), (3.11) together yield the following estimate for v:

|v(ξ, t)|2N 2
s,β,l(ξ, t) ≤ C(T )

t∫

0

|∂τv(ξ, τ)|2N 2
s,β,l(ξ, t)dτ

≤ C(T )

t∫

0

|∂τv(ξ, τ)|2N 2
s,β,l(ξ, τ)dτ,

and

∫

R

|v(ξ, t)|2N 2
s,β,l(ξ, t)dξ ≤ C(T )

t∫

0

∫

R

|F(ξ, σ)|2N 2
s,β,l(ξ, σ)dσ. (3.12)
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We define B(s, β, l, T ) as the space of functions satisfying

‖ f ‖s,β,l,T := sup
0<t<T





∫

R

N 2
s,β,l(ξ, t)|F f(ξ, t)|2dξ





1
2

< ∞.

By means of the estimate (3.12) we derive the next result.

Theorem 3.2. Let χ = χ(τ) ∈ C∞(Rn) with χ(τ) = 0 for |τ| ≤ 1
2 and χ(τ) = 1

for |τ| ≥ 2. Let H = H(Dx, t) be the pseudodifferential operator of first order with
the symbol

H(ξ, t) = λ(t)|ξ|χ
(

Λ(t)
s

s−1 〈ξ〉m

N

)

+ ρ(ξ, t)

(

1 − χ

(
Λ(t)

s
s−1 〈ξ〉m

N

))

.

Then under the assumptions (A1)–(A6) the solution of

utt − λ(t)2uxx − b(t)ux = f(x, t), u(x, 0) = ut(x, 0) ≡ 0,

satisfies the strictly hyperbolic-type estimate

‖u‖s,β,l,T + ‖H(Dx, t)u‖s,β,l,T + ‖Dtu‖s,β,l,T ≤ CN (T )‖ f ‖s,β,l,T , (3.13)

where CN(T ) tends to zero if T tends to zero.

In the next subsections we investigate how the classes B(s, β, l, T ) fit in our scheme
developed in Section 2.

3.2.3. Determination of K = K(t, σ, ξ) and L = L(t, σ, ξ). Let us begin with K .
The purely imaginary roots ±iλ(t)ξ have no essential influence on K . Influence
takes only the terms λ′

λ
and b

λ
.

By assumptions (A2) and (A3) it is enough to take into account the term
Chyp

λ(t)

Λ(t)
s

s−1
. Thus it is reasonable to define

K(t, σ, ξ) = K(t, σ) =
t∫

σ

Chyp
λ(τ)

Λ(τ)
s

s−1
dτ = Chyp

(
Λ(σ)−

1
s−1 − Λ(t)−

1
s−1

)
,

where we changed Chyp in the last equation.
More complicated is the definition of L = L(t, σ, ξ). The matrix A from Zpd

tells us that the terms

∂tρ

ρ
, ρ,

λ(t)2ξ2

ρ
,

|b(t)ξ|
ρ

,

should take an influence on L. The assumption (A2) for c0 guarantees that ∂tρ ≥ 0.
That really the first two terms determine L follows from

|b(t)ξ| ≤ C
λ(t)2

Λ(t)
s

s−1
〈ξ〉m ≤ C ρ2(ξ, t);

λ(t)2ξ2 ≤ C λ(t)2〈ξ〉2
m ≤ CN

λ(t)2〈ξ〉
Λ(t)

s
s−1

≤ CNρ2(ξ, t).
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Taking account of

t∫

σ

∂τρ

ρ
dτ = 1

2
ln ρ2(ξ, t) − 1

2
ln ρ2(ξ, σ) ,

and
t∫

σ

ρ(ξ, τ)dτ =
t∫

σ

√

1 + 〈ξ〉m
λ(τ)2

Λ(τ)
s

s−1
dτ

≤
t∫

σ

(

1 + 〈ξ〉1/2
m

λ(τ)

Λ(τ)
s

2(s−1)

)

dτ

= t − σ + 〈ξ〉1/2
m Cpd

(
Λ(t)

s−2
2(s−1) − Λ(σ)

s−2
2(s−1)

)
,

we obtain

K(t, σ) = Chyp

(
Λ(σ)−

1
s−1 − Λ(t)−

1
s−1

)
,

L(t, σ, ξ) = 1

2
ln ρ2(ξ, t) − 1

2
ln ρ2(ξ, σ) + t − σ

+〈ξ〉1/2
m Cpd

(
Λ(t)

s−2
2(s−1) − Λ(σ)

s−2
2(s−1)

)
.

Both functions satisfy (A6).

