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Introduction

0.1. Let X ⊂ PN be a smooth n-dimensional projective variety. For x ∈ X we
have an embedded tangent space Tx(X) ⊂ PN (see 0.3). It is an n-space in PN ,
hence it corresponds to a point γ(x) in the Grassmannian G(n, N). We obtain the
Gauss map

γ : X → G(n, N)

(see [2, Lecture 15]). In the case that the ground field has characteristic 0, this
Gauss map is finite and birational on its image (see [4, I, Corollary 2.8]). Although
a lot of work has been done concerning the inseparability of Gauss maps in positive
characteristic (see [3]), not much work has been done concerning better properties
for the Gauss map. In this paper we look for embeddings such that the Gauss
map is an embedding too. In particular, we prove that each n-dimensional smooth
projective variety X has an embedding in P2n+1 such that the Gauss map is an
embedding.

0.2. We start by fixing some notations, making some conventions and giving
a more precise description of our main result.

In this paper we assume the ground field is the field C of the complex numbers
(due to the Lefschetz principle the results hold for any algebraically closed ground
field of characteristic 0). Nevertheless this restriction on the characteristic is not
used in the injectivity part of the paper (Section 1).
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A variety is always assumed to be irreducible. If one considers a variety as
a scheme then in this paper a point means a closed point. Writing X we always
mean a smooth n-dimensional projective variety.

0.3. Let L be an invertible sheaf on X and let V be an (N + 1)-dimensional
subvectorspace of Γ(X,L).

For a non-zero element s ∈ V we denote the associated divisor on X by Ds.
We obtain a linear system {Ds : s ∈ V }, which is denoted by P(V ). In the case
V = Γ(X,L), we write P(L) (this convention applies to more notations and will
not be mentioned explicitly any more).

For x ∈ X, let Ix(V ) = {s ∈ V : s = 0 or x ∈ Ds} and Sx(V ) = {s ∈ V : s = 0
or Ds is singular at x}.

We know that Ix(V ) is a codimension 1 subvectorspace of V unless x is a fixed
point of P(V ). Assume dim(P(V )) ≥ 1, then we obtain a rational map

iV : X ��� P(V ∗) = PN ,

with iV (x) = P((V/Ix(V ))∗). The domain of iV is the complement of the set of
fixed points of P(V ). We say iV is a local immersion at x if Sx(V ) has codimension
n + 1 in V (this codimension cannot be more; in this case iV is defined at x and
the tangent map dx(iV ) : Tx(X) → Tx(P

N ) is injective). If iV is a local immersion
at x then P((V/Sx(V ))∗) is an n-plane in P(V ∗); it is the embedded tangent space
Tx(iV (X)) of X at x. In that case it defines an element γV (x) ∈ G(n; N). Let
U ⊂ X be the set of points x such that iV is a local immersion at x. It is an open
subset of X, in the case that U is non-empty we obtain a rational map with domain
U , called the Gauss map of P(V ):

γV : X ��� G(n, N).

If P(V ) is very ample then iV is an embedding of X in PN and γV has domain X.

0.4. Let L be a very ample invertible sheaf on X and consider the embedding
X ⊂ P(L). Assume dim(P(L)) ≥ 2n +1 and let V ⊂ Γ(X,L) be a general linear
subspace of dimension k ≥ 2n +2, then iV is an embedding. Indeed, iV is obtained
from X ⊂ P(L) using a projection with a general center Λ = P((Γ(X,L)/V )∗) ⊂
P(L). Since the secant variety S(X) has dimension at most 2n+1, the claim follows.
Similarly, since the tangential variety T(X) has dimension at most 2n, in the case
that V is a general linear subspace of dimension k = 2n + 1, then iV is a local
immersion and hence γV is globally defined on X. We are now able to state the
main result of this paper.

Theorem I. Let X be a smooth n-dimensional projective variety, let N be a very
ample invertible sheaf on X and let L = N ⊗t for some t ≥ 2. Let V be a general
k-dimensional subvectorspace of Γ(X,L) with k ≥ 2n + 1. Then the Gauss map
γV is an embedding.

