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Abstract. We study the regularity of the solutions u of a class of P.D.E., whose prototype
is the prescribed Levi curvature equation in R2n+1. It is a second-order quasilinear equation
whose characteristic matrix is positive semidefinite and has vanishing determinant at every
point and for every function u ∈ C2. If the Levi curvature never vanishes, we represent the
operator L associated with the Levi equation as a sum of squares of non-linear vector fields
which are linearly independent at every point. By using a freezing method we first study
the regularity properties of the solutions of a linear operator, which has the same structure
as L. Then we apply these results to the classical solutions of the equation, and prove their
C∞ regularity.
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1. Introduction

We will study the regularity of the solutions of a class of equations modeled on the
mean Levi-curvature equation

Lu = k(·, u)
(1 + |∇u|2)3/2

1 + u2
t

in Ω ⊂ R2n+1, (1)

where

Lu =
n∑

i=1

(
uxi xi + uyi yi + 2

uyi − uxi ut

1 + u2
t

uxi t − 2
uxi + uyi ut

1 + u2
t

u yi t + u2
xi

+ u2
yi

1 + u2
t

utt

)
.

Here we have denoted (x, y, t) a point of R2n+1, with x ∈ Rn, y ∈ Rn and t ∈ R,
uxi is the first derivative with respect to xi , and ∇u the Euclidean gradient of u in
R2n+1 and k : Ω×R→ R is of class C∞. If we identifyR2n+2 withCn+1, the graph
of a function u : Ω → R can be considered as a real hypersurface, and equation (1)
naturally arises in the study of its geometric properties: if c = 16 infΩ×R |k| > 0,
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then the radius of Ω is bounded by 2n/c (see [2]). Hence k(·, u) can be considered
as a sort of mean curvature of u with respect to the complex structure and we call
it mean Levi-curvature.

The majority of the results known for equation (1) refer to the case n = 1. This
equation is a second-order quasilinear differential equation whose characteristic
form is positive semidefinite and has vanishing determinant at every point of Ω

and for every function u. Hence it is not elliptic at any point. However it has
been initially treated as a strongly degenerate elliptic equation. With this approach
Debiard and Gaveau in [8] proved a weak maximum principle, and Tomassini
showed the following strong maximum principle (see [14]): if Ω ⊆ R3 is open and
connected, k : Ω × R→ R is continuous and non-positive, u is a solution of the
equation (1) of class C2 in Ω and attains its maximum value at ξ0 = (x0, y0, t0) ∈ Ω

then u is a constant function on the set

{(x, y, t) ∈ Ω : t = t0}.
Later on Slodkowsky and Tomassini introduced an elliptic regularization of

the problem, and proved that, if Ω ⊂ R3 is strictly pseudoconvex, and k satisfies
a geometric hypothesis related to the Levi curvature of ∂Ω ×R, then the Dirichlet
problem associated to equation (1) has a viscosity solution u ∈ Lip(Ω̄) (see [12]).
They also proved a similar result for a “Levi equation” in R2n+1, which however
is different from the one considered here, since it involves a curvature of the graph
of u analogous to the Gaussian curvature for the complex structure (see [13]).

When k = 0, an existence and regularity result was established by Bedford and
Gaveau with a geometric approach whose starting point is Bishop’s theorem on
a family of analytic discs: if Ω ⊂ R3 is a strictly pseudoconvex set, φ ∈ Cm+5(∂Ω),
the boundary of Ω and the graph of φ satisfy a technical geometric condition, then
the Dirichlet problem {

L(u) = 0 in Ω

u = φ on ∂Ω

has a solution in Cm+α(Ω) ∩ Lip(Ω̄), with 0 < α < 1 (see [3]).
This is clearly a global result, since the regularity of the solution depends on

the boundary data. On the other hand E. Lanconelli conjectured that the interior
regularity problem could be afforded with a vector fields method. A new approach
was then introduced by one of the authors if k never vanishes. The first result in this
direction is a strong comparison principle for the solutions of (1) (see [4]). If the
dimension of the space is 3, a regularity result for classical solutions was proved:

If the Levi curvature k is smooth and always different from zero, any solution u
of (1) of class C2,α, with α > 1

2 , is of class C∞(Ω) (see [6]).

In this paper we extend this result to the mean Levi-curvature equation inR2n+1.
In order to state our main theorem we need to recall some notations. Let

a = (a1, . . . , an) and b = (b1, . . . , bn) denote the coefficients which appear in
the definition of the operator:

ai = ai(u) = uyi − uxi ut

1 + u2
t

, bi = bi(u) = −uxi + uyi ut

1 + u2
t

, (2)
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and let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) be the first-order differential
operators

Xi = ∂xi + ai∂t, Yi = ∂xi + bi∂t . (3)

Then L can be formally represented as a sum of squares of these non-linear vector
fields, plus a first-order term:

Lu =
n∑

i=1

(
X2

i u + Y2
i u − (Xiai + Yibi)∂tu

)
(see (8)). Moreover, a direct computation (see (11)) shows that

n∑
i=1

[Xi,Yi ] = − Lu

1 + (∂tu)2
∂t .

Hence, if u is a solution of (1) and k is always different from zero in Ω, then

Xi, Yi,

n∑
i=1

[Xi,Yi ] (4)

are linearly independent at every point. This condition, formally analogous to the
Hörmander condition for hypoellipticity, is also crucial in this non-linear situation.
In particular it is possible to introduce a control distance d, and Lipschitz classes
Cm,α

L associated to the vector fields Xi and Yi .
Our main theorem is the following:

Theorem 1.1. LetΩ ⊂ R2n+1 and q ∈ C∞(Ω×R×R2n×R), with q(ξ, s, p, τ) �= 0
for every (ξ, s, p, τ) ∈ Ω × R× R2n × R. If u is a solution of class C2,α(Ω), with
α > 1

2 , of

Lu = q(ξ, u, a, b, ∂tu) in Ω, (5)

where a and b are defined in (2), then u is of class C∞(Ω).

Let us explicitly note that

n∑
i=1

(
a2

i + b2
i

) =
n∑

i=1

u2
yi

+ u2
xi

u2
t + u2

xi
+ u2

yi
u2

t(
1 + u2

t

)2 =
n∑

i=1

u2
yi

+ u2
xi

1 + u2
t
, (6)

hence
n∑

i=1

(
a2

i + b2
i

)+ 1 =
n∑

i=1

u2
yi

+ u2
xi

1 + u2
t

+ 1 = 1 + |∇u|2
1 + u2

t
,

and equation (5) simply becomes equation (1) if we choose

q(ξ, u, a, b, ∂tu) = k(ξ, u)(|a|2 + |b|2 + 1)3/2
(
1 + u2

t

)1/2
.

Let us briefly sketch the proof. In order to study the regularity of the solutions of
equation (1), we fix a solution u ∈ C2,α. The coefficients ai = ai(u) and bi = bi(u)
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defined in (2) are obviously of class C1,α, and the correspondent vector fields Xi

and Yi are well defined. Hence it is natural to call the linearized operator of L the
linear operator Lu , formally defined as L, in terms of these fixed vectors fields:

Luv =
n∑

i=1

(
X2

i v+ Y2
i v− (Xiai + Yibi)∂tv

)
.

Linear operators written in this way have been intensively studied by Hörmander,
Stein, Folland and Stein, Rothschild and Stein, in suitable spaces Ck,α

L of Lipchitz
continuous functions defined in terms of the vector fields Xi and Yi . However in
order to show, for example, that the solution of the equation

Luv = f ∈ C1,α
L

is of class C3,α
L , their technique requires that the coefficients of the vector fields

Xi and Yi are of class C4,α
L , so that it is impossible to apply their technique to

our situation. On the contrary, for our challenge we will adapt a freezing method
introduced in [5] for the Levi equation in R3. We will call frozen vector fields of Xi

and Yi at a fixed point ξ0 the linear vector fields Xi,ξ0 and Yi,ξ0, whose coefficients
are the first-order Taylor developments of the coefficients of Xi and Yi . Then we
define the frozen operator the linear operator Lξ0 formally represented as L but in
terms of these new vector fields

Lξ0 =
n∑

i=1

(
X2

i,ξ0
+ Y2

i,ξ0
− (Xiai + Yibi)(ξ0)∂t

)
. (7)

Since Xi,ξ0 and Yi,ξ0 are linear, nilpotent and C∞ vector fields, which satisfy the
Hörmander condition for hypoellipticity, there exists a fundamental solution Γξ0
of Lξ0 . For every fixed ξ0 an explicit estimate of it is known in terms of the control
distance dξ0 associated to Lξ0 (see [11]). However the dependence of Γξ0 and its
derivatives on the variable ξ0 was not known, and we study it here by means of
suitable singular integrals, always dependent on the variable ξ0. Then we write
a representation formula for functions v ∈ C2,α

L in terms of Γξ0 and Luv. Some of
the terms of this formula are singular integrals, and they can not be differentiated
in a standard way. Hence we introduce some third-order difference quotients in
the direction of the vector fields, and we use them to prove that, if Luv ∈ C1,α

L ,
then v ∈ C3,α

L . Applying this result to the fixed solution u of the Levi equation
we deduce that u ∈ C3,α

L and ∂tu ∈ C2,α
L . To study the higher regularity of u we

iterate this technique: surprisingly, even though the operator is written in terms
of Xi and Yi , we have to show that if u ∈ Cm,α

L , its ordinary derivatives ∂xi u, ∂yi u

and ∂tu are of class Cm,β
L , in order to conclude that u ∈ Cm+1,β

L for all β < α.
The paper is organized as follows: in Sect. 2 we give the definition of derivatives

in the directions Xi and Yi and we describe the structure of L. In Sect. 3 we study
the frozen operator Lξ0 , and in Sect. 4 we prove Theorem 1.1. The representation
formula is stated without proof in Appendix A.

