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Abstract. For a certain class of domainsΩ ⊂ Cwith smooth boundary and ∆̃Ω = w2∆ the
Laplace–Beltrami operator with respect to the Poincaré metric ds2 = w(z)−2dz dz onΩ, we
(1) show that the Green function for the biharmonic operator ∆̃2

Ω , with Dirichlet boundary
data, is positive on Ω ×Ω; and (2) obtain an eigenfunction expansion for the operator ∆̃Ω ,
which reduces to the ordinary non-Euclidean Fourier transform of Helgason for Ω = D (the
unit disc). In both cases the proofs go via uniformization, and in (1) we obtain a Myrberg-
like formula for the corresponding Green function. Finally, the latter formula as well as the
eigenfunction expansion are worked out more explicitly in the simplest case ofΩ an annulus,
and a result is established concerning the convergence of the series

∑
ω∈G(1− |ω0|2)s for

G the covering group of the uniformization map of Ω and 0 < s < 1.
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0. Introduction

Let Ω be a domain in C with a smooth boundary, or, more generally, such that
C \Ω consists of at least two points. By the uniformization theorem, the universal
covering surface of Ω is then biholomorphic to the unit disc D, and we denote
by φ : D → Ω the covering projection (the uniformization map). Projecting the
invariant metric (1− |x|2)−1|dx| on the disc via φ, we obtain the Poincaré metric
w(z)−1|dz| on Ω. Up to a constant multiple, it is the unique complete Riemannian
metric on Ω of constant negative curvature, and is preserved by biholomorphic
maps. Associated to this metric are the Poincaré measure dµΩ(z) = w(z)−2 dz dz
and the Laplace–Beltrami operator ∆̃Ω = w(z)2∆, which are the projections to Ω
of the invariant measure dµD(x) = (1− |x|2)−2 dx dx and the invariant Laplacian
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∆̃D = (1− |z|2)2∆ on D, respectively; ∆̃Ω is a formally selfadjoint second-order
differential operator on L2(Ω, dµΩ). In this paper we want to pursue two themes
from the spectral theory of the operator ∆̃Ω : namely, (1) the constancy of the sign
of the Green function for its square, the biharmonic Laplace–Beltrami operator
∆̃2
Ω , with Dirichlet boundary conditions; and (2) the eigenfunction expansion for

the operator ∆̃Ω.
The paper consists of several parts which below, for convenience, we refer to

as I, II, III and IV.

I. Positivity. (Sections 1–2) Our original motivation for (1) stemmed from the
recent renewal of interest, motivated in turn by applications to the function theory
in the Bergman spaces, in the constancy of the sign of the Green function of the
biharmonic operator ∆2 (or, even more generally, of the operators ∆ρ−1∆, with
a weight ρ > 0), with the Dirichlet boundary data; see [20,13]. It is well known
that the Green function for the Laplace operator on Ω, with Dirichlet boundary
data, is negative on Ω × Ω; in fact, this is just a disguised form of one of the
fundamental results in analysis, the maximum principle. Passing from∆ to∆2, the
situation changes drastically: in that case, the Green function turns out to still have
a constant sign (this time, positive) e.g. for the disc, but fails to do so for many
other domains, even very nice ones (sufficiently elongated ellipses or rectangles,
annuli, etc.; see the discussion in [13] and the references therein). One source
of this failure is the non-invariance of the operator ∆: under a biholomorphism
f : Ω1 → Ω2, the operator∆ onΩ2 is not transformed into∆ again, but rather into
| f ′|−2∆ on Ω1. In the case of ∆ itself, this causes no problem — quite generally,
for any linear differential operator L and a weight function ρ, the Green functions
of L and ρL are related by GρL(x, y) = ρ(x)−1GL(x, y); hence, in particular, the
Green function for ∆ on Ω1 is of the same sign as that for | f ′|−2∆, i.e. as that for
∆ on Ω2. However, in the case of ∆2, passing from one domain to another by
a conformal map f as above shows only that the Green function for ∆2 on the
latter domain has the same sign as that for the operator ∆| f ′|−2∆ on the former;
and, obviously, on a given domain there is no connection between the Green
functions for ∆2 and ∆| f ′|−2∆ in general. From this point of view it is therefore
very natural to consider instead the biholomorphically invariant operators ∆̃Ω and
∆̃2
Ω . (In this case, the operator ∆̃Ω being singular at the boundary, some care

must be exercised regarding the “Dirichlet boundary conditions”, but we assure
the reader that everything can be fixed with ease). For ∆̃Ω , as has been pointed out
a few lines above, the Green function differs from that for ∆ only by a factor of
w−2 (as ∆̃Ω = w2∆), and, consequently, is also of constant (negative) sign. For its
square ∆̃2

Ω andΩ the unit disc D, the Green function has been computed explicitly
by the present authors in [15] and shown to be of constant sign (positive). As, in
contrast to ∆2, the operators ∆̃2

Ω are invariant under biholomorphic maps (since
the Poincaré metric is), it follows immediately that the Green function for ∆̃2

Ω is
of constant (positive) sign for any simply connected plane domain Ω (other than
C itself). A very natural question thus arises at this point, namely, can it be true
that the Green function for ∆̃2

Ω is in fact positive for any, say, smoothly bounded
plane domain Ω?
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The main result of the first part of this paper is that the answer is indeed
in the affirmative: for any bounded domain Ω ⊂ C with smooth boundary, the
Green function for the operator ∆̃2

Ω with the Dirichlet boundary data is positive.
In more detail, we use uniformization to express the Green function in question as
an (infinite) sum of translates of the same Green function on the disc; this formula
(which resembles Myrberg’s formula for the Green function of the ordinary ∆

onΩ, cf. [32, Theorem XI.13] immediately implies the positivity. As a by-product,
a rigorous proof of the existence of the Green function is also obtained.

One suspects that an analogous situation might also prevail in higher dimensions
— for instance, for the square of the Laplace–Beltrami operator with respect to the
invariant metric on a bounded symmetric domain, or with respect to the Kähler–
Einstein metric on a strictly pseudoconvex domain in Cn (in both instances the
metric is unique to within a constant multiple). We give some trifling evidence in
support of this belief by establishing the positivity of the Green function for the
square of the invariant Laplacian ∆̃B on the unit ball B of Cd .

II. Spectral theory. (Sections 3–4) Our second theme concerns the analogue for
Ω of the non-Euclidean Fourier transform of Helgason on D [21]. Recall that the
latter is given by the Fourier inversion formulas

f(x) =
∫
R

∫
∂D

f̃ (λ, b)e−λ,b(x)|c(λ)|−2 dλ db,

f̃ (λ, b) =
∫
D

f(x)eλ,b(x) dµD(x),

and the Plancherel formula∫
D

| f(x)|2 dµD(x) =
∫
R

∫
∂D

| f̃ (λ, b)|2|c(λ)|−2 dλ db,

where

eλ,b(x) =
(

1− |x|2
|1− bx|2

) 1
2+iλ

, (λ ∈ R, b ∈ ∂D)

and

|c(λ)|−2 = πλ

2
tanh

πλ

2
.

These formulas in turn are a special case of a result of Harish–Chandra, valid in
the context of any Riemannian symmetric space M = G/K , with G a semi-simple
Lie group and K its maximal compact subgroup. The proof uses the homogeneity
of M in an essential way and thus cannot be adapted to other domains. The first two
formulas are valid for f ∈ D(D) (the space of infinitely differentiable functions
with compact support), but can be extended to L2(D, dµD) using the third formula;
the correspondence f ←→ f̃ then sets up a unitary isomorphism of the latter space
onto the subspace in L2(R× ∂D, |c(λ)|−2 dλ db) of functions satisfying a certain
symmetry condition. (The image of D(D) under this correspondence can also be
described explicitly, see [21].) Note that each function eλ,b is an eigenfunction
of ∆̃D (with eigenvalue −λ2 − 1

4 ) which vanishes everywhere on ∂D except at
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the point b, where it peaks into a singularity of a very specific nature: in fact,
|eλ,b|2 is precisely the Poisson kernel at the point b. Using uniformization again
as a substitute for homogeneity, we establish a complete analogue of the above
eigenfunction decomposition for the domainΩ: namely, for any smoothly bounded
Ω ⊂ C which satisfies a certain condition, we show that

F(z) =
∫
R

∫
∂Ω

F̃(λ, ζ) E−λ,ζ (z) dζ |c(λ)|−2 dλ,

F̃(λ, ζ) =
∫
Ω

F(z)Eλ,ζ (z) dµ(z), (λ ∈ R, ζ ∈ ∂Ω),

and ∫
Ω

|F(z)|2 dµ(z) =
∫
R

∫
∂Ω

|F̃(λ, ζ)|2 dζ |c(λ)|−2 dλ,

where Eλ,ζ is an eigenfunction of ∆̃Ω with the same eigenvalue−λ2− 1
4 as for the

disc which vanishes everywhere on ∂Ω except at ζ , where |Eλ,ζ |2 has a singularity
of the same kind as the Poisson kernel of the domain. The condition on the domain
Ω is the following: if φ : D → Ω is the uniformization map, then it should hold
that ∑

φ(x)=φ(0)
(1− |x|2)1/2| log(1− |x|2)| <∞.(0.1)

This result is not new, but has been established by Elstrodt [12, Part II] and
Patterson [27, Part I], even in the more general case of the operator ∆̃Ω replaced
by the similar operators acting not on functions but on sections of certain line
bundles; our derivation seems more straightforward. For domainsΩ not satisfying
the condition (0.1), the eigenfunction expansions have been obtained, using more
sophisticated methods, by Fay [17] and Patterson [27, Part III], [30]. The fact that
|Eλ,ζ |2 has the same kind of singularity as the Poisson kernel is a consequence of
a certain uniqueness property of the eigenfunctions of ∆̃Ω (Theorem 4.2); both
these facts seem to have gone unnoticed in the literature.

