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Abstract. Out of a right, circular cylinder Ωε of height H and cross-section a disc of radius
R + σε one removes a stack of n ≈ H/ε parallel, equi-spaced cylinders C j, j = 1,2, . . . ,n,
each of radius R and height νε. Here σ, ν are fixed positive numbers and ε is a positive
parameter to be allowed to go to zero. The union of the C j almost fills Ωε in the sense
that any two contiguous cylinders C j are at a mutual distance of the order of ε and that
the outer shell, i.e., the gap Sε = Ωε − Ωo has thickness of the order of ε (Ωo is obtained
from Ωε by formally setting ε = 0). The cylinder Ωε from which the C j are removed, is an
almost disconnected structure, it is denoted by Ω̃ε, and it arises in the mathematical theory
of phototransduction.

For each ε > 0 we consider the heat equation in the almost disconnected structure Ω̃ε,
for the unknown function uε, with variational boundary data on the faces of the removed
cylinders C j . The limit of this family of problems as ε → 0 is computed by concentrating
heat capacity and diffusivity on the outer shell, and by homogenizing the uε within the
limiting cylinder Ωo.

It is shown that the limiting problem consists of an interior diffusion in Ωo and a bound-
ary diffusion on the lateral boundary S of Ωo. The interior diffusion is governed by the
2-dimensional heat equation in Ωo, for an interior limiting function u. The boundary dif-
fusion is governed by the Laplace–Beltrami heat equation on S, for a boundary limiting
function uS . Moreover the exterior flux of the interior limit u provides the source term for
the boundary diffusion on S. Finally the interior limit u, computed on S in the sense of the
traces, coincides with the boundary limit uS. As a consequence of the geometry of Ω̃ε, local
arguments do not suffice to prove convergence in Ωo, and also we have to take into account
the behavior of the solution in Sε. A key, novel idea consists in extending equi-bounded
and equi-Hölder continuous functions in ε-dependent domains, into equi-bounded and equi-
Hölder continuous functions in the whole RN , by means of the Kirzbraun–Pucci extension
technique.

D. Andreucci: Dipartimento di Metodi e Modelli Matematici, Università di Roma La Sa-
pienza, Via A. Scarpa 16, 00161 Roma, Italy, e-mail:andreucci@dmmm.uniroma1.it
Member of INdAM-GNFM

P. Bisegna: Dipartimento di Ingegneria Civile, Università di Roma Tor Vergata, Via del
Politecnico 1, 00133, Rome, Italy, e-mail: bisegna@ing.uniroma2.it
Member of INdAM-GNFM

E. DiBenedetto: Dept. of Mathematics, Vanderbilt University, Nashville, TN 37240, USA,
e-mail: em.diben@Vanderbilt.edu
Partially supported by NSF grant DMS 0100660, and by NIH grant NIH R01 GM68953-01.



376 D. Andreucci et al.

The biological origin of this problem is traced, and its application to signal transduction
in the retina rod cells of vertebrates is discussed.
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1. Introduction

The figure represents the axial cross-section of a right circular cylinder Ωε, of
height H and with transversal cross-section a disc DR+σε, where H , R and σ are
fixed positive numbers and ε is a small positive parameter. Introduce coordinates
x = (x1,x2) and x = (x,z) so that,

Ωε = {|x| < R + σε
}× {

0 < z < H
}; Ωo = {|x| < R

}× {
0 < z < H

}
.

The cylinder Ωo is included in Ωε, is coaxial with it, and it is formally obtained
from Ωε by setting ε = 0. The cylinder Ωo houses a vertical stack of n parallel,
thin, equally spaced cylinders C j, j = 1,2, . . . ,n, coaxial with Ωo and with cross-
section a disc DR. They are thin in the sense that their thickness is ε � H . Their
mutual distance is νε, where ν is a fixed positive number. The first C1 has distance
1
2νε from the lower face of the cylinder Ωε and the last Cn has distance 1

2νε from
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the upper face of Ωε. The indicated geometry implies that,

vol
(⋃n

j=1
C j

)

vol(Ωo)
= 1

1 + ν

def= θo; nε = H

1 + ν
= Hθo.(1.1)

The spaces between two contiguous cylinders C j and C j+1 and within Ωo are the
interdiscal spaces. For j = 1,2, . . . ,(n − 1) these are equal cylinders coaxial with
Ωo, with the same radius and of height νε. We label them by I j , j = 0,1,2, . . . ,n
by defining Io as the space between the lower face {z = 0} of Ωo and the lower face
of C1, and In as the space between the upper face {z = H} of Ωo and the upper
face of Cn . The upper and lower faces of the interdiscal spaces I j are denoted by
∂I±

j . We also denote by L j the lateral surface of the discs C j , and by Λ j the lateral
surface of the interdiscal spaces I j . The gap between Ωε and Ωo is the outer shell
Sε, i.e.,

Sε = {
R < |x| < R + σε

}× {
0 < z < H

}
.

For each of the either three-dimensional or two-dimensional domains introduced,
consider the corresponding space–time cylindrical domain over a time interval
(0,T ), for a fixed T > 0. For example Ωo,T = Ωo × (0,T ],Sε,T = Sε × (0,T ], etc.

1.1. The family of ε-problems

We will compute the limit ε → 0 of solutions of the heat equation set in the domain
Ωε from which the discs C j have been removed, with non-linear variational data
on the faces ∂I±

j , and where the mass is concentrated in the outer shell Sε. Set,

aε(x) =






1 for x ∈
n⋃

j=0

I j ,

εo

ε
for x ∈ Sε;

Ω̃ε = Ωε −
n⋃

j=1

C j =
n⋃

j=0

I j

⋃

Sε,(1.2)

where εo ∈ (0,1) is fixed and ε ∈ (0,εo]. Consider the family of problems

uε ∈ C
(
0,T ; L2(Ω̃ε)

)⋂

L2(0,T ; W1,2(Ω̃ε)
)

aε(x)
∂

∂t
uε − div aε(x)∇uε = 0 weakly in Ω̃ε,T ,

(1.3)

with the variational and initial data,





∇uε · n = −1

2
εν (uε − f ) on

{

∂I+
j , j = 0, . . . ,(n − 1),

∂I−
j , j = 1, . . . ,n,

∇uε · n = 0 on






z = 0 and z = H

L j, j = 1, . . . ,n

|x| = R + σε,

uε(·,0) = uo in Ωε,

(1.4)
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where n is the unit exterior normal to Ω̃ε on the indicated surfaces. The initial datum
uo is a given positive constant. The function f is the restriction to the indicated
surfaces of a non-negative, bounded function with bounded gradient, defined in
R

3 ×R. The set of constants {σ , ν, H , εo, R, T , uo, sup f , sup |∇x,t f |}, are the data,
and we say that a constant γ depends only upon the data if it can be determined
a priori only in terms of these quantities and it is independent of ε. The formulation
(1.3) implies that uε is continuous from within each of the interdiscal spaces I j

into Sε through the cylindrical surfaces Λ j .

1.2. Homogenization, concentrated capacity and motivation

For ε = εo the problem (1.3) is the heat equation in Ω̃ε. For 0 < ε < εo the mass
of uε in the outer shell Sε is concentrated. Roughly speaking, the mass is divided
by ε to account for a shrinkage of Sε of the same order ([C1–9]). We will let ε → 0
and n → ∞ in such a way that the second of (1.1) continues to hold, i.e., the ratio
between the volume of the discs and the volume of Ωo, remains θo.

The geometry of Ω̃ε exhibits two thin compartments, available to the diffusion,
i.e., the interdiscal spaces and the outer shell surrounding the stack of discs. In the
limit Ω̃ε tends to Ωo with no discs in it. The outer shell Sε tends to S, the lateral
boundary of Ωo, defined by

S = {|x| = R} × {0 < z < H} .

The problems in (1.3)–(1.4) tend, in a sense to be made precise, to:

i. a boundary diffusion, by the Laplace–Beltrami operator on the limiting surface
S (Section 2.2);

ii. a family of 2-dimensional diffusion processes, parametrized with z ∈ (0,H )

taking place on the disc DR × {z} (Section 2.1).

Moreover:

iii. the exterior fluxes of these transversal 2-dimensional diffusions serve as source
terms in the boundary surface diffusion on the limiting outer shell (Section 2.2);

iv. the trace on S of the solution of interior diffusion coincides with the solution
of the boundary diffusion (Section 2.2).

The precise formulation of the homogenized-concentrated limit is in Sec-
tions 2–4 where we discuss its meaning, and establish its uniqueness.

This problem of homogenization-concentration is motivated by the diffusion of
the second messengers cGMP (cyclic guanosin monophosphate) and Ca2+ (calcium
ions) in the cytoplasm of a rod outer segment in visual transduction. A rod outer
segment in the retina of vertebrates, looks like Ωεo . The cytoplasm is the region Ωεo

from which the discs C j have been removed. The diffusion equation (1.3)–(1.4)
should be replaced by a system (for cGMP and for calcium) with somewhat more
structured boundary conditions. The homogenized limiting process is suggested
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by the actual physical dimensions of R, H , and εo.1 The form of the fluxes in (1.4)
is also generated by the physical problem, where the function f is a non-linear
function of calcium. Finally the problem starts from dark equilibrium, where cGMP
is uniformly distributed in the rod outer segment. This motivates the assumption
that uo is constant. The results are not affected by this assumption and uo could be
taken as the restriction to Ω̃ε of a smooth non-negative function defined in R3.

We have chosen to present the main mathematical ideas in the context of
a single equation and postpone to Appendix B a description of the visual transduc-
tion cascade generated by a photon captured by a disc Cio . There we discuss its
mathematical setting and compute the corresponding homogenized-concentrated
limits.

