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Abstract. We study generated semigroups of those self-mappings of the Hilbert ball which
are non-expansive with respect to the hyperbolic metric. We find optimal convergence rates
for such semigroups to interior stationary and boundary sink points. Since the hyperbolic
metric is not defined on the boundary, the usual approach treats these two cases separately.
In contrast with this practice, we use a special non-Euclidean “distance” (which induces the
original topology) to present a unified theory. Our approach leads to new results even in
the one-dimensional case. When the semigroups consist of holomorphic self-mappings, we
obtain the rather unexpected phenomenon of universal rates of convergence of an exponential
type. In particular, in the case of a boundary sink point we establish a continuous analog of
the celebrated Julia–Wolff–Carathéodory theorem.
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1. Preliminaries

Let B be the open unit ball of a complex Hilbert space H with inner product 〈·, ·〉,
and let ρ : B× B �→ R

+ be the hyperbolic metric on B ([9], p. 98), i.e.,

ρ(x, y) = tanh−1
√

1 − σ(x, y),

σ(x, y) = (1 − ‖x‖2)(1 − ‖y‖2)

|1 − 〈x, y〉|2 , x, y ∈ B. (1.1)

We denote by Nρ the class of all those self-mappings F : B �→ B which are
non-expansive with respect to ρ (ρ-non-expansive), i.e.,

ρ(F(x), F(y)) ≤ ρ (x, y) . (1.2)

Note that the class Nρ properly contains the class Hol(B) of all holomorphic
self-mappings of B ([8,9]).
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Definition 1.1. A family S = {F(t)}t≥0 of self-mappings of B is said to be a one-
parameter continuous semigroup (flow) on B if

F(t + s) = F(t) ◦ F(s), t, s ≥ 0,

and

lim
t→0+ F(t) = I, (1.3)

where I is the restriction of the identity mapping of H to B and the limit is taken
pointwise with respect to the strong topology of H .

Definition 1.2. A flow S = {F(t)}t≥0 on B is said to be generated if, for each
x ∈ B, there exists the strong limit

f(x) := lim
t→0+

1

t
(x − F(t)x). (1.4)

In this case the mapping f : B �→ H is called the (infinitesimal) generator
of S.

If, in addition, S ⊂ Nρ is a flow of ρ-non-expansive self-mappings of B
generated by f , then we will write f ∈ GNρ(B).

It is known (see [13]) that if f is bounded and uniformly continuous on each
ρ-ball in B, then f ∈ GNρ(B) if and only if it satisfies the following strong range
condition:

(SRC) for each r ≥ 0, the mapping Jr := (I + r f )−1 is a well-defined
ρ-non-expansive self-mapping of B.

Moreover, in this case the following exponential formula holds:

lim
n→∞

[
J t

n

]n = F(t), (1.5)

where by Fn we denote the n-fold iterate of F and the limit in (1.5) is uniform on
each ρ-ball in B.

Definition 1.3. A mapping f : B �→ H is said to be strongly ρ-monotone (respec-
tively, ρ-monotone) if for each pair x, y ∈ B there is ε = ε(x, y) > 0 (respectively,
ε = 0) such that

ρ(x + r f(x), y + r f(y)) ≥ (1 + rε(x, y))ρ(x, y), (1.6)

for all r ≥ 0 such that the points x + r f(x) and y + r f(y) belong to B.

It was shown in [13] that f : B �→ H is ρ-monotone if and only if it satisfies
the condition

Re
[ 〈 f(x), x〉

1 − ‖x‖2
+ 〈y, f(y)〉

1 − ‖y‖2

]
≥ Re

[ 〈 f(x), y〉 + 〈x, f(y)〉
1 − 〈x, y〉

]
. (1.7)
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Of course, if f ∈ GNρ(B) is bounded and uniformly continuous on each ρ-ball
in B, then it is ρ-monotone by (SRC).

As a matter of fact, Theorems 1.3 and 2.1 in [13] show that the following partial
converse is also true: if a ρ-monotone f is bounded and uniformly continuous on
each ρ-ball in B, and satisfies the weak range condition:

(I + r f )(B) ⊇ B(WRC)

for each r ≥ 0, then f ∈ GNρ(B).
Stronger assertions hold for the class Hol(B,H ) of holomorphic mappings on

B with values in H . Namely,

(I) A flow S ⊂ Hol(B) is generated if and only if the limit in (1.3) is uniform on
each ρ-ball in B. Moreover, in this case its generator f is holomorphic and
bounded on each ρ-ball in B (see [15]);

(II) the following are equivalent for f ∈ Hol(B,H):
(i) f ∈ G Hol(B) := GNρ(B) ∩ Hol(B,H );

(ii) f is bounded on each ρ-ball in B and satisfies the weak range condi-
tion (WRC);

(iii) f satisfies the strong range condition (SRC);
(iv) f is bounded on each ρ-ball in B and is ρ-monotone.

Thus for the finite-dimensional case the classes of holomorphic mappings
satisfying (WRC) and (SRC), the class G Hol(B) and the class of ρ-monotone
mappings are one and the same.

Now we turn to the notion of the stationary point set of a flow S on B.
By Fix(F) we will denote the fixed point set of a self-mapping F of B; by

Null( f ) we denote the null point set of a mapping f : B �→ H in B. Thus
Fix(F) = Null(I − F).

Definition 1.4. The stationary point set Z of a flow S = {F(t)}t≥0 on B consists of
all the points a ∈ B such that

F(t)a = a,

for all t ≥ 0.

In other words,

Z =
⋂
t≥0

Fix(F(t)). (1.8)

It is known (see [13] and [15]) that if S ⊂ Nρ is a flow generated by
f ∈ GNρ(B) and f is bounded and uniformly continuous on each ρ-ball in B
(hence, satisfies (SRC)), then the following relations hold: for each r ≥ 0,

W = Null( f ) = Fix(Jr), (1.9)

where Jr = (I + r f )−1.
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In the study of the asymptotic behavior of flows of ρ-non-expansive (or holo-
morphic) self-mappings of B, the two cases Z �= ∅ and Z = ∅ are usually
considered separately (cf. [11,14]). In particular, if f ∈ GNρ(B), then one can
look for conditions which would imply the strong ρ-monotonicity of f with
ε(x, y) = ε = constant (see formula (1.6)). If this is the case, then (SRC) and
(1.5) imply that W contains a unique point τ which is globally attractive with an
exponential rate of convergence: ρ(F(t)x, τ) ≤ exp(−εt)ρ(x, τ).

However, such an approach cannot work when Z = ∅.
In addition, one can ask how to trace the dynamics of the semigroup generators

when an attractive stationary point tends to the boundary. In particular, we have in
mind the following question.