III. Annulus. (Sections 5–6) In the third part of the paper we deal in more detail
with the simplest case when Ω is an annulus. In this special situation a different
approach can be used which makes it possible to give the results a somewhat more
explicit form. Namely, any annulus A = {z : 1 < |z| < R} is invariant under
the circle group z �→ eiθz (θ ∈ R), which together with the reflection z �→ R/z
makes up all biholomorphic automorphisms of A. Both the Poincaré metric and
the Laplace–Beltrami operator are invariant under this group action. Performing
the Fourier decomposition with respect to θ (i.e. separating the variables),

f(et+iθ) =
∑
n∈Z

fn(t)e
niθ (θ ∈ R, 0 < t < log R),

the operator ∆̃A thus splits into a family, indexed by n, of ordinary differential
operators

∆̃A f(et+iθ ) =
∑
n∈Z

Ln fn(t) eniθ,
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where Ln F = sin2 t · (F′′ − n2 F). Thus, for instance, the problem of obtaining an
eigenfunction expansion for ∆̃A reduces to that of obtaining it for the operators Ln ,
which can be handled by the standard theory for ordinary differential operators
(the Kodaira–Titschmarsh theorem — see [25, Chapter VI, §21]; [31, Chapter III];
[8, Chapter 9]; [11, Chapter XIII, §5]). In this way we obtain explicitly, for each n,
the n-th Fourier part of the sought eigenfunction expansion of ∆̃A. The resulting
eigenfunctions come in the form of hypergeometric functions of− cot2 t, while the
corresponding Plancherel measures are expressed in terms of gamma functions.
Unfortunately, these expressions do not seem to be summable over all n ∈ Z to
anything nice so as to yield the eigenfunction expansion in a closed form. The same
approach also works for the other problem of our interest, viz., finding the Green
function for ∆̃2

A
. We first establish an Almansi-type theorem characterizing the

functions on A annihilated by ∆̃2
A

as those for which, in the above decomposition,

fn(t) = Anent + Bne−nt + CnΦn(t)+ DnΨn(t),

where An, Bn,Cn, Dn are constants and Φn, Ψn are again certain hypergeometric
functions of eit (and some modification must be done for n = 0). This reduces the
problem to solving, for each n, a system of linear equations for the coefficients
An, . . . , Dn . (For the Green function of the ordinary biharmonic operator∆2 on A,
this method was used in [14].) The resulting n-th Fourier components of the
sought Green function again turn out to be too complicated to permit summation in
a closed form, but they reveal at least the nature of the singularities and the analytic
continuation of the transcendental functions that turn up; in particular, it transpires
that the Green function for ∆̃2

A
, unlike the one for ∆̃A, cannot be expressed in terms

of the Jacobi theta functions.

IV. Zeta function. (Section 7) The fourth and last part of the paper arose from our
efforts to understand the condition (0.1) for a smoothly bounded domain Ω, but
we hope that it is of interest on its own. We consider, quite generally, the function

ζ(s) =
∑

φ(x)=φ(0)
(1− |x|2)s.(0.2)

It is clear that (0.1) holds if ζ(s) converges for some s < 1
2 (in fact, the left-hand

side of (0.1) is just the derivative−ζ ′( 1
2 )). Observe that the set {x : φ(x) = φ(0)}

is precisely the orbit of 0 ∈ D under the covering group G of φ. Thus (0.2) may be
transcribed as

ζ(s) =
∑
ω∈G

(1− |ω(0)|2)s.

In this guise the definition makes sense for any Fuchsian group G acting on D.
It is then known that for a general group G, ζ(s) converges for all s > 1; for Ω
a bounded plane domain (0.2) converges even for all s ≥ 1 owing to the Blaschke
condition, and for Ω an annulus it converges ∀s > 0. In general it is clear that
ζ(s) converges if Re s > s0 and diverges if Re s < s0 for a certain critical value s0,
called the exponent of convergence of G (or ofΩ). The exponent of convergence of
Fuchsian groups has been studied by Akaza [1], Beardon [4,5], Nicholls [26], and
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Patterson [28,29]. It is known that s0 > 0 if G is not elementary (i.e. forD/G ∼= Ω

not the disc, the punctured disc, or the annulus, for which one has s0 = −∞, 1
2

and 0, respectively), s0 >
1
2 if G is not elementary and contains a parabolic element,

s0 < 1 if G is finitely generated and of the second kind, and for G of the second kind
and containing no parabolic elements, s0 equals the Hausdorff dimension of the
limit set of G (the subset on ∂D of accumulation points of {ω0 : ω ∈ G}). Further,
for any positive ε there exist free groups generated by two hyperbolic elements such
that 0 < s0(G) < ε, free groups generated by two hyperbolic elements such that
s0(G) > 0.67, and Hecke groups (= groups generated by the reflection z �→ −z
and a parabolic element) for which 1 − ε < s0(G) < 1. Observe that a Hecke
group cannot be the covering group of the uniformization map of a plane domain,
as the latter do not contain any elements of finite order ([18, Chapter VI, §1]). For
the free groups G generated by two hyperbolic elements (Schottky groups), the
quotient D/G is a bordered Riemann surface of connectivity 3. Our main result in
the last part of this paper is that for smoothly bounded plane domains Ω of any
given connectivity k ≥ 3, the exponent of convergence may be arbitrarily close to 0

as well as arbitrarily close or bigger than log
√

3
log(1+√2)

= 0.623 . . . . It seems that the

domains for which s0 is small are those which are sufficiently “thick”, i.e. whose
bounded components ofC\Ω (“holes”) are small compared to Ω. It is known that,
for smoothly bounded plane domains, s0 cannot get arbitrarily close to 1 [10].

The paper is organized as follows. The formula for the Green function for
∆̃2
Ω on a smoothly bounded plane domain Ω is derived in Section 1, after briefly

recalling the pertinent preliminaries for the disc from [16]. The case of the unit ball
B of Cd is treated in the short Section 2. The analogue of the Helgason–Fourier
transform is established in Section 3, and the relation between |Eλ,ζ |2 and the
Poisson kernel is discussed in Section 4. The special case of Ω an annulus, is the
subject of the next two sections: the eigenfunction expansion for ∆̃A is derived
in Section 5, and the formula for the Fourier components of the Green function
for ∆̃2

A
in Section 6. Finally, the question of the convergence of the series (0.2) is

discussed in the last Section 7.
Throughout the paper, we sometimes drop the subscripts Ω and D in ∆̃Ω, dµD

etc. if there is no danger of confusion, and sometimes (notably in Sections 3–5) we
switch from the usual Laplacian to the Laplacian∆ = ∂∂, which differs by a factor
of 4. The letter C is employed universally to denote a constant, whose value may
vary from one occurrence to another, and φ(x), ω(x) etc. are frequently abbreviated
to φx, ωx etc.

1. The disc and planar domains

Let D be the unit disc in the complex plane C, ∆̃Dg(x) = (1 − |x|2)2∆g(x) the
invariant Laplacian on D. Then the Green function of the operator ∆̃2

D
on D with

the “Dirichlet” boundary conditions (i.e. having the least possible growth at the
boundary) and with the pole at a point y ∈ D is given by [16]

GDy (x) = Λ

(∣∣∣ x − y

1− yx

∣∣∣2
)
,
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where

Λ(t) = − 1

16π

(
2Li2(t)+ log t log(1− t)− π2

3

)
.

In particular, for each fixed y and |x − y| > δ,

|GDy (x)| ≤ C(y)(1− |x|2) log1(1− |x|2),
‖∇GDy (x)‖ ≤ C(y, δ) log1(1− |x|2),(1.1)

|∆̃DGDy (x)| ≤ C(y, δ)(1− |x|2),
and

GDy (x) > 0 ∀x ∈ D.
Here we have introduced the notation

log1 s := max{1, 1− log s}.
The function GD has the following property: for any C∞ function g with support

in a compact subset of D, f(x) = ∫
D

g(y)GDx (y) dµD(y) satisfies

∆̃2
D

f = g

and the boundary estimates (1.1). In particular, for any such g,∫
D

∆̃2
D

g(x)GDy (x) dµD(x) = g(y), ∀y ∈ D.(1.2)

(Here dµD(x) = (1 − |x|2)−2 dx stands for the invariant measure and dx for
the Lebesgue area measure on D). We are not going to go into the subtleties of
extending this to more general functions g on D. Using dµD for identifying locally
integrable functions on D with the corresponding distributions, one can interpret
(1.2) as saying that ∆̃2

D
GDy = δy, the Dirac function at y (cf. [21, § II.5.1]).

For later reference we put down the following submultiplicativity property of
the function log1, the proof of which is left to the reader.

Lemma 1.1. For any a, b > 0,

log1 ab ≤ log1 a · log1 b

(and, hence, also

log1 ab ≥ log1 a

log1(1/b)
.)

Now let Ω be a smoothly bounded plane domain of hyperbolic type and
φ : D → Ω the uniformization map. Recall that the Poincaré metric on Ω is
given by ds2 = w(z)−2|dz|2, where

w(φ(x)) = (1− |x|2)|φ′(x)|.(1.3)
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(It is easy to see that this definition is consistent). It is known that w vanishes on
∂Ω (in fact, w(z) ≤ dist(z, ∂Ω); cf. [23, p. 45]). The Laplace–Beltrami operator
on Ω is given by

∆̃Ω f(z) = w(z)2∆ f(z),

where ∆ is the ordinary Laplacian. One has

(∆̃Ω f ) ◦ φ = ∆̃D( f ◦ φ).(1.4)

The covering group of φ is G = {ω ∈ Aut(D) : φ ◦ ω = φ}. We will often write
ωx instead of ω(x). The open set O = {x ∈ D : d(x, 0) < d(ωx, 0) ∀ω ∈ G,
ω �= id}, where d is the hyperbolic distance, is a fundamental domain for G. The
operator ∆̃Ω is formally selfadjoint with respect to the Poincaré measure

dµΩ(z) = w(z)−2 dz.

Theorem 1.2. For each t ∈ Ω, there exists a unique function GΩ
t on Ω such that

∆̃2
ΩGΩ

t = δt

in the sense of distributions (that is, (1.2) holds with GΩ
t and ∆̃Ω in the place

of GDy and ∆̃D, respectively, for any compactly supported C∞ function g on Ω),
and near the boundary∣∣GΩ

t

∣∣ ≤ C(t)w log1 w,
∥∥∇GΩ

t

∥∥ ≤ C(t) log1 w,
∣∣∆̃ΩGΩ

t

∣∣ ≤ C(t)w.(1.5)

Furthermore, if y ∈ D is such that t = φ(y), then

GΩ
t (z) =

∑
x∈φ−1(z)

GDy (x).(1.6)

In particular, GΩ
t > 0 on Ω.

The assertion concerning uniqueness is immediate from the following lemma:

Lemma 1.3. Let h be a function on Ω which is annihilated by ∆̃2
Ω and such that

|h| ≤ Cw log1 w, |∆̃Ωh| ≤ Cw.

Then h = 0.

Proof of the Lemma. The functionw2∆h is harmonic and vanishes at the boundary,
in view of the second condition; hence it vanishes identically. Thus h is itself
harmonic, and vanishes at the boundary owing to the first condition; hence h = 0.

��
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Proof of the Theorem. Let f : Ω → C and g : D → C be two functions. Then
f ◦ φ is a function on D and, whenever the left-hand side exists,∫

D

f(φ(x))g(x) dµD(x) =
∑
ω∈G

∫
O

f(φ(ωx)︸ ︷︷ ︸
=φ(x)

)g(ωx) dµD(ωx)

=
∫

O
f(φ(x))

∑
ω∈G

g(ωx) dµD(x)(1.7)

=
∫
Ω

f(z) Tg(z) dµΩ(z),

where Tg is the function on Ω given by

Tg(φ(x)) =
∑
ω∈G

g(ωx),

that is,

Tg(z) =
∑

x∈φ−1(z)

g(x).(1.8)

Thus T is the formal adjoint of the pullback operator f �→ f ◦ φ.
Set GΩ

t = TGDy (so that (1.6) holds). We claim that this function has the
required properties.

Let f be a compactly supported C∞ function on Ω. There exists R ∈ (0, 1)
such that O ∩ supp( f ◦ φ) ⊂ RD. The image of RD under ω ∈ G is a disc (in the

Euclidean metric) centered at 1−R2

1−R2|ω0|2ω0 and of radius R(1−|ω0|2)
1−R2|ω0|2 ; therefore, by

a simple calculation,

1− |ωx|2
1− |ω0|2 ≤

1+ R

1− R
∀x ∈ RD, ω ∈ G.

