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Abstract. A nonlinear operator equation F(x) = 0, F : H → H, in a Hilbert space is
considered. Continuous Newton’s-type procedures based on a construction of a dynamical
system with the trajectory starting at some initial point x0 and becoming asymptotically close
to a solution of F(x) = 0 as t → +∞ are discussed. Well-posed and ill-posed problems are
investigated.
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1. Introduction

The theme of this paper is solving nonlinear operator equations of the form:

F(x) = 0, F : H → H,(1.1)

in a real Hilbert space H . We consider a real Hilbert space for the sake of simplicity:
numerical algorithms for solving (1.1) in a complex Hilbert space can be treated
similarly. In order to approximate a solution to equation (1.1) we use the idea
developed in [2]–[4], which consists of constructing a dynamical system with the
trajectory starting at some initial point x0 and converging to a solution of (1.1) as
t → +∞. This idea, in its simplest form goes back to A.Cauchy (steepest descent)
and was proposed in [5] for solving some optimization problems by a continuous
analog of the gradient method. In [9] a wide class of linear ill-posed problems was
studied by the dynamical systems method, and in [11] a recent development of
the dynamical systems method (DSM) is presented. In [6] a continuous Newton’s
scheme,

ẋ(t) = −[F′(x(t))]−1 F(x(t)), x(0) = x0 ∈ H,(1.2)
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was studied and a theorem establishing convergence with the exponential rate was
proved. A modified continuous Newton’s method is proposed in [1]:

ẋ(t) = −J(t)F(x(t)), x(0) = x0 ∈ H, J(0) ∈ L(H),(1.3)

J̇(t) = −µ
[
F′∗(x(t))F′(x(t))J(t) + J(t)F′(x(t))F′∗(x(t))

]+ 2µF′∗(x(t)),(1.4)

where µ is a positive constant. System (1.3)–(1.4) avoids the inversion of the
Fréchet derivative F′(x), which is numerically difficult in some applications.

The regularized Gauss–Newton’s-type algorithm with simultaneous updates of
the operator [F′∗(x(t))F′(x(t)) + ε(t)I]−1 was proposed in [8]:

ẋ(t) = −D(t)
[
F′∗(x(t))F(x(t)) + ε(t)(x(t) − x0)

]
,(1.5)

Ḋ(t) = −[
(F′∗(x(t))F′(x(t)) + ε(t)I )D(t) − I

]
,(1.6)

x(0) = x0 ∈ H, D(0) ∈ L(H), 0 < ε(t) → 0 as t → +∞.

It is shown that x(t) converges to a solution of (1.1) at the rate O(ε(t)). The con-
vergence theorem is proved without assuming the monotonicity of F and bounded
invertibility of F′(x).

In [3] and [4] a fairly general approach to the analysis of continuous procedures
in a Hilbert space was developed. According to this approach one investigates
a solution to the Cauchy problem for a nonlinear operator-differential equation
by using differential inequalities. In the well-posed case (the Fréchet derivative
operator F′(x) is boundedly invertible in a ball, which contains one of the solutions)
one investigates the Cauchy problem for an autonomous equation:

ẋ(t) = Φ(x(t)), x(0) = x0.(1.7)

The choice of Φ : H → H yields a corresponding continuous process. In the
ill-posed case (F′(x) has a nontrivial null-space at the solution (1.1) or is not
boundedly invertible) a regularized continuous procedure is required. For this
reason the Cauchy problem for the following equation is to be analysed:

ẋ(t) = Φ(x(t), t), x(0) = x0,(1.8)

with Φ : H × [0,+∞) → H . If one takes

Φ(h, t) := −[F′(h) + ε(t)]−1(F(h) + ε(t)(h − x0)),

then one arrives at a continuously regularized Newton’s scheme (CRNS). The
convergence analysis of CRNS is done in [3] under the assumption that F′(x) ≥ 0
as an operator in H . For

Φ(h, t) := −[F′∗(h)F′(h) + ε(t)]−1(F′∗(h)F(h) + ε(t)(h − x0))

one obtains the continuously regularized Gauss–Newton’s scheme (CRGNS). The
convergence theorems for CRGNS (see [2] and [3]) do not use any assumption
about the location of the spectrum of F′(x). The absence of such assumption is
made possible by source-type conditions.
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In Section 2 of our paper we study a continuous analog of a modified Newton’s
method:

ẋ(t) = −[F′(x0)]−1 F(x(t)), x(0) = x0 ∈ H,(1.9)

for solving the well-posed nonlinear operator equation (1.1). Theorem 2.3 estab-
lishes exponential convergence of (1.9) to a solution of (1.1). Process (1.9) can
be used in practical computations when the calculating and inverting of F′(x) at
each moment of time require a considerable effort. Another continuous algorithm,
investigated in Section 2,

ẋ(t) = −B(t)F(x(t)), x(0) = x0 ∈ H, B(0) = B0 ∈ L(H),(1.10)

Ḃ(t) = −F′∗(x(t))F′(x(t))B(t) + F′∗(x(t)),(1.11)

can also be recommended in the above situation. It allows one to update [F′(x)]−1

continuously for t ∈ [0,+∞) without actual inversion of the Fréchet derivative. In
Theorem 2.6 the exponential convergence of (1.10)–(1.11) to a solution of (1.1) is
proved.