3.2.4. Estimate of K and L. In this section we show that the weights K = K(t, σ)

and L = L(t, σ, ξ) are compatible with the weight β〈ξ〉1/s
m , this means, there exists

a constant K0 such that

K(t, σ) ≤ K0〈ξ〉1/s
m for all tξ ≤ σ ≤ t ≤ T, (3.14)

L(t, σ, ξ) ≤ K0〈ξ〉1/s
m for all 0 ≤ σ ≤ t ≤ tξ , ξ ∈ R. (3.15)

From the definition of K(t, σ) we conclude that immediately (3.14) after

K(t, σ) ≤ K(T, tξ ) ≤ ChypΛ(tξ )
− 1

s−1 = ChypCN 〈ξ〉1/s
m .

By using the definitions of L(t, σ, ξ) and of tξ we conclude that

L(t, σ, ξ) ≤ 1

2
ln ρ2(ξ, tξ ) + tξ + 〈ξ〉1/s

m CpdΛ(tξ )
s−2

2(s−1)

≤ 1

2
ln

(

1 + λ(tξ )2〈ξ〉2
m

N

)

+ T + CpdCN 〈ξ〉1/s
m .

To estimate the first term we formulate two assumptions to λ, where exactly one
should be satisfied,

(A7) λ = λ(t) = tl,

(A8) λ(t) ∼ Λ(t)| ln Λ(t)|L ,

where l ∈ N and L is real.
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If (A7) is satisfied, then λ(tξ )2〈ξ〉2
m ∼ Λ(tξ )

2l
l+1 〈ξ〉2

m ∼ 〈ξ〉2− 2l
(l+1)

(s−1)
s

m .

Consequently,

ln

(

1 + λ(tξ )2〈ξ〉2
m

N

)

∼ ln

(

1 + CN 〈ξ〉2− 2l
(l+1)

(s−1)
s

m

)

≤ CN,s〈ξ〉1/(2s)
m .

If (A8) is satisfied, then λ(tξ )2〈ξ〉2
m ≤ CN 〈ξ〉2− 2(s−1)

s +ε
m with a small positive ε. But

this brings

ln
(

1 + λ(tξ )2〈ξ〉2
m

N

)

≤ CN,s〈ξ〉1/(2s)
m .

Thus (3.14) and (3.15) are satisfied with a suitable positive constant K0.

3.2.5. Admissibility of h. Our aim consists of an application of Remark 2.16.
From the definition of the weight we derive

h(ξ, t) =






K(T, t) for tξ ≤ t ≤ T,

K(T, tξ ) + L(tξ , t, ξ) for 0 < t ≤ tξ ,

K(T, tξ ) + lim
t→+0

L(tξ , t, ξ) for t = 0.

The last limit exists due to (A2).

Lemma 3.1. There exists a constant Cs which is independent of t ∈ [0, T ] and
ξ, η ∈ R such that

|h(t, ξ) − h(t, η)| ≤ Cs〈ξ − η〉1/s
m .

Proof. Without loss of generality we assume |ξ| ≥ |η|, this yields tη ≥ tξ . We
divide the proof into three cases. Lemma 4.2(ii) will be applied without further
reference.

1st case: T ≥ t ≥ tη

In this case we have h(t, ξ) − h(t, η) = K(T, t) − K(T, t) = 0.

2nd case: 0 ≤ t ≤ tξ

Now we have

h(t, ξ) − h(t, η) = K(T, tξ ) + L(tξ , t, ξ) − K(T, tη) − L(tη, t, η)

= K(T, tξ ) − K(T, tη) + 〈ξ〉1/2
m CpdΛ(tξ )

s−2
2(s−1)

− 〈η〉1/2
m CpdΛ(tη)

s−2
2(s−1)

− Λ(t)
s−2

2(s−1) Cpd
(〈ξ〉1/2

m − 〈η〉1/2
m

) + tξ − tη

+ 1
2 ln ρ2(ξ, tξ ) − 1

2 ln ρ2(η, tη) − 1
2

(
ln ρ2(ξ, t) − ln ρ2(η, t)

)
.
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A further splitting is needed here.

1st difference. We have

K(T, tξ ) − K(T, tη) = Chyp
(
Λ(tξ )

− 1
s−1 − Λ(tη)

− 1
s−1

) = Chyp
(〈ξ〉1/s

m − 〈η〉1/s
m

)

≤ Chyp 〈ξ − η〉1/s
m .

2nd difference. It remains to estimate

〈ξ〉1/2
m Λ(tξ )

s−2
2(s−1) − 〈η〉1/2

m Λ(tη)
s−2

2(s−1) = 〈ξ〉1/2
m 〈ξ〉−

s−2
2s

m − 〈η〉1/2
m 〈η〉−

s−2
2s

m

= 〈ξ〉1/s
m − 〈η〉1/s

m ≤ 〈ξ − η〉1/s
m .