This work is part of the PhD dissertation of A. Montanari, completed under the
direction of Prof. E. Lanconelli and partially of the first author. The authors wish
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to acknowledge their debt to Prof. E. Lanconelli for his many suggestions on the
subject of the work and for his constant encouragement. They also thank Prof. S.
Coen for providing them with some references about the geometric aspects of the
problem.

2. Structure of the Levi operator

In this section we will always denote by u a fixed function of class C2, and we will
prove in detail some properties of the vector fields X and Y , introduced in (3) and
of the operator L. Then we will give the definition of some Lipschitz classes C2,α

L ,
naturally associated to L.

First note that, by (1), (2), and (6),

Lu =
n∑

i=1

(
uxi xi + uyi yi + 2aiuxi t + 2biuyi t + (

a2
i + b2

i

)
utt
)

(since uxi xi +2aiuxi t +a2
i utt = (∂xi +ai∂t)

2u −(∂xi +ai∂t)ai∂tu = X2
i u − Xiai∂tu)

=
n∑

i=1

(
X2

i u + Y2
i u − (Xiai + Yibi)∂tu

)
, (8)

see also [5] for the proof of the same property in R3.
Moreover ai and bi satisfy the following crucial relation

Xiu =
(
∂xi + uyi − uxi ut

1 + u2
t

∂t

)
u = uxi + uyi ut

1 + u2
t

= −bi (9)

and

Yiu =
(
∂yi − uxi + uyi ut

1 + u2
t

∂t

)
u = uyi − uxi ut

1 + u2
t

= ai .

As a consequence we will represent Lu as a sum of squares of vector fields,
times a multiplying factor. Indeed

(Xiai + Yibi)∂tu

(by (9))

= (XiYiu − Yi Xiu)∂tu = [Xi,Yi]u∂tu = (Xibi − Yiai)(∂tu)
2

(always by (9))
= −(X2

i u + Y2
i u
)
(∂tu)

2.

Hence, substituting in (8)

Lu =
n∑

i=1

(
X2

i u + Y2
i u
)
(1 + (∂tu)

2). (10)
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Moreover, if u is a solution of equation (5), then the commutator can be
computed as

n∑
i=1

[Xi,Yi] =
n∑

i=1

(Xibi − Yiai)∂t (11)

= −
n∑

i=1

(
X2

i u + Y2
i u
)
∂t = − Lu

1 + (∂tu)2
∂t = −q(·, u, a(u), b(u), ∂tu)

1 + (∂tu)2
∂t .

Since k is always different from zero, then the last term in (11) does not vanish.
Thus ∂t is a derivative of “length” 2 in the direction of Xi and Yi . Besides the vector
fields

Xi, Yi,

n∑
i=1

[Xi,Yi ]

are linearly independent at every point. Hence we can introduce a control distance d,
associated to L exactly as in [9]. Since ai and bi are Lipschitz continuous with
respect to the Euclidean metrics, for every ξ0 ∈ Ω there exists an unique integral
curve γi of Xi , starting from ξ0. We will call γi the exponential curve and we will
denote it by

γi(s) = exp(sXi)(ξ0).

Definition 2.1. Let K be a compact subset of Ω. For all ξ, ξ̄ ∈ K there exists an
unique Φ = (Φ1, . . . ,Φ2n+1) ∈ R2n+1 such that

ξ = exp(
n∑

i=1

(Φi Xi + Φn+iYi)+ Φ2n+1∂t)(ξ̄).

The numbers Φi = Φi(ξ, ξ̄) are called local coordinates of ξ around ξ̄ with respect
to the vector fields Xi,Yi , ∂t .

Let us denote by |Φ|, the induced norm,

|Φ| = (( 2n∑
i=1

Φ2
i

)2 + Φ2
2n+1

)1/4
,

and d the associated quasidistance

d(ξ, ξ̄) = |Φ(ξ, ξ̄)|. (12)

Definition 2.2. If γi = exp(sXi)(ξ0) we define the Lie derivative of a function f
in ξ0 as

Xi f(ξ0) = d

dh
( f ◦ γi),

when the right-hand side exists and is finite. The set of functions f such that Xi f
and Yi f exist and are continuous for all i = 1, . . . , n will be called C1

L. If ai and
bi are of class C1

L, then we will say that a function f is of class C2
L if Xi f and

Yi f are of class C1
L and we will similarly introduce classes Cm

L. Finally we say
that f is of class Cm,α

L , if its derivatives Xi,Yi of order m are Hölder continuous
of exponent α, with respect to the quasidistance d.
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3. The freezing method

We present here a generalization of the freezing method introduced in [5] for
the Levi equation in R3. Since the structure of L depends on Xi , Yi and their
commutators, it is necessary to introduce frozen vector fields Xi,ξ0 and Yi,ξ0 , such
that for every i and j , [Xi,ξ0,Y j,ξ0] = [Xi,Y j ] at the point ξ0. This is made with
the Taylor development at the first-order of the coefficients of Xi and Yi . If the
dimension of the space is 3, the resulting operator Lξ0 is, up to a chance of variable,
the Kohn Laplacian on the Heisenberg group, and its fundamental solution can be
explicitly written. In a higher dimension the situation is completely different, since
the structure of the Lie algebra generated by Xi,ξ0 and Yi,ξ0 is different from one
point to another and Lξ0 is not invariant with respect to any family of dilations.
Hence in this section we have to introduce a new definition of the singular integral,
and study its properties in detail. As a consequence we will be able to deduce some
properties of the fundamental solution of Lξ0 , which will be crucial in the proof of
the regular properties of the solution.

Every function v ∈ C1,α
L (Ω) has the following Taylor development (see [5,

Remark 2.3]):

v(ξ) = P1
ξ0
v(ξ) + O

(
d1+α(ξ, ξ0)

)
, (13)

where

P1
ξ0
v(ξ) = v(ξ0)+

n∑
i=1

Xiv(ξ0)(xi − x0,i)+ Yiv(ξ0)(yi − y0,i)

and we have denoted ξ0 = (x0, y0, t0) = (x0,1, ..., x0,n, y0,1, ..., y0,n, t0).
Hence it is natural to call the frozen vector fields

Xi,ξ0 =
 ei

0
P1
ξ0

ai

 and Yi,ξ0 =
 0

ei

P1
ξ0

bi

 , (14)

for every i = 1, ..., n. By simplicity we will also denote

Di,ξ0 = Xi,ξ0, Dn+i,ξ0 = Yi,ξ0, (15)

for all i = 1, . . . , n.
The frozen operator of L will be formally defined as (8), but in terms of the

linear vector fields Xi,ξ0 and Yi,ξ0 :

Lξ0 =
n∑

i=1

(
X2

i,ξ0
+ Y2

i,ξ0
− (Xiai + Yibi)(ξ0)∂t

)
. (16)

For a fixed ξ0 the operator Lξ0 is an Hörmander-type operator. Indeed Xi,ξ0 and
Yi,ξ0 have C∞ coefficients and satisfy

[Xi,ξ0,Y j,ξ0] = (Xib j − Y jai)(ξ0)∂t .
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In particular if u is a solution of equation (5) then, arguing as in (11), we have

n∑
i=1

[Xi,ξ0,Yi,ξ0 ] = −q(ξ0, u(ξ0), a(ξ0), b(ξ0), ∂tu(ξ0))

1 + (∂tu(ξ0))2
∂t (17)

and the Hörmander condition for hypoellipticity is satisfied. Also note that the Lie
algebra generated by Xi,ξ0 and Yi,ξ0 is nilpotent, since all the commutators of order
3 are zero. Hence there exists a control distance dξ0 and a fundamental solution
Γξ0 associated to Lξ0 : dξ0 can be formally defined as in Definition 2.1 with Xi,Yi

replaced by Xi,ξ0,Yi,ξ0 . Moreover, because of condition (17), the results in [9]
ensure that Γξ0 is locally equivalent to d−Q+2

ξ0
, where Q = 2n + 2. Let us note

explicitly that, if n > 1 the Lie algebra generated by the frozen vector fields is
not free, and this implies that there is no dilation group associated with the vector
fields. Obviously this will be the main obstacle in the introduction of the singular
integrals. However Γξ0 and its derivatives satisfy the following estimate from above
(see [11]): for every compact set K ⊂ Ω for every ξ0, ξ , ζ ∈ K ,

|D j1,ξ0 . . . D js,ξ0Γξ0(ξ, ζ)| ≤ Csd
2−Q−s
ξ0

(ξ, ζ), (18)

where the constant Cs only depends on K , and the derivatives Di,ξ0 defined in
(15), act with respect to one of the two variables on which Γξ0 depends. However
this estimate of Γξ0 and of its derivatives are not sufficient to obtain our regularity
result, and we also have to study the dependence of Γξ0(ξ, ζ) on the variable ξ0.

