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Abstract. The dynamical characteristics of scalar difference equations of the form

xn+1 = f1(xn−τ1 ) + f2(xn−τ2), n = 0, 1, 2, . . . ,

are investigated. A necessary and sufficient condition is obtained for all positive solutions
to be oscillatory about a unique positive equilibrium point and sufficient criteria for the
global attractivity of the equilibrium are established. Also, the stability and periodicity of
more general equations are studied via comparison with the corresponding properties of an
associated first-order non-linear equation.
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1. Introduction

The dynamical characteristics of the family of non-linear difference equations

xn+1 = hµ(xn), n = 0, 1, 2, . . . , (1)

where µ ∈ R is a parameter, hµ ∈ C(I ), I ⊆ R, have been investigated extensively
by many authors. Some members of this family may look simple but their solutions
display complicated behaviour (chaos) as the parameter µ increases beyond a
certain critical value (see [5,16,17,21]). The famous result of Li and Yorke [12]
confirms the occurrence of that chaotic behaviour if hµ has period 3 point. On
the other hand, Sharkovsky [20] (see also [12]) has pointed out that the lack of
period 2 points of the map hµ implies the absence of all periodic points of higher
orders and hence (1) will not exhibit such chaotic behaviour in the sense of Li and
Yorke [12]. Moreover, for some members of (1), the lack of period 2 points is also
a sufficient condition for the unique equilibrium point to attract all solutions of (1).
For instance, Cull [1–3] has studied a prototype of (1), namely

xn+1 = f(xn), n = 0, 1, 2, . . . , (2)
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where f is a non-negative continuous function with unique non-negative fixed
point x̄ such that

f(x)

{
< x, x > x̄
> x, x < x̄,

(3)

and if f ′(x∗) = 0 and x∗ < x̄, then{
f ′(x) > 0 for 0 ≤ x < x∗
f ′(x) < 0 for x > x∗. (4)

Equation (2) in this case is called a population model. Cull’s main result states that
x̄ is globally attractive, i.e., limn→∞ xn = x̄ regardless the magnitude of the initial
value x0, if and only if f has no period 2 point. He also found the following, more
testable result:

Theorem 1. The equilibrium point of a population model is globally attractive iff
either (a) there is no maximum of f(x) in (0, x̄); or (b) x∗ < x̄ and f( f(x)) > x
for all x ∈ [x∗, x̄).

Using this result, Cull [1–3] has determined exact parametric regions of global
attractivity in a number of population models. For example, the population model

xn+1 = xner−xn , r > 0, n = 0, 1, 2, . . . (5)

has a unique positive equilibrium x̄ = r that attracts all solutions of (5) if and only
if r ≤ 2. This result improves those in [7,16] by ensuring the global attractivity
when r = 2. It is reasonable to ask whether Cull’s technique can be extended to
higher-order equations or not. In fact it is difficult to give an affirmative answer
since the technique used to prove Theorem 1 depends on the fact that a population
model is a first-order difference equation. Hence one of the main objectives of this
article is to develop a technique that enables us to address the global attractivity
for higher-order equations which contain the population models as a special cases.
We consider the difference equation

xn+1 = f1(xn−τ1) + f2(xn−τ2), n = 0, 1, 2, . . . , (E)

where f1, f2 are positive continuous functions defined on (0, ∞) and the delays
τ1, τ2 are non-negative integers such that τ1 ≤ τ2. With any solution {xn} of (E) we
associate a set of positive initial values {x−i}τ2

i=0. Therefore all solutions, considered
in this work, will be positive. Without further mention, if nothing else is stated, we
assume the existence of a real number x∗ such that:

(C1) f1, f2 are increasing on (0, x∗);
(C2) f1, f2 are decreasing on (x∗, ∞),

and the function f = f1 + f2 obeys condition (3). Also, in addition to the above
assumptions, one of the following conditions will be needed:

(I) x < fi(x) for all x ∈ (0, x∗), i = 1, 2 and x∗ < x̄;
(II) there exists a positive continuous function h and a positive constants a1, a2

such that fi(x) = aih(x), i = 1, 2 and x > 0.
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From (C1) and (C2) we conclude that x∗ is the absolute maximum of both f1

and f2 on (0, ∞). Therefore for any solution {xn} of (E), we get

xn+1 ≤ f1(x∗) + f2(x∗) = f(x∗), n ≥ 0.