1.3. Novelty and significance

Limits of concentrated-capacity and homogenized limits are extensively treated in
the literature in separate settings. A novelty here is their simultaneous occurrence.
However the main mathematical significance of this investigation is in the novel
way of computing the homogenized limit. In most of the homogenization literature
the “holes” to be removed are “ball-like” and their shrinking to points does not
disconnect their ancestor domain. In the homogenized geometry ofΩε, the cylinders
C j tend to discs and tend to disconnect Ωo. For this reason the solutions uε

of (1.3)–(1.4) have a topological barrier of communication between the layers
of Ωε. The main technical point consists of establishing that the family {uε} is
equi-Hölder continuous away from the outer shell. Since the discs essentially
disconnect the rod, one needs to generate a suitable continuity estimate across the
discs. What makes such an estimate possible is that uε solves similar parabolic
problems in neighbouring interdiscal spaces and that its mass in the outer shell has
been concentrated. This is established is Sections 8–12 and it is of independent
interest as it introduces novel techniques in homogenization theory. Whence such
a compactness has been established, the actual computation of the homogenized
limit requires that the approximating solutions be extended in some fashion with
regular functions defined in the whole R3. Such an extension is realized by the
Kirzbraun–Pucci theorem valid for functions with concave modulus of continuity
([G1, pp. 197–198]). This is also a novel approach to homogenization.

Homogenization procedures for structures resembling the rod are in [H4] where,
however, due to homogeneous flux conditions, regularity and extensions issues are
immaterial.

In Section 2 we provide a rigorous formulation of the homogenized-concen-
trated limit problem, in a pointwise and respectively weak form. In Section 3
we prove a uniqueness result for such a limit problem. The remaining sections
are devoted to the calculation and identification of the homogenized-concentrated
limit.

1 For the Salamander H ≈ 22 µm, R ≈ 5.5 µm, εo ≈ 14 nm, νεo ≈ 14 nm, σεo ≈
15 nm, no ≈ 1,000; Pugh and Lamb [S5]. We refer to the review article [S6] for a detailed
description of the rod anatomy.
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In Appendix A we include another way of extending the approximating solu-
tions with functions defined in the whole rod and uniformly in a Sobolev norm.
While such an extension would provide sufficient compactness to compute the ho-
mogenized limit, the Hölder continuity is of relevance in the physical problem of vi-
sual transduction. This is clarified in Appendix B (Remark B3.1), where we discuss
the phototransduction cascade, set it in mathematical terms, and compute its limit.

Acknowledgement. We would like to thank R.E. Showalter for enlightening conversations
and in particular for pointing out that the proof of uniqueness also contains the proof
that ut ∈ L2. This implies the regularity of the solutions by a bootstrap argument.

2. The homogenized-concentrated limit

As ε → 0 the family of problems (1.3)–(1.4) tends, in a sense to be made precise,
to a problem involving two limiting functions

u, defined in Ωo,T called the interior limit;
û, defined in ST called the limit on the outer shell.

2.1. The interior limit

u ∈ C
(
0,T ; L2(Ωo)

)
,|∇xu| ∈ L2(Ωo,T );

ut − ∆xu = −(u − f ) weakly in Ωo,T ;
(

∆x = ∂2

∂x2
1

+ ∂2

∂x2
2

)

.(2.1)

These are diffusion processes, parametrized with z ∈ (0,H ), taking place on the
disc {|x| < R}. Also, the homogenized limit transforms the boundary fluxes in
(1.4) into source terms holding in Ωo.

2.2. The limit in outer shell

Denote coordinates on the limit surface S by θ ∈ (0,2π] and z ∈ (0,H ). The level
z traces on S a circle �z = {|x| = R} × {z}. The restrictions of {uε} to the outer
shell Sε converge to a function û defined in ST and satisfying

û ∈ C
(
0,T ; L2(S)

)
,
∣
∣(ûz,ûθ)

∣
∣ ∈ L2(ST ).(2.2)

These functions are related to the interior limit u as follows. First by virtue of (2.1)
the function u has a trace on {|x| = R}, and such traces are in L2(ST ). Then,

û(θ,z,t) = u(x,z,t)
∣
∣|x|=R in L2(�z,T

)
for all z ∈ (0,H ).(2.3)

Next, denoting by ∆S the Laplace–Beltrami operator on the limiting surface S, and
by ρ the radial variable on DR,

ût − ∆Sû = − (1 − θo)

σεo
uρ

∣
∣|x|=R

ûz(θ,0,t) = ûz(θ,H,t) = 0

weakly in ST ;
for all t ∈ (0,T ) and θ ∈ [0,2π).

(2.4)
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The regularity requirement (2.1) is not sufficient to insure that uρ has a trace in
L1(ST ). In Section 6 we establish that (2.1) and (2.4) are meant in a classical sense
and that the solution of (2.1)–(2.4) is unique.

2.3. Weak form of the homogenized limit

The following is the equivalent, weak form of (2.1)–(2.4). The functions u and û
are in the regularity classes (2.1), (2.2) and satisfy,

(1 − θo)

{∫

Ωo,T

{− uϕt + ∇xu · ∇xϕ + (u − f )ϕ
}
dxdt(2.5)

−
∫

Ωo

uoϕ(x,0)dx

}

interior

+σεo

{∫

ST

{−ûϕt + ∇Sû · ∇Sϕ
}

dηdt −
∫

S
uoϕ(x,0)dη

}

outer shell

= 0,

for all testing functions ϕ ∈ C1(Ωo,T ) vanishing for t = T . Here ∇S is the gradient
on S and dη is the surface measure on S.

The homogenized limit will be established in the weak form (2.5). In Section 6
we also establish that it is unique.

3. Compactness

Proposition 3.1. Let uε be a solution of (1.3)–(1.4) and denote by γ a constant
depending only upon the data and independent of ε.

0 ≤ uε(x,t) ≤ γ , for all (x,t) ∈ Ω̃ε,T ;(3.1)

sup
0 ≤ t ≤ T

∥
∥
√

aε uε(·,t)
∥
∥

2,Ω̃ε
+ ∥
∥
√

aε∇uε

∥
∥

2,Ω̃ε,T
≤ γ ;(3.2)

∫ T−h

0

∫

Ω̃ε

aε

[
uε(t + h) − uε(t)

]2
dxdt ≤ γh, for all h ∈ (0,T ).(3.3)

Since uε,z = 0 for z = 0 and z = H , by a periodic even reflection, (1.3)–
(1.4) can be regarded as set in the infinite cylinder DR+σε × R from which one
removes a periodically layered sequence of equal discs {C j}. By the same token,
after redefining Io and In , the interdiscal spaces {I j} form a periodically layered
sequence of equal cylinders.

Proposition 3.2. Let Ii be a fixed interdiscal space and let {z = ζ2i} and {z =
ζ2i+1} be the planes containing the faces ∂I±

i . For 0 < δ � 1 set

I(δ) = {|x| ≤ (1 − δ)R} × (ζ2i,ζ2i+1) ; I(δ,T ) = I(δ) × (0,T ].(3.4)

There exists a constant γ independent of ε and δ, such that,

sup
I(δ,T )

{|∇ uε| + |uε,t |
} ≤ γ

δ2
.(3.5)
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Proposition 3.3. Fix two distinct interdiscal spaces Ii and I j and let h be such
that I j = (0,0,h)+ Ii . For a fixed δ ∈ (0,1) let I(δ,T ) be defined as in (3.4). There
exists a constant α ∈ (0,1) depending only upon the data and independent of ε,h,δ,
and a positive constant γ(δ) depending only upon the data and δ and independent
of h and ε, such that

sup
I(δ,T )

∣
∣uε(x,z,t) − uε(x,z + h,t)

∣
∣ ≤ γ |h|α.(3.6)

Next we compute the homogenized-concentrated limit of (1.3)–(1.4), by as-
suming Propositions 3.1–3, whose proof is postponed to Sections 7–12.

4. The interior limit

In writing the weak formulation of (1.3)–(1.4) within Ωo,T , fix δ ∈ (0,1) and take
testing functions ϕ ∈ C∞

o (Ωo,T ), ϕ(·,0) = 0, ϕ(·,T ) = 0, and such that

x −→ ϕ(x,z,t) ∈ C∞
o

({|x| < (1 − δ)R}) for all z ∈ (0,H ),t ∈ (0,T ].(4.1)

Within such a domain aε ≡ 1. Taking into account the variational boundary data
(1.4),

n∑

j=0

∫ T

0

∫

I j

{−uεϕt − uε∆xϕ}dxdt +
n∑

j=0

∫ T

0

∫

I j

uε,zϕzdxdt(4.2)

= −1

2
νε

n∑

j=1

∫ T

0

∫

∂I−
j

(uε − f )ϕdxdt − 1

2
νε

n−1∑

j=0

∫ T

0

∫

∂I+
j

(uε − f )ϕdxdt.

For all j = 1, . . . ,n,

νε

∫ T

0

∫

∂I−
j

(uε − f )ϕdxdt

=
∫ T

0

∫

I j

(uε − f )ϕdxdt −
∫ T

0

∫

I j

(
ζ2 j+1 − z

){
(uε − f )ϕ

}

z dxdt.

By the energy estimates (3.2), the last term on right-hand side are infinitesimal of
the order of O(ε) and remain so even after we add them for j = 1, . . . ,n. A similar
formula holds for the last integral on the right-hand side of (4.2). Therefore (4.2)
takes the form

∫∫

Ωo,T

{− uεϕt − uε∆xϕ
}

n∑

j=0

χI j dxdt +
∫∫

Ωo,T

uε,zϕz

n∑

j=0

χI j dxdt

= −
∫∫

Ωo,T

(uε − f )ϕ

n∑

j=0

χI j dxdt + O(ε).

(4.3)
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4.1. Extending uε by equi-continuity

Having fixed δ ∈ (0,1), by virtue of Propositions 3.2, 3.3 the functions {uε}
are bounded and Hölder continuous in Ω̃ε,T

⋂{|x| < (1 − δ)R
}
, with uniform

upper bound, and uniform Hölder constant and exponent. By the Kirzbraun–Pucci
extension theorem ([G1, pp. 197–198]) each uε can be extended with a function
uε defined in the whole RN+1 with the same bounds and the same modulus of
continuity. Therefore the net {uε} of the extensions of the {uε} is equi-bounded and
equi-Hölder continuous in RN+1.

We may let δ → 0 along a countable sequence and choose by the theorem of
Ascoli–Arzelà and a diagonalization procedure, a sequence {uεn } such that

{uεn } → u pointwise in Ωo,T and uniformly on compact subsets of Ωo,T .