Thus by (1.1)∫
D

∣∣∆̃2
D

f(φ(x))GDy (x)
∣∣ dµD(x) ≤

∑
ω∈G

∫
O

∣∣∆̃2
D

f(φ(ωx)︸ ︷︷ ︸
=φ(x)

)GDy (ωx)
∣∣ dµD(x)

≤
∑
ω∈G

sup
O

∣∣∆̃2
D
( f ◦ φ)∣∣ ∫

RD

∣∣GDy (ωx)
∣∣ dµD(x)

≤
∑
ω∈G

sup
Ω

∣∣∆̃2
Ω f

∣∣ sup
RD

∣∣GDy (ωx)
∣∣ ∫

RD
dµD(x)

≤ C
∑
ω∈G

sup
RD

[
(1− |ωx|2) log1(1− |ωx|2)]

≤ C
∑
ω∈G

(1− |ω0|2) log1(1− |ω0|2).
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We will show below that the last sum is finite. Hence an application of (1.7) to the
integral ∫

D

∆̃2
D

f(φ(x))GDy (x) dµD(x)(1.9)

is legitimate and shows that it equals∫
Ω

∆̃2
Ω f(z) TGDy (z) dµΩ(z) =

∫
Ω

∆̃2
Ω f(z)GΩ

t (z) dµΩ(z).

On the other hand, the integral (1.9) equals f(φ(y)) = f(t), by (1.2). [Strictly
speaking, the equality (1.2) is valid only for compactly supported C∞ functions
g on D; however, the existence of the integral (1.9) also justifies rewriting the∫
D
. . . dx there as

∑
ω∈G

∫
D
χωO(x) . . . dx (χ stands for the characteristic function),

and one can then apply (1.2) to the compactly supported C∞ functions onD given by
g = χωO · ( f ◦φ), with ∆̃2

D
g = χωO∆̃

2
D
( f ◦φ). This gives

∑
ω∈G χωO(y) f(φ(y)) =

f(φ(y)), as claimed.]
It follows that ∆̃2

ΩGΩ
t = δt .

It remains to show (1.5). Note that by (1.3),

(1− |x|2)|∂( f ◦ φ)(x)| = |(w ∂ f )(φ(x))|.(1.10)

(Here ∂, ∂ are the Wirtinger operators.) Now in view of (1.1), we have∣∣GΩ
t (z)

∣∣ ≤ C(t)
∑

x∈φ−1(z)

(1− |x|2) log1(1− |x|2).

Similarly, by (1.10) and (1.4), for |z − t| > δ,∣∣w(z)∂GΩ
t (z)

∣∣ ≤ ∑
x∈φ−1(z)

(1− |x|2)∣∣∂GDy (x)
∣∣

≤ C(t, δ)
∑

x∈φ−1(z)

(1− |x|2) log1(1− |x|2),
∣∣∆̃ΩGΩ

t (z)
∣∣ ≤ ∑

x∈φ−1(z)

∣∣∆̃DGDy (x)
∣∣

≤ C(t, δ)
∑

x∈φ−1(z)

(1− |x|2).

It therefore suffices to prove that

∑
ω∈G

(1− |ωx|2) log1(1− |ωx|2) ≤ Cw(φ(x)) log1 w(φ(x)), ∀x ∈ D,
(1.11)

and ∑
ω∈G

(1− |ωx|2) ≤ Cw(φ(x)), ∀x ∈ D.
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We prove (1.11), the proof of the other inequality being completely analogous
(in fact, even slightly simpler). As both sides are invariant under G, it is enough
to show this for x ∈ O, the closure of the fundamental domain O. As in our
case (Ω smoothly bounded) φ′ is bounded and bounded away from zero on O
(cf. [18, Chapter VI, §2]), we can then replace w(φ(x)) on the right-hand side by
(1−|x|2) (using (1.3) and the submultiplicativity of the function log1). Thus (1.11)
reduces to

∑
ω∈G

(1− |ωx|2) log1(1− |ωx|2) ≤ C(1− |x|2) log1(1− |x|2), ∀x ∈ O.

(1.12)

The group G is at most countable; let us enumerate by ω0 = id, ω1, ω2, . . . the
elements of G and set an = ω−1

n (0). Recall that (loc. cit.) the cluster points of the
sequence {an} form a subset of the unit circle lying at a positive distance from O;
thus there exists δ > 0 such that

δ < |1− an x| < 2, ∀n, ∀x ∈ O.(1.13)

Consequently, the quantity

1− |ωnx|2 = (1− |x|2)(1− |an|2)
|1− an x|2(1.14)

satisfies

1

4
(1− |an|2)(1− |x|2) ≤ 1− |ωnx|2 ≤ 1

δ2
(1− |an|2)(1− |x|2), ∀x ∈ O.

(1.15)

Substituting this into (1.12) and using once more the submultiplicativity of log1,
the factors (1 − |x|2) log1(1− |x|2) can be cancelled, and we see that (1.12) will
follow if we show that ∑

n>0

(1− |an|2) log1(1− |an|2) ≤ C.(1.16)

As was shown by Dalzell [9], this estimate is equivalent to the seemingly weaker
inequality ∑

n>0

(1− |an|2) <∞.(1.17)

However, the points an are precisely the zeros of the bounded analytic function
φ − φ(0) on D, and thus satisfy the Blaschke condition

∑
(1 − |an|) < ∞. This

completes the proof. ��
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2. The unit ball

The square of the invariant Laplacian ∆̃B on the unit ball B of Cd has been studied
in [16], and in particular the corresponding Green function GBhas been found there:
GBy (x) = Λd(|φy(x)|2), where φy is the holomorphic symmetry of B interchanging

y and the origin and Λd(t) = (d−1)!
16πd (g1(t)− Cd f1(t)− Ad), where Cd = g0(1), Ad

is chosen so that Λd(1) = 0, and f1, g0, g1 are functions satisfying

f1 = 1

d
log

1

1− t
, g′0 =

(1− t)d−1

td
,

and

g′1 =
1

d

1

1− t
g0 − 1

d

(1− t)d−1

td
log

1

1− t
.

Theorem 2.1. Λd(t) > 0 for all t, 0 ≤ t < 1. Hence, GB > 0 on B× B.

Proof. Since Λd(1) = 0 by the choice of Ad , it is enough to show that Λ′d < 0,
i.e. g′1−Cd f ′1 < 0 on (0, 1). Substituting the formulas above and also writing g0(t)

as Cd −
∫ 1

t g′0(s) ds, this becomes

1

d

1

1− t

(
Cd −

∫ 1

t

(1− s)d−1

sd
ds

)
− 1

d

(1− t)d−1

td
log

1

1− t
− Cd

1

d

1

1− t
< 0.

The Cd’s cancel, yielding

(1− t)d

td
log

1

1− t
+

∫ 1

t

(1− s)d−1

sd
ds > 0.

However, by integrating by parts on the left-hand side this can be rewritten as

∫ 1

t

(1− s)d−1

sd+1
log

1

1− s
ds > 0,

and the claim follows since the integrand is positive. ��

The above formulas also show that the analogue of (1.5) and (1.1) remains in
force for GB (with w(z) := 1− ‖z‖2). Namely, for ‖x − y‖ > δ,∣∣GBy (x)∣∣ ≤ C(y)(1− ‖x‖2)d log1(1− ‖x‖2),∥∥∇GBy (x)

∥∥ ≤ C(y, δ)(1− ‖x‖2)d−1 log1(1− ‖x‖2),∣∣∆̃BGBy (x)
∣∣ ≤ C(y, δ)(1− ‖x‖2)d.
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3. A Plancherel formula via uniformization

Recall that for a compactly supported C∞ function f on D, one has the Helgason–
Fourier inversion formula

f(x) =
∫
R

∫
∂D

f̃ (λ, b)e−λ,b(x)|c(λ)|−2 dλ db,
(3.1)

f̃ (λ, b) =
∫
D

f(x)eλ,b(x) dµD(x),

and also the corresponding Plancherel formula∫
D

| f(x)|2 dµD(x) =
∫
R

∫
∂D

| f̃ (λ, b)|2|c(λ)|−2 dλ db.(3.2)

Here dλ is a suitably normalized Lebesgue measure on R, db is the arc-length
measure on ∂D, c(λ) is the Harish–Chandra c-function, and eλ,b are the “plane
waves”

eλ,b(x) =
(

1− |x|2
|1− bx|2

) 1
2+iλ

, x ∈ D, λ ∈ R, b ∈ ∂D.(3.3)

They are eigenfunctions of ∆̃D with eigenvalue −λ2 − 1
4 . For ω ∈ Aut(D), the

action of Uω : f �→ f ◦ ω on eλ,b is

Uωeλ,b = eλ,b(ω0) eλ,ω−1b,(3.4)

from which it follows that the action of Uω on the level of f̃ is

Ũω f (λ, b) = eλ,b(ω
−10) f̃ (λ, ωb).(3.5)

For later use we note one more consequence of (3.4)

eλ,ωb(ω0) eλ,b(ω
−10) = 1,(3.6)

and also the formulas

eλ,b(ω
−10) = |ω′(b)| 1

2+iλ,(3.7)

eλ,b(ω
−10) e−λ,b(ω−10) = |ω′(b)|,(3.8)

which are easily proved by direct calculation from (3.3).
We now use the uniformization map φ to transfer the formulas (3.1), (3.2) to

the smoothly bounded plane domainΩ of hyperbolic type. We retain the notations
from Section 1.
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Theorem 3.1. Let Ω be a bounded and smoothly bounded domain in C for which∑ (
1− |an|2

)1/2 ∣∣ log
(
1− |an|2

)∣∣ <∞.(3.9)

Then the recipe

Eλ,φb(φx) := |φ′(b)|− 1
2−iλ

∑
ω∈G

eλ,b(ωx)(3.10)

yields a well-defined function Eλ,ζ (z) of z ∈ Ω, ζ ∈ ∂Ω, λ ∈ R, and for any
compactly supported C∞ function F on Ω, the Fourier inversion formulas

F̃(λ, ζ) =
∫
Ω

F(z)Eλ,ζ (z) dµΩ(z), λ ∈ R, ζ ∈ ∂Ω,(3.11)

F(z) =
∫
R

∫
Ω

F̃(λ, ζ) E−λ,ζ (z) dζ |c(λ)|−2 dλ,(3.12)

and the Plancherel formula∫
Ω

|F(z)|2 dµΩ(z) =
∫
R

∫
∂Ω

|F̃(λ, ζ)|2 dζ |c(λ)|−2 dλ,(3.13)

hold. Here dζ is the arc-length measure on ∂Ω.