Let { fn} ⊂ GNρ(B) be a sequence converging to f ∈ GNρ(B) in a suitable
topology and suppose that, for each n, the mapping fn has a unique null point
τn ∈ B which is attractive for the flow Sn generated by fn . Assume that {τn}
converges to a boundary point τ ∈ ∂B. What is the asymptotic behavior of the flow
S generated by f ?

The difficulty is that for each x ∈ B, ρ(x, τn) → ∞ when n → ∞.
Therefore, our aim is to find some sufficient (and perhaps necessary) conditions

for global convergence of the flow generated by f which will not depend on Z
being either empty or non-empty.

Definition 1.5. Let S = {F(t)}t≥0 be a flow on B which is generated by f . We will
say that a point τ ∈ B, the closure of B, is a globally attractive point for S if for
each x ∈ B the strong limit

lim
t→∞ F(t)x = τ,

uniformly on each ρ-ball in B.

If τ ∈ B, then τ is the unique asymptotically stable stationary point of S. If
τ ∈ ∂B, the boundary of B, we will call it the attractive sink point of S.

For the case of holomorphic generators the attractivity of a stationary point can
be completely described in terms of their derivatives.

If f ∈ G Hol(B) and τ ∈ Null( f ), then τ is (globally) attractive if and only
if the spectrum of the linear operator f ′(τ), the Fréchet derivative of f at τ , lies
strictly in the right half-plane (see, for example, [12]). But, as far as we know,
even for holomorphic generators with no null points, the situation was described
only for the one-dimensional case, that is, when B = ∆, the open unit disk in the
complex plane C. (However, some information on the finite-dimensional case can
be found in [7,1] and [14].)

Namely, it was shown in [6] that f ∈ G Hol(∆) has no null point in ∆ if and
only if, for some τ ∈ ∂∆, the so-called angular derivative

� f ′(τ) = β (1.10)

exists (finitely) with Re β ≥ 0.
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Moreover, if S = {F(t)}t≥0 is the flow generated by f , then

|F(t)z − τ|2
1 − |F(t)z|2 ≤ exp (−t Re β)

|z − τ|2
1 − |z|2 ,

i.e., the point τ is unique and a (globally) attractive sink point of S.
This assertion is an infinitesimal version of the Julia–Wolff–Carathéodory theo-

rem.
However, in both cases (Z �= ∅ and Z = ∅), the characteristics of the derivatives

are not relevant in general, since f ′ does not exist for f ∈ GNρ(B) in the complex
sense if the mapping f is not holomorphic.

At the same time one can show that the number β in (1.10) is actually real and
is equal to

inf
z∈∆

2 Re f(z)z̄∗,

where

z∗ = z

1 − |z|2 − τ

1 − z̄τ
.

It turns out that this expression can serve as a characterization of the asymptotic
behavior of flows of ρ-non-expansive mappings in a general Hilbert space both in
the cases of an interior stationary point and a boundary sink point. This will be
explained in the next section.

2. General approach

As above, let B be the open unit ball in a complex Hilbert space H . For a fixed
τ ∈ B, the closure of B, and an arbitrary x ∈ B, we define a non-Euclidean
“distance” between x to τ by the formula

dτ (x) = |1 − 〈x, τ〉|2
1 − ‖x‖2 (1 − σ (x, τ)) , (2.1)

where σ(x, τ) is defined by formula (1.1).
Geometrically, the sets

E(τ, s) = {x ∈ B : dτ(x) < s}, s > 0,

are ellipsoids. If τ ∈ B, then these sets are exactly the ρ-balls

E(τ, s) = {x ∈ B : ρ(x, τ) < r}
centered at τ ∈ B and of radius r = tanh−1

√
s

s+1−‖τ‖2 . If τ ∈ ∂B, the boundary

of B, then these sets,

E(τ, s) =
{

x ∈ B : dτ(x) = |1 − 〈x, τ〉|2
1 − ‖x‖2 < s

}
, s > 0,

are ellipsoids which are internally tangent to the unit sphere ∂B at τ .
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For fixed τ ∈ B and x ∈ ∂E(τ, s), x �= τ , now consider the non-zero vector

x∗ = 1

1 − σ (x, τ)

(
1

1 − ‖x‖2 x − 1

1 − 〈τ, x〉τ
)

. (2.2)

As in [3], it can be shown that x∗ is a support functional of the smooth convex
set E(τ, s) at x, normalized by the condition

lim
x→τ

〈
x − τ, x∗〉 = 1.

For a mapping f : B→ H , the so-called “flow-invariance condition”,

Re
〈
f (x) , x∗〉 ≥ 0, (2.3)

is necessary for f to be a generator of a continuous flow for which the sets E (τ, s)
are invariant.

In our situation, when f ∈ GNρ(B), this is exactly the case if τ ∈ B is a null
point of f , since

ρ (F (t) x, τ) = ρ (F (t) x, F (t) τ) ≤ ρ (x, τ) . (2.4)

Note also that condition (2.3) can be obtained directly from the ρ-monotonicity
of f if we substitute f(τ) = 0 into (1.7).

In fact, inequality (2.4) shows that if condition (2.3) holds for some τ ∈ B and
all x ∈ B, then τ must be a stationary point of S = {F(t)}t≥0, and hence a null
point of f .

If f has no null point, then it can be shown exactly as in theorem 3.1 of [3] that
there is a unique boundary point τ ∈ ∂B such that (2.3) holds. This point τ is the
sink point for the flow generated by f .

In order to classify the asymptotic behavior of flows we will consider a con-
dition which is finer than (2.3). More precisely, for a point τ ∈ B and a mapping
f ∈ GNρ(B), we consider the following two real non-negative functions on (0,∞):

ω�(s) := inf
dτ (x)≤s

2 Re
〈
f(x), x∗〉 , s > 0, (2.5)

and

ω�(s) := inf
dτ (x)=s

2 Re
〈
f(x), x∗〉 , s > 0, (2.6)

where x∗ is defined by (2.2).
It is clear that

ω�(s) ≥ ω�(s) ≥ 0,

and that ω�(s) is decreasing on (0,∞).
Let M(0,∞) denote the class of all positive functions ω on (0,∞) such that

1
ω

is Riemann integrable on each closed interval [a, b] ⊂ (0,∞) and
∫
0+

ds

ω(s)s
is divergent.(∗)
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Note that for each ω ∈ M(0,∞), the function Ω defined by

Ω(s) :=
dτ (x)∫
s

dλ

ω(λ)λ
(2.7)

is a strictly decreasing positive function on (0, dτ (x)] which maps this interval onto
[0,∞). We denote its inverse function by V : [0,∞) �→ (0, dτ(x)].
Theorem 2.1. Let f ∈ GNρ(B) be continuous and let S = {F(t)}t≥0 be the flow

generated by f . Given a point τ ∈ B and a function ω ∈ M(0,∞), the following
conditions are equivalent:

(i) for all s ∈ (0,∞),

ω�(s) ≥ ω(s),

where ω�(s) is defined by (2.6);
(ii) for any differentiable function W on [0,∞) such that V(t) ≤ W(t), V(0) =

W(0) and V ′(0) = W ′(0),

dτ (F(t)x) ≤ W (t) , x ∈ B, t ≥ 0,

where V = Ω−1 and Ω is defined by (2.7).