For an easy reference the above conclusion is formalized as follows:

Proposition 1. If {xn} is a solution of (E), then xn ≤ f(x∗) for all n ≥ 1.

A prototype of (E) is the equation

xn+1 = (1 − α)xner−axn + αxn−1er−axn−1 , a > 0, 0 ≤ α ≤ 1, and r > 0, (6)

which has been considered by MacDonald [13,14] as a possible modification of
the model (5). In (6) a fraction of the eggs is allowed to delay their hatching for two
generations. If a similar assumption is made to the general population model (2),
we get the equation

xn+1 = (1 − α) f(xn) + α f(xn−1), 0 ≤ α ≤ 1. (7)

It follows that the population described by (7) has the ability to survive if one
generation of the adult is wiped out in one year by a sudden environmentalhardship.
In this paper we show that such modification will not change the parametric region
of global attractivity which is determined by Theorem 1 for equation (2).

The second objective of this work is to study the impact of the delays in (E)
on the oscillatory behaviour of the solutions about the unique positive equilibrium.
A solution {xn} (xn 	≡ x̄) of (E) is said to be oscillatory about the equilibrium x̄
(or simply oscillatory) if for every integer N ≥ 0 there exists n ≥ N such that
(xn+1 − x̄)(xn − x̄) ≤ 0. Otherwise, the solution is called non-oscillatory. This is
equivalent to saying that xn < x̄ eventually or xn > x̄ eventually. Equation (E) is
called oscillatory if all its solutions are oscillatory. We use a direct method to study
the oscillation rather than using the linearizing technique developed in [6]. It will
be shown that the delays are harmless on the oscillation of (E).

Finally, the stability of the equilibrium point and the existence of periodic
solutions of a generalized version of (E) namely,

yn+1 = g1(yn−τ1) + g2(yn−τ2), n = 0, 1, 2, . . . ,

will be investigated via comparison with a first-order equation where g1, g2 are
real-valued continuous functions which need not satisfy (C1) or (C2). The above
equation contains (E) as a special case as well as the equation

xn = α − β

xn−1
− γ

xn−k
,

where α > 0, β, γ ∈ R and k is a positive integer, which appears in numerical
analysis in constructing preconditioners for banded matrices (see, e.g. [4]).

Let Ωδ(x̄) = {x : |x − x̄| < δ}, the equilibrium point x̄ of (1) is said to be
stable if for every ε > 0 there exists δ > 0 such that hn

µ(Ωδ(x̄)) ⊆ Ωε(x̄) for
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all n ≥ 1. For the above equation the equilibrium point ȳ is said to be stable if
for every ε > 0 there exists δ > 0 such that any initial values {y−i}τ2

i=0 ⊂ Ωδ(ȳ)
imply that yn ∈ Ωε(ȳ), for all n ≥ 1. If in addition to the stability of ȳ there exists
δ > 0 such that ȳ attracts all solutions that have all its initial values in Ωδ(ȳ), then
ȳ is said to be (locally) asymptotically stable. The equilibrium point is said to be
globally asymptotically stable if it is stable and attracts all solutions regardless of
the magnitudes of their initial values.

2. The oscillatory behaviour

According to Proposition 1 we see that all solutions of equation (E) are bounded.
Thus, for convenience, with any solution under consideration in this work, say
xn , we associate non-negative real numbers L, S such that L = lim infn→∞ xn ,
S = lim supn→∞ xn.

The following lemma will be a crucial tool in obtaining some of the main results
in this paper.

Lemma 1. Let {xn} be a solution of (E) and

x∗ < x̄. (8)

If either (I) (or (II)) is satisfied, then

L ≥ f(S). (9)

Proof. As xn > 0 for all n ≥ 1, then L = lim infn→∞ xn ≥ 0. We claim that
L > 0. To this end, suppose that L = 0. Then there exists a subsequence {nk},
nk → ∞ as k → ∞ such that

xnk+1 = inf{xi : τ2 ≤ i ≤ nk + 1} (10)

and

lim
k→∞ xnk+1 = 0. (11)

From (11) and equation (E), we get

lim
k→∞ f1(xnk−τ1) + f2(xnk−τ2) = 0,

which implies that

lim
k→∞ xnk−τ1 = 0 = lim

k→∞ xnk−τ2 . (12)

It follows from (10) and (12) that

xnk+1 ≤ xnk−τ1 < x∗ and xnk+1 ≤ xnk−τ2 < x∗, k > K, (13)

where K is a sufficiently large integer. Using (C1) and (13), (E) yields

xnk+1 = f1(xnk−τ1) + f2(xnk−τ2)

> f1(xnk+1) + f2(xnk+1) = f(xnk+1) > 0, for all k > K.
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According to (3), the above inequality implies that xnk+1 ≥ x̄ which contra-
dicts (11). Thus, L > 0 as desired.