For many important inverse problems of the form (1.1) the operator F′(x) is
not boundedly invertible. For such problems the regularized version of algorithm
(1.9) is suggested in Section 3:

ẋ(t) = −[F′(x0) + ε(t)I]−1(F(x(t)) + ε(t)(x(t) − x0)),

x(0) = x0 ∈ H, ε(t) > 0.
(1.12)

The convergence analysis of the continuous regularized method (1.12) is done in
Theorem 3.1 under the following assumption:

F′(x) = F′(x0)G(x0, x),(1.13)

where

||G(x0, x) − I || ≤ C(G)||x0 − x||, x0, x ∈ U(ρ, x̂),(1.14)

and x̂ is a solution to (1.1). Assumption (1.13)–(1.14) is similar to condition (8)
in [7]. It means that the operator F′(x) remains, in principle, the same for all
x in a neighborhood of a solution up to some modification by a linear operator
G(x0, x). The reader may consult [7] for several examples of nonlinear inverse
problems for which condition (1.13)–(1.14) can be verified. As a consequence of
Theorem 3.1 we obtain the stability of process (1.12) towards noise in the data
and choose an optimal regularization parameter (the stopping time) such that the
method converges to a solution of (1.1) when the noise level tends to zero.

Our main motivations for this investigation are:
1) We think that the DSM (dynamical systems method) that we develop in

this paper (and in the earlier publications, cited in the references) is not only of
theoretical interest, but also provides a powerful numerical tool for solving a very
wide variety of problems, namely all the problems which can be described by
equation (1.1) with the nonlinearity satifying the assumptions of our theorems
formulated in Sections 2 and 3.
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2) We think that the idea of constructing a method for solving equation (1.1)
which does not require inverting F′(u) (see, for example, equations (2.21) and
(2.22) below) is of both theoretical and practical interest even for well-posed
problems.

3) The DSM gives a general approach to constructing convergent iterative
methods for solving ill-posed nonlinear problems. We do not address this part of
the DSM in our present paper, but it has been addressed in detail in [4].

Finally we note that the DSM was tested numerically (see [2], [3], [10] for ex-
ample), but it is certainly of interest to study much more the numerical performance
of DSM. In this paper, however, the authors deal with the theoretical questions.

2. Continuous modified Newton’s schemes for well-posed problems

In this section we solve the nonlinear operator equation (1.1) under the assumption
that the Fréchet derivative of the operator F is boundedly invertible in a ball which
contains one of the solutions. Let x0 be an initial approximation for a solution to
(1.1) and x(t) be a trajectory of the autonomous dynamical system

ẋ(t) = Φ(x(t)), 0 ≤ t < +∞, x(0) = x0.(2.1)

Lemma 2.1 below (see [4]) gives simple sufficient conditions on nonlinear operators
F in (1.1) and Φ in (2.1) which guarantee that:

(a) the initial value problem (2.1) is uniquely solvable for all t ∈ [0,+∞);
(b) the solution x(t) tends to one of the solutions of (1.1) as t → +∞.

Lemma 2.1. Let H be a real Hilbert space, F,Φ : H → H.
Suppose that there exist some positive numbers c1 and c2 such that F and Φ

are Fréchet differentiable in U(r, x0) := {x ∈ H, ||x − x0|| ≤ r}, r := c2||F(x0)||
c1

and ∀h ∈ U(r, x0) the following conditions hold:

(F′(h)Φ(h)), F(h)) ≤ −c1||F(h)||2,(2.2)

and

||Φ(h)|| ≤ c2||F(h)||.(2.3)

Then:
1. there exists a global solution x = x(t) to problem (2.1) in the ball U(r, x0);
2. there exists

lim
t→+∞ x(t) = x̂,(2.4)

where x̂ is a solution to (1.1) in U(r, x0), and

||x(t) − x̂|| ≤ re−c1t,(2.5)

||F(x(t))|| ≤ ||F(x0)||e−c1t .(2.6)
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Proof. From the Fréchet differentiability of Φ the local existence of a solution to
(2.1) follows, and from (2.1) one gets:

d

dt
{F(x(t))} = F′(x(t))ẋ(t) = F′(x(t))Φ(x(t)).(2.7)