3rd difference. We have

Λ(t)
s−2

2(s−1)
(〈ξ〉1/2

m − 〈η〉1/2
m

) ≤ Λ(tξ )
s−2

2(s−1)
(〈ξ〉1/2

m − 〈η〉1/2
m

)

= 〈ξ〉−
s−2
2s

m
(〈ξ〉1/2

m − 〈η〉1/2
m

)

≤ 〈ξ〉−
s−2
2s

m 〈ξ − η〉1/2
m = 〈ξ − η〉1/s

m

( 〈ξ − η〉m

〈ξ〉m

) s−2
2s

≤ Cs 〈ξ − η〉1/s
m .

4th difference. Here we use

tη − tξ =
η∫

ξ

d

d〈ρ〉m
tρ(〈ρ〉m)d〈ρ〉m ≤ C

ξ∫

η

Λ(tρ)

λ(tρ)〈ρ〉m
d〈ρ〉m .

Now we distinguish two cases. If λ satisfies (A7), then

ξ∫

η

Λ(tρ)

λ(tρ)〈ρ〉m
d〈ρ〉m ≤ C

ξ∫

η

Λ(tρ)
1

l+1

〈ρ〉m
d〈ρ〉m = C

ξ∫

η

1

〈ρ〉1+ s−1
s(l+1)

m

d〈ρ〉m

= C

(

〈η〉−
(s−1)
s(l+1)

m − 〈ξ〉−
(s−1)
s(l+1)

m

)

≤ Cs,l〈ξ − η〉1/s
m .

If λ satisfies (A8), then with a suitable positive L it holds that

ξ∫

η

Λ(tρ)

λ(tρ)〈ρ〉m
d〈ρ〉m ≤ C

ξ∫

η

(ln〈ρ〉m)L

〈ρ〉m
d〈ρ〉m ≤ C

ξ∫

η

1

s〈ρ〉1−1/s
m

d〈ρ〉m

= C
(〈ξ〉1/s

m − 〈η〉1/s
m

) ≤ C 〈ξ − η〉1/s
m .

5th difference. We have

1

2
ln ρ2(ξ, tξ ) − 1

2
ln ρ2(η, tη) = 1

2
ln
(
1 + λ(tξ )

2〈ξ〉2
m

) − 1

2
ln
(
1 + λ(tη)

2〈η〉2
m

)
.
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If λ satisfies (A7), then the last difference is equal to

1

2
ln

(

1 + 〈ξ〉2− 2l
(l+1)

(s−1)
s

m

)

− 1

2
ln

(

1 + 〈η〉2− 2l(s−1)
(l+1)s

m

)

≤ Cs
(〈ξ〉1/s

m − 〈η〉1/s
m

)

≤ Cs〈ξ − η〉1/s
m

and is to be handled like the 4th difference. The case λ that satisfies (A8) can be
studied in the same way.

6th difference. Now we proceed as follows:

ln

(

1 + 〈ξ〉m
λ(t)2

Λ(t)
s

s−1

)

− ln

(

1 + 〈η〉m
λ(t)2

Λ(t)
s

s−1

)

=
ξ∫

η

λ(t)2Λ(t)−
s

s−1

1 + 〈ρ〉mλ(t)2Λ(t)−
s

s−1
d〈ρ〉m

≤ Cs

ξ∫

η

1

s
〈ρ〉1/s−1

m d〈ρ〉m

= Cs
(〈ξ〉1/s

m − 〈η〉1/s
m

) ≤ Cs〈ξ − η〉1/s
m .

Thus we have also proved in the second case that |h(t, ξ)−h(t, η)| ≤ Cs〈ξ −η〉1/s
m .

3rd case: tξ ≤ t ≤ tη

We have

h(t, ξ) − h(t, η) = K(T, t) − K(T, tη) − L(tη, t, η)

= Chyp

(
Λ(t)−

1
s−1 − Λ(tη)

− 1
s−1

)
− (tη − t)

−〈η〉1/2
m Cpd

(
Λ(tη)

s−2
2(s−1) − Λ(t)

s−2
2(s−1)

)

− 1
2

(
ln ρ2(η, tη) − ln ρ2(η, t)

)
.

1st difference. Compare with 1st difference from 2nd case if we use K(T, t) ≤
K(T, tξ ).

2nd difference. Compare with 4th difference from 2nd case if we recall tη−t ≤ tη−tξ .