Now consider the following possible cases for L:

Case (1): L ≤ x∗ and Case (2): L > x∗.

Suppose that Case (1) holds. Then for all ε > 0 there exists Nε such that

Lε = L − ε ≤ xn ≤ S + ε = Sε, n ≥ Nε. (14)

First, we note that Sε > x∗ for all ε > 0, since otherwise we have Lε < Sε < x∗
for all 0 < ε < ε1 and some ε1 > 0. Hence (C1) and equation (E) imply that

xn+1 ≥ f1(Lε) + f2(Lε) = f(Lε), n ≥ Nε + τ2,

for all ε < ε1. The inferior limit of the above inequality yields

L ≥ f(Lε),

then as ε → 0 we get L ≥ f(L) which is impossible due to (3) and the assumption
that L ≤ x∗ < x̄. Thus Sε > x∗ for all ε > 0 as noted. This means that x∗ ∈
[Lε, Sε], therefore, using (14) it follows that the values of xn − τ1 and xn − τ2, for
each n ≥ Nε + τ2, have either one of the following cases:

xn−τ1, xn−τ2 ∈ [Lε, x∗], xn−τ1, xn−τ2 ∈ [x∗, Sε],
xn−τ1 ∈ [Lε, x∗], xn−τ2 ∈ [x∗, Sε], or xn−τ1 ∈ [x∗, Sε], xn−τ2 ∈ [Lε, x∗].

From (C1) and (C2) we conclude that f1 and f2 are increasing on [Lε, x∗] and
decreasing on [x∗, Sε], accordingly equation (E) implies the following inequalities
in each of the above cases, respectively;

xn+1 ≥ f(Lε), xn+1 ≥ f(Sε), xn+1 ≥ f1(Lε) + f2(Sε)

or xn+1 ≥ f1(Sε) + f2(Lε),

for each n ≥ Nε + τ2. Therefore, for all n ≥ Nε + τ2, we have

xn+1 ≥ min{ f(Lε), f(Sε), f1(Lε) + f2(Sε), f1(Sε) + f2(Lε)}. (15)

Taking the inferior limit of xn+1 in (15), we get

L ≥ min{ f(Lε), f(Sε), f1(Lε) + f2(Sε), f1(Sε) + f2(Lε)}.

Since ε is arbitrarily small, the above inequality implies that

L ≥ min{ f(L), f(S), f1(L) + f2(S), f1(S) + f2(L)} = m. (16)
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If (I) is satisfied, then

f(L) > L, f1(L) + f2(S) > f1(L) > L and f1(S) + f2(L) > f2(L) > L.

It follows from (16) that the only possible value of m is m = f(S), i.e., (9) holds,
which is our desired conclusion. On the other hand if (II) holds, then

m = min{Ah(L), Ah(S), a1h(L) + a2h(S), a1h(S) + a2h(L)}
≥ A min{h(L), h(S)}, A = a1 + a2.

By (16), we obtain

L ≥ A min{h(L), h(S)}. (17)

If

min{h(L), h(S)} = h(L),

then (17) implies that

L ≥ Ah(L) = f(L),

which is impossible according to (3) and the assumption that L ≤ x∗ (since x∗ < x̄
by (8)). Therefore, we have

L ≥ Ah(S) = f(S),

which proves (9) when (II) is satisfied. This completes the proof when Case (1)
holds.

Suppose that Case (2) holds. Then one can find a sufficiently large integer N
such that x∗ < xn for all n > N. Using the decreasing nature of f1(x), f2(x) on
(x∗, ∞), the inferior limit of both sides of equation (E) yields L ≥ f(S). This
completes the proof.

In the following result neither (I) nor (II) are assumed to be satisfied.

Lemma 2. Assume that

x̄ ≤ x∗. (18)

Then equation (E) is non-oscillatory.