First of all we state a relation which holds between different frozen distances:

Remark 3.1. If ξ0 and ξ1 are two points fixed in Ω, the distances dξ0 and dξ1 are
not equivalent, but they can be written almost explicitly as in [5, page 492]. Then
for every compact set K , there exist M1, M2 and M3 such that for every ξ0, ξ1, for
every θ and ζ in K we have:

de(θ, ζ) ≤ dξ0(θ, ζ),

dξ0(θ, ζ) ≤ dξ1(θ, ζ)+ M1d1/2
e (θ, ζ)d1/2

e (ξ1, ξ0)

and

M2d(ξ1, ζ) ≤ dξ1(ξ1, ζ) ≤ M3d(ξ1, ζ),

where de is the Euclidean distance (see [5, Remark 2.8], for the proof of the same
assertion in R3).

Let us now begin the study of the fundamental solution with the following
remark

Remark 3.2. For a fixed ξ0 the function ∂tΓξ0 satisfies the following conditions

|∂tΓξ0(ξ, ζ)| ≤ Cd−Q
ξ0
(ξ, ζ) and

∫
a≤Γ−1

ξ0
(ξ,θ)≤b

∂tΓξ0(ξ, θ)dθ = 0.
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Indeed the first one follows from (18), and the fact that the derivative ∂t can be
represented as (17), while ∫

a≤Γ−1
ξ0
(ξ,θ)≤b

∂tΓξ0(ξ, θ)dθ =

integrating by parts

= 1

b

∫
Γ−1
ξ0
(ξ,θ)=b

∂tΓξ0(ξ, θ)

|∇Γξ0(ξ, θ)|
dσ(θ)− 1

a

∫
Γ−1
ξ0
(ξ,θ)=a

∂tΓξ0(ξ, θ)

|∇Γξ0(ξ, θ)|
dσ(θ).

Integrating again by parts we get the assertion.

The previous remark allows us to give the following definition

Definition 3.1. If ξ0 is fixed, f is a Hölder continuous function such that the
application θ → f(θ)d−Q

ξ0
(θ, ξ0) is integrable in a neighborhood of ∞, we define

a principal value integral depending on ξ0 as follows:

PVξ0

∫
∂tΓξ0(ξ, θ) f(θ)dθ =

limε→0

∫
ε≤Γ−1

ξ0
(ξ,θ)≤R

∂tΓξ0(ξ, θ)( f(θ)− f(ξ))dθ +
∫

R≤Γ−1
ξ0
(ξ,θ)

∂tΓξ0(ξ, θ) f(θ)dθ

for any fixed R, and the value does not depend on R.

Proposition 3.1. Let ξ0 and ξ1 be fixed in Ω. If we denote Γξ0 the fundamental
solution of Lξ0 and Γξ1 the fundamental solution of Lξ1 we have the following
representation formula

Γξ0(ξ, ζ) = −
2n∑

i=1

∫
Di,ξ1Γξ1(ξ, θ)Di,ξ0Γξ0(θ, ζ)dθ

−
2n∑

i=1

PVξ0

∫
Di,ξ1Γξ1(ξ, θ)(Di,ξ1 − Di,ξ0)Γξ0(θ, ζ)dθ

−c(ξ1)PVξ0

∫
Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ

where c(ξ1) = ∑n
i=1 Xiai(ξ1)+ Yibi(ξ1), all the derivatives are taken with respect

to θ , and Di,ξ1 is defined in (15).

Proof. If L∗
ξ1

denotes the formal adjoint of Lξ1 and Γ∗
ξ1

is its fundamental solution
we have

0 =
∫

{θ:ε≤Γ
−1
ξ0
(θ,ζ)≤M}

{θ:ε≤Γ
−1
ξ1
(ξ,θ)}

L∗
ξ1

Γ∗
ξ1
(θ, ξ)Γξ0(θ, ζ)dθ =
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using the fact that D∗
i,ξ1

Γ∗
ξ1
(θ, ξ) = −Di,ξ1Γξ1(ξ, θ)

=
∫

{θ:ε≤Γ−1
ξ0
(θ,ζ)≤M}

{θ:ε≤Γ
−1
ξ1
(ξ,θ)}

( 2n∑
i=1

D2
i,ξ1

Γξ1(ξ, θ)− c(ξ1)∂tΓξ1(ξ, θ)
)
Γξ0(θ, ζ)dθ =

integrating by parts

= −
∫

{θ:Γ−1
ξ0
(θ,ζ)=ε}

∑2n
i=1 Di,ξ1Γξ1 (ξ, θ)Di,ξ1 Γξ0(θ, ζ) − c(ξ1)Γξ1 (ξ, θ)∂tΓξ0 (θ, ζ)

|∇Γξ0 (θ, ζ)|
Γξ0(θ, ζ)dσ(θ)

+
∫

{θ:Γ−1
ξ0
(θ,ζ)=M}

∑2n
i=1 Di,ξ1Γξ1 (ξ, θ)Di,ξ1 Γξ0(θ, ζ) − c(ξ1)Γξ1 (ξ, θ)∂tΓξ0 (θ, ζ)

|∇Γξ0 (θ, ζ)|
Γξ0(θ, ζ)dσ(θ)

−
∫

{θ:Γ−1
ξ1
(ξ,θ)=ε}

∑2n
i=1(Di,ξ1Γξ1 (ξ, θ))

2 − c(ξ1)Γξ1 (ξ, θ)∂tΓξ1(ξ, θ)

|∇Γξ1 (ξ, θ)|
Γξ0 (θ, ζ)dσ(θ)

−
∫

{θ:ε≤Γ−1
ξ0
(θ,ζ)≤M}

{θ:ε≤Γ−1
ξ1
(ξ,θ)}

( 2n∑
i=1

Di,ξ1Γξ1 (ξ, θ)Di,ξ1Γξ0 (θ, ζ)
)− c(ξ1)Γξ1 (ξ, θ)∂tΓξ0 (θ, ζ)dθ

= I1 + I2 + I3 + I4.

In I1 we use the fact that Γξ0 is constantly equal to ε−1 and we integrate by
parts:

I1 = 1

ε

n∑
i=1

∫
{θ:Γ−1

ξ0
(θ,ζ)≤ε}

L∗
ξ1

Γ∗
ξ1
(θ, ξ)dθ = 0.

In order to study I2 we first note that {θ : Γ−1
ξ0
(θ, ζ) = M}⊂ {θ : c1 M1/(Q−2) ≤

dξ0(θ, ζ) ≤ c2 M1/(Q−2)}, for suitable constants c1 and c2. We can choose a cut-
off function φ such that φ = 1 on the set {θ : c1 M1/(Q−2)/2 ≤ dξ0(θ, ζ) ≤
2c2M1/(Q−2)}, φ = 0 on the set {θ : c1M1/(Q−2)/4 ≥ dξ0(θ, ζ), or dξ0(θ, ζ) ≥
4c2M1/(Q−2)}, and |Di,ξ0φ(ζ)| ≤ M−1/(Q−2). Then, using the fact that Γξ0 is con-
stant on the integration set, we have

I2 = 1

M

∫
{θ:Γ−1

ξ0
(θ,ζ)=M}

φ(θ)

∑2n
i=1 Di,ξ1Γξ1 (ξ, θ)Di,ξ1 Γξ0(θ, ζ) − c(ξ1)Γξ1 (ξ, θ)∂tΓξ0(θ, ζ)

|∇Γξ0 (θ, ζ)|
dσ(θ)

integrating by parts, since Lξ1Γξ1 = 0, we get

= 1

M

∫
{θ:Γ−1

ξ0
(θ,ζ)≤M}

2n∑
i=1

Di,ξ1φ(θ)Di,ξ1Γξ1(ξ, θ)− c(ξ1)∂tφ(θ)Γξ1(ξ, θ)dθ.
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By Remark 3.1 dξ1(θ, ζ) ≥ dξ0(θ, ζ) − M1d1/2
ξ0
(θ, ζ) d1/2

ξ0
(ξ0, ξ1) ≥ C2 M1/(Q−2)

−M1/2(Q−2)≥ CM1/(Q−2). Consequently

|Di,ξ1φ(ζ)Di,ξ1Γξ1(θ, ζ)| ≤ CM−1/(Q−2)d−(Q−1)
ξ1

(θ, ζ) ≤ CM−Q/(Q−2)

and,

I2 ≤ 1

M

∫
{θ:C1 M1/(Q−2)≤dξ0

(θ,ζ)

dξ0
(θ,ζ)≤C2 M1/(Q−2)}

CM−Q/(Q−2)dθ ≤ C
1

M
→ 0 as M → ∞.