In particular, dτ (F(t)x) ≤ V(t); hence τ is a globally attractive point for S.

Proof. Consider the function Ψ : R+ × B �→ R
+ defined by

Ψ(t, x) = dτ (F(t)x). (2.8)

By direct calculations we have

∂Ψ

∂t
|t=0+= −2Ψ (0, x) Re

〈
f (x) , x∗〉 . (2.9)

Let us first assume that condition (ii) holds. Since Ψ(0, x) = dτ (x) = W(0),
we get, by (2.9) and (ii), that

2Ψ(0, x) Re
〈
f(x), x∗〉 = − ∂Ψ

∂t |t=0+≥ − d
dt [W(t)]t=0+

= − d

dt
[V(t)]t=0+ = − 1

Ω′(dτ (x)) = dτ (x)ω (dτ (x)) .

Varying x ∈ ∂E(τ, s) = {x ∈ B : dτ (x) = s}, we see that this inequality
immediately implies (i).

Conversely, let condition (i) hold. It follows by (2.8) and the semigroup property
(1.3), that for all x ∈ B and s, t ≥ 0,

Ψ(s + t, x) = Ψ(s, F(t)x).
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Hence by (2.9) and the continuity of f , Ψ is differentiable at each t ≥ 0 and
we deduce from (i) and (2.9) that

∂Ψ(t, x)

∂t
≤ −Ψ(t, x)ω�(Ψ(t, x)) ≤ −Ψ(t, x)ω(Ψ(t, x)).

Separating variables we get
∫ dτ (x)

dτ (F(t)x)

dΨ

ω(Ψ)Ψ
= Ω (dτ (F(t)x)) ≥ t,

which is equivalent to condition (ii). Theorem 2.1 is proved. ��
We will call a function ω ∈ M(0,∞) which satisfies condition (i), an appro-

priate lower bound for f ∈ GNρ(B).

Remark 2.1. Of course, if the function ω� defined by (2.5) belongs to M(0,∞),
then one can use it as an appropriate lower bound.

However, examples show that sometimes ω� may be identically zero, while
ω� itself belongs to the class M(0,∞). Moreover, we will see below that for
a semigroup of holomorphic mappings with a boundary sink point, ω� is always
a constant which determines the best rate of uniform exponential convergence of
the flow.

To illustrate Theorem 2.1 and to motivate our next definition, we now present
several one-dimensional examples.

Example 1. Let ∆ be the open unit disk of the complex planeC, let n be a positive
integer and let f : ∆ �→ C be defined by

f (z) = − (1 − z)2 1 + zn

1 − zn
.

If we set τ = 1 and

z∗ = z

1 − |z|2 − 1

1 − z̄
,

then we get

Re f(z)z̄∗ = |1 − z|2
1 − |z|2 Re

1 + zn

1 − zn
= d1(z) Re

1 + zn

1 − zn
> 0.

Since f is holomorphic on ∆, this inequality implies that f generates a flow
S = {F(t)}t≥0 of holomorphic self-mappings of ∆ (cf. [4]). In addition, it can be
shown (see Theorem 3.1 below) that

ω(s) = ω�(s) = inf
d1(z)≤s

2 Re f(z)z̄∗ = const. = 2

n
.

Hence f satisfies the conditions of Theorem 2.1. In this case,

Ω(s) = n

2

∫ d1(x)

s

dλ

λ
= −n

2
ln

s

d1 (z)
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and

V(t) = Ω−1(t) = exp
{
−2

n
t

}
d1(z).

Thus we have an exponential rate of convergence of the flow S to the boundary
point τ = 1:

d1(Ft(z)) = |1 − F (t) z|2
1 − |F (t) z|2 ≤ exp

{
−2

n
t

} |1 − z|2
1 − |z|2 .

Note also that although f has n + 1 null points {ak : k = 1, 2, . . . , n + 1} on
the unit circle, only a1 = 1 is an attractive point of S = {F(t)}t≥0. The reason is
that Re f ′(a1) > 0, while Re f ′(ak) < 0, k = 2, 3, ..., n + 1 (see Theorem 3.2
below). See Figure 1 for the case n = 3.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

y

x

Fig. 1. The flow generated by f(z) = −(1 − z)2 1+z3

1−z3

Example 2. Let ∆ be as above and let f : ∆ �→ C be defined by

f (z) = − (1 − z)2 1 + czn

1 − czn
,

with |c| < 1.
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Once again, if we define z∗ as in Example 1, then we have

Re f(z)z∗ = |1 − z|2
1 − |z|2 Re

1 + czn

1 − czn
≥ d1(z)

1 − |c|
1 + |c| > 0.

In this case, ω�(s) = 0 for all s ∈ (0,∞) and we cannot use it as an appropriate
lower bound. However, we can define ω(s) = as, where a = 1−|c|

1+|c| , and we find

Ω(s) = 1

a

∫ d1(z)

s

dλ

λ2
= 1

a

(
1

s
− 1

d1(z)

)
.

Thus we get, by Theorem 2.1, the following rate of convergence:

d1(Ft(z)) = |1 − F(t)z|2
1 − |F(t)z|2 ≤ 1

1 + atd1(z)

|1 − z|2
1 − |z|2 .

Example 3. Let ∆ be as above and let z = x + iy ∈ ∆. Define f : ∆ → C by

f(z) = x
7
3 + iy

7
3 .

Since

Re f(z)z̄ = x
10
3 + y

10
3 ≥ 0,

f is ρ-monotone (see [13]) and the origin is the unique null point of f .
Hence, if we set τ = 0, then we have

d0(z) = |z|2
1 − |z|2

and

ω�(s) = 2 inf
d0(z)=s

1

|z|2(1 − |z|2) Re f(z)z̄ =

= 2 inf
x2+y2= s

s+1

x
10
3 + y

10
3

(x2 + y2)(1 − x2 − y2)
= 2

1
3 s

2
3 (1 + s)

1
3 .

Setting ω(s) = ω�(s) we get

Ω(s) =
∫ d0(z)

s

dλ

ω(λ)λ
= 1

2
1
3

∫ d0(z)

s

dλ

λ
5
3 (λ + 1)

1
3

.

Finally, we obtain the estimate

d0(F(t)z) ≤ V(t) = d0(z)[
2

4
3

3 td0(z)
2
3 + (d0(z) + 1)

2
3

] 3
2 − d0 (z)

.
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This inequality is equivalent to the estimate

|F(t)z| ≤ |z|[
(2|z|) 4

3

3 t + 1
] 3

4

.