Proof. Since f1, f2 are increasing on (0, x∗), according to (18) they are also
increasing on (0, x̄). Choose a solution {xn} with initial values {x−i}τ2

i=0 such that
x−i < x̄ for i = 0, 1, 2, . . . , τ2. Then (E) implies that

x1 = f1(x−τ1) + f2(x−τ2)

< f1(x̄) + f2(x̄) = f(x̄)

= x̄.
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That is x1 ∈ (0, x̄). Taking into account that all initial values are taken from (0, x̄),
it follows that x1−τ1, x1−τ2 ∈ (0, x̄). Thus, (E) yields

x2 = f1(x1−τ1) + f2(x1−τ2)

< f1(x̄) + f2(x̄) = f(x̄)

= x̄,

which implies that x2 ∈ (0, x̄). By continuing the above process (or by induction),
one can prove that xn ∈ (0, x̄) for all n ≥ 1. Thus equation (E) has a non-oscillatory
solution. The proof is complete.

Assume that (18) holds strictly and a solution {xn} is chosen such that some of
its initial values are in (0, x̄) and the rest are in (x̄, x∗). What can be said about
the oscillation of {xn} in this case? We believe that {xn} may oscillate; to explain
this let us assume that τ1 = τ2 = τ 	= 0, equation (E) becomes

xn+1 = f(xn−τ ). (19)

Recalling that f is increasing on (0, x∗), and that the inequality x̄ < x∗ and (3)
imply that f(x∗) < x∗, then for x ∈ (0, x̄) we get

0 < f(x) < f(x̄) = x̄,

while for x ∈ (x̄, x∗) we have

x̄ = f(x̄) < f(x) < f(x∗) < x∗.

Thus the intervals (0, x̄) and (x̄, x∗) are invariant under the map f , i.e.,

f((0, x̄)) ⊆ (0, x̄) and f((x̄, x∗)) ⊆ (x̄, x∗). (20)

Now substituting n = k(τ + 1) and n = (k + 1)(τ + 1) − 1, k = 0, 1, . . . , in (19),
the following two equations are obtained:

xk(τ+1)+1 = f(x(k−1)τ+k) = f k+1(x−τ), k = 0, 1, . . . ,

and

x(k+1)(τ+1) = f(xk(τ+1)) = f k+1(x0), k = 0, 1, . . . .

Let x−τ ∈ (0, x̄) and x0 ∈ (x̄, x∗). Then the invariance property (20) and the above
equations imply that

xk(τ+1)+1 ∈ (0, x̄) and x(k+1)(τ+1) ∈ (x̄, x∗), k = 0, 1, . . . ,

which means that the solution {xn} is oscillatory. Thus if (18) holds then equation
(E), generally, may have oscillatory and non-oscillatory solutions. It should be
mentioned that such property is not possible for the population model (2) because,
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when (18) holds, any solution will lie in one side of x̄ for all n ≥ 1 depending on
the location of the initial value x0.

Theorem 2. Suppose that either (I) (or (II)) is satisfied. Then equation (E) is
oscillatory if and only if (8) is satisfied.

Proof. The necessity of (8) is an immediate consequence of Lemma 2. Next, we
prove that (8) is also sufficient for the oscillation of all solutions of (E). Assume,
for the sake of contradiction, that (E) has a non-oscillatory solution, say {xn}. Then
there exists an integer N ≥ 0 such that one of the following is satisfied:

xn > x̄, for all n ≥ N, (21)

or

xn < x̄, for all n ≥ N. (22)

In view of (C2) and (8) we see that f1 and f2 are decreasing on (x̄, ∞). Thus if
(21) holds, equation (E) yields

x̄ < xn+1 < f1(x̄) + f2(x̄)

= f(x̄) = x̄, n ≥ N + τ,

which is impossible, therefore we have (22). Taking the superior limit of both sides
of (22), we get

S ≤ x̄.

Using (3), the above inequality implies

f(S) ≥ S. (23)

Combining (9) and (23), we conclude that L ≥ f(S) ≥ S, which is possible only
if L = S. Hence the uniqueness of x̄ as a fixed point of f yields

lim
n→∞ xn = x̄.

It follows that for every ε ∈ (0, x̄ − x∗) there exists an integer Nε > 0 such that

x∗ < x̄ − ε ≤ xn < x̄, n ≥ Nε > 0. (24)

Using (C2), (E) implies that

xNε+1+τ2 = f1(xNε+τ2−τ1) + f2(xNε )

> f1(x̄) + f2(x̄) = f(x̄) = x̄,

which contradicts (24). Thus (22) is also impossible and hence equation (E) cannot
have a non-oscillatory solution. This completes the proof.
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3. The global attractivity

First we study the asymptotic behaviour of all solutions of equation (E) when
x̄ = 0, i.e., the zero solution is the unique non-negative equilibrium. It should be
observed that (I) cannot hold in this case since for all x > 0 we have x > f(x) =
f1(x) + f2(x). For the sake of generality we assume a continuous function g,
0 < g(x) < x on (0, ∞) and g(0) = 0 such that

(III) fi(x) = ai g(x), i = 1, 2.