Let λ(t) := F(x(t)). Then

λ̇(t) = F′(x(t))Φ(x(t)), λ(0) = F(x0).(2.8)

At least for sufficiently small t, for which x(t) ∈ U(r, x0), one can use estimate
(2.2) and get:

1

2

d

dt
||λ(t)||2 = (λ̇(t), λ(t)) = (F′(x(t))Φ(x(t)), F(x(t))) ≤ −c1||λ(t)||2.(2.9)

Thus, at least for sufficiently small t ≥ 0, one gets:

||λ(t)|| ≤ ||F(x0)||e−c1t .(2.10)

For 0 ≤ t1 ≤ t2 by (2.3) one has

||x(t2) − x(t1)|| ≤
∥∥∥∥

∫ t2

t1

ẋ(s)ds

∥∥∥∥ ≤
∫ t2

t1

||Φ(x(s))||ds ≤ c2

∫ t2

t1

||λ(s)||ds

≤ c2||F(x0)||
c1

(
e−c1t1 − e−c1t2

)
<

c2||F(x0)||
c1

e−c1t1 .(2.11)

Setting t1 = 0 and t2 = t, one concludes from (2.11) that x(t) ∈ U(r, x0) with
r = c2||F(x0)||

c1
whenever it is defined. Therefore the standard argument yields the

existence and uniqueness of a solution to (2.1) on [0,+∞). Now in (2.11) let
t1 = t and t2 → +∞ . Then one gets (2.5), and the limit x̂ in (2.4) does exist due
to (2.11). From (2.10) one concludes that x̂ is a solution to (1.1). Inequality (2.6)
follows from (2.10). Lemma 2.1 is proved. 	

Remark 2.2. The assumptions of Theorem 2.3 do not imply the uniqueness of
a solution to equation (1.1). If (1.1) is not uniquely solvable then x(t) converges to
one of its solutions in U(r, x0).

In Lemma 2.1 we have assumed that c1 and c2 are some known constants in the
ball U(r, x0), and this assumption allowed us to define r explicitly in terms of the
ratio c2

c1
and ||F(x0)||. One may assume that c2

c1
is not a constant but a function of r,

c2
c1

:= c(r). In this case , in order that the argument of Lemma 2.1 be valid, one has

to satisfy the inequality c(r)||F(x0)|| ≤ r. For example, if c(r)
r → 0 as r → ∞,

then there always exists an r > 0 such that the conclusion of Lemma 2.1 holds and
the assumptions of this lemma are satisfied in the ball U(r, x0).

Now consider the following continuous modified Newton’s scheme:

ẋ(t) = −[F′(x0)]−1 F(x(t)), x(0) = x0 ∈ H.(2.12)

Theorem 2.3 below establishes a relation between the asymptotic behavior of
a solution x(t) to (2.12) and solutions to equation (1.1). It is a consequence of
Lemma 2.1.
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Theorem 2.3. Let H be a real Hilbert space, F : H → H. Assume that F is
Fréchet differentiable, its Fréchet derivative F′ is Lipschitz-continuous:

||F′(x1) − F′(x2)|| ≤ M2||x1 − x2|| ∀x1, x2 ∈ U(r̃, x0),(2.13)

where

U(r̃, x0) := {x ∈ H, ||x − x0|| ≤ r̃}, r̃ := 1

2M2m1
, m1 := ||[F′(x0)]−1||,

(2.14)

and

4M2m2
1||F(x0)|| ≤ 1.(2.15)

Then:
1. there exists an unique solution x = x(t), t ∈ [0,+∞), to problem (2.12).
2. x(t) ∈ U(r̃, x0) ∀t ∈ [0,+∞), and

lim
t→+∞ x(t) = x̂,(2.16)

where x̂ is a solution to (1.1).
3. the following estimates hold:

||x(t) − x̂|| ≤ 2m1||F(x0)||e− t
2 ,(2.17)

||F(x(t))|| ≤ ||F(x0)||e− t
2 .(2.18)

Proof. Take

Φ(x(t)) := −[F′(x0)]−1 F(x(t)).(2.19)

Then, under assumptions (2.13) and (2.14) of Theorem 2.3, one gets ∀h ∈ U(r̃, x0)

(F′(h)Φ(h), F(h)) = −(F′(h)[F′(x0)]−1 F(h), F(h))

= −||F(h)||2 + ({I − F′(h)[F′(x0)]−1}F(h), F(h))

= −||F(h)||2 + ({F′(x0) − F′(h)}[F′(x0)]−1 F(h), F(h))

≤ −||F(h)||2 + M2m1r̃||F(h)||2

= −1

2
||F(h)||2.(2.20)

Also one has ||Φ(h)|| ≤ m1||F(h)||. Thus conditions (2.2) and (2.3) of Lemma 2.1
hold for any h ∈ U(r̃, x0) with Φ defined in (2.19), c1 = 1