Note that one can calculate F(t) directly by solving the Cauchy problem and
get

|F(t)z|2 = x2

(
4
3 x

4
3 t + 1

) 3
2

+ y2

(
4
3 y

4
3 t + 1

) 3
2

.

Thus for x = y we obtain

|F(t)z| = |z|[
(2|z|) 4

3

3 t + 1
] 3

4

.

So, the rate of non-exponential convergence we have obtained is sharp.

Remark 2.2. We will see below that a similar phenomenon is impossible for holo-
morphic mappings.

Namely: if a flow of holomorphic self-mappings converges locally uniformly to
an interior stationary point, then the convergence must be of exponential type.

These examples and Theorem 2.1 above motivate the following definitions:

Definition 2.1. Let S = {F(t)}t≥0 be a flow with a stationary (or sink) point τ ∈ B.
We will say that the asymptotic behavior of S at τ is of order not less than α > 0
if there is a function ω ∈ M(0,∞) such that

lim inf
s→0+

{
ω(s)

s
1
α

}
> 0 (2.10)

and

dτ (F(t)x) ≤ 1(
1 + t

α
ω(dτ (x))

)α dτ (x) (2.11)

for all x ∈ B and t ≥ 0.

Definition 2.2. We will say that the asymptotic behavior of S at τ is of exponential
type if there is a decreasing function ω ∈ M(0,∞) such that

dτ(F(t)x) ≤ exp (−tω(dτ (x))) dτ (x), (2.12)

for all x ∈ B and t ≥ 0.
In particular, if ω can be chosen to be a positive constant a, then we will say

that S has a global uniform rate of convergence:

dτ(F(t)x) ≤ exp (−ta) dτ(x). (2.13)
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The following assertion is a consequence of Theorem 2.1:

Theorem 2.2. Let S = {F(t)}t≥0 be a flow generated by f ∈ GNρ(B) with a null

(or sink) point τ ∈ B. Then the asymptotic behavior of S at τ is of order not less
than α > 0 if and only if there exists an appropriate lower bound ω ∈ M(0,∞)

for f such that

ω(s)

s
1
α

is decreasing on (0,∞)(∗∗)

Proof. We first observe that condition (2.11) with some ω ∈ M(0,∞) satisfying
(2.10) is equivalent to the same condition with a function ω1 ∈ M(0,∞) which
satisfies both (2.10) and (∗∗). Indeed, for a given ω ∈ M(0,∞), define a function
µ : (0,∞) �→ (0,∞) by

µ(s) = inf

{
ω(l)

l
1
α

: l ∈ (0, s]
}
, s > 0.

It is clear that µ(s) is decreasing. Now setting ω1(s) = s
1
α ·µ(s) we clearly see

that ω1 satisfies (2.10) and that ω1(s) ≤ ω(s). Hence∫
0+

ds

ω1(s)s

is divergent and ω1 ∈ M(0,∞). In addition, we have the inequality

1[
1 + t

α
ω(s)

]α ≤ 1[
1 + t

α
ω1(s)

]α

which proves our claim.
Thus we can assume for the rest of the proof that ω satisfies (∗∗). It remains to

be shown that ω is an appropriate lower bound for f .
Indeed, defining Ω : (0, dτ(x)] → [0,∞) by (1.7) and using (∗∗) we have

Ω(s) =
dτ (x)∫
s

dλ

ω(λ)λ
=

dτ (x)∫
s

λ
1
α dλ

ω(λ)λ
1
α +1

≤ [dτ(x)]
1
α

ω (dτ(x))

dτ (x)∫
s

dλ

λ
1
α +1

= α

ω (dτ (x))

[
s− 1

α (dτ (x))
1
α − 1

]
.

Inverting this expression we get

V(t) := Ω−1(t) ≤ 1(
1 + t

α
ω (dτ(x))

)dτ(x) := W(t).

It is clear that the function W(t) satisfies all the conditions of Theorem 2.1.
This completes the proof of Theorem 2.2 ��
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Our next assertion is a direct consequence of Theorems 2.1 and 2.2.

Corollary 2.1. Let S = {F(t)}t≥0 be a flow generated by a mapping f with a null
(or sink) point τ ∈ B. Then:

(i) the asymptotic behavior of S at τ is of exponential type if and only if

inf{ω�(l) : l ∈ (0, s]} > 0, s > 0; (2.14)

(ii) the flow S has a global uniform rate of exponential convergence if and only if

ω�(s) ≥ a (2.15)

for some a > 0.

Indeed, in both cases (i) and (ii), there is one function ω ∈ M(0,∞) such that
the asymptotic behavior of S at τ is of order not less than α for all positive α. In
case (i), ω can be chosen to be

ω(s) := inf{ω�(l) : l ∈ (0, s]} > 0, s > 0,

while in case (ii), ω can be chosen to be the constant a.

Remark 2.3. However, we will see in the next section that for holomorphic map-
pings, condition (2.15) holds, in fact, for some a > 0 whenever condition (2.14)
holds. In other words, for holomorphic flows any convergence of exponential type
implies global uniform exponential convergence.

The following example shows that for a semigroup of ρ-non-expansive (but not
holomorphic!) mappings, an asymptotic behavior of an exponential type does not
imply, in general, a global uniform exponential rate of convergence.

Example 4. Define a continuous mapping f : ∆ �→ C by the following formula:

f(x + iy) = x(1 − x)2 + iy(1 − y)2.

Since Re f(z)z̄ ≥ 0 for all z = x + iy ∈ ∆, it follows that f is a generator
of a semigroup S = {F(t)}t≥0 of ρ-non-expansive mappings such that each disk
∆r = {z ∈ C : |z| < r < 1} is F(t)-invariant. Setting τ = 0 and z∗ = z

|z|2(1−|z|2)
,

we have

ω�(s) = inf
d0(z)=s

Re f(z)z̄∗ = inf
x2+y2= s

s+1

x2(1 − x)2 + y2(1 − y)2

(x2 + y2)(1 − x2 − y2)
.

It is easy to see that lim
s→0+ ω�(s) = 1 while ω�(s) → 0 as s → ∞ (take, for

example, y = 0 and x =
√

s
s+1 → 1). In Figure 2 we see, for instance, that the

exponential rate corresponding to the initial point z = 0.5 is not appropriate for
the point z = 0.78.
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Fig. 2. 1. y = d0(F(t)0.5), 2. y = d0(F(t)0.78), 3. y = d0(0.5) exp(−t/3), 4. y =
d0(0.78) exp(−t/3)

3. Flows of holomorphic mappings

In this section we will study in more detail the flows S = {F(t)}t≥0 of self-mappings
generated by holomorphic mappings f ∈ G Hol(B) with stationary (or sink) points
τ ∈ B. We already know that the asymptotic behavior of a flow S at τ is of
exponential type (Definition 2.2) if and only if the function

ω�(s) = inf
dτ (x)=s

2Re
〈
f(x), x∗〉 , s > 0, (3.1)

satisfies (2.14). It turns out (see Theorem 3.1) that in this case this function and
even the function

ω�(s) = inf
dτ (x)≤s

2 Re
〈
f (x) , x∗〉 (3.2)

are bounded from below by a positive number. Moreover, for a boundary sink point
the function ω� is just a constant.