In view of the uniqueness of Section 6.1, the selection of subsequences is immaterial
and we will continue to label by ε the various selected subsequences.

4.2. Taking the limit in (4.3)

By this extension the integral identity (4.3) can be written with uε replaced by uε.
By the energy estimates (3.2),

{

uε,z

n∑

j=0

χI j

}

is equi-bounded in L2(Ωo,T ).

Therefore the selection of subsequences can be carried to ensure,

uε,z

n∑

j=0

χI j −→ ξ weakly in L2(Ωo,T ).

Lemma 4.1. Let θo be the ratio of the volume of the union of the discs Ci with
respect to the volume of Ωo introduced in (1.1). Then

[0,H] 
 z →
n∑

j=0

χI j (z) −→ (1 − θo) weakly in L2(0,H );

[0,H] 
 z →
∫ z

0

n∑

j=1

χC j dζ −→ z θo uniformly in [0,H].

Letting ε → 0 in (4.3) gives

(1 − θo)

∫∫

Ωo,T

{− uϕt − u∆xϕ + (u − f )ϕ
}
dxdt +

∫∫

Ωo,T

ξϕzdxdt = 0.

(4.4)

Lemma 4.2. ξ ≡ 0.
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Proof. In (4.3) take the test function ψ = ϕ
∫ z

0

∑n
j=1 χC j dζ and let ε → 0 to

obtain

(1 − θo)

∫∫

Ωo,T

{− uϕt − u∆xϕ + (u − f )ϕ
}

z dxdt +
∫∫

Ωo,T

ξϕz z dxdt = 0.

(4.4)′

Now write (4.4) with ϕ replaced by ϕz. Subtracting the expression so obtained
from (4.4)′ gives

∫∫

Ωo,T

ξϕdxdt = 0 for all ϕ ∈ C∞
o (Ωo,T ). �

Remark 4.1. The proof of Lemma 4.2 follows [H4] with a different technical
handling.

These arguments establish the form of the interior limit as stated in Section 2.1.

5. The global limit

In the weak formulation of (1.3)–(1.4) we now take testing functions ϕ ∈
C1(R3 × R), vanishing for t = T . Write down the weak formulation and di-
vide the various resulting integrals into the domains where the coefficients aε are
constant, i.e.,





∫

Ω̃ε,T −Sε,T

{− uεϕt + ∇uε · ∇ϕ
}
dxdt −

∫

Ω̃ε−Sε

uoϕ(x,0)dx

+1

2
νε

n−1∑

j=0

∫ T

0

∫

∂I+
j

(uε − f )ϕ dxdt + 1

2
νε

n∑

j=1

∫ T

0

∫

∂I−
j

(uε − f )ϕ dxdt






interior

+
{

εo

ε

∫∫

Sε,T

{− uεϕt + ∇uε · ∇ϕ
}
dxdt − εo

ε

∫

Sε

uoϕ(x,0)dx

}

outer shell

= 0.

Let ε → 0 and use the results of the previous section, to obtain

(1 − θo)

{∫

Ωo,T

{− uϕt + ∇xu · ∇xϕ + (u − f )ϕ
}
dxdt −

∫

Ωo

uoϕ(x,0)dx

}

interior

+ lim
ε→ 0

{

εo

ε

∫∫

Sε,T

{− uεϕt + ∇uε · ∇ϕ
}
dxdt − εo

ε

∫

Sε

uoϕ(x,0)dx

}

outer shell

= 0.

(5.1)

Indeed the regularity claimed in (2.1) of ∇xu follows from standard arguments
relying on the energy estimates (3.2). To compute the limit in (5.1), transform the
integrals extended over Sε in cylindrical coordinates and set

ûε(θ,z,t) = 1

σε

∫ R+σε

R
u(ρ cos θ,ρ sin θ,z,t)dρ; ϕ(θ,z,t) = ϕ

∣
∣|x|=R .
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Now require that for |x| > R the testing function ϕ be independent of |x|, so that

∇uε · ∇ϕ = uε,ρϕρ + 1

ρ2
uε,θϕθ + uε,zϕz = 1

ρ2
uε,θϕθ + uε,zϕz provided ρ ≥ R.

Taking also into account that ϕ is smooth we transform the terms under the limit
in (5.1) as,

εo

ε

{∫∫

Sε,T

{− uεϕt + ∇uε · ∇ϕ
}
dxdt −

∫

Sε

uoϕ(x,0)dx

}

outer shell

= σεo

∫ T

0

∫ H

0

∫ 2π

0

1

σε

∫ R+σε

R

{

−uεϕt +
(

1

ρ2
uε,θϕθ + uε,zϕz

)}

ρdρdθdzdt

− σεo

∫ H

0

∫ 2π

0

1

σε

∫ R+σε

R
uoϕρdρdθdz

= σεo

∫ T

0

∫ H

0

∫ 2π

0

{−ûεϕt + ∇Sûε · ∇Sϕ
}

Rdθdzdt

− σεo

∫ H

0

∫ 2π

0
uoϕRdθdz + O(ε).

(5.2)

By the energy estimates (3.2), the nets {ûε} and {∇Sûε} are equi-bounded in L2(ST ).
Moreover, also taking into account the uniform time-regularity estimates in (3.3),
the net {ûε} is pre-compact in L2(ST ). Therefore for subnets relabelled with ε,
{
ûε

} → û strongly in L2(ST ) and
{∇Sûε

} → ∇Sû weakly in L2(ST ).

Letting ε → 0 in (5.2) and recalling that Rdθdz is the surface measure on S,

lim
ε → 0

εo

ε

{∫∫

Sε,T

{− uεϕt + ∇uε · ∇ϕ
}
dxdt −

∫

Sε

uoϕ(x,0)dx

}

outer shell

= σεo

{∫

ST

{−ûϕt + ∇Sû · ∇Sϕ
}

dηdt −
∫

S
uoϕ(x,0)dη

}

outer shell

.

(5.3)

Putting this in (5.1) establishes the homogenized-concentrated limit in the weak
form (2.5). Finally the trace identification in (2.3) follows from the energy estimate
(3.2) and the uniform Hölder estimates of the Kirzbraun–Pucci extensions uε via
the triangle inequality.

6. Regularity and uniqueness

The integral in (2.5) extended over Ωo,T , does not impose any restriction on the
derivatives of ϕ with respect to z. Therefore, up to an approximation process, the
testing function ϕ is not required to be regular in the variable z within {|x| < R}. The
integral extended over ST however requires that ϕz be in L2(ST ). To summarize,
the testing function ϕ is only required to satisfy ϕt,∇xϕ ∈ L2(Ωo,T ). Moreover ϕ

must possess traces ϕ̂ on ST such that ϕ̂t,∇Sϕ̂ ∈ L2(ST ).
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These remarks suggest we construct testing functions of the following form.
First take a function ϕ̂ ∈ W1,2(ST ) so that its traces (θ,t) → ϕ̂(θ,z,t) are in L2(�z,T )

for all z ∈ (0,H ). Then for each fixed z ∈ (0,H ) extend such traces into {|x| < R}
with a function (x,t) → ϕ(x,z,t) such that ϕt and ∇xϕ are in L2(Ωo,T ).

For 0 < h < T let Fh denote the Steklov time-averages of a function F ∈
L1

loc(R
N+1). A testing function in (2.5) could be constructed by starting with

ûh ∈ W1,2(ST−h). Then ûh is extended with uh for z ∈ (0,H ). The starting function
ûh and its extensions are multiplied by a smooth function of t that vanishes for
t ≥ T − h.

A standard change of variables shows that (2.5) holds with u replaced by their
time Steklov averages uh and it takes the form

(1 − θo)

{∫

Ωo,T

{
uh,tϕ + ∇xuh · ∇xϕ + (u − f )hϕ

}
dxdt

}

interior

(6.1)

+σεo

{∫

ST

{
ûh,tϕ + ∇Sûh · ∇Sϕ

}
dηdt

}

outer shell

= O(h),

for all testing functions ϕ ∈ C1(Ωo,T ) vanishing for t ≥ T − h.
For a fixed 2h ∈ (0,T ) let θh(·) be a smooth, non-negative function defined

in R, vanishing for t ≥ T −h and equal to one for t ≤ T −2h. Then, following the
previous discussion, one could take in (6.1) the testing function ϕ = uh,tθh . After
standard calculations and limiting processes, this implies that

∥
∥ut

∥
∥

2,Ωo,T
+ ∥
∥∆xu

∥
∥

2,Ωo,T
+ ∥
∥ût

∥
∥

2,ST
≤ γ ,

for a constant γ dependent only upon the data. Next we take into account the
explicit form of the second of (2.1), when written in polar coordinates; we employ
a straightforward approximation argument as well as the estimate above, and show
that

∥
∥uρ

∥
∥

2,ST
+ ∥
∥∆Sû

∥
∥

2,ST
≤ γ ,

so that uxi x j ∈ L2(Ωo,T ). By a bootstrap argument and classical Schauder estimates
one finds that u is as regular as permitted by f . Thus (2.4) has a strong pointwise
meaning.

6.1. Uniqueness

Proposition 6.1. The solution of (2.1)–(2.4) in its weak form (2.5) is unique.

Proof. Let ui, ûi for i = 1,2 be solutions of (2.1)–(2.4) originating from the same
initial data uo. Write (6.1) for h = 0 and for ui , and subtract them to obtain an
integral identity for (u1 − u2). In this take the testing function (u1 − u2), which is
admissible in view of the previous discussion. �
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7. Proof of Proposition 3.1

The positivity stated in (3.1) follows from a weak form of the maximum principle.
One multiplies (1.3) by −u−

ε , up to Steklov averages, and examines the signs of
the resulting integrals. This implies u−

ε ≡ 0. Assuming the upper bounds (3.1), the
energy estimates (3.2) and the time regularity in (3.3) are standard. To prove such
an upper bound, in (1.3) take the test function (uε − k)+, modulo Steklov averages,
where k ≥ uo is to be chosen. This gives,

{
non-negative energy

terms for (uε − k)+

}

= − 1

2
νε

n∑

j=1

∫ T

0

∫

∂I−
j

(uε − f )(uε − k)+dxdt

− 1

2
νε

n−1∑

j=0

∫ T

0

∫

∂I+
j

(uε − f )(uε − k)+dxdt.