2 and c2 = m1. Hence

r := c2||F(x0)||
c1

= 2m1||F(x0)||. From (2.14) and (2.15) one has 2m1||F(x0)|| ≤
1

2M2m1
:= r̃ . Therefore (2.2) and (2.3) are satisfied on U(r, x0), r := c2||F(x0)||

c1
,

c1 = 1
2 , c2 = m1. Applying Lemma 2.1, one completes the proof. 	
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Remark 2.4. (a) Choosing Φ(h) = −[F′(h)]−1 F(h) one gets the continuous
Newton’s method. In this case c1 = 1, c2 = µ1 := supx∈U(r,x0 ) ||[F′(x)]−1||,
and Lemma 2.1 yields the convergence theorem for the continuous Newton’s
method [6].
(b) Choosing Φ(h) = −F(h), one gets a simple iteration method, for which
condition (2.2) means strict monotonicity of F: F′ ≥ c1 > 0, and c2 = 1.
(c) Φ(h) = −[F′(h)]∗F(h) corresponds to the gradient method.

Here c2 = M1 := supx∈U(r,x0 ) ||F′(x)||, and c1 = µ−2
1 .

(d) Φ(h) = −[F′∗(h)F′(h)]−1 F′∗(h)F(h) yields the continuous Gauss–Newton’s
scheme. Here c1 = 1, c2 = µ2

1M1, where µ1 is the same as in (a) above, and M1

is the same as in (c) above.

In order to avoid inversion of the Fréchet derivative F′(x(t)) even at the initial
moment t = 0, one can consider the following algorithm, which is a Cauchy
problem for a system of two equations:

ẋ(t) = −B(t)F(x(t)), x(0) = x0 ∈ H, B(0) = B0 ∈ L(H),(2.21)

Ḃ(t) = −F′∗(x(t))F′(x(t))B(t) + F′∗(x(t)).(2.22)

Equation (2.22) is similar to equation (1.3) in [9]. To prove Theorem 2.6
below we use the following lemma, which is an operator-theoretical version of the
Gronwall inequality:

Lemma 2.5. Let

dV

dt
+ A(t)V(t) = G(t), V(0) = V0,(2.23)

where A(t), G(t), V(t) ∈ L(H), L(H) is the set of linear bounded operators
on H, and H is a real Hilbert space. If there exists a scalar function ζ(t) > 0,
ζ ∈ L1

loc(0,∞), such that

(A(t)h, h) ≥ ζ(t)||h||2 ∀h ∈ H,(2.24)

then

||V(t)|| ≤ e
−

t∫

0
ζ(p)dp




t∫

0

||G(s)||e
s∫

0
ζ(p)dp

ds + ||V(0)||


 .(2.25)

Proof. (see [8]) Take any h ∈ H. Since H is a real Hilbert space one has:

1

2

d

dt
||V(t)h||2 =

(
dV

dt
h, V(t)h

)

= −(A(t)V(t)h, V(t)h) + (G(t)h, V(t)h)

≤ −ζ(t)||V(t)h||2 + ||G(t)|| ||h|| ||V(t)h||.
(2.26)
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Denote v(t) := ||V(t)h||. Inequality (2.26) implies

vv̇ ≤ −ζ(t)v2 + ||G(t)|| ||h|| v.(2.27)

Divide this inequality by the non-negative v and get a linear first-order differential
inequality from which one gets (2.25). Lemma 2.5 is proved. 	


Theorem 2.6. Let H be a real Hilbert space, F : H → H. Assume that:
1. U(R, x0) := {x ∈ H, ||x − x0|| ≤ R}, the operator F is twice Fréchet differen-
tiable, F′(x) is boundedly invertible, and

||F′(x)|| ≤ M1, ||F′′(x)|| ≤ M2, ||[F′(x)]−1||2 ≤ 1

c
∀x ∈ U(R, x0),

(2.28)

where

R := γc

2M1 M2σ2
, γ := 1 − ||F′(x0)B0 − I ||

2
> 0, σ := M1

c
+ ||B0||.