Proof. Let F be a compactly supported function on Ω. Proceeding, for the time
being, formally, let us apply (3.1) to f = F ◦ φ. We get, similarly as in (1.7),

f̃ (λ, b) =
∑
ω∈G

∫
O

f(ωx)eλ,b(ωx) dµD(x)
(3.14)

=
∫
Ω

F(z)Eλ,b(z) dµΩ(z),

where

Eλ,b(φx) :=
∑
ω∈G

eλ,b(ωx)(3.15)

(that is, Eλ,b(z) =∑
x∈φ−1(z) eλ,b(ωx)) obeys the transformation law (by (3.4))

Eλ,b(z) = eλ,b(ω
−10) Eλ,ωb(z) ∀ω ∈ G.(3.16)

Comparing this with (3.7), we thus see that (3.10) indeed gives a well-defined
function Eλ,ζ (z) of z ∈ Ω, ζ ∈ ∂Ω, λ ∈ R.

Now let E = O ∩ ∂D be the inverse image under φ of ∂Ω. It is known that
∂D \ (⋃ω∈G ωE) is precisely the set of limit points of {ω0}ω∈G and has measure
zero ([18, Chapter VI, §2]). We can thus write∫

∂D

f̃ (λ, b)e−λ,b(x) db =
∑
ω∈G

∫
E

f̃ (λ, ωb)e−λ,ωb(x)|ω′(b)| db

(by (3.5)) =
∑
ω∈G

∫
E

f̃ (λ, b)

eλ,b(ω−10)
e−λ,ωb(x) |ω′(b)| db(3.17)

≡
∫

E
f̃ (λ, b)E∗−λ,b(x) db,
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where

E∗−λ,b(x) =
∑
ω∈G

e−λ,ωb(x) |ω′(b)|
eλ,b(ω−10)

.(3.18)

However, in view of (3.8) and (3.4), respectively, we have

E∗−λ,b(x) =
∑
ω∈G

e−λ,ωb(x)e−λ,b(ω−10)

=
∑
ω∈G

e−λ,b(ωx) = E−λ,b(φx),

and it follows that∫
∂D

f̃ (λ, b)e−λ,b(x) db =
∫

E
f̃ (λ, b)E−λ,b(φx) db.

Letting F̃(λ, ζ) be defined by (3.11), we thus arrive at

f(x) =
∫
R

∫
∂D

f̃ (λ, b)e−λ,b(x) db |c(λ)|−2 dλ

=
∫
R

∫
E

f̃ (λ, b)E−λ,b(φx) db |c(λ)|−2 dλ(3.19)

=
∫
R

∫
E
|φ′(b)| 1

2+iλ F̃(λ, φb)|φ′(b)| 1
2−iλE−λ,φb(φx) db |c(λ)|−2 dλ,

which is (3.12).
It remains to prove the Plancherel formula. To this end, define

g(x) =
{

f(x) = F(φ(x)) x ∈ O

0 x /∈ O.
(3.20)

As F has compact support, so does g. Clearly, by the invariance of the Poincaré
metric, ∫

Ω

|F(z)|2 dµΩ(z) =
∫

O
| f(x)|2 dµD(x) =

∫
D

f(x)g(x) dµD(x).

However (postponing the technical matters for the moment — f does not have
compact support), by the Plancherel formula (3.2) for the ordinary
Helgason–Fourier transform on D,∫

D

f(x)g(x) dµD(x) =
∫
R

∫
∂D

f̃ (λ, b)g̃(λ, b) db |c(λ)|−2 dλ.(3.21)
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Now we have, as in (3.17),∫
∂D

f̃ (λ, b)g̃(λ, b) db =
∑
ω∈G

∫
E

g̃(λ, ωb) f̃ (λ, ωb)|ω′(b)| db

=
∑
ω∈G

∫
E

g̃(λ, ωb)
f̃ (λ, b)

e−λ,b(ω−10)
|ω′(b)| db, by (3.5)(3.22)

=
∑
ω∈G

∫
E

f̃ (λ, b)g̃(λ, ωb)eλ,b(ω
−10) db, by (3.8).

However,
∑

ω∈G Uωg = f , so by (3.4)∑
ω∈G

eλ,b(ω
−10)g̃(λ, ωb) = f̃ (λ, b).

Consequently,∫
Ω

|F(z)|2 dµΩ(z) =
∫
R

∫
E
| f̃ (λ, b)|2 db |c(λ)|−2 dλ

=
∫
R

∫
E

∣∣∣|φ′(b)| 1
2+iλ F̃(λ, φb)

∣∣∣2
db |c(λ)|−2 dλ, by (3.14) and (3.11)

=
∫
R

∫
E
|F̃(λ, φb)|2 d(φb) |c(λ)|−2 dλ,

which is the desired assertion (3.13).

Let us now turn to technical matters. The first is the question of convergence
of the series (3.15). The series, of course, need not converge for b, a limit point
of the set {ωn0}, that is, b ∈ Λ := ∂D \ (⋃ω∈G ωE); however, this is immaterial
as the latter set is of measure zero on ∂D. For other b and any x ∈ D we have
infn |b−ωnx| = δ > 0, whence |eλ,b(ωnx)| ≤ δ−1/2(1−|ωnx|2)1/2, while by (1.14),
(1− |ωnx|2) " (1− |an|2); thus (3.15) converges (for all λ ∈ R, x ∈ D and b not
in the limit set) if and only if∑

(1− |an|2)1/2 <∞.(3.23)

The series (3.15) then converges absolutely and uniformly for λ ∈ R and (x, b) in
compact subsets of D× (∂D \Λ). (Observe that |eλ,b(x)| = e0,b(x) for any real λ.)
For any compactly supported F on Ω and f = F ◦ φ, the integral∫

D

f(x)eλ,b(x) dµD(x)

thus converges absolutely and the interchange of integration and summation in
(3.14) is legitimate. In particular, f̃ (λ, b) is defined and, in the notation (3.20),

f̃ (λ, b) =
∑
ω∈G

Ũωg(λ, b),
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the last series converging absolutely, and uniformly as λ ∈ R, for each b ∈ ∂D \Λ.
Now assume that in addition to (3.23),∫

R×∂D

∑
ω∈G

|Ũωg(λ, b)| |e−λ,b(x)| |c(λ)|−2 dλ db <∞, ∀x ∈ D.(3.24)

Then also the integral ∫
R

∫
∂D

f̃ (λ, b)e−λ,b(x)|c(λ)|−2 dλ db

converges absolutely for each x ∈ D, and equals∑
ω∈G

∫
R×∂D

Ũωg(λ, b) e−λ,b(x) |c(λ)|−2 dλ db =
∑
ω∈G

Uωg(x) = f(x),

and it follows that the manipulations in (3.19) are legitimate (that is, the Fourier
inversion formulas (3.1) hold for f even though f /∈ L2(D, dµ)), and so are the
ones in (3.17). The proof of (3.12) is thus made rigorous.

Finally, if also the integral∫
R×∂D

∑
ω∈G

|Ũωg(λ, b)| |g̃(λ, b)| |c(λ)|−2 dλ db(3.25)

is finite, then∫
R×∂D

f̃ g̃ =
∑
ω∈G

∫
R×∂D

Ũωg g =
∑
ω∈G

∫
D

Uωg g =
∫
D

|g|2 =
∫
D

f g,

so (3.21) holds and, further, its right-hand side converges absolutely, so the ma-
nipulations (3.22) used in course of the derivation of the Plancherel formula are
likewise legitimate. In conclusion, we see that all our arguments above become
rigorous subject to the conditions (3.23), (3.24) and (3.25).

Using (3.4)–(3.8), the integral (3.24) can be rewritten as∑
ω∈G

∫
R×∂D

|g̃(λ, b)| |e−λ,b(ωx)| |c(λ)|−2 dλ db.

As g is compactly supported, g̃ is an entire function of uniform exponential type
([21, Theorem 4.2 in the Introduction]), i.e.

sup
R×∂D

(1+ |λ|)m |g̃(λ, b)| <∞, ∀m ≥ 0.(3.26)

Thus the integration over R poses no problems, and as |eλ,b| = e0,b, we see that
(3.24) is equivalent to ∑

ω∈G

∫
∂D

e0,b(ωx) db <∞.

However, ∫
∂D

e0,b(x) db = (1− |x|2)1/2
2 F1

( 1
2 ,

1
2 ; 1; |x|2)
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and the hypergeometric function on the right-hand side is ≈ − log(1 − |x|2) as
x → 1. By the same argument as for the series (3.15), we thus see that (3.24) is
equivalent to (3.9).

Finally, taking m = 0 in (3.26) we see that

|g̃(λ, b)| < c0 = c0|e−λ,b(0)|, ∀λ, b,

for some constant c0 < ∞, and thus (3.25) is a consequence of the special case
x = 0 of (3.24). Since the condition (3.9) is clearly stronger than (3.23), we see
that all three conditions (3.23), (3.24) and (3.25) are fulfilled whenever (3.9) is,
and the proof is complete. ��

For Ω the annulus, one can take an = tanh nα for some α (depending on the
thickness of the annulus), so 1− |an|2 = cosh−2 nα ≈ e−2|n|α and condition (3.9)
is fulfilled; for other domains, we discuss this condition in Section 7.

4. Powers of the Poisson kernel

We supplement the discussion of the Plancherel formula with an observation con-
cerning the eigenfunctions Eλ,ζ . On the unit disc, the eigenfunctions eλ,b are simply
the ( 1

2 + iλ)-th powers of the familiar Poisson kernel (1− |x|2)/|x − b|2. It turns
out that a similar characterization is available for Eλ,ζ .

Theorem 4.1. For a domain Ω satisfying (3.9), Eλ,ζ is the unique eigenfunction
of ∆̃Ω with eigenvalue−(λ2 + 1

4 ) such that

Eλ,ζ (z) = Pζ (z)
1
2+iλ +w(z)

1
2+iλ f(z),(4.1)

where f extends continuously to Ω and its first derivatives are bounded on Ω.
Here Pζ (z) is the Poisson kernel of Ω.

Proof. Fix b ∈ ∂O ∩ ∂D and let x ∈ O. Using (3.4) we may rewrite the definition
of Eλ,b as

Eλ,b(φx) =
∑
ω∈G

eλ,b(ω0)eλ,ω−1b(x)

=
∑
ω∈G

(1− |ω0|2)s(1− |x|2)s

|b− ω0|2s|x − ω−1b|2s
,

(
s = 1

2 + iλ
)
.

Now,
∑

ω∈G(1 − |ω0|2)s converges absolutely by assumption, while |b − ω0| is
both bounded and bounded away from zero as ω ∈ G, and so is |x−ω−1b|— even
uniformly in x — as ω ∈ G \ {id}. Thus

Eλ,b(φx) = (1− |x|2)s

[
1

|x − b|2s
+ g1(x)

]
, x ∈ O,

where g1 is Cω ( = real analytic) in a neighbourhood of O.
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On the other hand, from Myrberg’s Theorem [32, Theorem XI.18] — or by
a similar argument as in Section 1 — it follows that the Poisson kernel on Ω is
given by the formula

Pφb(φx) = 1

|φ′(b)|
∑
ω∈G

1− |ωx|2
|b− ωx|2 .