(7.1)

Divide ∂I±
j into the two portions,

[
(uε − f ) ≥ 0

]
and

[
(uε − f ) < 0

]
. The portion

of the integrals extended over
[
(uε − f ) ≥ 0

]
gives a non-positive contribution

and is discarded. On the remaining portion, uε < f . Therefore if k is chosen as
max{uo; sup f } all the terms on the right-hand side of (7.1) can be discarded. This
in turn implies uε ≤ k a.e. in Ω̃ε,T . �

8. Proof of Proposition 3.2

Introduce the change of variables and the transformed function,

x = x, ζ = R

νε
(z − ζ2i) ; U(x,ζ,t) = uε

(

x,ζ2i + νε

R
ζ,t
)

.

The cylinder Ii is transformed into IR = DR ×(0,R) and (1.3)–(1.4) is transformed
in






Ut − ∆xU −
(

R

νε

)2

Uζζ = 0 in IR × (0,T ];
U(x,ζ,0) = uo on IR × {0};
(

R

νε

)2

Uζ (x,R,t) = −1

2
R
(
U − f

)
for ζ = R;

(
R

νε

)2

Uζ (x,0,t) = 1

2
R
(
U − f

)
for ζ = 0.

(8.1)

A solution of (8.1) is classical in I R, away from |x| = R. Take the derivative of
U with respect to the variable x� for some � = 1,2,3,4, where we stipulate that
x3 = ζ and x4 = t. Multiply the equation so obtained by the testing function
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±(Ux�
− k)±ϕ2, where ϕ ∈ C1

o(DR), and integrate by parts over IR × (0,t] for
t ∈ (0,T ]. This gives,

∥
∥(Ux�

− k)±ϕ
∥
∥2

2,IR×{t} + 2
∥
∥ϕ∇(Ux�

− k)±
∥
∥2

2,IR,t

= ∓ 4
∫∫

IR,t

(Ux�
− k)±ϕ∇xϕ · ∇x(Ux�

− k)±dxdt

± 2

(
R

νε

)2 ∫ t

0

∫

DR

Uζx�
(Ux�

− k)±(x,R,τ)ϕ2(x)dxdτ

∓ 2
(

R

νε

)2 ∫ t

0

∫

DR

Uζx�
(Ux�

− k)±(x,0,τ)ϕ2(x)dxdτ.

(8.2)

Assume first that � = 1,2,4 and consider the integral on the right-hand side, written
over DR × {ζ = R} and for (Ux�

− k)+. Using the variational boundary conditions
in (8.1), it can be majorized by

R
∫ t

0

∫

DR

(Ux�
− k)+(x,R,τ)

(∣
∣ fx�

∣
∣− Ux�

)
ϕ2dxdτ.

Therefore if k is chosen to satisfy k ≥ sup |∇ f |, this integral gives a non-positive
contribution and it can be discarded. Similar arguments hold for (Ux�

−k)±(x,0,t).
The result is that, if � = 1,2,4, for such a choice of k, the last two boundary integrals
on the right-hand side of (8.2) can be discarded. If � = 3 so that x3 = ζ , the first
boundary integral on the right-hand side of (8.2) is transformed and estimated by
means of the boundary conditions in the penultimate equation of (8.1), and it takes
the form,

∫ t

0

∫

DR

Uζx�
(x,R,τ)

(

2

(
R

νε

)2

Uζ − 2

(
R

νε

)2

k

)

±
ϕ2dxdτ

=
∫ t

0

∫

DR

Uζx�
(x,R,τ)

(

−R(U − f ) − 2

(
R

νε

)2

k

)

±
ϕ2dxdτ.

If |k| > γ sup(U + f ) and ε < εo, this integral vanishes. The last boundary integral
also vanishes for such a choice of |k|. The first integral on the right-hand side of
(8.2) is majorized by the Schwarz inequality. The resulting inequalities are

sup
0≤t≤T

∥
∥(Ux�

− k)±ϕ
∥
∥2

2,IR×{t} + ∥
∥ϕ∇(Ux�

− k)±
∥
∥2

2,IR,T

≤ γ

∫∫

IR,T

(Ux�
− k)2

±
∣
∣∇ϕ

∣
∣2dxdt,

for a constant γ depending only upon the data. From this and a standard iterative
technique,

sup
IR,T ∩{|x|<(1−2δ)R}

∣
∣Ux�

∣
∣ ≤ sup(U + f ) + γ

δ5/6

(∫ T

0

∫ R

0

∫

|x|<(1−δ)R

∣
∣Ux�

∣
∣2 dxdt

)1/2

,
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for a constant γ depending only upon the data and independent of δ. Returning to
the original coordinates,

sup
I(2δ,T )

∣
∣uε,x�

∣
∣ ≤ ko + γ

δ5/6

(
1

νε

∫ T

0

∫ ζ2i+1

ζ2i

∫

|x|<(1−δ)R

∣
∣uε,x�

∣
∣2 dxdzdt

)1/2

.

Assume first that � = 1,2,3. From the equation in (1.3),

∫∫

Ii,T

|∇uε|2 ϕ2dxdt ≤ γ
ε

δ2
,

for a non-negative, piecewise smooth cut-off function in DR such that it equals one
on {|x| < (1 − δ)R} and such that |∇xϕ| ≤ γ/δ. If � = 4, multiplying (1.3) by
uε,tϕ, gives

∫∫

Ii,T

∣
∣uε,t

∣
∣2 ϕ2dxdt ≤ γ

δ2

∫∫

Ii,T

∣
∣∇uε

∣
∣2ϕ2dxdt

− 1

2
νε

∫ T

0

∫

DR

ϕ2uε,t (uε − f )(x,R,t)dxdt

− 1

2
νε

∫ T

0

∫

DR

ϕ2uε,t (uε − f )(x,0,t)dxdt

≤ γ
ε

δ2
.

9. Proof of Proposition 3.3. Part I

Having fixed Ii and I j and h as in the statement, set

u(x,z,t) = uε(x,z,t) − uε(x,z + h,t)

f (x,z,t) = f(x,z,t) − f(x,z + h,t)
in Ii .(9.1)

Then u satisfies the boundary-value problem in Ii,T






ut − ∆u = 0;
u(x,z,0) = 0;
uz(x,ζ2i+1,t) = −1

2
νε
(
u − f

)
(x,ζ2i+1,t);

uz(x,ζ2i,t) = 1

2
νε
(
u − f

)
(x,ζ2i,t).

(9.2)

This boundary-value problem does not contain the values of u on the lateral bound-
ary Λi of Ii . While such information is not directly available, it turns out that to
establish the Hölder estimate in (3.6) it suffices to have only an estimate of such
boundary values in their L1(Λi,T )-average.
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9.1. Estimating the L1(Λi,T )-average of u

Lemma 9.1. There exists a constant γ depending only upon the data and indepen-
dent of ε and h, such that,

1
∣
∣Λi,T

∣
∣

∫∫

Λi,T

∣
∣u(x,z,t)

∣
∣dηdt ≤ γ

√|h|,(9.3)

where dη is the surface measure on Λi .

Proof. Let f be a smooth function defined in Ω̃ε,T . In terms of cylindrical coordi-
nates,

f(R,θ,z) = f(ρ,θ,z) +
∫ R

ρ

fr(r,θ,z)dr for ρ > R.

Integrating this in dρ over
(
R,R + 1

2σε
)

gives,

1

2
σε f(R,θ,z) =

∫ R+ 1
2 σε

R
f(ρ,θ,z)dρ +

∫ R+ 1
2 σε

R

∫ R

ρ

fr(r,θ,z)drdρ.

Write this for z ∈ (ζ2i,ζ2i+1) and z + h ∈ (ζ2 j ,ζ2 j+1) take the difference and
integrate the absolute value of such a difference over Λi , i.e., integrate in dη =
Rdθdz for θ ∈ [0,2π) and z ∈ (ζ2i,ζ2i+1). These operations yield

∫

Λi

∣
∣ f(R,θ,z + h) − f(R,θ,z)

∣
∣dη

≤ 2R

σε

∫ ζ2i+1

ζ2i

∫ 2π

0

∫ R+ 1
2 σε

R

∣
∣ f(ρ,θ,z + h) − f(ρ,θ,z)

∣
∣dρdθdz

+ 2R

σε

∫ ζ2i+1

ζ2i

∫ 2π

0

∫ R+ 1
2 σε

R

∫ ρ

R

{| fr(r,θ,z + h)| + | fr(r,θ,z)|}drdρdθdz

= 2R

σε
I1 + 2R

σε
I2.

(9.4)

To estimate I1 observe that as ρ ranges over (R,R+ 1
2σε) the argument of f remains

in the outer shell Sε. Therefore,

I1 ≤
∫ ζ2i+1

ζ2i

∫ 2π

0

∫ R+ 1
2 σε

R

∫ z+h

z

∣
∣ fz(ρ,θ,ζ)

∣
∣dζdρdθdz

≤ ν

√
πσ

R

√|h|ε3/2

(∫

Sε

∣
∣ fz(ρ,θ,ζ)

∣
∣2dx

)1/2

.

Similarly I2 is estimated as

I2 ≤
√

πν

R
σ3/2ε2

(∫

Sε

∣
∣ fr(r,θ,z)

∣
∣2dx

)1/2

.
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Combining these estimations in (9.4) and dividing both sides by
∣
∣Λi

∣
∣ gives

1
∣
∣Λi

∣
∣

∫

Λi

∣
∣ f(R,θ,z + h) − f(R,θ,z)

∣
∣dη ≤ γ(

√|h| + √
ε)

(
1

ε

∫

Sε

∣
∣∇ f

∣
∣2dx

)1/2

.