Note that the functions fi need not have certain monotonic properties, as g is given
without such limitation.

Theorem 3. Assume that {xn} is any positive solution of (E) such that (III) holds.
Then limn→∞ xn = 0.

Proof. Let M = max{x−i : i = 0, 1, 2, . . . , τ2}. From (E) and (III) we obtain

x1 = a1g(x−τ1) + a2g(x−τ2)

≤ max{ f(x−τ1), f(x−τ2)} < M.

Similarly

x2 = a1g(x1−τ1) + a2g(x1−τ2)

≤ max{ f(x1−τ1), f(x1−τ2)} < M.

Continuing this process, one can prove that xn < M for all n ≥ 1. Thus the superior
limit of xn at ∞ exists. We claim that S = 0. Then suppose this is not true; that is

S = lim sup
n→∞

xn > 0. (25)

Then one can find a subsequence {nk}, nk → ∞ as k → ∞ and some real numbers
a, b ≥ 0 such that

lim
k→∞

xnk+1 = S, lim
k→∞

xnk−τ1 = a, and lim
k→∞

xnk−τ2 = b.

Then

S = a1g(a) + a2g(b)

≤ max{ f(a), f(b)} < a or b,

which is impossible since a, b ≤ S. Thus S = 0, i.e., limn→∞ xn = 0 as desired.
The proof is complete.

If (III) does not hold, we can still find a similar result as Theorem 3 by making
use of the monotonic properties of the functions f1, f2 as in the following result:

Theorem 4. Assume that x = 0 is the unique non-negative fixed point of f and
{xn} be a solution of equation (E). Then limn→∞ xn = 0.
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Proof. First, since f(x) = x only if x = 0 then the graph of the function f lies
entirely on one side of the line y = x in the first quadrant of the plane. Combining
this with the fact that f is bounded, we conclude that f(x) < x for all x > 0.
Suppose, to the contrary, that (25) holds. Then Proposition 1 yields

xn ≤ f(x∗) < x∗, n ≥ 1. (26)

Using (26) and the increasing nature of f1 and f2 on (0, x∗), equation (E) implies

S ≤ lim sup
n→∞

f1(xn−τ1) + lim sup
n→∞

f2(xn−τ2)

≤ f1(S) + f2(S) = f(S). (27)

Thus S ≤ f(S) < S, which is impossible and hence S = 0. The proof is complete.

Next, the case when (E) has a positive equilibrium point, i.e., x̄ 	= 0, is
considered.

Theorem 5. Assume that (18) is satisfied. Then x̄ is a global attractor of the
solutions of (E).

Proof. Suppose that {xn} is a solution of (E). From (3), Proposition 1 and (18),
we conclude that (26) holds. Since f1 and f2 are increasing on (0, x∗), (27) holds,
too. Furthermore, the inferior limit of both sides of (E) implies that

L ≤ lim inf
n→∞ f1(xn−τ1) + lim inf

n→∞ f2(xn−τ2)

≤ f1(L) + f2(L) = f(L). (28)

From (3), (27), and (28) we obtain

S ≤ x̄ and L ≥ x̄.

Thus L = S = x̄, i.e., limn→∞ xn = x̄. The proof is complete.

Lemma 3. Assume that {xn} is a solution of (E). If (8), (I) (or (II)) are satisfied,
and

f( f(x∗)) > x∗, (29)

then

L > x∗. (30)

Proof. Since all hypotheses of Lemma 1 are satisfied, then (9) holds which implies
that S ≥ f(S), i.e., S ≥ x̄. On the other hand we see that S ≤ f(x∗) since f(x∗) is
an upper bound of all solutions of (E) (see Proposition 1). Thus S ∈ (x̄, f(x∗)) ⊂
(x∗, ∞). Now in view of the decreasing nature of f on (x∗, ∞) and condition (9)
we obtain

L ≥ f(S) ≥ f( f(x∗)) > x∗.

The proof is complete.
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Theorem 6. Assume that (8), (I) (or (III)) are satisfied, and

f( f(x)) > x for all x ∈ [x∗, x̄). (31)

Then x̄ is a global attractor of the solutions of (E).