3rd difference. We have

〈η〉1/2
m

(
Λ(tη)

s−2
2(s−1) − Λ(t)

s−2
2(s−1)

)
≤ 〈η〉1/2

m

(
Λ(tη)

s−2
2(s−1) − Λ(tξ )

s−2
2(s−1)

)

= 〈η〉1/2
m

(
〈η〉−

s−2
2s

m − 〈ξ〉−
s−2
2s

m

)
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= 〈ξ〉1/2
m 〈η〉1/s

m − 〈η〉1/2
m 〈ξ〉1/s

m

〈ξ〉1/2
m

= 〈ξ〉1/2
m

(〈ξ〉1/s
m − 〈η〉1/s

m
)+ 〈ξ〉1/s

m
(〈ξ〉1/2

m − 〈η〉1/2
m

)

〈ξ〉1/2
m

≤ 〈ξ − η〉1/s
m + 〈ξ − η〉1/s

m

( 〈ξ − η〉m

〈ξ〉m

) s−2
2s

≤ Cs〈ξ − η〉1/s
m .

4th difference. Finally we have to denote

ln ρ2(η, tη) − ln ρ2(η, t) = ln

(
1 + 〈η〉mλ(tη)2Λ(tη)

− s
s−1

1 + 〈η〉mλ(t)2Λ(t)−
s

s−1

)

.

If λ satisfies (A7), then

ln

(
1 + 〈η〉mλ(tη)2Λ(tη)

− s
s−1

1 + 〈η〉mλ(t)2Λ(t)−
s

s−1

)

= ln

(
1 + Cl〈η〉mΛ(tη)

2l
l+1 − s

s−1

1 + Cl〈η〉mΛ(t)
2l

l+1 − s
s−1

)

.

But (A2) implies 2l
l+1 − s

s−1 > 0. Hence the last term is estimated by

ln

(
1 + Cl〈η〉mΛ(tη)

2l
l+1 − s

s−1

1 + Cl〈η〉mΛ(tξ )
2l

l+1 − s
s−1

)

= ln






1 + Cl〈η〉m 〈η〉−
s−1

s

(
2l

l+1 − s
s−1

)

m

1 + Cl〈η〉m〈ξ〉−
s−1

s

(
2l

l+1 − s
s−1

)

m




 .

Using ln
(

1+a
1+b

) ≤ ln
(

a
b

)
if a ≥ b > 0, then the last term can be estimated by

ln〈ξ〉−
s−1

s

(
2l

l+1 − s
s−1

)

m − ln〈η〉−
s−1

s

(
2l

l+1 − s
s−1

)

m ≤ Cs〈ξ − η〉1/s
m .

If λ satisfies (A8), then we follow the same reasoning. Thus we have proved in the
third case that

|h(t, ξ) − h(t, η)| ≤ Cs〈ξ − η〉1/s
m .

The statement of the lemma is proved. ��
Thus our weight function N s,β,l(ξ, t), satisfies (2.32) and (2.33), and there-

fore (2.29), if β is sufficiently large (e.g. β > 2 δ−1
1/s max(K0, Cs)). The spaces

B(s, β, l, T ) can be identified with the classes A(s, β, K0, m, l,Ns,β,l, T ), where
m is determined from T = t(〈0〉m). Applying Corollaries 2.3, 2.7 and 2.8 we can
follow the approach which was sketched at the end of Section 1 and arrive at the
following existence and uniqueness result for (3.5).

Theorem 3.3. Let us consider

utt − λ(t)2uxx − b(t)ux = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

under the assumptions (A1) to (A3). Let us suppose the following additional
conditions:
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• the data ϕ,ψ satisfy
∫ ∞

−∞
exp

(
T1 〈ξ〉1/s

m

) 〈ξ〉2�
m

(|F ϕ(ξ)|2 + |F ψ(ξ)|2) dξ < ∞,

for some sufficiently large T1 > 0;
• f : R→ C is an infinitely differentiable function and f(0) = 0;
• the Fourier transform F f of f is an integrable function and there exists a non-

negative constant c such that

|F f(ξ)| ≤ c e−|ξ|1/s (log |ξ|) log log |ξ|, for large |ξ|.
Then, with a suitable positive constant T0, the Cauchy problem has a unique
solution u ∈ B(s, β, l, T0) for sufficiently large β. The terms H(Dx, t)u and
Dtu (see (3.13)) belong to B(s, β, l, T0), too.