The proof of this theorem is divided into two parts. In the first part we investigate
the injectivity of γV ; in the second part we prove γV is a local immersion at each
point x ∈ X. In both parts, we make general considerations on the behavior of the
Gauss map under projections and we apply them to the situation of the theorem.



The Gauss map 455

1. Injectivity of the Gauss map

1.1. We start by stating some lemmas concerning projections and Gauss maps,
using the following notations.

If i : X ↪→ PN , we define, for l = 1, 2, 3, Zn−l,i ⊂ X × X as {(q, q′) :
dim(Ti(q)(i(X)) ∩ Ti(q′)(i(X))) = n − l}. Let s be a general point of PN , then is

denotes the map (possibly embedding) ps ◦ i : X → PN−1, where ps denotes the
projection of PN with center s. If q is a point in X, to simplify notations, we write
q instead of i(q) (or is(q)).

The notation genfib( f ), is short for “general fiber of the map f ”.

1.2. Lemma. If i : X ↪→ PN , with N > 2n, γi injective and dim(Zn−1,i) < n,
then the Gauss map γis is injective.

Proof. Assume that γis is not injective, i.e. there exist two (distinct) points q
and q′ ∈ X for which Tq(is(X)) = Tq′ (is(X)). We know this is only possible if
〈Tq(i(X)), s〉 = 〈Tq′(i(X)), s〉. We also assume that γi is injective, so Tq(i(X)) �=
Tq′ (i(X)). This implies that dim(〈Tq(i(X)) ∪ Tq′(i(X))〉) = dim(〈Tq(i(X)), s〉)
= n + 1 and s ∈ 〈Tq(i(X)) ∪ Tq′(i(X))〉. So dim(Tq(i(X)) ∩ Tq′ (i(X)))

= 2 dim(Tq(i(X))) − dim(〈Tq(i(X)) ∪ Tq′(i(X))〉) = 2n − (n + 1) = n − 1,
i.e. (q, q′) ∈ Zn−1,i .

Define I ⊂ Zn−1,i × PN , by I := {((r, r ′), t) : t ∈ 〈Tr(i(X)) ∪ Tr′ (i(X))〉}.
Let p1 : I → Zn−1,i (resp. p2 : I → PN ) be the first (resp. second) pro-
jection map. Obviously p1 is dominant, and dim(genfib(p1)) = n + 1. Then
((q, q′), s) ∈ I ; and, because s is a general point of PN , we get that p2 is dom-
inant, i.e. dim(Im(p2)) = N . On the other hand, dim(Im(p2)) ≤ dim(I ), and
dim(I ) = dim(Zn−1,i) + dim(genfib(p1)) < n + (n + 1) = 2n + 1 ≤ N. So
dim(Im(p2)) < N and we get a contradiction. ��
1.3. Lemma. If i : X ↪→ P

N , with N > 2n + 1, γi injective, dim(Zn−2,i) < 2n
and dim(Zn−1,i) < n, then dim(Zn−1,is ) < n.

Proof. Assume that dim(Zn−1,is ) ≥ n. Then, if (q, q′) is a general element
of Zn−1,is , (q, q′) �∈ Zn−1,i . This implies that dim(Tq(is(X)) ∩ Tq′ (is(X))) =
n − 1 and dim(Tq(i(X)) ∩ Tq′(i(X))) �= n − 1. Moreover, because γi is injective,
dim(Tq(i(X))∩ Tq′(i(X))) ≤ n −1. And, we know that by projecting from a point,
the dimension of the intersection of two tangent spaces remains the same, unless the
center of the projection belongs to the span of the two tangent spaces, in this case, the
dimension of the intersection increases by one. So dim(Tq(is(X)) ∩ Tq′(is(X))) ≤
dim(Tq(i(X)) ∩ Tq′(i(X))) + 1. Thus, dim(Tq(i(X)) ∩ Tq′(i(X))) = n − 2, i.e.
(q, q′) ∈ Zn−2,i . And s ∈ 〈Tq(i(X)) ∪ Tq′(i(X))〉. Let us now define J ⊂ Zn−2,i ×
PN by J := {((r, r ′), t) : t ∈ 〈Tr(i(X))∪Tr′(i(X))〉}. The first (resp. second) projec-
tion map we denote by q1 (resp. q2). Then ((q, q′), s) ∈ J , and thus dim(Im(q2)) =
N (because s is a general point of PN ). Obviously dim(Im(q1)) = dim(Zn−2,i),
and dim(genfib(q1)) = n + 2. And dim(J ) = dim(Zn−2,i) + dim(genfib(q1)) =
N + dim(genfib(q2)). Because Zn−1,is ∩ Zn−1,i is a closed subset of Zn−1,is , we
have that dim(Zn−1,is ) = dim(Zn−1,is \ (Zn−1,is ∩ Zn−1,i)). We also showed
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that Zn−1,is \ (Zn−1,is ∩ Zn−1,i) ⊂ q−1
2 (s). But, s is a general point of PN ,