Proof. Let {xn} be any solution of (E) such that L 	= S. Since all assumptions of
Lemma 3 are satisfied then (30) holds and hence for every ε ∈ (0, L − x∗) there
exists an integer Nε > 0 such that

xn ≥ L − ε > x∗, n > Nε.

Recalling that f1 and f2 are decreasing on (x∗, ∞), the superior and inferior limits
of both sides of equation (E) imply, respectively, that

S ≤ f(L) and L ≥ f(S). (32)

Then L ≤ f(L) and S ≥ f(S), i.e., L ≤ x̄ and S ≥ x̄ > x∗. Note that, according to
(32), if L = x̄ then S = x̄, which proves the theorem in this case. So, we assume
that L < x̄ and hence

L ∈ (x∗, x̄) ⊂ (x∗, ∞). (33)

Using the decreasing nature of f on (x∗, ∞), (32) leads to L ≥ f( f(L)) which
is a contradiction because of (31) and (33), therefore L = S, which completes the
proof.

Combining Theorems 1, 5, and 6, we obtain the following result:

Corollary 1. Assume that the unique equilibrium x̄ is a global attractor of all
solutions of (2). Then x̄ is also a global attractor of all solutions of (E) where (I)
(or (II)) is satisfied.

Since the lack of period 2 points of the map f in (0, ∞) is a necessary and
sufficient condition for the global attractivity of the unique positive equilibrium of
(2) (see [2,3]), Corollary 1 can be restated in the following form:

Corollary 2. Assume that f has no period 2 point in (0, ∞). Then x̄ is a global
attractor of all solutions of (E) where (I) (or (II)) is satisfied.

The next result is given for practical purposes. Many similar criteria, that are
sufficient for the validity of condition (31), can be found in [2,3].

Corollary 3. Assume that (8), (I) (or (II)) are satisfied, and

d

dx

f( f(x))

x
< 0 for all x ∈ [x∗, x̄). (34)

Then x̄ is a global attractor of the solutions of (E).

Proof. From (34) we conclude that

f( f(x))

x
>

f( f(x̄))

x̄
= 1 for all x ∈ [x∗, x̄).

Thus (31) holds and the proof is complete since all assumptions of Theorem 6 are
satisfied.



154 H.A. El-Morshedy, K. Gopalsamy

4. Some general results for periodicity and stability

Next, we study the existence of periodic solutions as well as the stability of the
equilibrium point of the equation

yn+1 = g1(yn−τ1) + g2(yn−τ2) (35)

via comparison with the corresponding properties of the equilibrium point of the
equation

xn+1 = g(xn), (36)

where g1, g2 : I → J , I, J ⊆ R, g = g1 + g2 such that g has a unique fixed point,
say x̄, in I . In what follows cd(τ1, τ2) stands for the set of all common divisors,
greater than one, of the integers τ1 and τ2.

Theorem 7. Assume that λ ∈ cd(τ1, τ2). Then (35) has a λ-periodic solution
if and only if (36) has a λ-periodic solution.

Proof. Let {xn} be a solution of (36) such that xn+λ = xn, n > 0. Choose a solution
{yn} of (35) with initial values {y−i}τ2

i=0 defined by

yi−τ2 = xi, i = 0, 1, . . . , τ2,

hence

yi−τ1 = xi, i = 0, 1, . . . , τ1.

So that (35) yields

yn+1 = g1(yn−τ1) + g2(yn−τ2)

= g1(xn) + g2(xn) = g(xn)

= xn+1, n ≤ τ1.

Consequently, for τ1 ≤ n ≤ 2τ1, we have yn−τ1 = xn and yn−τ1 = xn (since
n − τ2 ≤ 2τ1 − τ2 ≤ τ1), equation (35) implies that

yn+1 = g1(yn−τ1) + g2(yn−τ2)

= g1(xn) + g2(xn) = g(xn)

= xn+1, τ1 ≤ n ≤ 2τ1.

Continuing the above process, or by induction, one can see that yn+1 = xn+1 for
all n ∈ [mτ1, (m + 1)τ1], m = 0, 1, . . . , i.e., yn = xn for all n > 0. Hence

yn+λ = xn+λ = xn

= yn, for all n > 0,

that is (35) has a λ-periodic solution.
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Now assume that (35) has a λ-periodic solution, say {yn}. It follows from (35),
with n > τ2, that

yn+1 = g1(yn−τ1) + g2(yn−τ2)

= g1(yn) + g2(yn) = g(yn).