3.3. Strictly hyperbolic equations with non-Lipschitz coefficients

Our model problem is

utt − a(t)uxx = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (3.16)

We will derive a strictly hyperbolic-type estimate for the solution of

utt − a(t)uxx = f(x, t), u(x, 0) = ut(x, 0) ≡ 0 (3.17)

by using ideas from [5]. In the examples treated in Subsections 3.1 and 3.2 we
always worked with an explicit representation formula of the solution which we
do not have here. For that reason we shall make a few further remarks but without
going into details. For ε > 0 we study the family of Cauchy problems

utt − a(t + ε)uxx = f(x, t), u(x, 0) = ut(x, 0) ≡ 0,

instead of (3.17). Due to the assumption (A10), see below, this is on the one
hand a family of strict hyperbolic Cauchy problems and on the other hand there
exists a cone of dependence uniformly with respect to ε. Consequently, the Cauchy
problems are C∞ well-posed. If we apply our approach to these modified problems,
then we obtain a strictly hyperbolic-type estimate of the same kind as for (3.17).
Thus compactness results (see Remark 2.8) are applicable and give a solution of
our linear Cauchy problem (3.17) in a weaker space. Finally, the a priori estimate
(3.23) leads to the regularity of the solution we have in mind for that one of (3.16),
compare with Theorem 3.4. After having this regularity for the solution of (3.17)
one can follow the approach which is sketched in the introduction to get a uniquely
determined solution of (3.16).

It remains to derive the strictly hyperbolic-type estimate. We suppose

(A9) a(t) ≥ A > 0 on [0, T ],
(A10) a ∈ C[0, T ] ∩ C1(0, T ], with |a′(t)| ≤ B

tq
on (0, T ], where q > 1.
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After a partial Fourier transformation we obtain, from (3.17),

vtt + a(t)ξ2v = F f, v(ξ, 0) = vt(ξ, 0) ≡ 0. (3.18)

Again we divide {(ξ, t) ∈ (R \ {0}) × (0, T ]} into two zones. For given s, q, and

T we define m > 0 by the relation T m
1

s(q−1) = 1. Having fixed m we introduce tξ

by tξ〈ξ〉
1

s(q−1)
m = 1. Obviously, the function t(ξ) = tξ is strictly decreasing in |ξ|.

Hence, there is an inverse function denoted by ξt , defined on [0, T ]. As in the
previous section we introduce the pseudodifferential zone

Zpd =
{
(ξ, t) ∈ (R \ {0}) × (0, T ] : t〈ξ〉

1
s(q−1)
m ≤ 1

}
,

and the hyperbolic zone

Zhyp =
{
(ξ, t) ∈ (R \ {0}) × (0, T ] : t〈ξ〉

1
s(q−1)
m ≥ 1

}
.

In both zones we define the energy density E(ξ, t)(v) of v as follows (we use the
abbreviation v′ = vt):

E(ξ, t)(v) := (|v′(ξ, t)|2 + (1 + ã(ξ, t)ξ2)|v(ξ, t)|2)N (ξ, t),

where

N (ξ, t) =






exp

(

− K1

t∫

0
α(σ, ξ)dσ + β〈ξ〉1/s

m

)

〈ξ〉l
m if t < tξ;

exp

(

− K1 K3 〈ξ〉m tξ − K2

t∫

tξ

α(σ, ξ)dσ + β〈ξ〉1/s
m

)

〈ξ〉l
m if t ≥ tξ .

(3.19)

The functions ã and α will depend on the zone and the constants K1, K2, K3, β,
and � will be chosen later on. The energy of the solution of (3.18) is defined by

E(t)(v) :=
∫

R

E(ξ, t)(v)dξ.

Let us mention that, in contrast to the other examples, the weight N appears here
with exponent 1.

3.3.1. Estimate for the energy density in Zpd. Here the auxiliary functions ã and α

will be chosen as ã(ξ, t) = K3 := max
[0,T ]

|a(t)| and α(ξ, t) := K3 〈ξ〉m . Temporarily



Hyperbolic equations 449

we fix ξ and drop it in notations. Differentiation of the energy density E with
respect to t yields

E ′(t) =
(

2 Re (v′′v′) + 2
(
1 + K3ξ

2) Re (v′v))

−(|v′|2 + (
1 + K3 ξ2)|v|2) K1 K3〈ξ〉m

)
N (t).

Using (3.18) leads to

E ′(t) =
(

2(K3 − a(t)) ξ2 Re (v′v) + 2 Re (F f v′) + 2 Re (v′v)

−K1 K3 〈ξ〉m
(|v′|2 + K3 ξ2|v|2)

)
N (t).

Taking into consideration

(K3 − a(t))ξ2 Re (v′v) ≤ K3
2 |ξ|(|v′|2 + ξ2|v|2)

≤ 1
2 max(K3, 1) |ξ|(|v′|2 + K3 ξ2|v|2),

then K1 ≥ 1/(2 min(1, K3)) implies

E ′(t) ≤ (2 Re (F f v′) + 2 Re (v′v))N (t).