so dim(genfib(q2)) = dim(q−1
2 (s)). Thus, dim(Zn−1,is ) ≤ dim(genfib(q2)) =

dim(Zn−2,i) − N + n + 2 < 2n − (2n + 2) + n + 2 = n. So dim(Zn−1,is ) < n,
which gives a contradiction with the assumption dim(Zn−1,is ) ≥ n, and this proves
our claim. ��
1.4. Lemma. If i : X ↪→ PN, with N > 2n+2, γi injective and dim(Zn−2,i) < 2n,
then dim(Zn−2,is ) < 2n.

Proof. Obviously, dim(Zn−2,is ) ≤ 2n, because Zn−2,is ⊂ X × X. So assume
dim(Zn−2,is ) = 2n. If (q, q′) is a general element of Zn−2,is , then (q, q′) �∈ Zn−2,i .
This implies dim(Tq(is(X))∩Tq′(is(X))) = n−2 and dim(Tq(i(X))∩Tq′(i(X))) �=
n − 2. Moreover, we know that by projecting from a point, the dimension of
the intersection of two tangent spaces remains the same, unless the center of the
projection belongs to the span of the two tangent spaces, in this case, the dimension
of the intersection increases by one. So, either dim(Tq(is(X)) ∩ Tq′(is(X))) =
dim(Tq(i(X)) ∩ Tq′(i(X))); or dim(Tq(is(X)) ∩ Tq′(is(X))) = dim(Tq(i(X)) ∩
Tq′ (i(X)))+ 1. This implies that dim(Tq(i(X)) ∩ Tq′(i(X))) = n − 3, i.e. (q, q′) ∈
Zn−3,i ; and s ∈ 〈Tq(i(X)) ∪ Tq′ (i(X))〉. Let us now define L ⊂ Zn−3,i × PN

by L := {((r, r ′), p) : p ∈ 〈Tr(Yi) ∪ Tr′(Yi)〉}. Denote the first (resp. second)
projection map by r1 (resp. r2). Then ((q, q′), s) ∈ L, and thus dim(Im(r2)) = N
(because s is a general point of PN ). Obviously dim(Im(r1)) = dim(Zn−3,i),
and dim(genfib(r1)) = n + 3. Thus dim(L) = dim(Zn−3,i) + dim(genfib(r1)) =
N+dim(genfib(r2)). Because Zn−2,is ∩Zn−2,i is a closed subset of Zn−2,is , we have
that dim(Zn−2,is ) = dim(Zn−2,is \(Zn−2,is ∩Zn−2,i)). We also showed that Zn−2,is \
(Zn−2,is ∩ Zn−2,i) ⊂ r−1

2 (s). But, s is a general point of PN , so dim(genfib(r2)) =
dim(r−1

2 (s)). Thus, dim(Zn−2,is ) ≤ dim(genfib(r2)) = dim(Zn−3,i)− N +n +3 <

2n − (2n + 2) + n + 3 = n + 1 < 2n. So dim(Zn−2,is ) < 2n, which gives
a contradiction with the assumption dim(Zn−2,is ) = 2n, and this proves our claim.

��

1.5. Now, let X and L be as in the statement of Theorem I, and let i = iL : X →
PN . In view of Lemmas 1.2, 1.3 and 1.4, in order to prove that γV is injective
for a general k-dimensional linear subvectorspace V of Γ(X,L), it is sufficient to
show that dim(Zn−1,i) < n and dim(Zn−2,i) < 2n.