To prove the lemma write this with f = uε and integrate it in dt over (0,T ]. This
gives

1
∣
∣Λi,T

∣
∣

∫∫

Λi,T

∣
∣u(R,θ,z,t)

∣
∣dηdt ≤ γ

(√|h| + √
ε
)
(

1

ε

∫∫

Sε,T

∣
∣∇uε

∣
∣2dxdt

)1/2

.

The conclusion now follows recalling that ε ≤ h and using the energy estimates
(3.2) and the form (1.2) of the function aε(·). �

10. Proof of Proposition 3.3. Part II

To proceed, in (9.2) perform the change of variables z → (z − ζ2i) and continue
to denote by z the transformed variables and by u the transformed function. The
domain Ii is mapped into � = {|x| < R}×{0 < z < νε} and (9.2) continues to hold
in �T with the same boundary conditions. Denote by Λ the lateral boundary of � ,
which is the transformed image of Λi . Fix a non-negative function ξλ ∈ C∞

o (� )

and consider the boundary-value problem,





ϕ ∈ W1,2(0,T ; L2(� )
)⋂

L2(0,T ; W1,2(� )
);

ϕt + ∆ϕ = −ξλ;
ϕ(x,T ) = 0; ϕ(x,z,t)

∣
∣
Λ
= 0;

ϕz(x,0,t) = 1

2
νε ϕ(x,0,t);

ϕz(x,νε,t) = −1

2
νε ϕ(x,νε,t).

(10.1)

Remark 10.1. The solution of (10.1) is non-negative and it can be constructed by
the Galerkin procedure. This gives ϕt ∈ L2(�T ), with upper bounds depending
upon the L2(�T )-norm of ξλ.

Multiply (10.1) by u and integrate by parts the Laplacean of ϕ over �T . Next
take ϕ in the weak formulation of (9.2). Adding the resulting inequalities,

∫∫

�T

ξλudxdt = −
∫ T

0

∫

Λ

∇ϕ · x

R
udηdt

− 1

2
νε

∫ T

0

∫

DR

{ (
ϕ f
)
(x,0,t) + (

ϕ f
)
(x,νε,t)

}
dxdt

≤
∣
∣
∣
∣

∫ T

0

∫

Λ

∇ϕ · x

R
udηdt

∣
∣
∣
∣+ γε

∫ T

0

∫

DR

{
ϕ
∣
∣ f
∣
∣(x,0,t) + ϕ

∣
∣ f
∣
∣(x,νε,t)

}
dxdt.

(10.2)
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These calculations are rigorous and can be justified by local regularization. The
continuity of uε will result from estimating the right-hand side of (10.2) independent
of ε, h and the choice of the ξλ ∈ C∞

o (� ). This is preceded by some estimations of
the function ϕ.

11. Estimating ϕ away from the support of ξλ

Select ξλ ∈ C∞
o (�T ) as an approximation of the identity at some point of the

interior of � , say, for example,

(
xo,zo,to

)
, where

∣
∣xo

∣
∣ ≤ (1 − δ)R for some δ > 0, 0 < zo < νε, 0 < to < T.

(11.1)

The kernels ξλ satisfy
∫

�T

ξλdxdt = 1 ∀λ > 0 and lim
λ→0

∫

�T

ξλψ(x,z,t)dxdt = ψ
(
xo,zo,to

)
,

for all continuous functions ψ defined in �T . Set

� (δ) = {(1 − δ)R < |x| < R} × {0 < z < νε} ; � (δ,T ) = � (δ) × (0,T ].
Proposition 11.1. Let δ > 0 be fixed as in (11.1). There exists a constant γ

depending only upon the data and independent of ε,λ,δ such that

sup
� (δ,T )

ϕ ≤ γ

δ2

1

ε
; 0 ≤ −∇ϕ · x

R

∣
∣
∣
∣
Λ

≤ γ

δ2
∣
∣ ln(1 − δ)

∣
∣

1

ε
.(11.2)

Proof. The problem (10.1) can be rescaled as in Section 8 into the new domain
�R = DR × (0,R) with lateral boundary ΛR = {|x| = R} × {0,R}. The solution
of the transformed problem is then estimated, by an iteration technique, conducted
near ΛR, i.e., by using cut-off functions vanishing for |x| < (1 − δ)R. After we
return to the original coordinates, the resulting estimate takes the form

sup
� (δ,T )

ϕ ≤ γ

δ2

1

ε

∫∫

� (4δ,T )

ϕdxdt,(11.3)

for a constant γ depending only upon the data and independent of δ and ε. The
integral on the right-hand side of (11.3) is estimated by referring back to (10.1).
Integrating it over � × (t,T ),

∫

�
ϕ(x,z,t)dxdz −

∫ T

t

∫

Λ

∇ϕ · x

R
dηdτ

+ 1

2
νε

∫ T

t

∫

DR

{
ϕ(x,0,τ) + ϕ(x,νε,τ)

}
dxdτ

=
∫ T

t

∫

�
ξλdxdτ ≤

∫∫

�T

ξλdxdt = 1.

(11.4)
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The boundary integrals extended over {z = 0} and {z = νε} are non-negative and
are discarded. Also the boundary integral extended over Λ is non-negative since ϕ

is non-negative in �T and vanishes on Λ.
Combining this with (11.3) proves the first of (11.2). The proof of the second

is based on the construction of a barrier. Set

w(x,z,t) = γ

δ2 ln(1 − δ)

1

ε
ln

|x|
R

for (1 − δ)R ≤ |x| ≤ R.

One verifies that w is non-negative, it vanishes on Λ and satisfies the equation in
(10.1) within � (δ,T ). Moreover it has zero flux on the upper and lower faces of
� (δ). Finally we may assume that w ≥ ϕ on |x| = (1 − δ)R, due to the first of
(11.2), provided the constant γ in the definition of w is sufficiently large. Therefore
by the maximum principle ϕ ≤ w within � (δ,T ). Since both vanish on Λ,

0 ≤ −∇ϕ · x

R

∣
∣
∣
∣
Λ

≤ −∇w · x

R
= −γ

Rδ2 ln(1 − δ)

1

ε
.

�

12. Proof of Proposition 3.3 concluded

The first integral on the right-hand side of (10.2) is estimated by the second of
(11.2) and (9.3), and gives,

∣
∣
∣
∣
∣

∫∫

Λi,T

∇ϕ · x

R
udηdt

∣
∣
∣
∣
∣
≤ γ

δ2
∣
∣ ln(1 − δ)

∣
∣

√|h| for all |x| ≤ (1 − δ)R.(12.1)

Of the remaining two boundary integrals we estimate only the first, by recalling that
f is smooth, and by referring back to (11.4). As indicated earlier, in this formula
all integrals on the left-hand side are non-negative. Therefore

1

2
νε

∫ T

0

∫

DR

ϕ
∣
∣ f
∣
∣(x,0,t)dxdt ≤ γh,

for a constant γ independent of ε. Combining these estimates in (10.2) and letting
λ → 0, gives

|u(xo,zo,to)| ≤ γ

δ3

√|h| for all
∣
∣xo

∣
∣ ≤ (1 − δ)R.(12.2)

This establishes (3.6) and concludes the proof of Proposition 3.3. �
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12.1. A variant of (12.2)

The proof of Proposition 3.3 is now concluded again, under the weaker assumption

∣
∣ f (x,z,t)

∣
∣ ≤ γ

δ2
∣
∣ ln(1 − δ)

∣
∣

√|h| for all |x| < (1 − δ)R.(12.3)

As indicated earlier, the physical problem of visual transduction arises as a system,
and the bounded function f depends upon calcium which itself satisfies a diffusion
equation. The proof of a statement paralleling Proposition 3.3 requires that (3.6)
be established under the weaker assumption (12.3). The only difference is in the
estimation of the two boundary integrals in (10.2) involving

∣
∣ f
∣
∣. We estimate the

first, the estimation of the second being similar,

∫ T

0

∫

DR

ϕ
∣
∣ f
∣
∣(x,0,t) dxdt =

∫ T

0

∫

{|x|<(1−δ)R}
ϕ
∣
∣ f
∣
∣(x,0,t) dxdt(12.4)

+
∫ T

0

∫

{(1−δ)R≤|x|<R}
ϕ
∣
∣ f
∣
∣(x,0,t)dxdt.

The second integral is estimated by the size of the domain of integration. Let
τ ∈ (0,1), to be chosen. The inclusion

{(1 − δ)R ≤ |x| ≤ R} ⊂ {(1 − δτ) R ≤ |x| ≤ R}
and the estimation (11.2) with δ replaced by δτ gives

sup
(1−δ)R<|x|<R

ϕ ≤ sup
(1−δτ )R<|x|<R

ϕ ≤ γ

δ2τ

1

ε
.

Then,

1

2
νε

∫ T

0

∫

{(1−δ)R≤|x|<R}
ϕ
∣
∣ f
∣
∣(x,0,t)dxdt ≤ γδ1−2τ .

The first integral on the right-hand side of (12.4) is estimated by using (12.3).
Therefore

ε

∫ T

0

∫

{|x|<(1−δ)R}
ϕ
∣
∣ f
∣
∣(x,0,t)dxdt ≤ γ

δ3

√|h| ε
∫ T

0

∫

DR

ϕ(x,0,t)dxdt ≤ γ

δ3

√|h|,

where we have used (11.4) again. Combine this in (10.2) and let λ → 0 to obtain

∣
∣u(xo,zo,to)

∣
∣ ≤ γ

δ3

√|h| + γδ1−2τ for all
∣
∣xo

∣
∣ < (1 − δ)R .(12.5)

Fix |h| < 1 and δ ∈ (0,1). If δ ≤ |h|1/12, then (3.6) follows from this for the choice
τ = 1

4 . If δ > |h|1/12 we observe that having established (12.5), for a fixed δ > 0,
the same estimate continues to hold for any smaller δ. Then choose δ = |h|1/12, so
that the right-hand side is majorized by γ |h|1/24. �
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Appendix A: Extensions in L2(0,T ; W1,2(Ωo))

A1. Extending uε with norms equi-bounded in L2(0,T ; W1,2(Ωo))

The limiting process on Sections 4–6 hinges upon extending uε in R3 × R with
equi-Hölder continuous functions that coincide with uε on compact subsets of
Ω̃o = Ωo −⋃n

j=1 C j .
Here we propose an extension of uε with functions uε equi-bounded in the norm

of L2(0,T ; W1,2(Ωo)), coinciding with uε in Ω̃o, and equi-Lipschitz continuous in
L2(Ωo,T ). It should be pointed out that such extension is possible in view of the
energy estimates (3.2) when restricted to the outer shell Sε. It would be, in general,
false for functions merely defined in Ω̃o, since this set is not connected.