(2.29)

2. Equation (1.1) is solvable in U(R, x0) (not necessarily uniquely), and x̂ is
a solution.
3. F(x0) satisfies the following condition

{
2M1 M2

c
σ3||F(x0)||

}1/2

≤ γ.(2.30)

Then:
1. there exists a unique solution (x(t), B(t)), t ∈ [0,+∞), to problem (2.21)–(2.22);
2. x(t) ∈ U(R, x0) ∀t ∈ [0,+∞);
3. the following estimates hold:

||x(t) − x̂|| ≤ σ ||F(x0)||
γ

e−γt,(2.31)

||F(x(t))|| ≤ ||F(x0)|| e−γt,(2.32)

||F′(x(t))B(t) − I || ≤ (M2||F(x0)||σ2t + ||F′(x0)B0 − I ||) e−ct, if c = γ,

(2.33)

||F′(x(t))B(t) − I || ≤
(

M2||F(x0)||σ2

|c − γ | + ||F′(x0)B0 − I ||
)

e− min{γ,c} t,

if c �= γ.(2.34)
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Proof. Under the assumptions of Theorem 2.6 there exists a unique solution
(x(t), B(t)) to (2.21)–(2.22) on some interval [0, τ], and, at least for sufficiently
small t > 0, x(t) ∈ U(R, x0). Since ∀x ∈ U(R, x0) and ∀h ∈ H

(F′(x)F′∗(x)h, h) ≥ 1

||[F′(x)]−1||2 ||h||2 ≥ c||h||2,(2.35)

by (2.22) and Lemma 2.5 one gets

||B(t)|| ≤ e−ct

[∫ t

0
||F′∗(x(s))||ecs ds + ||B(0)||

]
.

Thus by (2.28) and (2.29)

||B(t)|| ≤ M1

c

(
1 − e−ct) + ||B0||e−ct ≤ M1

c
+ ||B0|| := σ.(2.36)

Let us analyse the initial value problem for w(t) := F(x(t)). One has

ẇ(t) = F′(x(t))ẋ(t) = −F′(x(t))B(t)w(t).

Therefore

ẇ(t) + w(t) + [F′(x(t))B(t) − I]w(t) = 0, w(0) = F(x0).(2.37)

Denote W(t) := F′(x(t))B(t) − I . Then

Ẇ(t) = F′′(x(t))ẋ(t)B(t) + F′(x(t))Ḃ(t)

= −F′′(x(t))B(t)F(x(t))B(t) + F′(x(t))[−F′∗(x(t))F′(x(t))B(t) + F′∗(x(t))]
= −F′′(x(t))B(t)F(x(t))B(t) − F′(x(t))F′∗(x(t))W(t).

Consider the problem

Ẇ(t) + F′(x(t))F′∗(x(t))W(t) = −F′′(x(t))B(t)F(x(t))B(t),(2.38)

W(0) = F′(x0)B(0) − I.(2.39)

From (2.35), (2.38)–(2.39) and Lemma 2.5 one obtains the estimate

||W(t)|| ≤ e−ct

[∫ t

0
||F′′(x(s))B(s)F(x(s))B(s)||ecs ds + ||W(0)||

]
.(2.40)

Assumptions 1 and 2 of Theorem 2.6 yield

||F(x(t))|| ≤ ||F(x(t)) − F(x0)|| + ||F(x0) − F(x̂)|| ≤ 2M1 R,

for all values of t such that x(t) ∈ U(R, x0).
Thus:

||W(t)|| ≤ 2M1 M2 R

c

(
M1

c
+ ||B(0)||

)2

+ ||W(0)|| = 2M1 M2 Rσ2

c
+ ||W(0)||

= γ + ||W(0)||.
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Hence one gets, from (2.29),

||W(t)|| ≤ 1 − ||W(0)||
2

+ ||W(0)|| = 1 + ||W(0)||
2

.(2.41)

Now one has the following differential inequality:

1

2

d

dt
||w(t)||2 = −||w(t)||2 − (W(t)w(t),w(t)) ≤ −1 − ||W(0)||

2
||w(t)||2

= −γ ||w(t)||2.
Therefore

||w(t)|| ≤ ||w(0)|| e−γt,(2.42)

for all values of t, such that x(t) ∈ U(R, x0). If 0 ≤ t1 ≤ t2, one obtains

||x(t2) − x(t1)|| ≤
∥∥∥∥

∫ t2

t1

ẋ(s) ds

∥∥∥∥ ≤
(

M1

c
+ ||B(0)||

)∫ t2

t1

||w(s)|| ds

≤ σ ||F(x0)||
γ

(
e−γt1 − e−γt2

)
.

(2.43)

From (2.43), by conditions (2.29) and (2.30), one gets:

||x(t2) − x(t1)|| ≤ γc

2M1 M2σ2

2M1 M2σ
3||F(x0)||

cγ 2

(
e−γt1 − e−γt2

)

≤ R
(
e−γt1 − e−γt2

)
.

(2.44)

Since B(t) is bounded whenever it is defined, estimate (2.44) implies that there ex-
ists an unique solution (x(t), B(t)) to (2.21)–(2.22) on [0,+∞) and ∀t ∈ [0,+∞)

x(t) ∈ U(R, x0). Setting t1 = t and t2 → +∞ in (2.43) one gets (2.31). Inequality
(2.32) now follows from (2.42). Let us go back to (2.40). By (2.42) one has

||W(t)|| ≤ e−ct

[∫ t

0
||F′′(x(s))|| ||B(s)||2 ||F(x0)|| e(c−γ)s ds + ||W(0)||

]
.(2.45)

Estimate (2.45) implies (2.33)–(2.34). This completes the proof. 	