Then a solution {xn} of (36) can be defined by

xn = yn+τ2 for all n ≥ 0.

Thus

xn+λ = yn+τ2+λ = yn+τ2 = xn, n ≥ 0,

which completes the proof.

The following result is a combination of Corollary 2 and Theorem 7.

Corollary 4. Assume that (8) holds and 2 ∈ cd(τ1, τ2). Then x̄ is a global attractor
of all solutions of (E) if and only if f has no period 2 point in (0, ∞).

In the case 2 /∈ cd(τ1, τ2), the existence of a periodic solution of (E) is
guaranteed by the following result which is derived from Theorem 7 by making
use of the fact that f has periodic points of all orders if it has a period 3 point (see
[12,20,21]).

Corollary 5. Assume that λ ∈ cd(τ1, τ2). If f has a period 3 point, then (E) has
a periodic solution of period λ.

We turn now to the stability properties of the equilibrium point of (35). Our
main objective is to find sufficient conditions in terms of the non-linearities g1, g2

under which the equilibrium will be stable with respect to (35), provided that it is
stable with respect to (36).

Lemma 4. Assume that x̄ ∈ I is a stable equilibrium point of (36). Then x̄ is also
a stable equilibrium point of (35) provided that

min{g(yn−τ1), g(yn−τ2)} ≤ yn+1 ≤ max{g(yn−τ1), g(yn−τ2)}, n > 0, (37)

for any solution {yn} of (35) such that {y−i}τ2
i=0 are close enough to x̄.

Proof. Since x̄ is stable with respect to the solutions of (36), then for every ε there
exists δ > 0 such that gn(Ωδ) ⊆ Ωε for all n ≥ 1 where Ωz = {x : |x − x̄| < z}.
Let {yn} be any solution of (35) such that {y−i}τ2

i=0 ⊂ Ωδ. Then (37) yields

yn+1 ∈ g(Ωδ) ⊆ Ωε, n = 0, 1, . . . , τ1. (38)

For τ1 < n ≤ 2τ1, it follows from (37) and (38) that

yn+1 ∈ g(Ωδ) ∪ g2(Ωδ) ⊆ Ωε.
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Similarly, for 2τ1 < n ≤ 3τ1, we have

yn+1 ∈ g
(
Ωδ ∪ g2(Ωδ)

) ∪ g(Ωδ)

= g(Ωδ) ∪ g2(Ωδ) ∪ g3(Ωδ).

By continuing the above process we get

yn+1 ∈ ∪m
i=1gi(Ωδ), (m − 1)τ1 < n ≤ mτ1, m = 1, 2, . . . . (39)

Since gi(Ωδ) ⊆ Ωε for all i > 0, we have ∪m
i=1gi(Ωδ) ⊆ Ωε for all m ≥ 1 and

hence (39) implies that yn ∈ Ωε for all n ≥ 1, which in turn implies the stability
of x̄ as an equilibrium point of (35). This completes the proof.

Theorem 8. Assume that g1(x)
a1

= g2(x)
a2

for all x ∈ I and some positive constants
a1, a2. If x̄ is a stable equilibrium point of (36), then x̄ is also a stable equilibrium
point of (35).

Proof. Consider a function G such that G(x) = g1(x)
a1

for all x ∈ I . Then (35) can
be written in the form

yn+1 = a1G(xn−τ1) + a2G(xn−τ2), n > 0,

and hence (37) holds with g(x) = (a1 + a2)G(x). Therefore the proof follows by
applying Lemma 4.

Note that no differentiability is required in Theorem 8, consequently Theorem 8
can be applied to some equations that cannot be tested by the linearizing technique.
If the non-linearities of (35) are differentiable near x̄, we have the following result:

Theorem 9. Let δ1 > 0 be such that g1, g2 ∈ C1(Ωδ1) and

g′
1(x) g′

2(x) ≥ 0, for all x ∈ Ωδ1, (40)

such that g′
1 g′

2 do not change their signs on Ωδ1 . If x̄ is a stable equilibrium point
of (36), then it is also a stable equilibrium point of (35).

Proof. From (40) we have either

g′
1(x) ≥ 0, g′

2(x) ≥ 0, for all x ∈ Ωδ1, (41)

or

g′
1(x) ≤ 0, g′

2(x) ≤ 0, for all x ∈ Ωδ1 . (42)

The stability of x̄ as an equilibrium point of (36) implies that for every ε < δ1,
there exists δ < δ1 such that

gn(Ωδ) ⊆ Ωε, n = 1, 2, . . . .