In order to estimate I3 we first note that∫
{θ:Γ−1

ξ1
(ξ,θ)=ε}

∑2n
i=1(Di,ξ1Γξ1(ξ, θ))

2 + Γξ1(ξ, θ)∂tΓξ1(ξ, θ)

|∇Γξ1(ξ, θ)|
dσ(θ) = 1

for all ε > 0. This assertion is standard. For example in [7] it is proved as a general
representation formula for regular functions, which implies the stated assertion, if
applied to the function constantly equal to 1. Hence

I3 = −Γξ0(ξ, ζ)

−
∫

{θ:Γ−1
ξ1
(ξ,θ)=ε}

(Γξ0(θ, ζ)− Γξ0(ξ, ζ))

∑2n
i=1(Di,ξ1Γξ1 (ξ, θ))

2 + Γξ1(ξ, θ)∂tΓξ1(ξ, θ)

|∇Γξ1 (ξ, θ)|
dσ(θ).

Now arguing as in the estimate if I2, we have

I3 → −Γξ0(ξ, ζ) as ε → 0.

Then

I4 = −
2n∑

i=1

∫
{θ:ε≤Γ

−1
ξ0
(θ,ζ)≤M}

{θ:ε≤Γ
−1
ξ1
(ξ,θ)}

Di,ξ1Γξ1(ξ, θ)Di,ξ0Γξ0(θ, ζ)dθ

−
2n∑

i=1

∫
{θ:ε≤Γ−1

ξ0
(θ,ζ)≤M}

{θ:ε≤Γ
−1
ξ1
(ξ,θ)}

Di,ξ1Γξ1(ξ, θ)(Di,ξ1 − Di,ξ0)Γξ0(θ, ζ)dθ

−c(ξ1)

∫
{θ:ε≤Γ

−1
ξ0
(θ,ζ)≤M}

{θ:ε≤Γ
−1
ξ1
(ξ,θ)}

Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ.



38 G. Citti, A. Montanari

Since for example Xi,ξ1 − Xi,ξ0 = (P1
ξ1

a − P1
ξ0

a)∂t , the second and third integrals
tend to singular integrals as ε → 0. Precisely

lim
ε→0,M→+∞ I4 = −

2n∑
i=1

∫
Di,ξ1Γξ1(ξ, θ)Di,ξ0Γξ0(θ, ζ)dθ

−
2n∑

i=1

PVξ0

∫
Di,ξ1Γξ1(ξ, θ)(Di,ξ1 − Di,ξ0)Γξ0(θ, ζ)dθ

−c(ξ1)PVξ0

∫
Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ.

Collecting all the terms we get the stated assertion.

Let us estimate the singular integrals in the preceding formula. The estimate is
similar to the classical one, but we have to take into account that dξ0 and dξ1 are
not equivalent.

Lemma 3.1. Let K be a compact subset of Ω, let M1, M2, M3 be the constants
introduced in Remark 3.1, and let

S = {
ζ : d(ξ1, ζ) ≥ 4M2

1 M3 M−1
2 d(ξ1, ξ0)

}
.

Then for every ξ0, and ξ1 in K, for every ζ ∈ S the following estimate holds∣∣PVξ1

∫
∂tΓξ1(ξ1, θ)Xi,ξ0Γξ0(θ, ζ)

∣∣ ≤ Cd−Q+1(ξ1, ζ),

where C is a constant depending only on the compact K.

Proof. Let us first note that, by Remark 3.1,

S ⊂ S0 = {
ζ : dξ1(ξ1, ζ) ≥ 4M2

1 dξ1(ξ0, ξ1)
}
,

hence we will prove the assertion for ζ ∈ S0. From the estimate of Γξ0 and Γξ1 we
have ∣∣∣PVξ1

∫
∂tΓξ1(ξ1, θ)Xi,ξ0Γξ0(θ, ζ)dθ

∣∣∣
≤ lim

ε→0

∫
ε≤4dξ1 (ξ1,θ)≤dξ1 (ξ1,ζ)

∣∣∂tΓξ1(ξ1, θ)(Xi,ξ0Γξ0(θ, ζ)− Xi,ξ0Γξ0(ξ1, ζ))
∣∣dθ

+
∫

4dξ1
(ξ1,θ)≥dξ1

(ξ1,ζ)

dξ1
(ξ1,θ)≤2dξ0

(θ,ζ)

∣∣∂tΓξ1(ξ1, θ)Xi,ξ0Γξ0(θ, ζ)
∣∣dθ

+
∫

4dξ1
(ξ1,θ)≥dξ1

(ξ1,ζ)

dξ1
(ξ1,θ)≥2dξ0

(θ,ζ)

∣∣∂tΓξ1(ξ1, θ)Xi,ξ0Γξ0(θ, ζ)
∣∣dθ

= I1 + I2 + I3.
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Let us first study I1. We will call

S1 = {θ : ε ≤ 4dξ1(ξ1, θ) ≤ dξ1(ξ1, ζ)}
Let γ : [0, 1] → R2n+1 be an integral curve of the vector fields Xi,ξ0 , Yi,ξ0 , or ∂t

connecting ξ1 and θ . By the mean value theorem there exists θ̃ ∈ γ([0, 1]) such
that ∣∣Xi,ξ0Γξ0(θ, ζ)− Xi,ξ0Γξ0(ξ1, ζ)

∣∣
≤ C

(
dξ0(θ, ξ1)

2n∑
i=1

∣∣Di,ξ0 Xi,ξ0Γξ0(θ̃, ζ)
∣∣+ d2

ξ0
(θ, ξ1)

∣∣∂t Xi,ξ0Γξ0(θ̃, ζ)
∣∣)

≤ C
(
dξ0(θ, ξ1)d

−Q
ξ0
(θ̃, ζ)+ d2

ξ0
(θ, ξ1)d

−Q−1
ξ0

(θ̃, ζ)
)
.

In order to evaluate I1 we have to estimate this expression in terms of the dis-
tance dξ1 . By Remark 3.1

dξ0(θ, ξ1) ≤ dξ1(θ, ξ1)+ M1d1/2
ξ1
(θ, ξ1)d

1/2
ξ1
(ξ0, ξ1)

(by the definition of S0 and S1)

≤ Cd1/2
ξ1
(θ, ξ1)d

1/2
ξ1
(ζ, ξ1).

Analogously dξ0(θ̃, ζ) can also be expressed in terms of dξ1 . Indeed

dξ0(θ̃, ζ) ≥ dξ0(ξ1, ζ)− dξ0(ξ1, θ̃)

(since θ̃ ∈ γ([0, 1])
≥ dξ0(ξ1, ζ)− dξ0(ξ1, θ)

(by Remark 3.1 )

≥ dξ1(ξ1, ζ)− M1d1/2
ξ1
(ζ, ξ1)d

1/2
ξ1
(ξ0, ξ1)− dξ1(ξ1, θ)− M1d1/2

ξ1
(θ, ξ1)d

1/2
ξ1
(ξ0, ξ1)

(by the definition of S0 and S1)

≥ 1

8
dξ1(ξ1, ζ).

Hence
dξ0(θ, ξ1)d

−Q
ξ0
(θ̃, ζ)+ d2

ξ0
(θ, ξ1)d

−Q−1
ξ0

(θ̃, ζ)

≤ C
(
d1/2
ξ1
(θ, ξ1)d

1
2 −Q
ξ1

(ζ, ξ1)+ dξ1(θ, ξ1)d
−Q
ξ1
(ζ, ξ1)

)
(by the definition of the set S1)

≤ Cd1/2
ξ1
(θ, ξ1)d

1
2 −Q
ξ1

(ζ, ξ1).

Collecting these estimates we get

I1 ≤ d
1
2 −Q
ξ1

(ζ, ξ1)

∫
S1

d
1
2 −Q
ξ1

(θ, ξ1)dθ ≤ d1−Q
ξ1

(ζ, ξ1) ≤ Cd1−Q(ζ, ξ1).
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The estimate of I2 can be done as follows:

I2 ≤
∫

4dξ1 (ζ,ξ1)≤dξ1 (θ,ξ1)
d−2Q+1
ξ1

(θ, ξ1)dθ

≤ d−Q+1
ξ1

(ζ, ξ1) ≤ d−Q+1(ζ, ξ1).

Finally we can estimate I3. On the set

S3 =
{
θ : dξ1(ζ, ξ1) ≤ 4dξ1(θ, ξ1), dξ0(θ, ζ) ≤ 1

2
dξ1(θ, ξ1)

}
we have

dξ0(θ, ζ) ≤ 1

2
dξ1(ξ1, θ) ≤ 1

2
(dξ1(θ, ζ)+ dξ1(ξ1, ζ)). (19)

From Remark 3.1 it follows that

dξ1(θ, ζ) ≤ 3

2
dξ0(θ, ζ)+

M2
1

2
dξ1(ξ0, ξ1),

hence we can deduce from (19) that

dξ0(θ, ζ) ≤ M2
1 dξ1(ξ0, ξ1)+ 2dξ1(ξ1, ζ) ≤ Cdξ1(ξ1, ζ),

by the definition of S0. Then

I3 ≤ d−Q
ξ1
(ξ1, ζ)

∫
dξ0 (θ,ζ)≤dξ1 (ξ1,ζ)

d−Q+1
ξ0

(θ, ζ)dθ ≤ Cd−Q+1(ξ1, ζ).

This concludes the proof.

With a simple integration by parts we have

Remark 3.3.