3. Ill-posed case. Continuously regularized modified Newton’s scheme

In many important applications the Fréchet derivative operator is not boundedly
invertible, i.e. the problem is ill-posed. To overcome this difficulty we suggest
a regularized version of algorithm (2.12):

ẋ(t) = −[F′(x0) + ε(t)I]−1(F(x(t)) + ε(t)(x(t) − x0)),

x(0) = x0 ∈ H, 0 < ε(t),
(3.1)

where x0 is chosen so that (F′(x0)h, h) ≥ 0 ∀h ∈ H . If such a choice is not possible
for the original equation F(x) = 0, one may consider an auxiliary problem φ(x) :=
F′∗(x0)F(x) = 0. If F is Fréchet differentiable, one has φ′(x0) = F′∗(x0)F′(x0)

and (φ′(x0))h, h) ≥ 0 ∀h ∈ H. The last equation, in general, is not equivalent to
(1.1). However every solution to (1.1) solves φ(x) = 0. The convergence analysis
of (3.1) is done in the following theorem:



Continuous modified Newton’s-type method for nonlinear operator equations 47

Theorem 3.1. Let H be a real Hilbert space, F : H → H, equation (1.1) be
solvable (not necessarily uniquely), and x̂ be a solution to (1.1). Assume that:
1. A positive function ε(t) ∈ C1[0,+∞) converges monotonically to zero as t →
+∞, ε̇(t)

ε(t) is nondecreasing, and ε(0) > |ε̇(0)|.
2. F is Fréchet differentiable, its Fréchet derivative F′ is Lipschitz-continuous:

||F′(x1) − F′(x2)|| ≤ M2||x1 − x2|| and F′(x) = F′(x0)G(x0, x),(3.2)

where

G(x0, x) ∈ L(H), ||G(x0, x) − I || ≤ C(G)||x0 − x||, ∀x1, x2, x ∈ U(ρ, x̂),

(3.3)

U(ρ, x̂) := {x ∈ H : ||x − x̂|| ≤ ρ}, C(G) > 0, ρ := ε(0) − |ε̇(0)|
M2 + C(G)ε(0)

.

(3.4)

3. F′(x0) is non-negative definite:

(F′(x0)h, h) ≥ 0 ∀h ∈ H, ||x0 − x̂|| < ρ.(3.5)

4. There exist v ∈ H such that x̂ − x0 = F′(x0)v,

ε(0) − |ε̇(0)| ≥ [M2 + C(G)ε(0)]ε(0)

√
2||v||
M2

.(3.6)

Then a unique solution x = x(t) to problem (3.1) exists for all t ∈ [0,+∞)

and

||x(t) − x̂|| ≤ ε(0) − |ε̇(0)|
ε(0)[M2 + C(G)ε(0)]ε(t).(3.7)

Remark 3.2. Inequality (3.6) can always be satisfied if
√

2||v||M2 < 1. Indeed,
inequality (3.6) is equivalent to

1 − √
2||v||M2 ≥ |ε̇(0)|

ε(0)
+ ε(0)C(G)

√
2||v||
M2

.(3.8)

Thus, if
√

2||v||M2 < 1, then inequality (3.8) holds if |ε̇(0)|
ε(0)

and ε(0) are sufficiently

small. For ε(t) = a e−bt , a, b > 0, inequality (3.6) holds if the following inequality
is valid:

b + aC(G)

√
2||v||
M2

≤ 1 −√
2||v||M2.

The foregoing inequality holds if a and b are positive and sufficiently small and
1 >

√
2||v||M2. Since a priori ||v|| is not known, in the numerical applications of

the scheme one has to try different functions ε(t) for (3.6) to be fulfilled.
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Remark 3.3. Consider a nonlinear integral equation of the first kind:

F(x) := ψ(x) − y = 0, ψ(x)(t) :=
∫ 1

0
k(t, s)g(s, x(s)) ds, t ∈ [0, 1],(3.9)

where k(t, s) ∈ L∞((0, 1)2) and g(s, u) is twice continuously differentiable with
respect to u on 0 ≤ s, t ≤ 1, −∞ < u < +∞. Suppose F : H1[0, 1] → L2(0, 1).
Then

(F′(x)h)(t) =
∫ 1

0
k(t, s)gx(s, x(s))h(s) ds.