1.6. In the case t ≥ 3, we prove the following much stronger fact:

Lemma. For all distinct q and q′ ∈ X, dim(Tq(i(X)) ∩ Tq′(i(X))) = −1.

Proof. Let q and q′ be two distinct points of X. Because the sheaf N is very
ample on X, codimΓ(X,N )(Sq(N )) = n + 1. So we can take a subvectorspace
V ⊂ Γ(X,N ), with dim(V ) = n + 1 and V ∩ Sq(N ) = {0}. As N is very
ample, we can take two divisors D1 and D2 ∈ P(N ), with q �∈ Di and q′ ∈ Di

(i = 1, 2). Let D3 be an element of P(V ), then D3 is not singular at q (because
V ∩Sq(N ) = {0}). So D := D1+D2+D3 is singular at q′ and not singular at q. Let
V ′ ⊂ Γ(X,M) be such that P(V ′) = D1 + D2 +P(V ), then dim(V ′) = dim(V ) =
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n + 1, V ′ ⊂ Sq′ (M) and V ′ ∩ Sq(M) = {0}. And thus (Sq(M) ∩ Sq′ (M)) ∩
V ′ = {0}. Looking at Sq(M) ∩ Sq′ (M) and V ′ as subsets of Sq′ (M), we obtain
codimSq′ (M)(Sq(M) ∩ Sq′ (M)) ≥ n + 1. On the other hand, because M is very
ample, codimΓ(X,M)(Sq(M)) = n + 1. And thus codimSq′ (M)(Sq(M) ∩ Sq′ (M)) ≤
n + 1. So we get that codimSq′ (M)(Sq(M) ∩ Sq′ (M)) = n + 1. This implies that
dim(Sq(M) ∩ Sq′ (M)) = dim(Sq′ (M)) − (n + 1) = M + 1 − 2(n + 1), with
M := dim(P(M)).

If H is a hyperplane in PM , then this corresponds to a divisor DH ∈ P(M); and
vice versa, if D is a divisor of P(M) this corresponds to a hyperplane [D] ⊂ PM .
We then have the following property: D ∈ P(Sq(M) ∩ Sq′ (M)) if and only if
〈Tq(i(X)) ∪ Tq′(i(X))〉 ⊂ [D]. This means that dim(P(Sq(M) ∩ Sq′ (M))) = M −
dim(〈Tq(i(X))∪Tq′(i(X))〉)−1. Thus, dim(Tq(i(X))∩Tq′(i(X)))=dim(P(Sq(M)∩
Sq′ (M))) − M + 2n + 1 = M − 2n − 2 − M + 2n + 1 = −1. And this is exactly
what we wanted to prove. ��
1.7. In the case that t = 2 consider the 2-Veronese map ν : PM ↪→ Pm(M+3)/2. If
q is a point in PM , to simplify notations, we write q instead of ν(q).

1.8. Lemma. For q, q′ distinct points onPM, one has dim(Tq(ν(P
M))∩Tq′ (ν(PM )))

= 0.

Proof. In this proof let M = OPM (2). Since P(Sq(M)) is the linear system of
quadrics in PM singular at q, one has that P(Sq(M) ∩ Sq′ (M)) is the linear system
of quadrics inPM singular along the line 〈q, q′〉. Such a quadric is a cone with vertex
〈q, q′〉 on a quadric in some PM−2. Comparing dim(P(M)) with dim(OPM−2 (2))

the lemma follows. ��
1.9. For q, q′ distinct points of PM , the tangent spaces Tq(ν(P

M )) and Tq′(ν(PM ))

intersect at one point. So for X and L as in Theorem I, with t = 2, we find that
dim(Tq(iL(X))∩Tq′(iL(X))) ≤ 0. This proves that dim(Zn−1,iL) < n for all n ≥ 2
and dim(Zn−2,iL) < 2n for all n ≥ 3. This implies that γV is injective for V as in
Theorem I in the case t = 2 and n > 2.