In both cases (interior stationary point or boundary sink point), the asymptotic
behavior of a flow is completely determined by the value of ω�(0) := lim inf

s→0+ ω�(s)

which is related to the value of the derivative of f at its null point (for the interior
case) or the so-called angular derivative (for the boundary case).
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We begin with the following general assertion:

Theorem 3.1 (Theorem on universal rates of convergence). Let f ∈ G Hol(B)
and let {F(t)}t≥0 be the flow generated by f . If for some point τ ∈ B there is
a decreasing function ω : (0,∞) �→ (0,∞) such that

dτ (F(t)x) ≤ e−tω(dτ (x))dτ (x), x ∈ B, t ≥ 0, (3.3)

then there exists a number µ > 0 such that

dτ (F(t)x) ≤ e−µtdτ(x), x ∈ B, t ≥ 0. (3.4)

Moreover:

(i) if τ ∈ B, then µ can be chosen as µ = ω�(0)

4 , but µ cannot be larger than
ω�(0) (= lim

s→0+ ω�(s));

(ii) if τ ∈ ∂B, then the maximal µ for which (3.4) holds is exactly ω�(0), that is,
0 < µ ≤ ω�(0).

We will prove and discuss this theorem separately for the case where τ ∈ B is
a null point of f and for the case where τ ∈ ∂B, that is, when f is null point free.

1. Interior stationary point

Lemma 3.1. Let f ∈ G Hol(B) with f(0) = 0 and let ω� and ω� be defined by
(3.1) and (3.2). Then:

(i) ω�(0) = ω�(0) = 2 inf‖x‖=1
Re〈 f ′(0)x, x〉;

(ii)
ω�(0)

4 ≤ ω�(s) ≤ ω�(0).

Proof. First we show that

ω�(0) ≤ 2ν, (3.5)

where

ν = inf‖x‖=1
Re

〈
f ′(0)x, x

〉
. (3.6)

Since in our case τ = 0, we have

Re
〈
f(x), x∗〉 = 1

‖x‖2(1 − ‖x‖2)
Re 〈 f(x), x〉 .

Now fixing u ∈ ∂B, we set x = ru, where r ∈ (0, 1). Then we get

Re
〈
f(x), x∗〉 = Re

1

1 − r2

〈
1

r
f(ru), u

〉
.

Therefore,

ω�(s) ≤ 2 Re
1

1 − r2

〈
1

r
f(ru), u

〉
, where r2 = ‖x‖2 = s

s + 1
.
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Letting s (and hence, r) tend to zero we obtain

ω�(0) ≤ 2 Re
〈
f ′(0)u, u

〉
.

Since u is arbitrary, (3.5) follows.
On the other hand, it follows by the generalized Harnack inequality (see, for

example, [4]) that for all x ∈ B,

Re〈 f(x), x〉 ≥ Re〈 f ′(0)x, x〉1 − ‖x‖
1 + ‖x‖ ≥ ν‖x‖2 1 − ‖x‖

1 + ‖x‖ .

This implies that

2 Re
〈
f(x), x∗〉 = 2

‖x‖2(1 − ‖x‖2)
Re 〈 f(x), x〉

≥ 2ν‖x‖2

‖x‖2(1 − ‖x‖2)
· 1 − ‖x‖

1 + ‖x‖ = 2ν

(1 + ‖x‖)2
.

Hence

ω�(s) = inf
dτ (x)≤s

2 Re
〈
f(x), x∗〉 ≥ inf

dτ (x)≤s

2ν

(1+‖x‖)2

= inf
‖x‖2≤ s

s+1

2ν

(1 + ‖x‖)2
= 2ν(

1+√ s
s+1

)2

( ≥ ν
2

)
. (3.7)

Letting s tend to 0+ in (3.7) we see that ω�(0) ≥ 2ν. Since obviously
ω�(0) ≥ ω�(0), comparing the latter inequality with (3.5) we obtain (i). On the other

hand, now substituting ν = ω�(0)

2 in (3.7), we get assertion (ii), which completes
the proof. ��

To proceed we denote by Mτ the Möbius transformation of B defined by

Mτ (x) = 1

1 − 〈x, τ〉
(

τ − 〈x, τ〉
‖τ‖2

−
√

1 − ‖τ‖2

(
x − 〈x, τ〉

‖τ‖2

))
.

Note that Mτ is an automorphism of B (see, for example, [16,9]) which has the
following properties:

(a) M−1
τ = Mτ (involution property) with Mτ (0) = τ and Mτ (τ) = 0;

(b) 1 − ‖Mτ (x)‖2 = σ(x, y);

(c) 1 − 〈Mτ (x), τ〉 = 1−‖τ‖2

1−〈x,τ〉 .

These properties imply the equality

dτ(Mτ (x)) = (1 − ‖τ‖2)d0(x). (3.8)

Now let us consider the flow {G(t)}t≥0 ⊂ Hol(B) defined by

G(t) = Mτ ◦ F(t) ◦ Mτ , (3.9)

and let g ∈ G Hol(B) be its generator, i.e.,

g(x) = − ∂

∂t
G(t)x |t=0+= [

(Mτ )
′ (x)

]−1
f (Mτ (x)) . (3.10)

Then Gt(0) = 0 for all t ≥ 0 and g(0) = 0.
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Lemma 3.2. The following equality holds true:

1

1 − σ(x, τ)
Re

〈
f(x),

x

1 − ‖x‖2
− τ

1 − 〈τ, x〉
〉

(3.11)

= 1

‖y‖2
Re

〈
g(y),

y

1 − ‖y‖2

〉
,

where y = Mτ (x). Thus the functions ω�(s) and ω�(s) are invariant under the
transformations (3.9) and (3.10).

Proof. We have already seen in (2.8) and (2.9) that

∂
∂t

[
dτ (F(t)x)

]
t=0+ = −2dτ(x) Re 〈 f(x), x∗〉

= −2 dτ (x)
1−σ(x,τ) Re

〈
f(x), x

1−‖x‖2 − τ
1−〈τ,x〉

〉
. (3.12)

On the other hand, by (3.8), (3.9) and property (a) of Mτ we have

∂

∂t

[
dτ(F(t)x)

]
t=0+ = ∂

∂t

[
dτ (Mτ G(t)y)

]
t=0+

= ∂

∂t

[
(1 − ‖τ‖2)d0(G(t)y)

]
t=0+ . (3.13)

Since

∂

∂t

[
d0(G(t)y)

]
t=0+ = −d0(y)

‖y‖2
2 Re

〈
g(y),

y

1 − ‖y‖2

〉

= − dτ (x)

(1 − ‖τ‖2)‖y‖2
2 Re

〈
g(y),

y

1 − ‖y‖2

〉
,

we obtain (3.11) from (3.13) and (3.12). ��
Now we are able to complete the proof of Theorem 3.1 for the case of an

interior stationary point τ ∈ B of S.
To this end, let us assume that condition (3.3) holds. Then it follows, by

Corollary 2.1(i) and Lemma 3.1(i), that ω�(0) = ω�(0) > 0.