Proposition A1.1. There exist functions uε ∈ L2(0,T ; W1,2(Ωo)), such that

uε = uε in
n⋃

j=0

I j;
∥
∥uε

∥
∥

L2(0,T ;W1,2(Ωo))
≤ γ ;(A1.1)

∥
∥uε(t + h) − uε(t)

∥
∥

2,Ωo,T−h
≤ γ

√
h for all h ∈ (0,T ) ,(A1.2)

∥
∥uε(z + h) − uε(z)

∥
∥

2,Ωo,T
≤ γh for all h ∈ (0,H ),(A1.3)

for a constant γ depending only upon the data and independent of ε and h.

Proof. Since uε has zero flux for z = 0 and z = H , by an even reflection, it can be
regarded as defined in the infinite cylinder DR ×R and satisfying (1.3) there.

Fix a disc C j with faces on the planes z = ζ2 j−1 and z = ζ2 j , and the
interdiscal spaces I j−1 and I j adjacent to C j . A fixed z ∈ [ζ2 j−1,ζ2 j ] is reflected
about z = ζ2 j−1, with weight ν, to generate ẑ− ∈ [ζ2 j−2,ζ2 j−1] belonging to the
interdiscal space I j−1, where uε is well defined. The same z is also reflected about
z = ζ2 j , with weight ν, to generate ẑ+ ∈ [ζ2 j,ζ2 j+1], where uε is well defined.
The extension of uε in C j is obtained by interpolating the values of these functions
at ẑ±. Precisely,

[ζ2 j−1,ζ2 j] 
 z −→ ẑ− = ζ2 j−1 − ν(z − ζ2 j−1); ẑ+ = ζ2 j + ν(ζ2 j − z),

and for ζ2 j−1 ≤ z ≤ ζ2 j ,

uε(x,z,t) = uε(x ,̂z−,t)

(

1 + ζ2 j−1 − z

ε

)

+ uε(x ,̂z+,t)

(

1 − ζ2 j − z

ε

)

.

One verifies that uε is well defined in Ωo,T and that uε(x,ζ j,t) = uε(x,ζ j,t) for
all j . Therefore uε is a continuous extension of uε from Ω̃o,T into Ωo,T . The time
regularity (A1.2) follows from the definition of the extension and the time regularity
estimate in (3.3). Also, from the definitions,

∥
∥∇xuε

∥
∥

2,Ωo,T
≤ γ

∥
∥∇xuε

∥
∥

2,Ω̃o,T
.

The second of (A1.1) follows from this, in view of the energy estimates (3.2), and
from the estimate for uε,z which we prove below.
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The definition of uε implies,

∫∫

Ωo,T

∣
∣uε,z

∣
∣2dxdt ≤ γ

∫∫

Ω̃o,T

∣
∣uε,z

∣
∣2dxdt

+ γ

ε2

n∑

j=0

∫∫

I j,T

∣
∣uε

(
z + (1 + ν)ε

)− uε(z)
∣
∣2 dxdt.(A1.4)

Also define u and f as in (9.1) and recall that they solve the boundary-value
problem (9.2). A uniform bound for the last term in (A1.4), and the proof of (A1.3)
follow from:

Proposition A1.2. There exists a constant γ depending only upon the data and
independent of ε and h, such that

n∑

i=0

∫∫

Ii,T

∣
∣uε(z + h) − uε(z)

∣
∣2dxdt ≤ γh2,(A1.5)

where h is an integer multiple of (1 + ν)ε.

The proof is in two steps. First one estimates the L2(Ii,T )-norm of u in terms
of its L2(Λi,T )-norm, i.e., their interior L2-norm is estimated in terms of their
boundary L2-norm. This fact is of independent interest as it can be regarded as
a form of the maximum principle in L2, for solutions of (9.2). The second step
consists of estimating the sum of these boundary integrals over Λi,T .

A2. A form of the maximum principle in L2(Ii,T ) for u

Lemma A2.1. There exists a constant γ depending only upon the data and inde-
pendent of ε and h, such that for all i,

∫∫

Ii,T

|u|2dxdt ≤ γ

∫∫

Λi,T

|u|2dηdt + γhε
∑

{k|dist(Ii ,Ik )<h}

∫ T

0

∫

Ik∪Ck+1

f 2
ζ dxdt.

(A2.1)

Remark A2.1. The last term would be zero if f were constant. In such a case the
flux conditions in (9.2) would be a monotone function of u. In this sense (A2.1)
can be regarded as a form of a maximum principle in L2.

Proof. As in Section 10, introduce the change of variables z → (z − ζ2i) and
continue to denote by z the transformed variable and by u the transformed function.
The domain Ii is mapped into the cylinder � introduced in Section 10, the lateral
boundary Λi of Ii is transformed in Λ, and (9.2) continues to hold in �T with the
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same boundary conditions. Introduce the problem





ϕ ∈ W1,2
(
0,T ; L2(� )

)⋂
L2
(
0,T ; W1,2(� )

);
ϕt + ∆ϕ = −u;
ϕ(x,T ) = 0; ϕ(x,z,t)

∣
∣
Λ
= 0;

ϕz(x,0,t) = 1

2
νεϕ(x,0,t);

ϕz(x,νε,t) = −1

2
νεϕ(x,νε,t).

(A2.2)

This is the analogue of (10.1) where the role of the right-hand side ξλ was to
reproduce, as λ → 0, the pointwise values of u. The role of the right-hand side of
(A2.2) is to generate the L2(�T )-norm of u. Multiply (A2.2) by u and integrate by
parts over �T . Also use ϕ as a testing function in the weak formulation of (9.2).
Adding the resulting equalities,

∫∫

�T

u2dxdt = −
∫ T

0

∫

Λ

∇ϕ · x

R
u dηdt

− 1

2
νε

∫ T

0

∫

DR

{(
ϕ f
)
(x,0,t) + (

ϕ f
)
(x,νε,t)

}
dxdt.

This provides an analogue of (10.2), i.e.,
∫∫

�T

u2dxdt ≤ γ

θ

∫ T

0

∫

Λ

u2dηdt + θ

∫ T

0

∫

Λ

∣
∣
∣
∣∇ϕ · x

R

∣
∣
∣
∣

2

dηdt

+ γε

∫ T

0

∫

DR

{∣
∣ϕ f

∣
∣(x,0,t) + ∣

∣ϕ f
∣
∣(x,νε,t)

}
dxdt,

(A2.3)

for a fixed constant γ depending only upon the data and for a positive parameter θ

to be chosen. The estimate (A1.5) will result from estimating the right-hand side
of (A2.3).

Assume that ϕ is of class C3 up to {|x| = R} for all 0 < z < νε. Then,
∫

{|x|=R}

∣
∣
∣
∣∇ϕ · x

R

∣
∣
∣
∣

2

(x,z,t)d� ≤ γ

∫

DR

{|∆ϕ|2 + |∇xϕ|2 + ϕ2} (x,z,t)dx,

where d� is the line measure on {|x| = R}. Integrate these in dz over (0,νε) and in
dt over (0,T ). Using (A2.1) and standard energy estimates,

∫ T

0

∫

Λ

∣
∣
∣
∣∇xϕ · x

R

∣
∣
∣
∣

2

dηdt ≤ γ

∫∫

�T

u2dxdt + γ

∫∫

�T

ϕ2
t dxdt.(A2.4)

The smoothness required by these inequalities, can be achieved by smoothing u in
(A2.2) and by a limiting process. To estimate the last integrals on the right-hand
side, multiply (A2.2) by ϕt , modulo a Steklov time averaging, and integrate by
parts. This gives,
∫∫

�T

ϕ2
t dxdt + 1

2
νε sup

0<t<T

∫

DR

{
ϕ2(x,0,t) + ϕ2(x,νε,t)

}
dx ≤

∫∫

�T

u2dxdt.
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Combining this with (A2.4) and (A2.3), and choosing θ sufficiently small,
∫∫

�T

u2dxdt ≤ γ

∫ T

0

∫

Λ

u2dηdt

− γθ ε sup
0<t<T

∫

DR

{
ϕ2(x,0,t) + ϕ2(x,νε,t)

}
dx

+ γε

∫ T

0

∫

DR

{∣
∣ϕ f

∣
∣ (x,0,t) + ∣

∣ϕ f
∣
∣ (x,νε,t)

}
dxdt,

for a constant γ depending only upon the data and independent of ε and h. The
last two integrals are majorized by the Cauchy–Schwarz inequality and the terms
containing ϕ2 are eliminated with the homologous one appearing negatively. Thus
returning to the original coordinates,

∫∫

Ii,T

u2dxdt ≤ γ

∫∫

Λi,T

u2dηdt

+ γε

∫∫

DR,T

{
f

2
(x,ζ2i−1,t) + f

2
(x,ζ2i ,t)

}
dxdt.

(A2.5)

From the definition of f ,
∫∫

DR,T

f
2
(x,ζ2i,t)dxdt =

∫∫

DR,T

| f(x,ζ2i + h,t) − f(x,ζ2i ,t)|2 dxdt

=
∫ T

0

∫

DR

∣
∣
∣
∣

∫ ζ2i+h

ζ2i

fζ (x,ζ,t) dζ

∣
∣
∣
∣

2

dxdt

≤ h
∫ T

0

∫

DR

∫ ζ2i+h

ζ2i

f 2
ζ (x,ζ,t)dζdxdt

≤ γh
∑

{k|dist{Ii ,Ik}<h}

∫ T

0

∫

Ik∪Ck+1

f 2
ζ dxdt.