1.10. Lemma. Let X, N and L be as in Theorem I with t = 2, n = 2 and
(X,N ) �= (P2,OP2(1)). Let i = iL : X ↪→ P(L∗), then dim(Zn−2,i) < 2n.

Proof. For two distinct points q, q′ ∈ PM = P(N ∗), let L be the line 〈q, q′〉 in PM ,
then Γ = ν(L) is a conic. The tangent lines Tq(Γ) and Tq′(Γ) intersect, hence, from
Lemma 1.8 it follows that

Tq(ν(P
M )) ∩ Tq′(ν(PM )) = Tq(Γ) ∩ Tq′ (Γ).

Now let q, q′ be distinct points on X ⊂ PM . One has that Tq(Γ) ∩ Tq′ (Γ) ∈
Tq(ν(X)) ∩ Tq′(ν(X)) if and only if Γ is tangent to ν(X) at both q and q′; hence if
and only if L is tangent to X at both q and q′.

Now Z0,i = X × X would imply Z0 = X × X for the embedding ν(X) ⊂
PM(M+3)/2, which is a projection of i : X ↪→ P(L∗). So Z0,i = X × X would imply
that for all q, q′ ∈ X, the line 〈q, q′〉 is tangent to X at q. Since X is non-degenerate
in PM this would imply Tq(X) = PM . Because X is smooth this would mean that
X = PM . As dim(X) = 2, we find that, in this case, (X,N ) = (P2,OP2(1)). ��
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1.11. Lemma 1.10 implies the injectivity of γV in Theorem I for the case
dim(X) = 2 and t = 2 but (X,N ) �= (P2,OP2(1)). For this final case where
(X,N ) = (P2,OP2(1)), we only need to use Lemma 1.2.

2. The Gauss map as a local immersion

2.1. First we mention some generalities on the tangent map of a Gauss map.

2.1.1. Assume X ⊂ PM is a smooth n-dimensional projective variety and let
γ : X → G(n, M) be the corresponding Gauss map. For x ∈ X, we have a tangent
map

dxγ : Tx(X) → Tγ(x)(G(n, M)).

Let NX be the normal bundle of X in PM and, for x ∈ X, let NX (x) be its fiber at
x. There is a well-known identification Tγ(x)(G(n, M)) ∼= HomC(Tx(X), NX (x))

(see e.g. [2, Lecture 16]), so we obtain a bilinear form

dxγ : Tx(X) ⊗ Tx(X) → NX(x).

This is the so-called second fundamental form IIX,x of X at x (see [1] for the
definition and in particular [1, 1.6.2] for the proof of the claim). Since IIX,x is
symmetric we write it as a pairing on Tx(X) with values in NX(x). If no confusion
seems likely we omit some of the subscripts.

2.1.2. We are going to use the following description of the second fundamental
form from [1, p. 369–370]:

Let X and x be as in 2.1.1. Choose homogeneous coordinates (X0 : X1 : . . . :
X M ) on PM such that x = (1 : 0 : . . . : 0) and Tx(X) = Z(Xn+1; Xn+2; . . . ; X M).
Let z1, . . . , zn be a system of regular parameters for X atx and let x1 = X1/X0, . . . ,

xM = X M/X0 be the system of regular parameters for PM at x. Then, for n + 1 ≤
µ ≤ M, xµ|X is a regular function of X at x and it has the Taylor series expansion
in z1, . . . , zn :

xµ|X =
n∑

α,β=1

qα,β,µzαzβ + (higher order terms).

We have a base
(

δ

δz1

)
x

, . . . ,

(
δ

δzn

)
x

for Tx(X), a base
(

δ

δxn+1

)
x

, . . . ,

(
δ

δxM

)
x

for NX(x); and with respect to those bases we have

IIX,x((a1, . . . , an), (b1, . . . , bn))µ =
n∑

α,β=1

qα,β,µ

aαbβ + aβbα

2
,

for n + 1 ≤ µ ≤ M.