Let the flow {G(t)}t≥0 ⊂ Hol(B) and its generator g ∈ G Hol(B) be defined by
(3.9) and (3.10).

By Lemmata 3.2 and 3.1 we have

inf
d0(x)=s

Re
〈
g(y), y∗〉 ≥ ω�(0)

4
.

Then by Corollary 2.1(ii) we have

d0(G(t)y) ≤ d0(y)e−t
ω�(0)

4 , for all y ∈ B.
Finally, setting y = Mτ (x) and using (3.8) we conclude that

dτ(F(t)x) ≤ dτ(x)e−t
ω�(0)

4 . (3.14)

Thus the proof of Theorem 3.1 for the case where τ ∈ B is an interior stationary
point is complete. ��
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Corollary 3.1. Let f ∈ G Hol(B) with f(τ) = 0, τ ∈ B, and let {F(t)}t≥0 be
the flow generated by f . Then {F(t)}t≥0 has a global uniform rate of exponential
convergence if and only if ω�(0) > 0.

Corollary 3.2. Let {F(t)}t≥0 be a flow generated by f ∈ G Hol(B) and let τ ∈ B.
Then the following estimates are equivalent:

(i) dτ (F(t)x) ≤ e−tµdτ (x), x ∈ B, t ≥ 0;
(ii) ‖Mτ (F(t)x)‖ ≤ ‖Mτ (x)‖ · e−µ

1−‖Mτ (x)‖2
2 t, x ∈ B, t ≥ 0;

(iii) ‖Mτ (F(t)x)‖ ≤ ‖Mτ (x)‖ · e−ν
1−‖Mτ (x)‖
1+‖Mτ (x)‖ t

, x ∈ B, t ≥ 0,

where the numbers µ in (i) and (ii) can be chosen to be one and the same such that
0 ≤ ω�(0)

4 ≤ µ ≤ ω�(0) and ν in (iii) is defined by

ν = 1

2
ω�(0) = 1

2
ω�(0) = inf‖x‖=1

Re
〈
B f ′(τ)B−1x, x

〉
. (3.15)

Here B is the linear operator defined by B = Pτ + √
1 − ‖τ‖2(I − Pτ ) if τ �= 0

and B = I if τ = 0.

Proof. First we note that inequalities (ii) and (iii) are equivalent to the following
ones:

(ii∗) ‖G(t)y‖ ≤ ‖y‖ · e−µ
1−‖y‖2

2 t, t ≥ 0;
(iii∗) ‖G(t)y‖ ≤ ‖y‖ · e−ν

1−‖y‖
1+‖y‖ t

, t ≥ 0,

where y = Mτ (x) ∈ B and the flow {G(t)}t≥0 is defined by (3.9). First let us
suppose that estimate (i) holds. By using (3.8) for the flow G we have

d0(G(t)y) ≤ e−µtd0(y).

Rewriting this inequality in the form

‖G(t)y‖2

1 − ‖G(t)y‖2 ≤ ‖y‖2

1 − ‖y‖2 · e−µt,

we get, by direct calculations,

‖G(t)y‖2 ≤ ‖y‖2 1

‖y‖2 + (1 − ‖y‖2)eµt
≤ ‖y‖2 · e−µt(1−‖y‖2),

which coincides with (ii∗).
Once again, let us suppose that inequality (ii) (and hence (ii∗)) holds. Differ-

entiating both sides of this inequality with respect to t at t = 0+ we obtain

− 1

‖y‖ Re〈g(y), y〉 ≤ −‖y‖µ1 − ‖y‖2

2
. (3.16)
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This implies that ω�(s) ≥ µ. Thus the decreasing function ω(s) ≡ a is an
appropriate lower bound and the implication (ii) ⇒ (i) follows by Theorem 2.2.
The claimed estimate for the number µ is contained in Theorem 3.1(i).

Now let us again suppose that inequality (ii) (hence, (ii∗) and (3.16)) holds
with some number µ > 0. In (3.16) setting y = ru, u ∈ ∂B, r ∈ (0, 1), and
letting r tend to zero (cf. the proof of Lemma 3.1), we get Re

〈
g′(0)u, u

〉 ≥ µ

2 > 0.
A direct calculation shows that

g′(0) = [
(Mτ )

′ (0)
]−1

f ′(τ) (Mτ )
′ (0) = B f ′(τ)B−1,

and so ν > 0. Therefore, again by Harnack’s inequality, we have

Re〈g(y), y〉 ≥ Re〈g′(0)y, y〉1 − ‖y‖
1 + ‖y‖ ≥ ν ‖y‖2 1 − ‖y‖

1 + ‖y‖ .

On the other hand,

∂ ln ‖G(t)y‖
∂t

= 1

2

∂ ln ‖G(t)y‖2

∂t
= 1

‖G(t)y‖2 Re

〈
∂G(t)y

∂t
, G(t)y

〉
=

= − 1

‖G(t)y‖2
Re

〈
g
(
G(t)y

)
, G(t)y

〉
.

It also follows by the Schwarz lemma that ‖G(t)y‖ ≤ ‖y‖. Thus we have

∂ ln ‖G(t)y‖
∂t

≤ −ν
1 − ‖y‖
1 + ‖y‖ .

Integrating this inequality we obtain the following estimate:

ln ‖G(t)y‖ − ln ‖y‖ ≤ −ν
1 − ‖y‖
1 + ‖y‖ t,

which coincides with (iii∗).
Finally, if condition (iii∗) holds, then differentiating it with respect to t at

t = 0+ we get

Re 〈g(y), y〉 ≥ ν

(1 + ‖x‖)2
≥ ν

4
> 0.