Because of the homogeneous initial conditions, Gronwall’s inequality yields

E(ξ, t)(v) ≤ e2t

t∫

0

|F f(ξ, σ)|2 N (ξ, σ)dσ, 0 ≤ t ≤ tξ . (3.20)

3.3.2. Estimate for the energy density in Zhyp. In Zhyp we take ã(ξ, t) = a(t) and
α(ξ, t) := t−q . Again we fix ξ and drop it in notations. Differentiating E(ξ, t)(v)
with respect to t we obtain

E ′(t) =
(
(2 Re (F f v′) + a′(t)ξ2|v|2 + 2 Re (vv′))

− K2

tq
(|v′|2 + (1 + a(t)ξ2)|v|2)

)
N (t).

Suppose K2 ≥ B/A, cf. (A9), (A10), and (3.19), then

a′(t) ≤ K2

tq
a(t).

This inequality implies

E ′(t) ≤ 2E(t) + |F f(t)|2N (t).

As above, after an application of Gronwall’s lemma we arrive at

E(ξ, t)(v) ≤ e2t

t∫

tξ

|F f(ξ, σ)|2N (ξ, σ)dσ + E(ξ, tξ )(v), tξ ≤ t ≤ T. (3.21)
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3.3.3. A strictly hyperbolic-type estimate for (3.17). Clearly, the function h =
hs,K1,K2,K3,q,T (ξ, t) is given by

hs,K1,K2,K3,q,T (ξ, t) :=





K1 K3 〈ξ〉m t for 0 ≤ t ≤ tξ

K1 K3 〈ξ〉m tξ + K2
q−1

(
1

tq−1
ξ

− 1
tq−1

)

for tξ ≤ t ≤ T
.

(3.22)

To derive an estimate of E we split the integration over R (with respect to ξ) into
integration over the three intervals (−∞,−ξt), (−ξt, ξt), and (ξt,∞) and use there
the estimates (3.20) and (3.21). This yields

E(t)(v) =
∫

R

(|v′(ξ, t)|2 + (1 + ã(ξ, t)ξ2)|v(ξ, t)|2)N (ξ, t)dξ

≤ T e2T sup
0<σ<T

∫

R

|F f(ξ, σ)|2 N (ξ, σ)dξ,

as long as K1 ≥ 1/(2 min(1, K3)) and K2 ≥ B/A. We define B(s, β, K1, K2,

K3, q, l, T ) as the set of all functions f satisfying

‖ f ‖ := ‖ f ‖s,β,K1,K2,K3,q,l,T

= sup
0<t<T





∫

R

|F f(ξ, t)|2 exp
(
β 〈ξ〉m − hs,K1,K2,K3,q,T (ξ, t)

) 〈ξ〉�m dξ





1
2

< ∞,

Then our energy estimate yields, for the solution of (3.17), the strictly hyperbolic-
type estimate

‖ u ‖ + ‖ Dxu ‖ + ‖ Dtu ‖ ≤ C(T )‖ f ‖, (3.23)

where C(T ) tends to 0 if T tends to 0.

3.3.4. Properties of the weight N . As for the second example we have to clarify
whether the weight N has the properties needed for an application of the results of
Section 2.

From (3.22) and the definition of tξ and with h = hs,K1,K2,K3,q,T we derive

〈ξ〉mt ≤ 〈ξ〉mtξ = 〈ξ〉m〈ξ〉−
1

s(q−1)
m = 〈ξ〉1− 1

s(q−1)
m ≤ 〈ξ〉1/s

m

as long as s ≤ q
q−1 . This leads to the restriction of s in dependence of q > 1.

Moreover,

K1 K3 〈ξ〉mtξ + K2

q − 1

(
1

tq−1
ξ

− 1

tq−1

)

≤ K1 K3 〈ξ〉mtξ + K2

q − 1
〈ξ〉1/s

m

≤ K4〈ξ〉1/s
m .
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with K4 suitably chosen. Hence

|h(ξ, t)| ≤ K4 〈ξ〉1/s
m .

If β > K4 and s ≤ q
q−1 , then N represents a Gevrey-type weight. Finally we

investigate the regularity of h.

Lemma 3.2. There exists a constant Cs which is independent of t ∈ [0, T ] and
ξ, η ∈ R such that

|h(ξ, t) − h(η, t)| ≤ Cs 〈ξ − η〉1/s
m .

Proof. As in the proof of Lemma 3.1 we suppose |ξ| ≥ |η|, tη ≥ tξ respectively.
Once again we shall use Lemma 4.2 without further reference.