PVξ1

∫
∂tΓξ1(ξ, θ)Γξ0(θ, ζ)dθ = −PVξ0

∫
Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ.

Proof. Let us fix M > 0 such that{
θ : Γ−1

ξ1
(ξ, θ) ≤ M

} ∩ {θ : Γ−1
ξ0
(θ, ζ) ≤ M

} = ∅.
By definition we have

PVξ1

∫
∂tΓξ1(ξ, θ)Γξ0(θ, ζ)dθ =

= lim
ε→0

∫
{θ:ε≤Γ−1

ξ1
(ξ,θ)≤M}

∂tΓξ1(ξ, θ)(Γξ0(θ, ζ)− Γξ0(ξ, ζ))dθ

+
∫

{θ:M≤Γ−1
ξ1
(ξ,θ)}

∂tΓξ1(ξ, θ)Γξ0(θ, ζ)dθ



C∞ regularity of solutions of an equation of Levi’s type in R2n+1 41

(since Γξ0 is locally integrable)

= lim
ε→0

∫
{θ:ε≤Γ−1

ξ1
(ξ,θ)≤M}

∂tΓξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ0(ξ, ζ)

)
dθ

+
∫

{θ:M≤Γ
−1
ξ1
(ξ,θ)}

{θ:M≤Γ
−1
ξ0
(θ,ζ)}

∂tΓξ1(ξ, θ)Γξ0(θ, ζ)dθ

+ lim
δ→0

∫
{θ:δ≤Γ−1

ξ0
(θ,ζ)≤M}

{θ:M≤Γ
−1
ξ1
(ξ,θ)}

∂tΓξ1(ξ, θ)Γξ0(θ, ζ)dθ =

integrating by parts we have:

= − lim
ε→0

∫
{θ:ε=Γ−1

ξ1
(ξ,θ)}

Γξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ0(ξ, ζ)

) ∂tΓξ1(ξ, θ)

|∇Γξ1(ξ, θ)|
dσ(θ)+

+
∫

{θ:Γ−1
ξ1
(ξ,θ)=M}

Γξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ0(ξ, ζ)

) ∂tΓξ1(ξ, θ)

|∇Γξ1(ξ, θ)|
dσ(θ)+

− lim
ε→0

∫
{θ:ε≤Γ−1

ξ1
(ξ,θ)≤M}

Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ−

−
∫

{θ:Γ−1
ξ1
(ξ,θ)=M}

Γξ1(ξ, θ)Γξ0(θ, ζ)
∂tΓξ1(ξ, θ)

|∇Γξ1(ξ, θ)|
dσ(θ)+

−
∫

{θ:Γ−1
ξ0
(θ,ζ)=M}

Γξ1(ξ, θ)Γξ0(θ, ζ)
∂tΓξ0(θ, ζ)

|∇Γξ0(θ, ζ)|
dσ(θ)+

−
∫

{θ:Γ−1
ξ0
(θ,ζ)≥M

Γ
−1
ξ1
(ξ,θ)≥M}

Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ+

− lim
δ→0

∫
{θ:δ≤Γ−1

ξ0
(θ,ζ)≤M}

Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ−

− lim
δ→0

∫
{θ:Γ−1

ξ0
(θ,ζ)=δ}

Γξ1(ξ, θ)Γξ0(θ, ζ)
∂tΓξ0(θ, ζ)

|∇Γξ0(θ, ζ)|
dσ(θ)+
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+
∫

{θ:Γ−1
ξ0
(θ,ζ)=M}

Γξ1(ξ, θ)Γξ0(θ, ζ)
∂tΓξ0(θ, ζ)

|∇Γξ0(θ, ζ)|
dσ(θ) =

= limε→0,δ→0 I1 + . . .+ I9.

Note that
I1 → 0 as ε → 0,

I2 + I4 = Γξ0(ξ, ζ)

M

∫
{θ:Γ−1

ξ1
(ξ,θ)=M}

∂tΓξ1(ξ, θ)

|∇Γξ1(ξ, θ)|
dσ(θ) = 0,

and, in the same way
I5 + I9 = 0

while, by Remark 3.2

I7 = −
∫

{θ:δ≤Γ−1
ξ0
(θ,ζ)≤M}

(
Γξ1(ξ, θ)− Γξ1(ξ, ζ)

)
∂tΓξ0(θ, ζ)dθ.

Hence
limε→0,δ→0 I1 + . . .+ I9 = limε→0,δ→0 I3 + I6 + I7 =

= −PVξ0

∫
Γξ1(ξ, θ)∂tΓξ0(θ, ζ)dθ.

Proposition 3.2. Let K be a compact subset of Ω, and let S be defined as in
Lemma 3.1. Then for every ξ0 and ξ1 in K, for every ζ ∈ S, Γξ0 and Γξ1 satisfy the
following estimate: there exists c > 0 such that

|Γξ0(ξ0, ζ)− Γξ1(ξ1, ζ)| ≤ c

(
d(ξ0, ξ1)

dQ−1(ξ1, ζ)
+ dα(ξ0, ξ1)

dQ−2(ξ1, ζ)

)
, (20)

where c depends only on K.

Note that, on the set S, Γξ0(ξ0, ζ) and Γξ1(ξ1, ζ) are of class C∞, since

d(ξ1, ζ) ≥ 2d(ξ1, ξ0)

and
d(ξ0, ζ) ≥ d(ξ1, ζ)− d(ξ0, ξ1) ≥ d(ξ1, ξ0).

Proof. We apply the representation formula to the function Γ∗
ξ1

using the fact that
Γ∗
ξ0

is the fundamental solution of L∗
ξ0

. Then we get

Γ∗
ξ1
(ζ, ξ) = −

∫ 2n∑
i=1

D∗
i,ξ0

Γ∗
ξ0
(ζ, θ)D∗

i,ξ1
Γ∗
ξ1
(θ, ξ)dθ

−
2n∑

i=1

PVξ1

∫
D∗

i,ξ0
Γ∗
ξ0
(ζ, θ)

(
D∗

i,ξ0
− D∗

i,ξ1

)
Γ∗
ξ1
(θ, ξ)dθ

−c(ξ0)PVξ1

∫
Γ∗
ξ0
(ζ, θ)∂tΓ

∗
ξ1
(θ, ξ)dθ =
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using the fact that D∗
i,ξ0

Γ∗
ξ0
(ζ, θ) = −Di,ξ0Γξ0(θ, ζ),

= −
2n∑

i=1

∫
Di,ξ0Γξ0(θ, ζ)Di,ξ1Γξ1(ξ, θ)dθ

−
2n∑

i=1

PVξ1

∫
Di,ξ0Γξ0(θ, ζ)(Di,ξ0 − Di,ξ1)Γξ1(ξ, θ)dθ

+c(ξ0)PVξ1

∫
Γξ0(θ, ζ)∂tΓξ1(ξ, θ)dθ.

Subtracting from this relation the expression of Γξ0 provided in Proposition 3.1,
and using Remark 3.3 we get

Γξ1(ξ, ζ)− Γξ0(ξ, ζ) =

−
2n∑

i=1

PVξ1

∫
Di,ξ0Γξ0(θ, ζ)(Di,ξ0 − Di,ξ1)Γξ1(ξ, θ)dθ

+
2n∑

i=1

PVξ0

∫
Di,ξ1Γξ1(ξ, θ)(Di,ξ1 − Di,ξ0)Γξ0(θ, ζ)dθ

+(c(ξ0)− c(ξ1))PVξ1

∫
∂tΓξ1(ξ, θ)Γξ0(θ, ζ)dθ.

Since all these terms have the same behavior, we will consider only the first one:

PVξ1

∫ (
Xθi,ξ1 − Xθi,ξ0

)
Γξ1(ξ, θ)X

θ
i,ξ0

Γξ0(θ, ζ)dθ

= PVξ1

∫ (
P1
ξ1

ai(θ)− P1
ξ0

ai(θ)
)
∂tΓξ1(ξ, θ)X

θ
i,ξ0

Γξ0(θ, ζ)dθ

= (
P1
ξ1

ai(ξ0)− ai(ξ0)
)
PVξ1

∫
∂tΓξ1(ξ, θ)X

θ
i,ξ0

Γξ0(θ, ζ)dθ

+
n∑

j=1

(X jai(ξ1)− X jai(ξ0))PVξ1

∫
∂tΓξ1(ξ, θ)(xθ, j − x0, j)X

θ
i,ξ0

Γξ0(θ, ζ)dθ

+
n∑

j=1

(Y jai(ξ1)− Y jai(ξ0))PVξ1

∫
∂tΓξ1(ξ, θ)(yθ, j − y0, j)X

θ
i,ξ0

Γξ0(θ, ζ)dθ

where we have denoted θ = (xθ,1, ..., xθ,n, yθ,1, ..., yθ,n, tθ ) and Xθi,ξ0 the derivative
with respect to the variable θ .