(A2.6)

The integral extended over z = ζ2i−1 is estimated similarly. �
Remark A2.2. Since f is smooth, the penultimate term in (A2.6) could be estimated
by γh2. We have chosen, however, the less sharp estimate (A2.1) in view of the
applications of such an extension technique to the originating problem in visual
transduction, where f is a function of calcium and as such, possesses a lesser
degree of regularity.

A3. Proof of Proposition A1.2 concluded

By calculations in all analogue to those of Section 9,

n∑

i=0

∫∫

Λi,T

u2dηdt ≤ γ |h|2
(

εo

ε

∫∫

Sε,T

∣
∣∇uε

∣
∣2dxdzdt

)

≤ γ |h|2,
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by the energy estimates (3.3). Putting this in (A2.1) and adding over i,

n∑

i=0

∫∫

Ii,T

udxdt ≤ γh2 + γεh
n∑

i=0

∑

{k|dist(Ii ;Ik)<h}

∫ T

0

∫

Ik∪Ck+1

f 2
z dxdt.

Now for a fixed i there are, at most, h/ε interdiscal spaces Ik such that dist(Ii; Ik)

< h. Therefore in the double sum with indices i and k, the integrals extended over
a fixed Ik are repeated at most (h/ε)–times, and

γεh
n∑

i=0

∑

{k|dist(Ii ;Ik)<h}

∫ T

0

∫

Ik∪Ck+1

f 2
z dxdt ≤ γh2

∫∫

Ωo,T

f 2
z dxdt .

Appendix B: Applications to visual transduction

B1. Diffusion of cGMP and Ca2+

The membrane on the lateral boundary of the rod outer segment contains ionic chan-
nels. These are kept open by the presence of cGMP (cyclic guanosin monophos-
phate), allowing the influx of calcium ions Ca2+. A steady state is maintained by
the presence of an ionic exchanger which expels calcium.

Both cGMP and Ca2+ can diffuse within the cytosol, i.e., the portion of the rod,
not occupied by the discs. They cannot penetrate the discs, although cGMP can be
depleted or generated by sources located on the faces of the discs.

The rod functions as a light-capturing device. As a photon hits the rod, it is
captured by one of the discs, say Cio , and it triggers a biochemical cascade whose
net effect is the depletion of cGMP.

When cGMP is depleted the channels close, thereby causing a drop in mem-
brane current. Vision is modulated by these variations of ionic current on the
boundary of the rods [S6].

Denote by uεo and vεo the volumic, dimensionless concentrations of cGMP and
Ca2+ in the cytosol and rescale lengths and times so that the various parameters, for
example R,εo, are all dimensionless. The functions uεo and vεo satisfy the diffusion
equations,

uεo,t − ku∆uεo = 0

vεo,t − kv∆vεo = 0
in Ω̃εo,T ,(B1.1)

where ku and kv are the diffusion coefficients of cGMP and Ca2+, respectively.
Their non-linear coupling occurs through their fluxes on the faces ∂I±

j ,

kuuεo,z =






−1

2
νεo
{
γouεo − f(vεo)

}

on ∂I+
j , j = 0,1, . . . ,(no − 1),

−χ{z=zo}uεo f1(vεo,x,t)

1

2
νεo
{
γouεo − f(vεo)

}
on ∂I−

j , j = 1, . . . ,no,

(B1.2)



400 D. Andreucci et al.

where γo is a given positive constant and f and f1 are given, positive, bounded,
smooth functions of their arguments. The coordinate z = zo is that of the face
∂I+

jo
hit by the photon (i.e., zo = ζ2 jo+1; note that io = jo + 1). The characteristic

function χ{z=zo} permits one to account for the depletion sources, localized at zo

and due to the action of the photon. Moreover cGMP does not penetrate the
discs C j through their lateral boundaries L j , nor can it exit the boundary of
the rod, i.e.,

∇uεo · n = 0 on L j , on |x| = R + σεo, on z = 0 and z = H.(B1.3)

Calcium vεo does not penetrate the discs C j , nor outflows the rod through its bottom
z = 0 or top z = H , i.e.,

∇vεo · n = 0 on L j , on ∂I±
j , on z = 0 and z = H.(B1.4)

However, it can flow through the lateral boundary of the rod,

kv∇vεo · n = −g1(vεo) + g2(uεo) on |x| = R + σεo,(B1.5)

for given, positive, bounded, smooth functions g1(·) and g2(·). Here n is the
outward unit exterior normal to Ω̃εo , at the indicated surfaces. A complete de-
scription of the phototransduction cascade, as well as a detailed derivation of
the model (B1.1)–(B1.5) is in [S6,1]. There, the various boundary terms are jus-
tified and discussed. In particular the functions f ,g1,g2 are explicit and given
by

R
+ 
 s −→ f(s) = γ1

βm
1 + sm

; g1(s) = c1 s

d1 + s
; g2(s) = c2 sκ

dκ
2 + sκ

,(B1.6)

for given positive constants γ1,β1,m,c1,c2,d1,d2,κ. The model in [S1] assumes
that a single photon hits the rod at the disc Cio [S5–7]. However, the form of these
functions is independent of light intensity. The phenomenon starts at time t = 0
from a dark equilibrium. It is assumed that in absence of light the system is in
a constant steady state, i.e., uεo = uo and vεo = vo for two given positive constants
uo and vo.2

B1.1. Homogenization and concentrated capacity

The geometry of the rod exhibits two thin compartments, available to the diffu-
sion: the interdiscal spaces and the outer shell surrounding the stack of discs. The
diffusion within the interdiscal spaces cannot be neglected in view of the reac-
tion terms acting on the faces of the discs. The diffusion along the outer shell
cannot be neglected because it regulates the opening and closing of the ionic
channels.

2 In dark equilibrium [cGMP] = 2–4 µM and [Ca2+] = .4 µM ([S6]). Thus uo ≈ 3 and
vo ≈ .4.
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The values εo � R suggest the homogenization process described in Sec-
tion 1.2. The only difference here is that by letting ε → 0 along a suitable se-
quence, the face z = zo is kept constant. Thus jo = jo(ε) but ζ2 jo+1 = zo for
all ε ≤ εo.

Consider the interdiscal space I jo whose face ∂I+
jo

is hit by the photon. This
is the only physical compartment where cGMP can flow from the outer shell to
the depletion sites activated by the photon. To keep the spatial localization of the
activation site, the width of I jo is sent to zero by a capacity concentration similar
to the one in the outer shell.

The approximating problems encompassing both homogenization and concen-
tration of capacities are introduced in Section B2.

The homogenized-concentrated limit has the same structure as that in Sec-
tion 2, except that concentrating the mass on I jo gives rise to a further transversal
2-dimensional diffusion on DR at the level zo both for cGMP and calcium (Sec-
tion B3.2). Their exterior fluxes at zo serve as sources in the boundary diffusion,
localized through a Dirac mass at zo (Section B3.3).

B2. The approximating ε-problems

The functions in play are uε and vε defined in Ω̃ε,T and representing dimensionless
approximations of cGMP and Ca2+. Set

aε(x) =






1 for x ∈
⋃

i �= jo

I j;
εo

ε
for x ∈ I jo

⋃

Sε.

(B2.1)

The families {uε} and {vε} satisfy,

uε,vε ∈ C
(
0,T ; L2(Ω̃ε)

)⋂

L2(0,T ; W1,2(Ω̃ε)
)

aε(x)
∂

∂t
uε − ku div aε(x)∇uε = 0

aε(x)
∂

∂t
vε − kv div aε(x)∇vε = 0,

weakly in Ω̃ε,T ,(B2.2)

with the following variational conditions on ∂Ω̃ε:

kuuε,z =






−1

2
νε
{
γouε − f(vε)

}
on ∂I+

j , j = 0,1, . . . ,(n − 1), j �= jo;
1

2
νε
{
γouε − f(vε)

}
on ∂I−

j , j = 1, . . . ,n;
εo

ε
kuuε,z = −1

2
νεo
{
γouε − f(vε)

}− uε f1(vε,x,t) on ∂I+
jo
;

(B2.3)
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∇uε · n = 0 on z = 0,z = H,L j ,|x| = R + σε

∇vε · n = 0 on z = 0,z = H,L j ,∂I±
j ;(B2.4)

εo

ε
kv∇vε · n = −g1(vε) + g2(uε) on |x| = R + σε,(B2.5)

where n is the unit exterior normal to Ω̃ε on the indicated surfaces. The initial
conditions are those of dark equilibrium, i.e., uε(·,0) = uo and vε(·,0) = vo for
two given positive constants uo, vo.

Remark B2.1. The problem (B2.2)–(B2.5) coincides with (B1.1)–(B1.5) for
ε = εo. For 0 < ε < εo, the mass of cGMP and Ca2+ within the interdiscal space I jo
and the outer shell Sε is concentrated. Roughly speaking, in these domains the mass
is divided by ε to account for a shrinkage of the domain of the same order.

B3. The homogenized-concentrated limit

As ε → 0 the family in (B2.1)–(B2.5) generates three pairs of functions

u, v defined in Ωo,T are called the interior limit;
◦
u,

◦
v defined in DR × {zo} are called the limit on the special level zo;

û, v̂ defined in ST are called the limit on the outer shell.

B3.1. The interior limit

u,v ∈ C
(
0,T ; L2(Ωo)

); |∇xu|,|∇xv| ∈ L2(Ωo,T );
u,v ∈ Cα

loc(Ωo,T ) for some α ∈ (0,1)

ut − ku∆xu = −{γou − f1(v)}
vt − kv∆xv = 0

weakly in Ωo,T .

(B3.1)

This is a family of diffusion processes in DR, parametrized with z ∈ (0,H ). The
boundary fluxes in (B2.3) are transformed into sources in Ωo.

Remark B3.1. The solutions are C∞(Ωo,T ) except across the hyperplane {z = ζo},
but remain Hölder continuous across z = zo.

B3.2. The limit on the special level zo

◦
u,

◦
v ∈ C

(
0,T ; L2(DR × {zo})

); |∇x
◦
u|,|∇x

◦
v| ∈ L2(DR,T × {zo});

◦
ut − ku∆x

◦
u = −{γo

◦
u − f1(

◦
v)
}

− 1

νεo

◦
u f2

(◦
v,x,zo,t

)

◦
vt − kv∆x

◦
v = 0.

weakly in DR,T × {zo}.
(B3.2)
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Thus at the special level zo the concentrated limit is a diffusion equation holding
on a disc and with sources inherited from the fluxes in (B2.3). The solutions are
C∞(DR,T ).