2.2. Next we make some general remarks on the behavior of the tangent map of
a Gauss map under projections.
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2.2.1. Consider an embedding i : X ↪→ PM and let γ : X → G(n, M) be the
Gauss map. For x ∈ X and P ∈ PM let Tx(X; P) be the linear span of Tx(X) and P
in PM . If P �∈ Tx(X) then the fiber at x of the normal bundle of Tx(X) in Tx(X; P)

corresponds to a one-dimensional subvectorspace of NX (x); this is denoted by
NX(x; P) ⊂ NX (x).

2.2.2. Take P ∈ PM and assume for all x ∈ X one has P �∈ Tx(X). Projecting with
center P we obtain i ′ : X → PM−1; it is a local immersion at each point x ∈ X.
Let γ ′ : X → G(n, M − 1) be the Gauss map associated to i ′. The tangent map
is the second fundamental form II′X associated to i ′. Let N ′

X be the normal bundle
of i ′, i.e. N ′

X = i ′∗(TPM−1)/TX . We have a projection NX → N ′
X and for all x ∈ X

one has
ker(NX (x) → N ′

X (x)) = NX(x; P).

From [1, (1.2.2)] it follows that, for v,w ∈ Tx(X), the image of IIX(v,w) in N ′
X(x)

is equal to II′X(v,w). Fixing v ∈ Tx(X) we obtain:

Lemma. rk((dxγ
′)(v)) < rk((dxγ)(v)) if and only if NX(x; P) ⊂ Im((dxγ)(v)).

In this case rk((dxγ
′)(v)) = rk((dxγ)(v)) − 1. ��

2.2.3. For (x; v) ∈ P(TX ) (hence x ∈ X; v a non-zero element of Tx(X)) let
NX(x; v) be the union of the spaces Tx(X; Q) such that NX(x; Q) ⊂ Im((dxγ)(v)).
For 0 ≤ k ≤ n, define

Uk := {(x; v) ∈ P(TX ) : rk((dxγ)(v)) ≤ n − k}.
In the case (x; v) ∈ Uk we have dim([NX(x; v)]) ≤ 2n − k. Define U ′

k in a similar
way, using i ′ and γ ′. From the lemma in 2.2.2 it follows that Uk ⊂ U ′

k ⊂ Uk−1.
Let U ′′

k be the closure of U ′
k \ Uk. Again, from the lemma in 2.2.2 it follows

that (x; v) ∈ U ′
k \ Uk if and only if NX(x; P) ⊂ Im((dxγ)(v)), hence if and only

if P ∈ NX(x; v). Define Zk ⊂ PM × Uk−1 by (Q; (x; v)) ∈ Zk if and only if
Q ∈ NX(x; v). One has dim(Zk) ≤ dim(Uk−1) + 2n − k + 1. Moreover U ′′

k is the
closure of the projection on P(TX ) of the fiber of Zk over P. These observations
imply the following:

Lemma. Assume P ∈ PM is general. Then U ′′
k is empty if M > dim(Uk−1) +

2n − k + 1. In the case that M ≤ dim(Uk−1) + 2n − k + 1 then dim(U ′′
k ) ≤

dim(Uk−1) + 2n − k + 1 − M. ��

2.3. For X, N and L as in Theorem I we are now going to investigate the tangent
map of γV . First we consider the case X = PM ; N = OPM (1).

2.3.1. Consider the Veronese embedding

νt : PM ↪→ P
N

with t ≥ 2; N =
(

N + t
t

)
− 1. Let X M,t = νt(P

M ) and denote this, in short, by X.
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Let x ∈ X M,t and choose homogeneous coordinates in PM and PN such that

νt((1 : 0 : . . . : 0)) = x

νt((x0 : x1 : . . . : xM)) = (
xt

0 : xt−1
0 x1 : . . . xt−1

0 xM : xt−2
0 x2

1 : xt−2
0 x1x2 :

xt−2
0 x2

M : xt−3
0 x3

1 : . . . : xt
M

)
.

LetC[X0; . . . ; X M] be the homogeneous coordinate ring ofPM and letC[YI ] be the
homogeneous coordinate ring of PN with subscripts I = (i0; . . . ; iM) ∈ ZM+1;
i j ≥ 0 for 0 ≤ j ≤ M and

∑M
j=0 i j = t, i.e. YI corresponds to the monomial

Xi0
0 Xi1

1 . . . XiM
M of degree t.