1st case: t ≤ tξ

We have

h(ξ, t) − h(η, t) = K1 K3 (〈ξ〉m − 〈η〉m) t ≤ K1 K3 〈ξ − η〉mtξ

= K1 K3 〈ξ − η〉1/s
m 〈ξ − η〉1− 1

s
m 〈ξ〉−

1
s(q−1)

m

≤ K1 K3 〈ξ − η〉1/s
m .

2nd case: tη ≤ t

Starting with

h(ξ, t) − h(η, t) = K1 K3 〈ξ〉mtξ − K1 K3 〈η〉m tη + K2

q − 1

(〈ξ〉1/s
m − 〈η〉1/s

m

)

we have to estimate two differences. But the definition of zones immediately yields

|h(ξ, t) − h(η, t)| ≤ Cs〈ξ − η〉1/s
m .

3rd case: tξ ≤ t ≤ tη

In this case we have

h(ξ, t) − h(η, t) = K1 K3 〈ξ〉mtξ − K1 K3 〈η〉mt + K2

q − 1

(
1

tq−1
ξ

− 1

tq−1

)

.

To estimate the first difference we use

K1 K3 〈ξ〉m tξ − K1 K3 〈η〉mt ≤ K1 K3 (〈ξ〉m − 〈η〉m)tξ

and it follows the estimates from the first case. The second difference can be treated
in the following way:

K2

q − 1

(
1

tq−1
ξ

− 1

tq−1

)

≤ K2

q − 1

(
1

tq−1
ξ

− 1

tq−1
η

)

= K2

q − 1

(〈ξ〉1/s
m − 〈η〉1/s

m

)

≤ K2

q − 1
〈ξ − η〉1/s

m .

In all three cases we have shown the statement of the lemma. ��
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Summarizing, the weight N s,β,K1,K2,K3,q,l,T satisfies (2.32) and (2.33), and
therefore (2.29), as long as β is sufficiently large (e.g. β > 2 δ−1

1/s max(K4, Cs)).
For β > K4 the spaces B(s, β, K1, K2, K3, q, l, T ) coincide with A(s, β, K4, m, l,
Ns,β,K1,K2,K3,q,l,T , T ), where m = T−s(q−1). So we may apply Corollaries 2.3, 2.7
and 2.8 and arrive at the following existence and uniqueness result for (3.16):

Theorem 3.4. Let us consider

utt − a(t)uxx = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

under the assumptions (A9) and (A10) for q > 1. Let us suppose the following
additional conditions with s ≤ q

q−1 :

• the data ϕ,ψ satisfy
∫ ∞

−∞
exp(β 〈ξ〉m) 〈ξ〉�m (|F ϕ(ξ)|2 + |F ψ(ξ)|2) dξ < ∞,

with β sufficiently large;
• f : R→ C is an infinitely differentiable function and f(0) = 0;
• the Fourier transform F f of f is an integrable function and there exists a non-

negative constant c such that

|F f(ξ)| ≤ c e−|ξ|1/s(log |ξ|) log log |ξ|, for large |ξ|.
Then, with a suitable positive constant T0, the Cauchy problem has a unique
solution u ∈ B(s, β, K1, K2, K3, q, l, T0) for some K1 ≥ 1/(2 min(1, K3)) and
K2 ≥ B/A. The derivatives Dxu and Dtu (see (3.23)) belong to B(s, β, K1,

K2, K3, q, l, T0), too.

Concluding remark. The results in form of Theorems 3.1, 3.3 and 3.4 contain sharp
statements with respect to the Gevrey property for spatial variables because there
exist counter-examples for s > 2 (Theorem 3.1), that the statement of Theorem 3.3
doesn’t hold if assumption (A3) is not satisfied (see [10]) and for s >

q
q−1 (Theo-

rem 3.4) (see [5]). Moreover, the statements of these theorems contain sufficient
conditions for f in terms of the behaviour of their Fourier transforms in the phase
space. These conditions are near to optimal ones due to the counter-examples from
Subsection 2.14. In Theorems 3.1, 3.3 and 3.4 we have assumed that the functions
f = f(t) are defined on R. This is of course not necessary. We need only that
these functions are defined in a ball around ϕ + tψ. With a cut-off Gevrey function
we reduce this situation to the above case. By the aid of the cone of dependence
property we obtain similar statements. About possible generalizations we mention
the study of quasi-linear problems of second or even higher order. But then we
have to generalize the statements of Theorems 3.1, 3.3 and 3.4 to corresponding
linear problems with coefficients depending on x, too. Then we have, instead of
Fourier analysis, to apply microlocal analysis (see e.g. [14]). The results of Theo-
rem 2.11 and Corollary 2.7 of the present paper are important tools to generalize
the statements of [14] from analytic non-linear dependence to Gevrey non-linear
dependence. For applications we restricted ourselves to the Cauchy problem for
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hyperbolic equations. Let us mention that the results of this paper can also be used
to study other questions as e.g. local solvability (see e.g. Olario [17]). Last but not
least we wish to direct the attention of the reader to the very recent paper [18].
There the methods from Section 2 have been used to prove local solvability of
certain semi-linear pde with multiple characteristics with non-linearities of Gevrey
regularity (instead of analytic non-linearities).