B3.3. The limit in outer shell

The restrictions of {uε} and {vε} to the outer shell Sε,T converge to functions û,v̂

defined in ST and satisfying

û,v̂ ∈ C
(
0,T ; L2(S)

); ∣
∣(ûz,ûθ)

∣
∣,
∣
∣(v̂z,v̂θ)

∣
∣ ∈ L2(ST ).(B3.3)

These are related to the interior limits u and v, and to
◦
u and

◦
v by sharing their

traces, i.e.,

û(θ,z,t) = u(x,z,t)
∣
∣|x|=R

û(θ,zo,t) = ◦
u(x,t)

∣
∣|x|=R

v̂(θ,zo,t) = ◦
v(x,t)

∣
∣|x|=R

v̂(θ,z,t) = v(x,z,t)
∣
∣|x|=R

in L2(�z,T
)
, for all z �= zo;

in L2(�zo,T
);

in L2(�zo,T
);

in L2(�z,T
)
, for all z ∈ (0,H ).

(B3.4)

Since z → û(θ,z,t) is continuous in L2
(
(0,2π] × (0,T ]), (B3.4) implies

u(x,zo,t)
∣
∣|x|=R = ◦

u(x,t)
∣
∣|x|=R in L2((0,2π] × (0,T ]) .

Therefore, while the interior limit u(x,z,t) and the limit
◦
u(x,t) in the special

interdiscal space, might differ for {|x| < R}, they coincide for |x| = R. The limits
û and v̂ satisfy

ût − ku∆Sû = − (1 − θo)ku

σεo
uρ

∣
∣
∣
∣|x|=R

−δ�zo

ν ku

σ

◦
uρ

∣
∣
∣
∣|x|=R

v̂t − kv∆Sv̂ = − (1 − θo)kv

σεo
vρ

∣
∣
∣
∣|x|=R

−δ�zo

ν kv

σ

◦
vρ

∣
∣
∣
∣|x|=R

− 1

σεo

{
g1(v̂) − g2(û)

};
ûz,v̂z(θ,0,t) = ûz,v̂z(θ,H,t) = 0 ∀θ ∈ (0,2π] ∀t ∈ (0,T ].

weakly in ST(B3.5)

Both û and v̂ are C∞(ST ) except across z = zo. The regularity requirements on u

and
◦
u are not sufficient to ensure that uρ and

◦
uρ have traces in L1(ST ) and L1(�o,T ),

respectively. In Section B4 we establish that this is the case.
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B4. Weak form of the homogenized limit, regularity and uniqueness

The functions (u,
◦
u,û) and (v,

◦
v,v̂) are in indicated regularity classes and satisfy

(1 − θo)






∫

Ωo,T

{− uϕt + ku∇xu · ∇xϕ
}
dxdt −

∫

Ωo

uoϕ(x,0)dx

+
∫

Ωo,T

(
γou − f1(v)

)
ϕdxdt






interior

(B4.1)

+ σεo

{∫

ST

{−ûϕt + ku∇Sû · ∇Sϕ}dηdt −
∫

S
uoϕ(x,0)dη

}

outer shell

+ νεo






∫

DR,T

{− ◦
uϕt + ku∇x

◦
u · ∇xϕ

}
dxdt −

∫

DR

uoϕ(x,0)dx

+
∫

DR,T

{
γo

◦
u − f1(

◦
v)
}
ϕdxdt + 1

νεo

∫

DR,T

◦
u f2(

◦
v,x,zo,t)ϕdxdt





special
level zo

= 0,

for all testing functions ϕ ∈ C1(Ωo,T ) vanishing for t = T ;

(1 − θo)

{∫

Ωo,T

{− vψt + kv∇xv · ∇xψ
}
dxdt −

∫

Ωo

voψ(x,0)dx

}

interior
(B4.2)

+ σεo






∫

ST

{− v̂ψt + kv∇Sv̂ · ∇Sψ
}
dηdt −

∫

S
voψ(x,0)dx

+ 1

σεo

∫

ST

{
g1(v̂) − g2(û)

}
ψdηdt





outer shell

+ νεo

{∫

DR,T

{− ◦
vψt + kv∇x

◦
v · ∇xψ

}
dxdt −

∫

DR

voψ(x,0)dx

}

special
level zo

= 0,

for all testing functions ψ ∈ C1(Ωo,T ) vanishing for t = T .
The same arguments of Section 6 may be applied here for the construction of

suitable test functions. As a consequence, ut,∆xu ∈ L2(Ωo,T ), ût,∆Sû ∈ L2(ST )

and
◦
ut,∆x

◦
u ∈ L2(DR,T ). This implies that uρ has a trace in L2(ST ) and

◦
uρ has

a trace in L2(�zo) so that (B3.5) have a pointwise meaning. By a bootstrap argument
û ∈ C∞(ST − {zo}) and likewise u ∈ C∞(Ωo,T − {zo}).

Finally the uniqueness of Section 6.1 carries to this novel setting by minor
variants.

B5. Variants of the proof

The calculation of these limits and the needed compactness follows the same lines
of Sections 3–12 with some minor differences to which we point next.



Homogenization and concentrated capacity in visual transduction 405

Statements of Proposition 3.1 hold for both uε and vε. The only difference
occurs in the proof of equi-boundedness of vε and it is generated by the non-
homogeneous flux conditions in (B2.5). Such an upper bound is established by the
barrier

w(x,t) = C1t + C2
(|x|2 − R2)2 + C3,

where the positive constants C1,C2,C3 are chosen so that

aεwt − kv div aε∇w ≥ 0 in D ′(Ω̃ε,T ).

The upper bound is then established by an integral, weak form of the comparison
principle, so that 0 ≤ vε ≤ w. Energy and a time-regularity estimate of the type
(3.2)–(3.3) for both uε, vε and

◦
uε,

◦
vε, are standard.

The gradient estimates of Proposition 3.2 are first established for vε. The proof
is simpler than the one in Section 8, in view of the homogeneous flux conditions
of vε on ∂I±

j . Similar estimates for uε are proven in all interdiscal spaces I j except
the special interdiscal space I jo . In each of the I j, j �= jo, the function f(vε) now
becomes a Lipschitz continuous function of (x,z,t) so that the same arguments as
in Section 8 apply.

A similar flow of arguments holds to prove an analogue of Proposition 3.3. One
proves it first for vε in view of its homogeneous flux conditions on ∂I±

j . Then the
function f(vε) appearing in the flux conditions for uε becomes a Hölder continuous
function of z ∈ (0,H ). The indicated modifications are reported in Section 12.1. It
should be noted that the two interdiscal spaces I j = (0,0,h) + Ii in the statement
of Proposition 3.3 and in the arguments of Sections 9–12 must both be taken to be
different to I jo . Since the thickness of I jo is νε < h, the equi-Hölder continuity of
uε continues to hold across I jo .

B5.1. The limit process

The interior limit, as well as the limit on the outer shell, follow the argument in all
similar ways to Sections 4–5. The new element here is the concentrated limit on
the special interdiscal I jo . Set,

◦
uε(x,t) = 1

νε

∫ ζ2 jo+1

ζ2 jo

uε(x,ζ,t)dζ; ◦
vε(x,t) = 1

νε

∫ ζ2 jo+1

ζ2 jo

vε(x,ζ,t)dζ.

By virtue of the energy estimates, subnets can be selected and relabelled with ε

such that {◦
uε}, {◦

vε} → ◦
u,

◦
v strongly in L2(DR,T ) and {∇x

◦
uε}, {∇x

◦
vε} → ∇x

◦
u, ∇x

◦
v

weakly in L2(DR,T ). Moreover
{

1

νε

∫ ζ2 jo+1

ζ2 jo

vε,z(x,ζ,t)dζ

}

→ ◦
Vz;

{

1

νε

∫ ζ2 jo+1

ζ2 jo

uε,z(x,ζ,t)dζ

}

→ ◦
Uz

weakly in L2
(
DR,T

)
. One identifies ∇x

◦
u and ∇x

◦
v as the weak gradient of

◦
u

and
◦
v with respect to the x-variables. However the two functions

◦
Uz and

◦
Vz are
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momentarily not identified. It will be shown later that they are both identically zero
in DR,T . By the energy estimates it follows that

∫ T

0

∫

DR

f(vε)(ζ jo)dxdt =
∫∫

I jo,T

f(
◦
vε)dxdt + O(ε).

A similar estimate holds for the integral over ∂I+
jo

generated by the last of (B2.3).
Proceeding as in Section 5, one writes down the weak formulation of (B2.1)–(B2.5)
and divides the various integrals into the domains where aε is constant. The two
terms for uε and vε corresponding to the set I jo are singled out and the limit is
taken for ε → 0. The limit of these terms corresponding to uε is

νεo






∫

DR,T

{− ◦
uϕt + ku∇x

◦
u · ∇xϕ + ku

◦
Uzϕz

}
dxdt −

∫

DR

uoϕ(x,0)dx

+
∫

DR,T

{
γo

◦
u − f(

◦
v)
}
ϕdxdt + 1

νεo

∫

DR,T

◦
u f1(

◦
v,x,t)ϕdxdt.





special
level zo

.

Similarly, the limit corresponding to vε is,

νεo

{∫

DR,T

{− ◦
vψt + kv∇x

◦
v · ∇xψ + kv

◦
Vzψz

}
dxdt −

∫

DR

voψ(x,0)dx

}

special
level zo

.

One incorporates these two limits into the global weak formulations of (B2.1)–

(B2.5) and arrives at (B4.1)–(B4.2) with the extra two integrals involving
◦
Uz and

◦
Vz.

In this identity one chooses first a testing function ϕ ∈ C∞(R3 × R) independent
of z, and then the test function zϕ for the previously chosen ϕ. Comparing the two

expressions so obtained yields that
◦
Uz = ◦

Vz = 0.
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