By the same reasoning as above we therefore obtain

|φ′(b)|Pφb(φx) = (1− |x|2)
[

1

|x − b|2 + g2(x)

]
, x ∈ O,

where g2 is Cω in a neighbourhood of O. Raising to the s-th power and subtracting
we get

|φ′(b)|s(Pφb(φx)s − Eλ,φb(φx)
)

(1− |x|2)s
= |x − b|2−2s g̃2(x)+ g1(x),

with g̃2 in Cω in a neighbourhoodof O. As Re(2−2s) = 1, the function on the right-
hand side is Cω on O, continuous on O, and its first derivatives are bounded on O.
Passing to Ω we thus obtain (4.1). It remains to prove uniqueness. Assume that
(4.1) is satisfied (with, possibly, a different function f ) for another eigenfunction
F (with the same eigenvalue−λ2− 1

4 ) in the place of Eλ,ζ . Subtracting we see that
the difference g = F − Eλ,ζ is of the form g = wsh, where h ∈ C(Ω) and ∇h is
bounded on Ω. Now, by Green’s formula,∫

Ω

(
g∆̃Ωg+w2‖∇g‖2) dµΩ =

∫
Ω

(g∆g+ ‖∇g‖2) dx

=
∫
∂Ω

g
∂g

∂n
dσ

=
∫
∂Ω

(
wh

∂h

∂n
+ s|h|2 ∂w

∂n

)
dσ,

where dx is the Lebesgue area measure onΩ, dσ is the arc-length measure on ∂Ω,
and we have made use of the fact s+ s = 1. Now the properties of h imply that the
integral of the first term vanishes, and the assumption that ∂Ω is smooth implies
that ∂w/∂n = −2 on ∂Ω. Since ∆̃Ωg = −(λ2 + 1

4 )g, we thus obtain∫
Ω

[− (
λ2 + 1

4

)|g|2 +w2‖∇g‖2] dµΩ = −2s
∫
∂Ω

|h|2 dσ.

However, the left-hand side is a real number, while the right-hand side is a real
multiple of s = 1

2+iλ. Hence if λ �= 0, both sides must vanish, and so h = 0 on ∂Ω;
as ‖∇h‖ is bounded, it follows that h = O(w), whence g = wsh = O(w3/2).
If λ = 0, then by the boundedness of h we at least have g = O(w1/2). We claim
that in either case, these O-conditions already imply that g = 0.

To see this, let f = g ◦ φ be the lifting of f to D, and for y ∈ D and 0 < r < 1
set

F(r, y) = 1

2π

∫ 2π

0
f

(
reiθ + y

1+ yreiθ

)
dθ.
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As f is an eigenfunction of ∆̃D with eigenvalue−(λ2+ 1
4 ), it is known ([21, §4 of

the Introduction]) that

F(r, y) = φs(r) f(y),
(
s = 1

2 + iλ
)
,

where φs is the spherical function

φs(r) = (1− r2)s
2 F1(s, s, 1, r2).

It is also known that as r → 1, φs(r) ≈ Re[A(1 − r2)s] for a certain non-
zero constant A if s �= 1

2 , and φs(r) ≈ A(1 − r2)1/2 log(1 − r2) if s = 1/2
(see [3, formulas (1) and (12) in §2.10]). Thus if we show that

F(r, y) =
{

O((1− r2)
1
2 / log(1− r2)) if s �= 1

2

O((1− r2)
1
2 ) if s = 1

2 ,
(4.2)

it will follow, upon letting r → 1, that f(y) = 0 for any y ∈ D, and we are done.
It remains to prove (4.2). We do this for y = 0, the general case being analogous.

Let G = {ω0, ω1, ω2, . . . } with ω0 = id, and denote again an = ω−1
n (0). Consider

first s �= 1
2 . The fact that g = O(w3/2) = O(w1/2/ logw) implies that

| f(y)| ≤ C
w(φy)1/2

max(1,− logw(φy))

= C
(1− |y|2)1/2|φ′(y)|1/2

max(1,− log(1− |y|2)− log |φ′(y)|) .

If y = ωn x with x ∈ O, then |φ′(y)| = |φ′(x)/ω′n(x)| = |φ′(x)||1 − an x|2/
(1− |an|2) " (1− |an|2)−1, by (1.13) (remember that φ′ and 1/φ′ are bounded on
O as Ω is smoothly bounded). Further, since∣∣∣ωnx − ωn y

x − y

∣∣∣ = 1− |an|2
|1− anx| |1− an y| , (x, y ∈ D),(4.3)

we see by (1.13) that for x, y ∈ O and any n, |ωn x − ωn y| ≤ C(1 − |an|2), so,
in particular, the length of the portion of the circle |x| = r intersecting ωnO has
arc-length≤ C(1− |an|2). Thus∫
|x|=r

| f(x)| |dx| ≤
∑

n

C
(1− r2)1/2(1− |an|2)1/2

max(1,− log(1− r2)+ log(1− |an|2)+ C1)

= C
(1− r2)1/2

− log(1− r2)

∑
n

−(1− |an|2)1/2 log(1− r2)

max(1,− log(1− r2)+ log(1− |an|2)+ C1)
,

with C and C1 independent of r and n. When r → 1, the last series is dominated by
the series in (3.9), and hence its sum tends to

∑
n(1− |an|2)1/2 by the dominated

convergence theorem. As the latter sum is finite by the same hypothesis (3.9), we
thus arrive at

|F(r, 0)| ≤ C
(1− r2)1/2

− log(1− r2)
,

as asserted. For s = 1
2 , the argument is the same, only with the log-terms omitted.

This completes the proof. ��
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In the last part of the proof above we have, in effect, established the following
uniqueness assertion:

Theorem 4.2. For Ω a domain satisfying (3.9), if g : Ω → C is a solution to
∆̃Ωg+ (λ2+ 1

4 )g = 0 (λ ∈ R) and g = O(w1/2) if λ = 0 or g = O(w1/2/ log1 w)

if λ �= 0, then g = 0.

As the simple counter-example involving the spherical functions φ 1
2+iλ on the

disc shows, the conditions cannot be relaxed to g = O(w1/2 logw) for λ = 0 or
g = O(w1/2) for λ �= 0.

5. The eigenfunction expansion for the annulus

In this section, we make the above inversion and Plancherel formula more explicit
in the case of an annulus. For simplicity, we consider the annulus
A = {z : 1 < |z| < R}, where R = eπ , with the Poincaré metric

ds = |dz|
|z| sin(log |z|) ,

or, writing z = et+iθ (0 < t < π),

ds2 = dt2 + dθ2

sin2 t
.

(In the case of the general R, the only difference is that one must replace t by π
log R t.)

The corresponding Laplace–Beltrami operator reads

∆̃A = sin2 t

(
∂2

∂t2
+ ∂2

∂θ2

)
.(5.1)

Taking the Friedrichs extension we may view P = −∆̃A as a self-adjoint operator
in the Hilbert space L2 with respect to the Poincaré measure on the annulus; the
spectrum is the interval λ > 1

4 . It admits the following symmetries: θ �→ θ + h;
t �→ π − t. Thus, separating variables, we are led to the eigenvalue equation

sin2 t

(
d2 f

dt2
− n2 f

)
+ λ f = 0(5.2)

on the interval 0 < t < π
2 with n = 0,±1,±2, . . . , the boundary conditions at the

right endpoint t = π
2 , where the equation is not singular, being

either I. f
(π

2

)
= 0, or else II. f ′

(π
2

)
= 0.

By the general theory, the spectral multiplicity of the corresponding differential
operator is one (see [25, Chapter VI, §21]).
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Let us investigate the solutions to (5.2) letting (for a while) λ be complex.
We define a parameter α, implicitly, by

α2 − α+ λ = 0,(5.3)

or, explicitly, by

α = 1

2
+
√

1− 4λ

2
, Reα ≥ 1

2
.(5.4)

At the left endpoint t = 0 we have a regular singular point. It turns out that the
indices are given by (5.3). Thus one index is the number α that we defined in (5.4)
and the other is 1 − α. Therefore, there exists a solution f = f(t) = f(t, α) which

behaves as tα near t = 0. Then f− = f−(t) = f−(t, α) def= f(t, 1−α) is also a solution
but behaves as t1−α there. By virtue of our choice of the square root in (5.4), for
λ /∈ [ 1

4 ,∞) the solution f belongs to L2(0, π2 ) while f− does not. One can show
(the substitution ζ = sin2 t does it; cf. e.g. [22, p. 49]) that

f(t, α) = sinα t 2 F1
(
α
2 + i n

2 ,
α
2 − i n

2 ; 1
2 + α; sin2 t

)
,

and, consequently,

f−(t, α) = sin1−α t 2 F1
(

1−α
2 + i n

2 ,
1−α

2 − i n
2 ; 3

2 − α; sin2 t
);

here, generally speaking, 2 F1(a, b; c; x) is the Gauss hypergeometric function.
Note that in our case c = a + b + 1

2 . Below we collect some relevant facts about
this function.

For c �= 0,−1,−2, . . . the hypergeometric function is given by the series
expansion

2 F1(a, b; c; x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n! ,

where we have used the Pochhammer symbol

(a)n = Γ(a+ n)

Γ(a)
= a(a+ 1)(a+ 2) . . . (a+ n − 1).

For 0 < Re b < Re c one has the integral representation

2 F1(a, b; c; x) = Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
(1− t)c−b−1tb−1(1− tx)−adt.

Letting x → 1 we obtain from it, for 0 < Re b < Re c and Re(c− a− b) > 0, the
limit

lim
x→1

2 F1(a, b; c; x) = Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

In the special case of interest to us, viz. c = a+ b+ 1
2 , it becomes

lim
x→1

2 F1
(
a, b; a+ b+ 1

2 ; x
) = √

π Γ
(
a+ b+ 1

2

)
Γ

(
a+ 1

2

)
Γ

(
b+ 1

2

) .(5.5)
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We also need an analogous result involving the derivative, namely,

lim
x→1

(1− x)
1
2 2 F′1

(
a, b; a+ b+ 1

2 ; x
) = √

π Γ
(
a+ b+ 1

2

)
Γ(a)Γ(b)

.(5.6)

Beside the previous basis {f, f−} we need another basis {u, v} for the solutions
of our eigenvalue equation: u = u(t) = u(t, α) is a normalized solution satisfying
the boundary conditions II

u
(
π
2

) = 1, u′
(
π
2

) = 0,

while v = v(t) = v(t, α) is such a solution satisfying the boundary conditions I

v
(
π
2

) = 0, v′
(
π
2

) = 1.

Then we can write

f = Au+ Bv, f− = A−u+ B−v,(5.7)

where the constants are found from (5.5) and (5.6) upon putting a = α
2 + i n

2 ,
b = α

2 − i n
2 and a = 1−α

2 + i n
2 , b = 1−α

2 − i n
2 there, respectively,

A =
√
π Γ

(
α+ 1

2

)
Γ

(
α
2 + i n

2 + 1
2

)
Γ

(
α
2 − i n

2 + 1
2

) , B = −2
√
π Γ

(
α+ 1

2

)
Γ

(
α
2 + i n

2

)
Γ

(
α
2 − i n

2

) ,(5.8)

and (replace α by 1− α)

A− =
√
π Γ

(
3
2 − α

)
Γ

( 1−α
2 + i n

2 + 1
2

)
Γ

( 1−α
2 − i n

2 + 1
2

) , B− = −2
√
π Γ

(
3
2 − α

)
Γ

( 1−α
2 + i n

2

)
Γ

( 1−α
2 − i n

2

) ,
respectively.