We denote I by 0 in the case i0 = t; we denote I by j (1 ≤ j ≤ M) in the case
i0 = t − 1 and i j = 1. We denote I by k j (1 ≤ k ≤ j ≤ M) in the case i0 = t − 2
and ik = 2 if k = j; and i j = ik = 1 if k > j . We use local coordinates yI = YI/Y0

for PN at x with I �= 0. Then y1, . . . , yM are local coordinates for X M,t = X at x
and

yk j |X = yk y j

yI |X has multiplicity at least 3 in y1, . . . , yn in the case i0 ≤ t − 3.

Let eI = δ

δyI
be the base for Tx(P

N ), then e1, . . . , eM is a base for Tx(X M,t) ⊂
Tx(P

N ) and we consider {eI : i0 ≤ t − 2} as a base for NX (x). Let v = ∑M
i=1 vi ei

and w = ∑M
i=1 wiei be elements of Tx(X). From 2.1.2 we find

IIX(v,w) =
∑

1≤i≤ j≤n

viw j + v jwi

2
eij .

Lemma. For all v ∈ Tx(X) non-zero, the linear map (dxγ)(v) is injective.

Proof. Assume w ∈ Tx(X) is such that (dxγ(v))(w) = 0, hence II(v,w) = 0. Take
1 ≤ m ≤ M such that vm �= 0 and vi = 0 for all m < i ≤ M. For m < i ≤ M
the coefficient of emi in II(v; w) is equal to (vmwi + viwm)/2 = (vmwi)/2. Hence
II(v; w) = 0 implies wm+1 = · · · = wM = 0. The coefficient of emm in II(v; w)

is equal to vmwm , hence II(v; w) = 0 also implies wm = 0. This implies that, for
1 ≤ i < m, the coefficient of eim in II(v,w) is equal to (viwm + vmwi)/2 =
(vmwi)/2. Hence II(v; w) = 0 also implies w1 = · · · = wm−1 = 0, hence w = 0.

��

2.3.2. Now let X; N and L be as in Theorem I and consider the embedding
iN : X ↪→ PM , defined by N . Let φ : X → PN be the composition of iN with
the Veronese embedding it : PM ↪→ PN . Let γ : X → G(n; N) be the Gauss map
associated to φ and let IIX be its associated second fundamental form.

Lemma. For v,w ∈ Tx(X), one has that IIX(v; w) = 0 implies v = 0 or w = 0.
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Proof. Let y1, . . . , yN be as in 2.3.1. We can assume that y1, . . . , yn are local
coordinates for X at x and that, for n + 1 ≤ i ≤ N, yi |X vanish with order at least
2 in y1, . . . , yn . Since {e1, . . . , en} is a base for Tx(X), we can consider {eI : I �∈
{1, 2, . . . , n}} as a base for NX(x). For v = ∑n

i=1 vi ei , w = ∑n
i=1 wi ei in Tx(X),

we have IIX,x(v; w) ∈ NX(x). The image under the projection NX (x) → NX M,t (x)

is equal to
∑

1≤i≤ j≤M
viw j +v jwi

2 eij = IIX M,t ,x(v; w). This proves the following
diagram is commutative for all v ∈ Tx(X):

Tx(X)� _

��

//
(dxγ)(v)

NX (x)

��
��

Tx(X M,t) //
(dxγX M,t )(v) NX M,t (x) .

Since (dxγX M,t )(v) is injective (see 2.3.1) we get that (dxγ)(v) is injective. ��

2.3.3. Now consider the embedding i : X ↪→ P(L∗). The embedding considered
in 2.3.2 can be obtained from a projection of i together with some embedding
PN′ ⊂ PN as a linear subspace. From [1, 1.22] and 2.3.2 we obtain:

Lemma. For x ∈ X and v,w ∈ Tx(X) one has that IIi(X ),x(v; w) = 0 implies
v = 0 or w = 0.