If we choose ξ = ξ1, all the integrals appearing here can be estimated as in
Lemma 3.1, and, since a ∈ C1,α, by (13) we obtain

|Γξ0(ξ1, ζ)− Γξ1(ξ1, ζ)| ≤ c
d1+α(ξ0, ξ1)

dQ−1(ξ1, ζ)
. (21)
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Finally,

|Γξ0(ξ0, ζ)− Γξ1(ξ1, ζ)|
≤ |Γξ0(ξ0, ζ)− Γξ0(ξ1, ζ)| + |Γξ0(ξ1, ζ)− Γξ1(ξ1, ζ)|

(by the mean value theorem applied to Γξ0(·, ζ), and the estimate of its derivatives,
and by (21))

≤ c

(
d(ξ0, ξ1)

dQ−1(̃ξ, ζ)
+ d2(ξ0, ξ1)

dQ (̃ξ, ζ)
+ d1+α(ξ0, ξ1)

dQ−1(ξ1, ζ)

)
,

for a suitable ξ̃ , which belongs to an integral curve of Xi,ξ0 , Yi,ξ0 or ∂t connecting
ξ0 and ξ1. Hence also applying the definition of S,

1

4
d(ξ1, ζ) ≤ d(̃ξ, ζ) ≤ 4d(ξ1, ζ).

Then (20) follows immediately.

In order to estimate the derivatives of Γξ0 , we also need the following remark:

Remark 3.4. If we denote ξ = (ξ1, . . . , ξ2n+1), and θ = (θ1, . . . , θ2n+1), a direct
computation proves that

Dξ
k,ξ1

Γξ1(ξ, θ) = −Dθ
k,ξ1

Γξ1(ξ, θ)−
2n∑

i=1

(ξi − θi)[Di,ξ1, Dk,ξ1 ]θΓξ1(ξ, θ) (22)

= −Dθ
k,ξ1

Γξ1(ξ, θ)−
2n∑

i=1

(ξi − θi)ci,k(ξ1)∂
θ
t Γξ1(ξ, θ),

for functions ci,k of class Cα
L (see [10, page 295, line 5] from below, for the proof

of the same assertion in a more general situation).

Proposition 3.3. Let K be a compact subset of Ω, and let S be defined as in
Lemma 3.1. Then there exists C > 0 such that for every ξ0 and ξ1 in K, ζ ∈ S, the
following estimate holds

|D j1,ξ0 . . . D js,ξ0Γξ0(ξ0, ζ)− D j1,ξ1 . . . D js,ξ1Γξ1(ξ1, ζ)|

≤ C

(
d(ξ0, ξ1)

d(ζ, ξ1)Q+s−1
+ dα(ξ0, ξ1)

d(ζ, ξ1)Q+s−2

)
.

Proof. We denote byψ a function of class C∞(R,R) such thatψ(t) = 0 if |t| < 1
4 ,

ψ(t) = 1 if |t| > 3
4 . Then we call

φ(θ) = ψ

(
d(θ, ζ)

d(ξ, ζ)

)
,
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so that Γξ0(θ, ζ)φ(θ) ∈ C∞(R2n+1,R). Since Γξ1 is the fundamental solution of
Lξ1 , then

Γξ0(ξ, ζ)− Γξ1(ξ, ζ) =
∫

Γξ1(ξ, θ)Lξ1
((

Γξ0(θ, ζ)− Γξ1(θ, ζ)
)
φ(θ)

)
dθ

=
∫

Γξ1(ξ, θ)Lξ1
(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
φ(θ)dθ

+2
2n∑

i=1

∫
Γξ1(ξ, θ)Di,ξ1

(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Di,ξ1φ(θ)dθ

+
∫

Γξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Lξ1φ(θ)dθ

(since Lξ1Γξ1(θ, ζ) = 0 and Lξ0Γξ0(θ, ζ) = 0 on the support of φ).

=
∫

Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ

+2
2n∑

i=1

∫
Γξ1(ξ, θ)Di,ξ1

(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Di,ξ1φ(θ)dθ

+
∫

Γξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Lξ1φ(θ)dθ

(integrating by parts)

=
∫

Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ

−2
2n∑

i=1

∫
Dθ

i,ξ1
Γξ1(ξ, θ)

(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Di,ξ1φ(θ)dθ

−2
2n∑

i=1

∫
Γξ1(ξ, θ)

(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
D2

i,ξ1
φ(θ)dθ

−
∫

Γξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Lξ1φ(θ)dθ.

We will now differentiate this formula. We will study only the following two terms

A(ξ, ζ) =
∫

Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ,

and

B(ξ, ζ) =
∫

Dθ
i,ξ1

Γξ1(ξ, θ)
(
Γξ0(θ, ζ)− Γξ1(θ, ζ)

)
Di,ξ1φ(θ)dθ,

since all the others have the same behavior as B.
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The domain of integration of B is {θ : Di,ξ1φ(θ) �= 0} ⊂ {θ : 1
4 d(ξ, ζ) ≤ d(θ, ζ)

≤ 3
4 d(ξ, ζ)}. Hence on this set we have

d(ξ, θ) ≥ d(ξ, ζ)− d(θ, ζ) ≥ d(ξ, ζ)− 3

4
d(ξ, ζ) = 1

4
d(ξ, ζ)

and the integrand has no pole. Hence we can take the derivatives under the integral
sign, and, also using (21), we get

|D j1,ξ1 . . . D js,ξ1 B(ξ, ζ)| ≤ C

(
d1+α(ξ, ξ0)

d(ξ, ζ)Q+s−1
+ dα(ξ0, ξ1)d(ξ, ξ0)

d(ζ, ξ1)Q+s−1

)
. (23)

Let us now take the derivative of A(ξ, ξ0):

Dξ
j1,ξ1

∫
Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ

=
∫

Dξ
j1,ξ1

Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ

(by formula (22))

= −
∫

Dθ
j1,ξ1

Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ

−
2n∑

i=1

ci, j(ξ1)

∫
(ξi − θi)∂

θ
t Γξ1(ξ, θ)(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)dθ

integrating by parts

= −
∫

Γξ1(ξ, θ)D
θ
j1,ξ1

(
(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)

)
dθ

−
2n∑

i=1

ci, j(ξ1)

∫
(ξi − θi)Γξ1(ξ, θ)∂

θ
t

(
(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)

)
dθ.

Since this term has the same structure as A, it can be further differentiated and
we get

|D j1,ξ1 . . . D js,ξ1 A(ξ, ζ)|
= ∣∣ ∫ Γξ1(ξ, θ)D

ζ
j1,ξ1

. . . Dζ
js,ξ1

(
(Lξ1 − Lξ0)Γξ0(θ, ζ)φ(θ)

)
dθ

+ similar terms
∣∣

(arguing as in the proof of Proposition 3.2)

≤ c

(
d1+α(ξ, ξ0)

d(ξ, ζ)Q+s−1
+ dα(ξ0, ξ1)d(ξ, ξ0)

d(ζ, ξ1)Q+s−1

)
.

Hence, also using (23), the same estimate holds for

|D j1,ξ0 . . . D js,ξ0Γξ0(ξ0, ζ)− D j1,ξ1 . . . D js,ξ1Γξ1(ξ1, ζ)|
and the thesis is proved.
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4. Regularity results

In this section we conclude the proof of Theorem 1.1. First we introduce a definition
of higher-order difference quotients in the direction of the vector fields and we
give a sufficient condition of differentiability in terms of them. Then we apply this
result to the representation formulas stated in the Appendix, and establish regularity
results for the solutions of the linearized operator Lu . This result can be applied,
in particular, to the solution u of L, and ensures that, if u is of class C2,α then it is
of class C3,α

L . Iterating this theorem we deduce Theorem 1.1.
Let us first introduce a simpler notation for the derivatives in the direction of

the vector fields: we will call

Di = Xi, Dn+i = Yi, (24)

for all i = 1, . . . , n,. Then we give the following definition:

Definition 4.1. If g : Ω → R, we define difference quotients in the direction of
the vector fields Di:

∆i g(h)(ξ) = g(eh Di (ξ))− g(ξ)

h
,

and in the Euclidean directions ei

∆ei g(h)(ξ) = g(ξ + h2ei)− g(ξ)

h2
,

where ei is the i-th element of the canonical basis in R2n+1. For every m ≥ 2 we
set

∆m
i1...im

g(h)(ξ) = ∆i1

(
∆m−1

i2...im
g(h)

)
(h)(ξ).1

Remark 4.1. It immediately follows from the definition that, if there exists
Dm

i1 ...im
g(ξ), then these also exists

lim
h→0

∆m
i1...im

g(h)(ξ),

and they have the same value.

Vice versa we have the following result:

Remark 4.2. If g ∈ C1
L(Ω) and

∆2
ij g(h)(ξ)

h→0→ f(ξ), (25)

uniformly in ξ , then there exists D2
ij g and

D2
ij g = f.