Remark. Using the formula for analytic continuation of the hypergeometric series
2 F1(

α+in
2 , α−in

2 ;α+ 1
2 ; z) (cf. [3, formula (2.10.4)]), it transpires that u and v can

even be expressed in terms of a single hypergeometric function:

u(t, α) = (sin t)in
2 F1

(
α+in

2 , 1−α+in
2 ; 1

2 ; − cot2 t
)
,

v(t, α) = cos t (sin t)−1+in
2 F1

( 1+α−in
2 , 2−α−in

2 ; 3
2 ; − cot2 t

)
.

We also note that, although this is not immediate neither from the last two formulas
nor from (5.7), by virtue of (5.2) the functions u and v are in fact real-valued. ��

We recall now some general facts from spectral theory. Let, for a moment, P
denote any self-adjoint operator in a separable Hilbert space H.

Assume that the spectral multiplicity is one. Take an element f0 �= 0 in H. Let
f be another element in H in the orbit of f0, that is, f = φ(P ) f0 for some scalar
continuous function φ on the spectrum σ of P . Then by the spectral theorem we
have

f =
∫
σ

φ(λ) dE(λ) f0,
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where E(λ) is the family of spectral projections belonging to the operator P .
Moreover, by the same token, the norm of f is given by

‖ f ‖2 =
∫
σ

|φ(λ)|2 d〈E(λ) f0, f0〉.

By our assumption, the correspondenceφ �→ f extends to a unitary transformation
of H to itself. The inverse transformation is given by

g �→ d〈g,E(λ) f0〉
d〈 f0,E(λ) f0〉 .(5.9)

Assuming also that the spectrum is absolutely continuous and denoting the
spectral density by D(λ),

D(λ) = dE(λ)

dλ
,

we let R(λ) denote the resolvent of P ,

R(λ) = (P − λ)−1;
it is well-defined for λ off σ . Then one has, for λ in σ , the formula

D(λ) = 1

2πi
lim
ε→0

(R(λ+ iε)−R(λ− iε)).(5.10)

After these preliminaries we can begin to write down the sought eigenfunction
expansion. But first we define for differentiable functions f, g on an interval the
following bilinear differential operator (“transvectant” or “Wronskian”):

[ f, g] = f ′g− fg′.

It is well known that if f and g are solutions of one and the same ordinary second-
order differential equation without the first-order term, then [ f, g] is a constant.
We also note that our transvectant is alternating:

[ f, f ] = 0.(5.11)

Consider, in particular, the previous functions f, f−, u, v. Then [v, u] = 1 and
so from the first equation (5.7) and from (5.11) we find

[v, f] = [v, Au+ Bv] = A.(5.12)

In the same way, the second equation (5.7) yields

[v, f−] = A−.

Let now P be a selfadjoint extension of the ordinary differential operator (5.2)
on (0, π2 ), to fix the ideas taking the boundary condition I at t = π

2 . For λ off σ ,
let G(t, s, λ) be the kernel of the resolvent R(λ) with respect to the “Poincaré
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measure” dt/sin2 t; it satisfies the inhomogeneous differential equation (5.2) with
the right-hand side δ(t − s) (the Dirac function). Then we have the formula

G(t, s, λ) = 1

A(α)

{
f(t, α)v(s, α) if t < s,

v(t, α)f(s, α) if t > s.
(5.13)

Here the parameter α, as before, is related to λ by equation (5.4) and we have taken
care of the jump conditions at t = s, also using formula (5.12). (We also write
A(α) etc. to indicate the dependence of A etc. on the parameter α.)

Similarly, let S(t, s, λ) stand for the kernel of the operator D(λ) for λ ∈ [ 1
4 ,∞).

Then (5.13) in conjunction with (5.10) yields, e.g. for t < s,

S(t, s, λ) = 1

2πi

[(
u(t, α) + B(α)

A(α)
v(t, α)

)
v(s, α)

−
(
u(t, α)+ B−(α)

A−(α)
v(t, α)

)
v(s, α)

]
= 1

2πi

[
B(α)

A(α)
− B−(α)

A−(α)

]
v(t, α)v(s, α).

The expression within the brackets on the last line can be written as

2i Im
B(α)

A(α)
def= 2iMI (α)(5.14)

(the superscript being a reminder that we have fixed the boundary condition I).
So we can write

S(t, s, λ) = 1

π
MI (α)v(t, α)v(s, α);

this formula is also valid for all t and s, not only for t < s, as is readily seen.
Feeding this back we see that

〈g,D(λ) f0〉 =
∫ π/2

0
g(s)

(∫ π/2

0
S(t, s, λ) f0(t)

dt

sin2 t

)
ds

sin2 s

= 1

π
MI (α)g̃I(λ) f̃ I

0 (λ),

where we have introduced the notation

g̃I(λ) =
∫ π/2

0
g(s)v(s, α)

ds

sin2 s
.

The isomorphism (5.9) thus becomes simply

g �→ φ, φ(λ) = g̃I(λ)

f̃ I
0 (λ)

,
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and we obtain the inversion formula

g(s) =
∫
σ

φ(λ)D(λ) f0(s) dλ

=
∫
σ

φ(λ)

(∫ π/2

0
S(t, s, λ) f0(t)

dt

sin2 t

)
dλ

= 1

π

∫
σ

φ(λ)MI (α)v(s, α)

( ∫ π/2

0
v(t, α) f0(t)

dt

sin2 t

)
dλ

= 1

π

∫
σ

φ(λ)MI (α)v(s, α) f̃ I
0 (λ) dλ

= 1

π

∫
σ

g̃I(λ)v(s, α)MI (α) dλ,

and the Plancherel theorem

‖g‖2 = 1

π

∫
σ

|g̃I(λ)|2 MI (α) dλ,

both being valid for g ∈ L2((0, π2 ), sin−2 t dt).
Of course, the case of boundary condition II is susceptible to the same treatment,

the only difference being that now u takes over the role of v, and in place of MI (α)

we get

MII (α) = − Im
A(α)

B(α)
.(5.15)

The two formulas over (0, π2 ) can be combined into a single formula for the
whole interval (0, π) (a manipulation reminiscent of combining Fourier sine and
cosine transforms on (0,∞) into the ordinary Fourier transform on the whole line).
Observe that in view of the symmetry t ↔ π − t the solutions u, v satisfy

u(π − t) = u(t), v(π − t) = −v(t).
Now, given any f ∈ L2((0, π), sin−2 t dt), we can split it into its odd part fodd and
its even part feven with respect to this symmetry. Then obviously

〈 feven, v〉(0,π) = 0, 〈 feven, u〉(0,π) = 2〈 feven, u〉(0,π/2),

and similarly for fodd (with u and v interchanged). We thus arrive at the following
result:

Theorem 5.1. The following inversion formulas and Plancherel theorem hold:

f̃ I (λ) = 1

2

∫ π

0
f(s)v(s, α)

ds

sin2 s
, f̃ II (λ) = 1

2

∫ π

0
f(s)u(s, α)

ds

sin2 s
,

f(s) = 1

π

∫
σ

f̃ I (λ)v(s, α) MI (α) dλ+ 1

π

∫
σ

f̃ II (λ)u(s, α) MII (α) dλ,(5.16) ∫ π

0
| f(s)|2 ds

sin2 s
= 1

π

∫
σ

[
| f̃ I (λ)|2 MI (α)+ | f̃ II (λ)|2 MII (α)

]
dλ.

Here MI and MII are as in (5.14) and (5.15), respectively, while A and B are
defined in (5.8); and α is related to λ by (5.4).
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Finally, we can obtain the eigenfunction expansion on the annulus by first
performing the Fourier decomposition with respect to θ ,

f(z) =
∑
n∈Z

fn(t)e
inθ , fn(t) := 1

2π

∫ 2π

0
f(et+iθ )e−inθ dθ,

and thereupon applying the formulas (5.16) for each n. In this way we finally
arrive at

f̂ I (λ, θ) = 1

2

∫
A

f(z)V(α, eiθ z) dµ(z), f̂ II (λ, θ) = 1

2

∫
A

f(z)U(α, eiθ z) dµ(z),

f(z) = 1

π

∫
σ

∫ 2π

0

[
f̂ I (λ, θ)V(α, e−iθz)+ f̂ II (λ, θ)U(α, e−iθ z)

] dθ

2π
dλ,∫

A

| f(z)|2 dµ(z) =
∫
σ

∫ 2π

0

[
| f̂ I (λ, θ)|2 + | f̂ II (λ, θ)|2

] dθ

2π
dλ,

where U and V are given by

V(α, et+iθ ) =
∑
n∈Z
vn(t, α)

√
MI

n (α) einθ,

U(α, et+iθ ) =
∑
n∈Z
un(t, α)

√
MII

n (α) einθ

(here we wrote un, MI
n etc. to indicate the dependence on n). We omit the details.

6. The Green function on the annulus

It is known that the Green function for the unsquared ∆̃A (or, equivalently, ∆)
on the annulus can be expressed in terms of the logarithm of a theta-function,
cf. [7, p. 335–337]. The aim of this section is to compute “explicitly” (in the form
of an infinite series) the corresponding Green function for ∆̃2

A
, to see what kind of

transcendental functions turn up in that case.
We again restrict attention to the case of the annulus 1 < |z| < R = eπ , and use

the same method as in [14], i.e. essentially the separation of variables z = e(x+iθ)

(0 < x < π). We are looking for the Green function G(z, w) with the pole at
a point w = et on the positive real axis (0 < t < π), i.e. a solution to{

∆̃2
A

G(·, w) = δw

G(·, w) has the least possible growth at the boundary.

Our starting point is the following Almansi-type theorem (cf. [2], [14, p. 364]):

Proposition 6.1. A function f(z) = F(x)eniθ satisfies ∆̃2
A

f = 0 if and only if

F(x) = Aenx + Be−nx + CΦn(x) + DΨn(x) if n �= 0,

F(x) = A + Bx + CΦ0(x) + DΨ0(x) if n = 0,
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where

Φn(x) = enx

−in
2 F1(1,−in; 1− in; e2ix),

Ψn(x) = Φ−n(x),(6.1)

Φ0(x) = log sin x,

Ψ0(x) = −2x log(1− e2ix)+ x log sin x + ix2 + iLi2(e2ix).

Here 2 F1 stands for the hypergeometric function.

Proof. One has, by formula (5.1) of the preceding section,

∆̃A f = sin2 x · (F′′(x)− n2 F(x)) eniθ .(6.2)

Thus ∆̃A f = 0 if and only if F is in the span of enx and e−nx , and it suffices to
check that Φn and Ψn are particular solutions to the equations

F′′ − n2 F = enx

sin2 x
, respectively F′′ − n2 F = e−nx

sin2 x
.(6.3)

By symmetry, it is enough to deal with the first equation. We look for a solution in
the form F(x) = enx G(x); this gives an equation for G

G ′′ + 2nG ′ = 1

sin2 x
.