In particular, for x ∈ X and v ∈ Tx(X) with v �= 0, one has dxγL(v) : Tx(X) →
NiL(X )/P(L∗)(x) is injective. ��

2.4. From now on we assume X ⊂ PN is a smooth n-dimensional projective
variety such that, for x ∈ X and v ∈ Tx(X), the linear map

(dxγ)(v) : Tx(X) → NX(x)

is injective. Let Λ be a general k-dimensional linear subspace of PN for some
0 ≤ k ≤ N − 2n + 1, let iΛ : X → PN−k−1 be the local embedding using the
projection with center Λ; and let γΛ : X → G(n; N − k − 1) be the corresponding
Gauss map. We are going to prove that γΛ is an embedding. In combination with 2.3
this completes the proof of Theorem I.

We consider Λ as the linear span of k + 1 general points P1; . . . ; Pk+1 in PN .
For 0 ≤ j ≤ k + 1, let Λ j be the span of P1; . . . ; Pj and let i j be the embedding
X ⊂ PN− j obtained from the projection with center Λ j . For 0 ≤ j ≤ k we obtain
i j+1 from i j using the projection with center Pj+1, considered as a general point
of PN− j . Hence we can use the observations from 2.2. We have Ux, j ⊂ P(TX ) and
U ′′

x, j as in 2.2.3 for the embedding i j . We know U0, j = P(TX ), Ux,0 = ∅ for all
x ≥ 1 and we need to prove Un,k = ∅.

2.4.1. Claim. Let 1 ≤ x ≤ n:
if x j < xN − 2(x + 1)n + x2 + 1 then Ux, j = ∅;
if x j ≥ xN −2(x +1)n + x2 +1 then dim(Ux, j) ≤ x j − xN +2(x +1)n − x2 −1.

Proof. Assume for some j one has Ux, j = ∅ for all x ≥ 1. From 2.2.2 we know
Ux, j+1 = ∅ for all x > 1 and if U1, j+1 �= ∅ then M − j ≤ dim(U0, j)+2n = 4n −1
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(see 2.2.3); hence j ≥ N − 4n + 1. Since Ux,0 = ∅ for x ≥ 1 this implies Ux, j = ∅
for x ≥ 1 in the case j − 1 < N − 4n + 1, i.e. j < N − 4n + 2. This implies the
first statement in the case x = 1. For j = N − 4n + 2 we obtain dim(U1, j) ≤ 0
(see 2.2.3). This is the second statement in the case x = 1 and j = N − 4n + 2.
Now assume j > N − 4n + 2 and assume the second statement holds for x = 1
and smaller values of j . Then U1, j = U1, j−1 ∪ U ′′

1, j and, from 2.2.3, it follows that
dim(U ′′

1, j) ≤ dim(U0, j−1) + 2n − (N − j + 1) = j − N + 4n − 2. This proves that
dim(U1, j) ≤ j − N + 4n − 2, hence the second statement in the case x = 1. Now
assume x > 1 and the claim holds for smaller values of x. Assume for some value
j with (x − 1) j ≥ (x − 1)N − 2xn + (x − 1)2 + 1 we have Ux, j = ∅. From 2.2.2
we have Uy, j+1 = ∅ for y ≥ x + 1; and if N − j > dim(Ux−1, j) + 2n − x + 1
then Ux, j+1 = ∅. Since dim(Ux−1, j) + 2n − x + 1 ≤ (x − 1) j − (x − 1)N + 2xn
−(x − 1)2 − 1 + 2n − x + 1 = (x − 1) j − (x − 1)N + 2(x + 1)n − (x − 1)2 − x,
we have that Ux, j+1 = ∅ if x j < xN − 2(x + 1)n + (x − 1)2 + x. This proves that
Ux, j = ∅ if x j < xN − 2(x + 1)n + (x − 1)2 + 2x = xN − 2(x + 1)n + x2 + 1.
This is the first statement for x. The proof of the second statement for x can be
done as the proof of the second statement for x = 1. ��

2.4.2. Now, take x = n. We find Un, j = ∅ if n j < nN − 2(n + 1)n + n2 + 1,
hence if j < N − n − 2 + 1

n ; i.e. if j ≤ N − n − 2. Since j ≤ k ≤ N − 2n − 1 this
condition is always satisfied.

This concludes the proof of Theorem I. ��
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