1 Let us note explicitly that this definition is weaker than the one introduced in [5], and it
seems to work better, because it requires the same increment in any directions.
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Proof. By definition we have

∆2
ij g(h)(ξ) = 1

h2

(
g(eh D j eh Di ξ)− g(eh Diξ)− g(eh D jξ)+ g(ξ)

)
(26)

= 1

h2

∫ h

0
D j g(e

λD j eh Di ξ)dλ− 1

h2

∫ h

0
D j g(e

λD j ξ)dλ

If we choose ξ = esDi ξ0, and integrate (25) on the interval [0, τ] we get∫ τ

0
f(esDi ξ0)ds = lim

h→0

∫ τ

0
∆2

ij(h)g(e
sDi ξ0)ds = (27)

(by (26))

= lim
h→0

1

h2

∫ τ

0

( ∫ h

0
D j g(e

λD j e(h+s)Di ξ0)dλ
)

ds − 1

h2

∫ τ

0

(∫ h

0
D j g(e

λD j esDi ξ0)dλ
)

ds

(using the change of variable h + s = s′ in the first integral)

= lim
h→0

1

h2

∫ τ+h

h

( ∫ h

0
D j g(e

λD j esDi ξ0)dλ
)

ds − 1

h2

∫ τ

0

( ∫ h

0
D j g(e

λD j esDi ξ0)dλ
)

ds

= lim
h→0

1

h2

∫ τ+h

τ

( ∫ h

0
D j g(e

λD j esDi ξ0)dλ
)

ds − 1

h2

∫ h

0

( ∫ h

0
D j g(e

λD j esDi ξ0)dλ
)

ds

since g ∈ C1
L

= D j g(e
τDiξ0)− D j g(ξ0).

Because of (27) we obtain

D j g(e
τDiξ0)− D j g(ξ0) =

∫ τ

0
f(esDi ξ0)ds,

and, since f is continuous because of (25), then there exists D2
ij g(ξ0), and

D2
ij g(ξ0) = f(ξ0)

for all ξ0 ∈ Ω. Higher-order difference quotients can be treated in an analogous
way and we have

Remark 4.3. If g ∈ Cm
L(Ω) and

∆m+1
i1...im+1

g(h)(ξ)
h→0→ f(ξ), (28)

uniformly in ξ , then there exists Dm+1
i1 ...im+1

g and

Dm+1
i1...im+1

g = f.



C∞ regularity of solutions of an equation of Levi’s type in R2n+1 49

The same result also holds for mixed difference quotients:

Remark 4.4. If g ∈ C2
L(Ω) and ∂t g ∈ C1

L(Ω)

∆2
ij(∆e2n+1 g(h))(h)(ξ)

h→0→ f(ξ), (29)

uniformly in ξ , then there exists

D2
ij∂t g = f.

We can now apply these results to the representation formulas stated in the
Appendix. Since u ∈ C2,α is a fixed solution of equation (5), the coefficients
ai = ai(u) and bi = bi(u) are fixed, and the squares of the vector fields Xi = Xi(u)
and Yi = Yi(u) can act on any function v ∈ C2,α

L . According to (8) the linear
operator Lu may be written as

Luv =
n∑

i=1

(
X2

i v+ Y2
i v− (Xiai + Yibi)∂tv

)
,

and here we study the solutions of the equation

Luv = g. (30)

Proposition 4.1. If a and b are in C1,α, v ∈ C2,α
L (Ω) is a solution of (30) with

∂tv, g ∈ C1,α
L (Ω) and ∂t g ∈ Cα

L(Ω) then ∇v ∈ C2,β
L (Ω), for all β < α.

Proof. Let us prove that ∂tv ∈ C2,β
L (Ω), to begin with.

We can obviously represent v as in Theorem A.2, and we will differentiate this
formula. The proof is divided in three steps: in the first one we show that the terms
denoted as Bi,1, which are the most singular, can be uniformly approximated by
a family of smooth functions. In the second step we prove the existence of the third
derivative of v, and in the third we show that the derivative is of class Cβ . We only
give a short outline of the first and the third step, since they are a generalization of
[5, Theorem 4.2]. We will prove in detail only the second step, where we use the
properties of the new difference quotients introduced here.

Step 1. Let us assume that v is represented as in Theorem A.2, and let us study
the last term in Bi,1:

w(ξ) =
∫
∂tΓξ0(ξ, ζ)

(
bi(ζ)− P1

ξ0
bi(ζ)

)2(
∂tv(ζ)− P1

ξ0
∂tv(ζ)

)
φ(ζ)dζ.

Note that this is a principal value integral (in the sense of Definition 3.1). However
we can define

w1(ξ0) =
∫

D2
l j∂

2
t Γξ0(ξ0, ζ)

(
bi(ζ)− P1

ξ0
bi(ζ)

)2(
∂tv(ζ)− P1

ξ0
∂tv(ζ)

)
φ(ζ)dζ

and the integral is well defined, since∣∣D2
l j∂

2
t Γξ0(ξ0, ζ)

(
bi(ζ)− P1

ξ0
bi(ζ)

)2(
∂tv(ζ)− P1

ξ0
∂tv(ζ)

)∣∣ ≤ d−Q−1+3α(ξ0, ζ).
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Let us fix a function θ ∈ C∞(R) such that 0 ≤ θ ≤ 1, θ(τ) = 0 for all τ ≤ 1 and
θ(τ) = 1 for all τ ≥ 2. For every ε > 0 let us define

wε(ξ) =
∫
∂tΓξ0(ξ, ζ)

(
bi(ζ)− P1

ξ0
bi(ζ)

)2(
∂tv(ζ)− P1

ξ0
∂tv(ζ)

)
φ(ζ)θ

(
dξ0(ξ, ζ)

ε

)
dζ.

Arguing as in [5], by estimates (28) and (29) it is possible to prove that

sup
dξ0 (ξ,ξ0)<ε/2

|wε(ξ)−w(ξ)| ≤ c1ε
3+3α, (31)

and

sup
dξ0 (ξ,ξ0)<ε/2

∣∣D2
l j∂twε(ξ)−w1(ξ)

∣∣ ≤ c2ε
3α−1, (32)

where the positive constants c1, c2 do not depend on ξ0.

Step 2. In order to show that v is three times differentiable, here we study its
third-order difference quotients. Let us start again with the last term in Bi,1, always
called w. By (31), choosing ε = |h|, we get

∆2
l j∆e2n+1w(h)(ξ0) = ∆2

l j∆e2n+1w|h|(h)(ξ0)+ O(|h|3α−1)

(for a suitable ξ̃)

= D2
l j∂tw|h|(ξ̃)+ O(|h|3α−1) = w1(ξ0)+ o(1) as h → 0

Hence there exists
lim
h→0

∆2
l j∆e2n+1w(h)(ξ0) = w1(ξ0)

uniformly for ξ0 ∈ Ω. Since all the terms in Bi,1 can be treated in the same way,
there exists

lim
h→0

∆2
l j∆e2n+1 Bi,1(h)(ξ0). (33)

Let us now consider A1(ξ, ξ0). It is standard to see that

∂t A1(ξ, ξ0) = −
∫

Γξ0(ξ, ζ)∂t(Luvφ)(ζ)dζ ∈ C1,α
L ,

and, since D j = D j,ξ0 + (a j − P1
ξ0

a j)(ξ)∂t , then

D j∂t A1(ξ, ξ0) = −
∫

D j,ξ0Γξ0(ξ, ζ)∂t(Luvφ)(ζ)dζ−

−(a j − P1
ξ0

a j
)
(ξ)

∫
∂tΓξ0(ξ, ζ)∂t(Luvφ)(ζ)dζ.

The structure of this term is similar to Bi,1, and arguing as in the proof of (33), but
using first-order difference quotient, it is possible to show that there exists

lim
h→0

∆l D j∂t A1(h)(ξ0),
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which, by definition, means that there exists D2
l j∂t A1(ξ0, ξ0). Then, by Remark 4.1

it follows that there exists

lim
h→0

∆2
l j∆e2n+1 A1(h)(ξ0) (34)

uniformly for ξ0 ∈ Ω. Finally note that the terms Ci(ξ, ξ0) and Fi(ξ, ξ0) are of class
C∞, since they are the convolution of Γξ0 with a function of class Cα, identically
zero in a neighborhood of the pole of Γξ0 . Hence, by Remark 4.1 there exist

lim
h→0

∆2
l j∆e2n+1Ci(h)(ξ0) and lim

h→0
∆2

l j∆e2n+1 Fi(h)(ξ0). (35)

Summing up all the terms we deduce that there exists f such that

∆2
l j∆e2n+1v(h)(ξ0) → f(ξ0)

uniformly in Ω. Then, by Remark 4.4, there exists D2
l j∂tv = f .

Step 3. Let us prove the regularity of the third derivatives of v. The expression of the
function f is explicit, and depends on Γξ0 and its derivatives. Using the estimates
of Γξ0 proved in the previous section, and arguing exactly as in [5, Theorem 5.1],
we obtain a Hölder estimate of D2

l j∂tv, which implies that ∂tv ∈ C2,β
L for all β < α.

The proof that ∂xiv and ∂yiv are of class C2,β
L is similar. Indeed, since v ∈ C2,α

L

and ∂tv ∈ C1,α
L then ∂xi v = Xiv − ai∂tv ∈ C1,α

L and ∂yiv = Yiv − bi∂tv ∈ C1,α
L .

Besides, since g ∈ C1,α
L and ∂t g ∈ Cα

L then ∂xi g ∈ Cα
L and ∂yi g ∈ Cα

L. Hence
arguing as before we also get the existence of D2

l j∂xkv and D2
l j∂ykv, and their

Hölder estimates.

If we assume that the coefficients of the operator are more regular, we can prove
a better regularity result.