4. Appendix

Here we collect a few elementary lemmas.

Lemma 4.1. Let 0 < � < 1 and δ� = 2 − 2�. Then

δ� t� ≤ 1 + t� − (1 + t)� ≤ t� (4.1)

holds for all t ∈ [0, 1]. Moreover, δ� is the best constant in (4.1).

Proof. Define

f�(t) = 1 + t� − (1 + t)�

t�
, 0 < t ≤ 1.

Then elementary calculus shows that f ′
� is negative on (0, 1]. ��

As an immediate consequence of this lemma one obtains the following:

Lemma 4.2. Let 0 < � < 1 and let δ� as in Lemma 4.1.

(i) For u, v ≥ 0 it holds that

(u + v)� ≤ u� + v� − δ� (min(u, v))�

and

u� + v� − (u + v)� ≤ min(u, v)�.

(ii) For arbitrary ξ, η ∈ Rn and m ≥ 0 it holds that

〈 ξ 〉�m ≤ 〈 ξ − η 〉�m + 〈 η 〉�m − δ� (min(〈 ξ − η 〉m , 〈 η 〉m))�

and

〈 ξ − η 〉�m + 〈 η 〉�m − 〈 ξ 〉�m ≤ (min(〈 ξ − η 〉m, 〈 η 〉m))�.

Lemma 4.3. Let 0 < s < 1 and put L = (1/2)s − 1/2 > 0. Let ξ ∈ Rn be fixed.
Then the function g(η) = |ξ|1/s − |ξ − η|1/s − |η|1/s is non-negative on the ball
B(ξ/2, L |ξ|).
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Proof. If η is an element of the ball defined in the lemma we conclude that

|η| ≤ (L + 1/2) |ξ| and |η − ξ| ≤ (L + 1/2) |ξ|.
Hence

g(η) ≥ |ξ|1/s (1 − 2(L + 1/2)1/s) = 0,

which completes the proof. ��
Lemma 4.4. Let c > 0 and ξ ∈ Rn be fixed. Define

Eξ = {η ∈ Rn : |ξ| − |ξ − η| − |η| ≥ −c}.
Then

vol (Eξ ) = cn |ξ|n
(

1 + c

|ξ|
) ((

1 + c

|ξ|
)2

− 1

)(n−1)/2

.

Proof. Let e1 = (1, 0, . . . , 0) and put

F =
{

η ∈ Rn :
∣
∣
∣
∣
e1

2
+ η

∣
∣
∣
∣ +

∣
∣
∣
∣
e1

2
− η

∣
∣
∣
∣ ≤ 1 + c

|ξ|
}

.

If R is a rotation such that R ξ = |ξ| e1, it holds that

η ∈ Eξ ⇐⇒ e1

2
− R(η/|ξ|) ∈ F.

Hence vol(Eξ ) = |ξ|n vol(F). It remains to compute the volume of F. Using the
notations r = 1 + c/|ξ|, η = (η1, η

′), η′ ∈ Rn−1, then we have

η ∈ F ⇐⇒
(

2 η1

r

)2

+
(

2 |η′|√
r2 − 1

)2

≤ 1.

An easy computation yields

vol (F) = cn r (r2 − 1)(n−1)/2,

where cn equals 2−n times the volume of the unit ball. ��
Lemma 4.5. Let α > 0. Let f(t) = ∫ ∞

t e−y yα−1 dy, t ≥ 0. Denote by g the inverse
function of f . Then g maps (0, Γ(α)] onto [0,∞) and

lim
u→0

g(u)

log(1/u)
= 1. (4.2)

Proof. The proof is an exercise in applying l’Hospital’s rule:

lim
u→0

g(u)

log(1/u)
= − lim

t→∞ g′( f(t)) f(t) = − lim
t→∞

f(t)

f ′(t)
= − lim

t→∞
f ′(t)
f ′′(t)

= 1.

��
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With mathematical induction one can establish the following:

Lemma 4.6. Let N be a natural number. Then the following identity holds:

(a1 · a2 · . . . · aN − 1) =
N∑

�=1

∑

j=( j1, j2,... , j�)

0≤ j1< j2<...< j�≤N

(a j1 − 1) . . . (a j� − 1),

for arbitrary complex numbers a1, . . . , aN.
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