Thus ω�(0) > 0 and by Theorem 3.1 the result follows. ��
Remark 3.1. The above corollary asserts that an exponential rate of convergence in
the sense of the “distance” dτ(·, ·) is equivalent to the same rate of convergence in
the norm of H . We remark in passing that when τ = 0 estimate (iii) can be extended
to an arbitrary Banach space (see [10,18]). It is known that the original topology
and the topology generated by the hyperbolic metric on B are locally equivalent
(see, for example, [9]). Although global equivalence does not hold, we will prove
that an exponential rate of convergence in the norm coincides with a global rate of
exponential convergence with respect to the hyperbolic metric.
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Corollary 3.3. Let {F(t)}t≥0 be a flow generated by f ∈ G Hol(B) with f(τ) = 0,

τ ∈ B. Then the flow {F(t)}t≥0 has an exponential rate of convergence if and only
if the following estimate of convergence in the hyperbolic metric holds:

there exists a number η > 0 such that

ρ (F(t)x, τ) ≤ ρ(x, τ) · e−ηΛ(x)t , (3.17)

where Λ(x) = e−2ρ(x,τ), x ∈ B and t ≥ 0.

Moreover, the maximal value of the number η for which this inequality holds is

ν = inf‖x‖=1
Re

〈
B f ′(τ)B−1x, x

〉
, where B = Pτ + √

1 − ‖τ‖2(I − Pτ ) if τ �= 0 and

B = I if τ = 0.

Proof. Let us suppose that {F(t)}t≥0 has an exponential rate of convergence. By
Theorem 3.1, Corollary 3.2, Lemma 3.1 and formula (3.14) we have

‖Mτ (F(t)x)‖ ≤ ‖Mτ (x)‖ · e−ν
1−‖Mτ (x)‖
1+‖Mτ (x)‖ t

, x ∈ B,
where the number ν is defined in (3.15).

Therefore one can write the estimate

ρ (F(t)x, τ) = ρ (0, ‖Mτ (F(t)x)‖) ≤ ρ (0, ‖y‖) e−ν
1−‖Mτ (x)‖
1+‖Mτ (x)‖ t

,

which coincides with (3.17) for η = ν. Now suppose that inequality (3.17) holds
with some number η ≥ 0. Again, by using the flow {G(t)}t≥0 defined by (3.9), we
can rewrite (3.17) as

ρ (G(t)y, 0) ≤ ρ(y, 0) · e−ηΛ(y)t, where Λ(y) = e−2ρ(y,0).

Differentiating this inequality with respect to t at t = 0+, we obtain

Re〈g(y), y∗〉 ≥ η
ρ(y, 0)Λ(y)

‖y‖ .

Now setting y = ru, u ∈ ∂B, r ∈ (0, 1), and letting r tend to zero (cf. the
proofs of Lemma 3.1 and Corollary 3.2), we get ν ≥ η, as claimed. ��

2. Boundary sink point (Wolff point [7,2,17])

As a matter of fact, if S = {F(t)}t≥0 converges to a boundary sink point τ ∈ ∂B

with a rate of convergence of exponential type,

dτ (F(t)x) ≤ exp(−tω(dτ (x)))dτ(x),

where ω ∈ M(0,∞) is a decreasing function, then this estimate can be improved
as follows:

dτ(F(t)x) ≤ exp(−tω(0))dτ(x),

where ω(0) := lim
s→0+ ω(s).
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In other words, we claim that, if the inequality

ω�(s) ≥ ω(s)

holds for a decreasing ω, then the stronger inequality

ω�(s) ≥ ω(0)

also holds. In particular, this fact holds for the function ω = ω�. This implies, in
turn, that ω� is actually constant: ω�(s) = ω�(0) = β for all s ∈ (0,∞) and is equal
to the so-called angular derivative of f (if it exists) at the point τ ∈ ∂B. Moreover,
this number β gives the best rate of exponential convergence of S = {F(t)}t≥0.

These claims will follow from Theorem 3.2 below, which is a continuous analog
of the classical Julia–Wolff–Carathéodory theorem.

We will need some additional notions which are well known in the finite-
dimensional case (see, for example, [5,16]).

Definition 3.1. A curve Λ : [0, 1) �→ B is said to be asymptotically normal at
a point τ ∈ ∂B if:

(i) lim
s→1−

|Λ(s) − λ(s)|2
1 − |λ(s)|2 = 0;

(ii)
|λ(s) − τ|
1 − |λ(s)| ≤ M ≤ ∞, 0 ≤ s < 1,

where λ(s) is the orthogonal projection of Λ(s) onto the complex line through
0 and τ:

λ(s) = 〈Λ(s), τ〉τ. (3.18)

Definition 3.2. Let h be a holomorphic function on B with values in the complex
plane C. We say that h has a restricted limit L at τ ∈ ∂B if h has limit L along
every curve which is asymptotically normal at τ .

Definition 3.3. Let f : B �→ H be a holomorphic mapping on B and let τ ∈ ∂B.
We say that f has a finite angular derivative at τ if, for some element y ∈ H , the
function h : B �→ C defined by

h(x) = 〈y − f(x), τ〉
1 − 〈x, τ〉 ,

has a finite restricted limit at τ . We denote this limit by � f ′(τ).

Theorem 3.2. Let the mapping f ∈ Hol(B,H ) be a generator of a semigroup
S = {F(t)}t≥0 of holomorphic self-mappings of B. Suppose that f has no null
point in B and that τ ∈ ∂B is the boundary sink point for S. Then the following are
equivalent:
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(i) the asymptotic behavior of S at τ is of exponential type;
(ii) there is a positive number γ such that

dτ(F(t)x) ≤ e−γtdτ (x), x ∈ B and t ≥ 0.

Moreover, if the angular derivative β = � f ′(τ) of f at τ exists, then:

(a) β is a positive real number with β = 2 inf
{
Re〈 f(x), x∗〉, x ∈ B};

(b) the maximal γ which satisfies condition (ii) is exactly β.

To prove Theorem 3.2 we will need the following assertion:

Lemma 3.3. Let F ∈ Hol(B) be a holomorphic self-mapping of B with no fixed
point in B and let τ be its boundary sink point. Then the curve Λ : [0, 1) �→ B

defined by
Λ(s) = F(sτ)

is asymptotically normal at τ .

Proof. Since τ is a sink point of F, it follows by Julia’s lemma that there is a number
0 < δ(F) ≤ 1 (sometimes called the dilation coefficient or Julia’s number [5,16,
17]) such that

dτ(F(x)) ≤ δ(F) · dτ(x), x ∈ B.
For 0 < s < 1 we have, by (3.18),

1 − ‖Λ(s)‖
1 − s

1 + s

1 + ‖Λ(s)‖ ≤ 1 − ‖λ(s)‖
1 − s

1 + s

1 + ‖λ(s)‖
≤ ‖τ − λ‖2

1 − ‖λ(s)‖2

1 − s2

(1 − s)2
≤ ‖τ − λ‖2

1 − ‖Λ(s)‖2

1 − s2

(1 − s)2

= dτ (F(sτ))

dτ(sτ)
≤ δ(F). (3.19)

Hence,

lim sup
s→1−

1 − ‖Λ(s)‖
1 − s

≤ lim sup
s→1−

1 − ‖λ(s)‖
1 − s

≤ δ(F). (3.20)

On the other hand, the Julia–Wolff–Carathéodory theorem asserts that

δ(F) = lim inf
x→τ

1 − ‖F(x)‖
1 − ‖x‖ = � F′(τ). (3.21)

Thus by (3.19)–(3.21) we get

lim
s→1−

1 − ‖Λ(s)‖
1 − s

lim
s→1−

1 − ‖λ(s)‖
1 − s

= lim
s→1−

‖τ − λ(s)‖
1 − s

= δ(F). (3.22)

This equality implies that

lim
s→1−

‖τ − λ(s)‖
1 − ‖λ(s)‖ = 1,

which proves condition (ii) of Definition 3.1.