Introduce the nonlinear operator φ(x) := F′∗(x0)F(x), φ : H1[0, 1] → H1[0, 1],
and solve the equation φ(x) = 0. Clearly φ′(x0) is non-negative definite, i.e.
condition 3 of Theorem 3.1 holds. Under the additional assumptions |gx(s, x0)| ≥
κ > 0 for any s ∈ (0, 1), and g(s, u) ∈ C3((0, 1) × (−∞,+∞)), one can take
(G(x0, x)h)(s) := gx (s,x(s))

gx (s,x0(s))h(s) in order to satisfy condition 2 of Theorem 3.1.
Indeed,

(φ′(x)h)(t) = (φ′(x0)G(x0, x)h)(t),

and for any h ∈ H the following estimates are used in [7]:

||(G(x0, x) − I )h||L2 =

=





∫ 1

0

[∫ 1
0 gxx(s, (x0 + θ(x − x0))(s)) dθ(x(s) − x0(s))h(s)

gx(s, x0(s))

]2

ds






1/2

≤ ||gxx ||L∞

κ
||x − x0||L∞ ||h||L2 .

Also
∥∥ d

ds (G(x0, x) − I )h
∥∥

L2

=
{∫ 1

0

[(∫ 1
0 gsxx (s, (x0 + θ(x − x0))(s)) + gxxx (s, (x0 + θ(x − x0))(s))(x′

0 + θ(x′ − x′
0))(s)dθ

gx (s, x0(s))

−
∫ 1

0 gxx (s, (x0 + θ(x − x0))(s))dθ(gsx (s, x(s)) + gxx (s, x(s))x′(s))
g2

x (s, x0(s))

)

· (x(s) − x0(s))h(s)

+
∫ 1

0 gxx (s, (x0 + θ(x − x0))(s))dθ

gx (s, x0(s))
((x′(s) − x′

0(s))h(s) + (x(s) − x0(s))h
′(s))

]2

ds






1/2

≤||gsxx ||L∞
κ

||x − x0||L∞||h||L2 + 2||gxxx ||L∞ (||x′||L2 + ||x′
0||L∞ )

3κ
||x − x0||L∞||h||L∞

+ ||gxx ||L∞||gsx ||L∞
κ2

||x − x0||L∞||h||L2 + ||gxx ||2L∞||x′||L2

κ2
||x − x0||L∞||h||L∞

||gxx ||L∞
κ

(||x′ − x′
0||L2 ||h||L∞ + ||x − x0||L∞||h′||L2 ).

The L∞(0, 1)-norms of x − x0 and h can be estimated by their H1[0, 1]-norms
times some constants, due to Sobolev’s embedding theorems.
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Thus if one assumes that equation (3.9) is solvable, x̂ is its solution, and in
a neighborhood of x̂ there exists x0 such that

x̂ − x0 = φ′(x0)v,
√

2||v||M2 < 1,

then a unique solution, x = x(t), to the problem

ẋ(t) = −[φ′(x0)+ε(t)I]−1(φ(x(t))+ε(t)(x(t)−x0)), x(0) = x0 ∈ H, 0 < ε(t),

exists for all t ∈ [0,+∞) and

||x(t) − x̂|| = O(ε(t)),

provided that the above assumptions on k(t, s) and g(s, u) are satisfied and the
choice of ε(t) is made according to (3.8) with ε̇(t)

ε(t) being nondecreasing.

Proof of Theorem 3.1 First, from (3.5) one concludes that the operator [F′(x0) +
ε(t)I]−1 is bounded ∀t ≥ 0. Let us show that if x = x(t) solves (3.1), then
x(t) ∈ U(ρ, x̂) with ρ as introduced in (3.4). Assume the converse: there exists
T > 0 such that

||x(t) − x̂|| < ρ ∀t ∈ [0, T ) and ||x(T ) − x̂|| = ρ.(3.10)

For any t ∈ [0, T ] one has

1

2

d

dt
||x(t) − x̂||2 = − ([F′(x0) + ε(t)I]−1[F′(x̂)(x(t) − x̂)

+ R2(x(t), x̂) + ε(t)(x(t) − x0)], x(t) − x̂),

where ||R2(x(t), x̂)|| ≤ M2
2 ||x(t) − x̂||2. Thus one gets

1

2

d

dt
||x(t) − x̂||2 ≤ − ||x(t) − x̂||2

− ([F′(x0) + ε(t)I]−1(F′(x̂) − F′(x0))(x(t) − x̂), x(t) − x̂)

− ε(t)([F′(x0) + ε(t)I]−1(x̂ − x0), x(t) − x̂)

+ M2

2ε(t)
||x(t) − x̂||3.