If (41) holds, we assume that {yn} be any solution of (35) with {y−i}τ2
i=0 ⊂ Ωδ. The

non-decreasing nature of g1, g2 on Ωδ implies that

g1(yn−τ1) ≤ g1(yn−τ2), g2(yn−τ1) ≤ g2(yn−τ2), if yn−τ1 ≤ yn−τ2



Oscillation and asymptotic behaviour 157

and

g1(yn−τ1) ≥ g1(yn−τ2), g2(yn−τ1) ≥ g2(yn−τ2), if yn−τ1 ≥ yn−τ2,

for each n = 0, 1, . . . , τ1. From the previous two inequalities and (35), we obtain

min{g(yn−τ1), g(yn−τ2)} ≤ yn+1 ≤ max{g(yn−τ1), g(yn−τ2)}, 0 ≤ n ≤ τ1.

Therefore,

yn+1 ∈ g(Ωδ) ⊆ Ωε, 0 ≤ n ≤ τ1.

Similarly one can show that (37) holds for τ1 < n ≤ 2τ1 which implies that

yn+1 ∈ g(Ωδ) ∪ g2(Ωδ) ⊆ Ωε, τ1 < n ≤ 2τ1.

Continuing this process, it follows that (37) holds for (m − 1)τ1 < n ≤ mτ1, m is
any positive integer, which in turn leads to

yn+1 ∈ ∪m
i=1gi(Ωδ) ⊆ Ωε, for (m − 1)τ1 < n ≤ mτ1.

Thus for every ε > 0 a number δ > 0 is found such that any solution {yn} of (35)
with initial values inside Ωδ satisfies that yn ∈ Ωε for all n ≥ 1, i.e., x̄ is a stable
equilibrium point of (35). The case when (42) holds can be handled in the same
fashion as the above case; we omit the details. The proof is complete.

Since g′
1, g′

2 are continuous, it follows that (40) is satisfied provided that

g′
1(x̄), g′

2(x̄) > 0 or g′
1(x̄), g′

2(x̄) < 0. (43)

This leads to the following result:

Corollary 6. Assume that g′
1, g′

2 are continuously differentiable in a neighbour-
hood of x̄. If (43) holds and x̄ is a stable equilibrium point of equation (36), then
x̄ is also a stable equilibrium point of equation (35).

Sadaghat [19] has shown that any globally attractive fixed point of (36) must
be stable (see also [15]). In view of this result, Corollary 1 and Corollary 6, we
obtain the following result for equation (E):

Corollary 7. Assume that the unique equilibrium x̄ is a global attractor of all
solutions of (2). Then x̄ is a globally asymptotically stable equilibrium point of
equation (E) where (I) (or (II)) is satisfied.

Proof. Since x̄ attracts all solutions of (2), then by [19] x̄ is stable. Moreover,
Corollary 1 implies that the equilibrium x̄ of (E) is a global attractor. So, to
complete the proof, it is enough to show that x̄ is a stable equilibrium of (E). Since
f1, f2 have and share a unique critical point x∗, then all requirements of Corollary 6
are satisfied if x̄ 	= x∗, so that x̄ is stable in this case. When x̄ = x∗, the linear
variational equation corresponding to (E) is yn+1 = 0, which has no solution other
than the trivial one and then is asymptotically stable. Using the linearized stability
theory we conclude that x̄ is stable when x̄ = x∗. This completes the proof.
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The following example is illustrative:

Example 1. Consider the higher-order version of (6) with r = 2, a = 1, i.e., the
equation

xn+1 = (1 − α)xne2−xn + αxn−τe2−xn−τ , 0 ≤ α ≤ 1. (44)

The linear variational equation associated with (44) is

yn+1 + (1 − α)yn + αyn−τ = 0. (45)

The zero solution of (45) is known to be asymptotically stable if and only if all
roots of the characteristic equation

λτ+1 + (1 − α)λτ + α = 0

lie inside the unit disc. Let τ be any even integer, then λ = −1 is a solution of the
characteristic equation. So that the linearized stability theory fails to apply to (44).
On the other hand, as mentioned in the introduction of this work, the equilibrium
point of

xn+1 = xne2−xn

is a global attractor. Now applying Corollary 7, we get that the equilibrium point
x̄ = 2 of (44) is globally asymptotically stable.
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