Let us temporarily work in the half-plane Im x > 0, i.e. |eix| < 1. Since the
right-hand side has period π, we also expect G to have this period, i.e.

G(x) =
∑
k≥0

gke2kix , G ′′ + 2nG ′ =
∑
k≥0

(4kni − 4k2)gke2kix .

Since, for |eix| < 1,

1

sin2 x
= −4e2ix

(e2ix − 1)2
=

∑
k>0

−4ke2kix,

we get gk = 1/(k − ni), and the desired result follows.
For n = 0 the same argument applies with obvious modifications. ��
We are thus lead to search for the Green function G(z, w) in the form

G(z, w) =
{∑∞

−∞
(

A∗nenx + B∗ne−nx + C∗nΦn(x)+ D∗nΨn(x)
)

eniθ , 0 < x < t∑∞
−∞

(
A∗∗n enx + B∗∗n e−nx + C∗∗n Φn(x)+ D∗∗n Ψn(x)

)
eniθ , t < x < π

(6.4)

(z = ex+iθ , w = et > 0), where A∗n, . . . , D∗∗n are unknown coefficients (depending
on t), and for n = 0 the corresponding term has to be modified accordingly.

Let us first deal with n �= 0.
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To implement the boundary conditions, observe that

1

a
2 F1(1, a; 1+ a; y) =

∞∑
k=0

yk

k + a
=

∞∑
k=0

yk

k + 1
+

∞∑
k=0

yk

(
1

k + a
− 1

k + 1

)
= 1

y
log

1

1− y
− C − ψ(a)+ o(1) as y → 1,

where

ψ(a) = −C +
∞∑

k=0

(
1

k + 1
− 1

k + a

)
= Γ ′(a)

Γ(a)
.

Thus as x → 0 (x ∈ R),

1

−in
2 F1(1,−in; 1− in; e2ix) = − log |2x| − C − ψ(−in)+ πi

2
sign x + o(1),

so as x ↘ 0,

Φn(x) = − log |2x| − C − ψ(−in)+ πi

2
+ o(1)

Φn(π − x) = enπ
[
− log |2x| − C − ψ(−in)− πi

2

]
+ o(1).(6.5)

To get the least possible growth at x = 0 we must therefore take, in view of the
first equality in (6.5),

C∗n + D∗n = 0(6.6)

(so that the log-terms vanish), and

A∗n + B∗n + C∗nγn = 0(6.7)

(so that the constant terms vanish), where

γn = ψ(in)− ψ(−in).

Taking the logarithmic derivative of the functional equations for the gamma func-
tion

Γ(s)Γ(1− s) = π

sinπs
, Γ(1− s) = (−s)Γ(−s),

shows that

ψ(s) − ψ(1− s) = −π cotπs, ψ(1− s) = ψ(−s)− 1

s
.

It follows that

γn = πi
e2nπ + 1

e2nπ − 1
− 1

in
.

Similarly, from the second equation (6.5) we get, at x = π,

C∗∗n enπ + D∗∗n e−nπ = 0,(6.8)

A∗∗n enπ + B∗∗n e−nπ + C∗∗n enπγn = 0.(6.9)
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Now consider the conditions for the jump at x = t. Setting ∆An = A∗∗n − A∗n
etc. these are:
(6.10a) ent∆An + e−nt∆Bn + Φn(t)∆Cn + Ψn(t)∆Dn = 0,

(6.10b) nent∆An − ne−nt∆Bn + Φ′n(t)∆Cn + Ψ ′n(t)∆Dn = 0,

(6.10c) n2ent∆An + n2e−nt∆Bn + Φ′′n (t)∆Cn + Ψ ′′n (t)∆Dn = 0,

(6.10d) n3ent∆An − n3e−nt∆Bn + Φ′′′n (t)∆Cn + Ψ ′′′n (t)∆Dn = 1/(2π sin2 t).

We now observe that (
d

dx
+ n

)
Φn(x) = 2ienx

1− e2ix
.

(To see this, just use the series expansion of the function G in the proof of the last
proposition.) This implies that:

Φ′n(t) = −n Φn(t)+ c1ent, Ψ ′n(t) = n Ψn(t)+ c1e−nt ,

Φ′′n (t) = n2Φn(t)− c2ent, Ψ ′′n (t) = n2Ψn(t)− c2e−nt ,(6.11)

Φ′′′n (t) = −n3Φn(t)+ c3ent, Ψ ′′′n (t) = n3Ψn(t)+ c̃3e−nt ,

where

c1 = 2i

1− e2it
, c2 = 4e2it

(1− e2it)2
,

c3 = 2
[
n2i(1− e2it)2 − 2ne2it(1− e2it)− 4ie2it(1+ e2it)

]
(1− e2it)3

,

and c̃3 is obtained from c3 by replacing n by−n.
Inserting (6.11) into (6.10a) and forming the differences (c)−n2(a) and

(d)−n2(b) gives two equations

−c2ent∆Cn − c2e−nt∆Dn = 0,(
c3 − n2c1

)
ent∆Cn +

(
c̃3 − n2c1

)
e−nt∆Dn = 1

2π sin2 t
,

or
e−nt∆Dn = −ent∆Cn,

(c3 − c̃3)e
nt∆Cn = 1

2π sin2 t
.

As c3 − c̃3 = −8ne2it

(1− e2it)2
= 2n

sin2 t
, the solution is

∆Cn = e−nt

4πn
, ∆Dn = − ent

4πn
.

Using these values in the first two equations (a), (b) in (6.10a) and forming (b)+n(a)
and (b)−n(a), we obtain similarly

∆An = Ψn(t)

4πn
, ∆Bn = −Φn(t)

4πn
.
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Now from (6.6) and (6.8) we have:

∆Cn = −e−2nπ D∗∗n + D∗n =
e−nt

4πn
,

∆Dn = D∗∗n − D∗n = −
ent

4πn
,

and, hence, we can solve for D∗∗n , D∗n (and C∗∗n ,C∗n ).
Finally from (6.9) and (6.7) we can compute A∗n, A∗∗n , B∗n and B∗∗n . Switching

to the notation R = eπ , we thus arrive at the following result:

C∗n =
R2ne−nt − ent

4πn(1− R2n)
,

D∗n = −C∗n,

C∗∗n = e−nt − ent

4πn(1− R2n)
,

D∗∗n = R2n(ent − e−nt)

4πn(1− R2n)
,(6.12)

A∗∗n = Ψn(t)−Φn(t)

4πn(1− R2n)
− i

[nπ(1+ R2n)− (1− R2n)] ent

4πn2(1− R2n)2
,

B∗∗n = R2n Φn(t)− Ψn(t)

4πn(1− R2n)
+ i

[nπ(1+ R2n)− (1− R2n)] R2ne−nt

4πn2(1− R2n)2
,

B∗n =
Φn(t)− R2nΨn(t)

4πn(1− R2n)
+ the same second part as in B∗∗n ,

A∗n =
R2nΨn(t)−Φn(t)

4πn(1− R2n)
− the same second part as in A∗∗n .

Remark. It can be checked that after plugging this into (6.4) one gets a function
symmetric in t, x (i.e. G(z, w) = G(w, z)); on the coefficient level this amounts to

A∗n(t)e
nx + B∗n(t)e

−nx + C∗n(t)Φn(x)+ D∗n(t)Ψn(x)

= A∗∗n (x)e
nt + B∗∗n (x)e−nt + C∗∗n (x)Φn(t)+ D∗∗n (x)Ψn(t). ��

In a similar way we can deal with the exceptional case n = 0: one has

lim
x↘0

Ψ0(x) = i
π2

6
=: γ ∗0 , lim

x↘0
[Ψ0(π− x)+π log x] = i

π2

6
−2π log 2 =: γ ∗∗0 ,

the boundary condition at x = 0 gives equations

C∗0 = 0, A∗0 + γ ∗0 D∗0 = 0,

the condition at x = π gives

C∗∗0 − πD∗∗0 = 0, A∗∗0 + πB∗∗0 + γ ∗∗0 D∗∗0 = 0,

and the conditions at x = t give
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∆A0+ t ∆B0+ log sin t ∆C0+ Ψ0(t)∆D0 = 0,

∆B0+ cot t ∆C0+ (log sin t − t cot t)∆D0 = 0,

− 1

sin2 t
∆C0+ t

sin2 t
∆D0 = 0,

2 cot t

sin2 t
∆C0+ 1− 2t cot t

sin2 t
∆D0 = 1

2π sin2 t
.

Solving out yields

A∗0 =
i(π − t)

12
,

B∗0 =
6Ψ0(t)− π2i + 12t log 2+ 6π log sin t

12π2
,

C∗0 = 0,

D∗0 =
t − π

2π2
,(6.13)

A∗∗0 = π2i − 6Ψ0(t)− πit

12π
,

B∗∗0 = 6Ψ0(t)− π2i + 12t log 2

12π2
,

C∗∗0 = t

2π
,

D∗∗0 = t

2π2
.

Inserting all these values into (6.4) we thus get an infinite series representation
for G(z, w).

Theorem 6.2. The Green function G(z, w) is given by the series (6.4), withΦn, Ψn

as in (6.1) and the coefficients A∗n, A∗∗n , . . . , D∗n, D∗∗n given by (6.12) and (6.13)
for n �= 0 and n = 0, respectively.

Remark. In the Green function for the unsquared ∆̃A, the logarithm of the Jacobi
theta function

ϑ0(v|τ) = const ·
∏
j>0

(1− λR−2 j)(1− R2−2 j/λ)(6.14)

(R = e−πiτ , Im τ > 0, λ = Re2πiv),

arises from the series ∑
n �=0

λn

n(R2n − 1)

upon expanding 1/(R2n − 1) into a geometric series and interchanging the order
of summation; see [14]. From this point of view, the series entering into our Green
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function are of the forms:∑
n �=0

λnΦn(t)

n(R2n − 1)
,

∑
n �=0

λnΨn(t)

n(R2n − 1)
,(6.15)

∑
n �=0

λn

n(R2n − 1)2
,

∑
n �=0

λn

n2(R2n − 1)
.(6.16)

The first two series (6.15) do not seem to relate to any of the standard transcendental
functions. Regarding the series in (6.16), using a similar manipulation as for the
theta functions, the first of them can be rewritten as

− log
∏
j>0

(1− λR−2 j) j(1− R2−2 j/λ) j,

which is reminiscent of the logarithm of an infinite product of theta functions, while
the second one admits an expression similar to (6.14) but with the log replaced by
the dilogarithm ∑

j>0

Li2(R−2 jλ)+ Li2(R2−2 j/λ).