Condition 2 of Theorem 3.1 and the estimate ||[F′(x0)+ε(t)I]−1 F′(x0)|| ≤ 1 yield

1

2

d

dt
||x(t)− x̂||2 ≤ −||x(t)− x̂||2+||G(x0, x̂)− I || ||x(t)− x̂||2+ε(t)||v|| ||x(t)− x̂||

+ M2

2ε(t)
||x(t) − x̂||3 ≤ −(1 − C(G)ρ)||x(t) − x̂||2 + ε(t)||v|| ||x(t) − x̂||

+ M2

2ε(t)
||x(t) − x̂||3.(3.11)
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Introduce the notation Q(t) := ||x(t) − x̂||. Inequality (3.11) implies

Q̇(t) ≤ −(1 − C(G)ρ)Q(t) + ε(t)||v|| + M2

2ε(t)
Q2(t), Q(0) = ||x0 − x̂||.

(3.12)

Take f(t) = Q(t)
ε(t) . By assumption 1 of Theorem 3.1 one obtains:

ḟ (t) ≤ −
(

1 − C(G)ρ − |ε̇(0)|
ε(0)

)
f(t) + ||v|| + M2

2
f 2(t), f(0) = ||x0 − x̂||

ε(0)
.

(3.13)

From (3.4) and (3.13) one concludes that

ḟ (t) ≤ − M2(ε(0) − |ε̇(0)|)
ε(0)[M2 + C(G)ε(0)] f(t) + ||v|| + M2

2
f 2(t), f(0) = ||x0 − x̂||

ε(0)
.

(3.14)

Let

C1 := M2

2
, C2 := M2(ε(0) − |ε̇(0)|)

ε(0)[M2 + C(G)ε(0)] , C3 := ||v||.(3.15)

If g(t) is a solution to the initial value problem

ġ(t) = C1g2(t) − C2g(t) + C3,(3.16)

g(0) = f(0),(3.17)

then inequality (3.14) yields

f(t) ≤ g(t),(3.18)

whenever g(t) and f(t) are both defined. By (3.4), (3.5) and (3.15) one has

f(0) = ||x0 − x̂||
ε(0)

<
ρ

ε(0)
= ε(0) − |ε̇(0)|

ε(0)[M2 + C(G)ε(0)] = C2

2C1
.(3.19)

By (3.6) the equation C1g2 − C2g + C3 = 0 has at least one real root. If there
are two roots, the smaller root is a stable equilibrium for problem (3.16), which
implies g(t) ≤ g(0) = f(0) <

C2
2C1

. Otherwise g̃ := C2
2C1

is a solution to (3.16), and

g(t) <
C2

2C1
since g(0) <

C2
2C1

. Therefore from (3.18) and (3.19) one derives:

f(t) ≤ g(t) <
ρ

ε(0)
.

Hence inequality (3.14) and conditions (3.4) and (3.6) yield:

f(t) <
ε(0) − |ε̇(0)|

ε(0)[M2 + C(G)ε(0)] = ρ

ε(0)
.(3.20)
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Thus

||x(t) − x̂|| <
ρ

ε(0)
ε(t) ≤ ρ ∀t ∈ [0, T ],(3.21)

which contradicts (3.10). Therefore x(t) ∈ U(x̂, ρ) for any t, and by the standard
argument one concludes that x(t) is defined on [0,+∞). Inequality (3.7) follows
from (3.4) and (3.21). 	


Corollary 3.4. In this corollary it is shown that if the data are noisy, then the
stopping time can be chosen so that the solution to the Cauchy problem with noisy
data approximates a solution to (1.1) stably, i.e. with the error going to zero as the
noise level goes to zero. Let the operator F in (1.1) have the following form:

F(x) := ψ(x) − y.(3.22)

Assume that ψ is given exactly and in place of y we know a δ-approximation yδ,
satisfying the inequality

||y − yδ|| ≤ δ.(3.23)

Then

1

2

d

dt
||x(t) − x̂||2 ≤ −(1 − C(G)ρ)||x(t) − x̂||2 +

(
ε(t)||v|| + δ

ε(t)

)
||x(t) − x̂||

+ M2

2ε(t)
||x(t) − x̂||3.(3.24)

Take τδ such that ε(τδ) =
(

δ
||v||

) 1
2
. For t = τδ we get δ

ε2(τδ)
= ||v|| and therefore

∀t ∈ [0, τδ]

ḟ (t) ≤ −
(

1 − C(G)ρ − |ε̇(0)|
ε(0)

)
f(t) + 2||v|| + M2

2
f 2(t), f(0) = ||x0 − x̂||

ε(0)
.

(3.25)

Thus one gets

||x(τδ) − x̂|| ≤ ρ

ε(0)||v|| 1
2

δ
1
2 ,(3.26)

provided that conditions 1, 2, 3 of Theorem 3.1 and inequality

ε(0) − |ε̇(0)| ≥ 2[M2 + C(G)ε(0)]ε(0)

√
||v||
M2

(3.27)

hold.
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