Asymptotic behavior 523

To prove condition (i), we calculate as follows:

lim
s→1−

‖Λ(s) − λ(s)‖2

1 − ‖λ(s)‖2
= lim

s→1−
‖Λ(s)‖2 + ‖λ(s)‖2 − 2 Re〈Λ(s), λ(s)〉

1 − ‖λ(s)‖2

= lim
s→1−

‖Λ(s)‖2 + ‖λ(s)‖2 − 2 Re 〈Λ(s), τ〉〈Λ(s), τ〉
1 − ‖λ(s)‖2

= lim
s→1−

‖Λ(s)‖2 − ‖λ(s)‖2

1 − ‖λ(s)‖2
= 1 − lim

s→1−
1 − ‖Λ(s)‖2

1 − ‖λ(s)‖2
· 1 − s

1 − s
= 1 − δ(F)

δ(F)
= 0,

by (3.22). This proves condition (i) and completes the proof. ��
Proof of Theorem 3.2. Let condition (i) of the theorem hold, i.e., for some de-
creasing function ω ∈ M(0,∞),

dτ(F(t)x) ≤ e−tω(dτ (x))dτ (x)

or explicitly,
|1 − 〈F(t)x, τ〉|2

1 − ‖F(t)x‖2
≤ e−2tω(dτ (x)) |1 − 〈x, τ〉|2

1 − ‖x‖2
.

This is equivalent to the inequality

|1 − 〈F(t)x, τ〉|2
|1 − 〈x, τ〉|2 ≤ e−2tω(dτ (x)) 1 − ‖F(t)x‖2

1 − ‖x‖2
. (3.23)

Once again, it follows from the Julia–Wolff–Carathéodory theorem that for
a fixed t ≥ 0,

δ(F(t)) := lim inf
x→τ

1 − ‖F(t)x‖
1 − ‖x‖

= � [F(t)]′(τ) := lim
x→τ

1 − 〈F(t)x, τ〉
1 − 〈x, τ〉 , (3.24)

where that last limit is taken along an asymptotically normal curve at τ .
Let us denote

ω(0) = lim
s→1− ω(dτ (sτ)). (3.25)

Thus setting x = sτ in (3.23) and letting s tend to 1−, we get

δ2(F(t)) ≤ e−2tω(0)δ(F(t)),

or
δ(F(t)) ≤ e−tγ ,

where we set γ = 2ω(0).
Now by using Julia’s lemma we obtain the implication (i)⇒(ii). The converse

implication can be established by differentiating the inequality in (ii) at t = 0+.
Namely, we get

Re〈 f(x), x∗〉 ≥ γ

2
> 0. (3.26)



524 M. Elin et al.

So, one can set ω(s) ≡ γ

2 and the asymptotic behavior of S at τ is seen to be of
exponential type.

To prove the second part of the theorem we first observe that f is a generator
if and only if the equation

x + t f(x) = y (3.27)

is solvable for all t ≥ 0 and y ∈ B (see, for example, [12]).
The solution x = Jt(y) = (I + t f )−1(y) is called the nonlinear resolvent of f .

It has the following properties:

(1) for each t ≥ 0, Jt : B �→ B is a holomorphic self-mapping of B;
(2) for each x ∈ B, the vector function Jt : R+ �→ B is continuons and the semi-

group S = {F(t)}t≥0 generated by f can be represented by the exponential
formula

lim
n→∞

[
Jt

n

]n
(x) = F(t)x, x ∈ B,

where the limit is taken with respect to the locally uniform topology of B;
(3) if f has no null point inBand τ ∈ ∂B is the sink point of S, then for each t > 0,

τ is also the sink point of Jt and moreover, the following approximationshold:

lim
t→∞ Jt(x) = τ, x ∈ B

and
lim

t→∞ f(Jt(x)) = 0, x ∈ B.

Now let us suppose that β = � f ′(τ) exists (finitely). Then it follows, by
properties (1), (3) above and Lemma 3.3, that for each t > 0, the curve Λt(s) :=
Jt(sτ) : [0, 1) �→ B is an asymptotically normal curve at τ ∈ ∂B. In addition, by
equation (3.27) we have the identity

Λt(s) + t f(Λt(s)) = sτ, (3.28)

for all s ∈ [0, 1) and t ≥ 0.
Denote the angular derivative � [Jt]′(τ) of Jt : B �→ B at the point τ by ct .
Again by the Julia–Wolff–Carathéodory theorem,

ct = lim
s→1−

1 − 〈Jt(sτ), τ〉
1 − s

. (3.29)

By (3.28) and (3.29) we get lim
s→1− f(Λt(s)) = 0 and

β = lim
s→1−

〈 f(Λt(s)), τ〉
〈Λt(s), τ〉 − 1

= lim
s→1−

1

t
· 〈(sτ − Λt(s)), τ〉

〈Λt(s), τ〉 − 1

= lim
s→1−

1

t
· −s + 〈Λt(s), τ〉

1 − 〈Λt(s), τ〉

= lim
s→1−

1

t
·
( 〈Λt(s), τ〉 − 1

1 − 〈Λt(s), τ〉 + 1 − s

1 − 〈Λt(s), τ〉
)

= 1

t

(
−1 + 1

ct

)
.
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Thus we obtain that β is a non-negative real number and

ct = 1

1 + tβ
.

Hence,

dτ (Jt(x)) ≤ 1

1 + tβ
dτ (x), (3.30)

by Julia’s lemma.
Now applying the exponential formula (see property (2) above) we get

dτ(F(t)x) ≤ e−tβdτ(x).

To conclude the proof of Theorem 3.2 it remains to be shown that if condi-
tion (ii), or equivalenty, inequality (3.26) holds for some γ > 0, then γ ≤ β.

Indeed, setting x = sτ in (3.26) we get

Re〈 f(sτ), (sτ)∗〉 = Re
〈

f(sτ),
sτ

1 − s2
− τ

1 − s

〉
=

= Re 〈 f(sτ), τ〉
s − 1

· 1

1 + s
≥ γ/2.

Now letting s tend to 1− we get

Re � f ′(τ)
2

= β

2
≥ γ

2
,

i.e., β ≥ γ . This completes the proof of Theorem 3.2 as well as that of Theorem 3.1.
��
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