We remark that using formulas (6.2), (6.3) one easily sees that at least ∆̃zG(z, w)
= ∑

n(Cnenx + Dne−nx)eniθ comes in the form of a logarithm of a theta function,
as it should. ��

7. The convergence of
∑

ω∈G(1− |ω0|2)s

We have seen that an important role in the analysis on Ω is played by the “zeta
function”

ζ(s) =
∑

n

(1− |an|2)s,(7.1)

where, as before, an = ω−1
n (0) and G = {ω0, ω1, ω2, . . . }. We have encountered

ζ( 1
2 ) in (3.23) and ζ ′( 1

2 ) in (3.9), and ζ ′(1) and ζ(1) in (1.16) and (1.17).
For a general Riemann surface of hyperbolic type, (7.1) is known to converge

for Re s > 1 ([32, Theorem XI.8]; for Re s ≥ 2 see also [23, Lemma III.5.2]). For
bounded plane domains this can be pushed to Re s ≥ 1, the points an are precisely
the zeros of the bounded analytic function φ − φ(0) on D, and thus satisfy the
Blaschke condition

∑
(1 − |an|) < ∞. By an easy application of the Riemann

mapping theorem, this even remains in force for any domain whose complement
contains a continuum; in fact, it suffices that the complement have positive capacity
([32, Theorem XI.13 and III.35]). An ingenious argument of Dalzell [9] shows that
if ζ(1) is finite, then so are all its derivatives ζ(k)(1), k = 1, 2, . . . . For the annulus,
using the explicit expression for an mentioned at the end of Section 3, one easily
shows that (7.1) converges for all Re s > 0 and extends by analytic continuation
to a meromorphic function in the whole complex plane, with simple poles at
s = −2m + πi

α
n (m ≥ 0, m, n ∈ Z). In this section, we present two results on the
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convergence of the series (7.1) for 0 < s < 1 and domains of connectivity more
than two.

It is clear that there exists s0 = s0(Ω) ≥ 0 such that (7.1) converges for
Re s > s0 and diverges for Re s < s0; this s0 is called the exponent of convergence.
Obviously, condition (1.16) is fulfilled if s0 < 1, and (3.9) holds if s0 < 1/2.
As mentioned in the last paragraph, s0 ≤ 1 for bounded plane domains, and s0 = 0
for the annulus. Here is what can happen for plane domains of connectivity bigger
than two:

Theorem 7.1. (a) For any k ≥ 2 and δ > 0, there exists a smoothly bounded
domain Ω of connectivity k + 1 such that s0(Ω) ≤ δ.

(b) For any k ≥ 2 and δ < log
√

3
log(1+√2)

= 0.6232 . . . , there exists a smoothly bounded

domain Ω of connectivity k + 1 such that s0(Ω) ≥ δ.

For various facts on Fuchsian groups and automorphic functions mentioned
below we refer, for instance, to the beautiful exposition by Hadamard [19] or the
books [23, especially §2 of Chapter I], [32, Chapter XI] and [6].

Proof. Let K1, K2, . . . , K2k be 2k discs in the plane such that their closures are
pairwise disjoint, their boundary circles are orthogonal to ∂D and meet it in the
order indicated (i.e. the neighbours of K j are K j−1 and K j+1), and, for each
j = 1, 2, . . . , k, K j is congruent to K2k+1− j . For each j there exists then a unique
hyperbolic self-map ω j of D sending K j into K2k+1− j ; clearly

ω2k+1− j = ω−1
j ( j = 1, 2, . . . , 2k),(7.2)

and also

ω j(D \ K j) ⊂ K2k+1− j ( j = 1, 2, . . . , 2k).(7.3)

Let G be the group generated by ω1, . . . , ω2k and let O be the complement in D
of K1 ∪ · · · ∪ K2k . Then G is a Schottky group, hence, it is a free group gener-
ated by the elements ω1, . . . , ωk , all its elements are hyperbolic transformations,
and O is a fundamental domain for G. The Riemann surface D/G obtained upon
gluing together the sides of O by the maps ω1, . . . , ωk is clearly homeomorphic
to a disc with k holes, hence, is of planar character (schlichtartig). Thus by Koe-
be’s Fundamental Theorem ([32, Theorem IX.32]), it is biholomorphic to a planar
domain Ω. As the closures of the K j are disjoint, the fundamental domain O
has no cusps, hence ∂Ω has no isolated points. Thus applying another confor-
mal mapping if necessary, we can achieve that Ω is smoothly bounded (even by
k + 1 circles, for instance). Since G contains no elliptic elements, the canonical
projection φ : D→ Ω ∼= D/G is a uniformization map for Ω. To summarize, we
see that there is a smoothly bounded, (k+ 1)-connected plane domainΩ such that
G is the covering group of the uniformization map φ : D→ Ω.

Let us term a sequence j = j1 . . . jm of numbers 1, 2, . . . , 2k a word if ji+1 �=
2k+1− ji, ∀i = 1, 2, . . . ,m−1. The number m is the length of the word, denoted
by | j|, and we denote by W the set of all words. As G is the free group generated
by ω1, . . . , ωk , we have

G = {ω j | j ∈ W},
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where ω j := ω j1 . . . ω jm (for j the empty word, we define ω j to be the iden-
tity). Let us now estimate 1 − |ω j0|2. For each j the arc ∂K j ∩ D is the locus
of all points x ∈ D satisfying d(x, 0) = d(ω j x, 0) (or d(x, 0) = d(x, ω−1

j 0), be-
cause d(x, y) = d(ωx, ωy) for any holomorphic self-map ω of the disc), where
d(x, y) = ∣∣ x−y

1−yx

∣∣ is the hyperbolic distance. Denoting ω−1
j 0 = a j , this condition

becomes |x| = ∣∣ x−a j
1−a j x

∣∣, or

1− |x|2 = 1−
∣∣∣∣ x − a j

1− a j x

∣∣∣∣2

= (1− |x|2)(1− |a j |2)
|1− a j x|2 ,

that is, ∣∣∣∣ 1

a j
− x

∣∣∣∣2

= 1

|a j|2 − 1.

Thus K j has center 1/a j and radius R j =
√|a j |−2 − 1. Now let ξ = ω j2 . . . ω jm 0,

with m ≥ 2. From (7.3) it follows by induction that ξ ∈ K2k+1− j2 . Also as j is
a word, 2k + 1− j2 �= j1. Thus∣∣∣∣ 1

a j1

− ξ

∣∣∣∣ ≥ R j1 + d j1,2k+1− j2 ,

where di, j =
∣∣ 1

ai
− 1

a j

∣∣− Ri − R j > 0 is the distance between the discs Ki and K j

(i �= j), and ∣∣∣∣ 1

a j1

− ξ

∣∣∣∣ ≤ D j1,2k+1− j2,

where Di, j := supx∈K j∩D
∣∣ 1

ai
− x

∣∣ (i �= j). Hence the ratio

1− |ω j1 j2... jm 0|2
1− |ω j2... jm 0|2 = 1− |ω j1ξ|2

1− |ξ|2

= (1− |a j1|2)(1− |ξ|2)
|1− a j1ξ|2(1− |ξ|2)

= R2
j1∣∣ 1

a j1
− ξ

∣∣2

satisfies (
R j1

D j1,2k+1− j2

)2

≤ 1− |ω j1 j2... jm 0|2
1− |ω j2... jm 0|2 ≤

(
R j1

R j1 + d j1,2k+1− j2

)2

.

Setting r = min j R j , R = max j R j , d = mini �= j di, j , D = maxi �= j Di, j and
iterating the last formula, we thus obtain( r

D

)2(m−1) ≤ 1− |ω j1 j2... jm 0|2
1− |ω jm 0|2 ≤

( R

r + d

)2(m−1)
,
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whence

C1

( r

D

)2| j| ≤ 1− |ω j0|2 ≤ C2

( R

r + d

)2| j|
,

for some constants C1,C2 independent of j . The number of words of a given length
m is 1 if m = 0 and 2k(2k − 1)m−1 if m ≥ 1. Thus

C1

∞∑
m=0

(2k − 1)m
( r

D

)2ms ≤
∑

j

(1− |ω j0|2)s ≤ C2

∞∑
m=0

(2k)m
( R

r + d

)2ms
,

and we see that

if 2k
( R

r + d

)2s
< 1, then (7.1) converges, and

if (2k − 1)
( r

D

)2s ≥ 1, then (7.1) diverges.(7.4)

Consequently, to prove the theorem it is enough to find 2k circles K1, . . . , K2k

with the above properties such that the corresponding condition in (7.4) is satisfied
(the numbers r, R, d, D there depend only on the sizes of the discs K j and on their
mutual position). We now do this separately for both cases (a) and (b).

(a) Fix any 2k distinct points ε1, . . . , ε2k on ∂D and let K j be the disc of radius
ρ and center ε j

√
1+ ρ2, where ρ > 0 is very small. Then R = r = ρ and

d = mini �= j

√
1+ ρ2|εi − ε j | − 2ρ. Thus as ρ → 0, the number R

r+d may be
made arbitrarily small — in particular, smaller than (2k)−1/2s for any given
s > 0 and k ≥ 1. Then the first condition in (7.4) is fulfilled, and thus ζ(s) <∞.

(b) First let k = 2 and consider the discs K1, K2, K3, K4 from part (a) with the
choice ε1 = 1, ε2 = i, ε3 = −1, ε4 = −i, and 0 < ρ < 1. Then r = R = ρ

and D = 1+√
1+ ρ2, so as ρ→ 1, r

D → 1
1+√2

. Consequently, if

3

(1+√2)2s
> 1, or s <

log
√

3

log(1+√2)
,

then the second condition in (7.4) will be satisfied if ρ is sufficiently close to 1.
This proves the assertion for k = 2.

For k > 2, consider the discs that solve the problem for k = 2, but relabel them
as K1, K2, K2k−1, K2k and add to them arbitrary 2k − 4 discs K3, . . . , K2k−2 so
that the required properties are not violated (i.e. K1, . . . , K2k have pairwise disjoint
closures, are orthogonal to ∂D and K j

∼= K2k+1− j ). The group G corresponding to
the resulting fundamental domain O will clearly be larger than the one correspond-
ing to D \ (K1 ∪ K2 ∪ K3 ∪ K4) (the former is generated by ω1, . . . , ωk , the latter
by ω1 and ω2 only). Hence,

∑
ω∈G(1−|ω0|2)s will always be larger for the former

domain than for the latter, and, in particular, will diverge for the former whenever
it diverges for the latter. Thus the desired result for k > 2 follows from the one for
k = 2. ��
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Remark. The argument in the last paragraph shows, in particular, that for any
(k + 1)-connected smoothly bounded plane domain Ω and k′ > k there exists a
(k′ + 1)-connected smoothly bounded domain Ω′ such that ζΩ′(s) ≥ ζΩ(s) ∀s and
s0(Ω

′) ≥ s0(Ω). It follows that the sequence

σk := sup{s0(Ω) : Ω is smoothly bounded of connectivity k + 1}
is non-decreasing. For any finitely generated free group G without elliptic or
parabolic elements (all covering groups of the uniformization maps of smoothly
bounded plane domains are of this type), it follows from a theorem of Maskit [24]
and a result of Doyle [10] that s0(G) ≤ c < 1 for some universal constant c (not
depending on G). Thus, in particular, supk σk =: σ∞ is strictly smaller than 1. The
numerical values of σ2, σ3, . . . , σ∞ or c seem to be unknown.

For plane domains Ω whose boundary contains an isolated point, G contains
a parabolic element, and hence s0(Ω) ≥ 1/2 (with equality only for Ω biholomor-
phic to the punctured disc D \ {0}).
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