Proposition 4.2. If a, b ∈ C2,α
L (Ω), v ∈ C2,α

L (Ω) is a solution of (30) with g ∈
C1,α

L (Ω) then v ∈ C3,β
L (Ω) for all β < α.

Sketch of the proof. The proof is similar to Proposition 4.1 but makes use of Theo-
rem A.1, instead of Theorem A.2. In this way it is possible to show that there exists
f ∈ Cβ

L, β < α, such that

∆3
ijkv(h)(ξ0) → f(ξ0)

uniformly for ξ0 ∈ Ω. Then, by Remark 4.3, there exists D3
ijkv = f .

Iterating this result we get the following:

Theorem 4.1. If Lu is a linear operator with coefficients ai and bi of class Cm,α
L,loc

with m ≥ 2, and v ∈ C2,α
L is a solution of

Luv = g ∈ Cm−1,α
L,loc , (36)

then v ∈ Cm+1,β
L,loc for all β < α.



52 G. Citti, A. Montanari

Proof. The proof can be carried out by induction arguing as in [5, Theorem 6.1]
(where the same assertion is proved in R3), but making use of Propositions 4.1 and
4.2, just proved.

Now we can apply these results to function u, since it is a solution of

Luu = q(·, u, a(u), b(u), ∂tu).

Proposition 4.3. If u ∈ C2,α(Ω) is a solution of (5), then

a(u), b(u) and ∂tu ∈ C2,β
L (Ω)

for all β < α. In particular u ∈ C3,β
L (Ω).

Proof. By hypothesis u ∈ C2,α(Ω), so that q(·, u, a(u), b(u), ∂tu) ∈ C1,α(Ω). By
Proposition 4.1 we deduce that ∇u ∈ C2,β

L for all β < α, hence by the definition
of ai and bi given in (2) it follows that a, b ∈ C2,β

L . Because of (9) this implies that
u ∈ C3,β

L .

The derivatives in the directions ∂t and Xi do not commute, but the following
relation holds:

Remark 4.5. If ∂tu ∈ Cm,α
L , then ∂t Xiu and ∂tYiu ∈ Cm−1,α

L .

The derivatives ∂t Xiu and ∂tYiu, obviously exist, since u ∈ C2, and we only have
to prove that they are of class Cm−1,α

L . Indeed

∂t Xiu = Xi∂tu + ∂tai∂tu

(by (9))
= Xi∂tu + ∂tYiu∂tu = Xi∂tu + (Yi∂tu + ∂tbi∂tu)∂tu

(by (9))
= Xi∂tu + (Yi∂tu)∂tu − ∂t Xiu(∂tu)

2,

so that

∂t Xiu
(
1 + u2

t

) = Xi∂tu + utYi∂tu. (37)

By dividing up equality (37) by 1 + u2
t we get

∂t Xiu = Xi∂tu + utYi∂tu

1 + u2
t

. (38)

Analogously we get

∂tYiu = Yi∂tu − ut Xi∂tu

1 + u2
t

. (39)

The claim is proved, since Xi∂tu and Yi∂tu are of class Cm−1,α
L by hypothesis.

Let us now prove Theorem 1.1, by using Theorem 4.1 and an iteration pro-
cedure. We can not apply the iteration procedure directly to the functions Xiu and
Yiu, since these functions satisfy equations analogous to (36), but with the second
member not regular enough to apply Theorem 4.1. On the contrary we apply the
iteration to the derivatives in the directions ∂t , ∂xi = Xi −ai∂t , and ∂yi = Yi −bi∂t .
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Proof of Theorem 1.1. As we have already noted in Proposition 4.3, we can assume
that

u ∈ C3,β
L,loc and ∂tu ∈ C2,β

L,loc(Ω). (40)

Hence, by Remark 4.5 we also have

∂tYiu ∂t Xiu ∈ C1,β
L,loc(Ω). (41)

Differentiating equation (5) with respect to t, we get

Lu∂tu = −
n∑

i=1

(
2∂tYiuXi∂tu − 2∂t XiuYi∂tu

)+ ∂t
(
q(ξ, u, a, b, ∂tu)

)
(see [5, page 522]). In order to take the derivative of q, we will call (ξ, s, p, τ) ∈
Ω×R×R2n ×R a generic element in the domain of q. Hence v = ∂tu is a solution
of (

Lu − ∂q

∂τ
(ξ, u, a, b, ∂tu)∂t

)
v = −

n∑
i=1

(
2∂tYiuXi∂tu − 2∂t XiuYi∂tu

)
+∂tq(ξ, u, a, b, ∂tu)+ ∂sq(ξ, u, a, b, ∂tu)∂tu

+
n∑

i=1

∂q

∂pi
(ξ, u, a, b, ∂tu)∂tYiu −

n∑
i=1

∂q

∂pn+i
(ξ, u, a, b, ∂tu)∂t Xiu.

Obviously Lu − ∂q
∂τ
(ξ, u, a, b, ∂tu)∂t is a linear operator with C2,β

L,loc coefficients,
hence we can apply Theorem 4.1, and deduce that

∂tu ∈ C3,β
L,loc.

Now we can differentiate equation (5), with respect to the vector field Xi − ai∂t,

writing Lu as in (10). Let us begin with the derivative with respect to Xi .

Xi
(
X2

j + Y2
j

)
u =(

X2
j + Y2

j

)
Xiu + [Xi, X j]X ju + X j[Xi, X j ]u + [Xi,Y j]Y ju + Y j [Xi,Y j ]u =

= (
X2

j + Y2
j

)
Xiu + X j[Xi, X j ]u + Y j[Xi,Y j ]u + T 1

i, j, (42)

where

T 1
i, j = [Xi, X j]X ju + [Xi,Y j ]Y ju

= (Xia j − X jai)∂t X ju + (Xib j − Y jai)∂tY ju ∈ C1,β
L,loc

by (40) and (41). The second and third term in (42) can be evaluated as follows
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X j
([Xi, X j]u

)+ Y j
([Xi, Y j]u

) = X j
(
(Xia j − X jai)∂tu

)+ Y j
(
(Xib j − Y jai)∂tu

) =
(by (9))

= X j(XiY ju − X jYiu)∂tu + Y j(−Xi X ju − Y jYiu)∂tu

+(Xia j − X jai)X j∂tu + (Xib j − Y jai)Y j∂tu =(
if we set T 2

i, j = (Xia j − X jai)X j∂tu + (Xib j − Y jai)Y j∂tu ∈ C1,β
L,loc

)
= (X j XiY ju − X j X jYiu − Y j Xi X ju − Y jY jYiu)∂tu + T 2

i, j =
= ([X j, Xi]Y ju + Xi([X j,Y j ]u)+ [Xi,Y j]X ju − X2

jYiu − Y2
j Yiu

)
∂tu + T 2

i, j =
= Xi([X j,Y j]u)∂tu − (

X2
j + Y2

j

)
Yiu∂tu + T 3

i, j,

where we have called T 3
i, j = T 2

i, j + ([X j, Xi ]Y ju + [Xi,Y j ]X ju
)
∂tu.

Inserting this identity in (42) we get

Xi
(
X2

j +Y2
j

)
u = (

X2
j +Y2

j

)
Xiu + Xi([X j,Y j]u)∂tu − (X2

j +Y2
j

)
Yiu∂tu + T 1

i, j + T 3
i, j =

= (
X2

j + Y2
j

)
Xiu + Xi((X jb j − Y ja j)∂tu)∂tu − (

X2
j + Y2

j

)
Yiu∂tu + T 1

i, j + T 3
i, j =

(using (9) in the second term)

= (
X2

j + Y2
j

)
Xiu − Xi

(
X2

ju + Y2
j u
)
(∂tu)

2 + (X jb j − Y ja j)Xi∂tu∂tu

−(X2
j + Y2

j

)
Yiu∂tu + T 1

i, j + T 3
i, j =

= (
X2

j + Y2
j

)
Xiu − Xi

(
X2

ju + Y2
j u
)
(∂tu)

2 − (
X2

j + Y2
j

)
Yiu∂tu + Ti, j,

where
Tiju = T 1

i, j + T 3
i, j − (X jb j − Y ja j)Xi∂tu.

Bringing the second term to the left hand side we deduce that(
1 + (∂tu)

2) Xi
(
X2

j + Y2
j

)
u (43)

= (
X2

j + Y2
j

)
Xiu − (

X2
j + Y2

j

)
Yiu∂tu + Tiju.

Now we will compute the derivative with respect to ai∂t . As in [5, page 522], we
have

−ai∂t
(
X2

j + Y2
j

)
u = −ai

((
X2

j + Y2
j

)
∂tu + ∂t X ja j∂tu + ∂tY jb j∂tu

)
−ai

(
2∂ta j X j∂tu + 2∂tb jY j∂tu

)
= −ai

((
X2

j + Y2
j

)
∂tu + ∂t

([X j,Y j]u
)
∂tu
)

−ai
(
2∂ta j X j∂tu + 2∂tb jY j∂tu

)
.

Let us remark that

∂t
([X j,Y j ]u

) = ∂t
(
(X jb j − Y ja j)∂tu

)
(by (9))

= ∂t
((−X2

j − Y2
j

)
u
)
∂tu + (X jb j − Y ja j)∂

2
ttu.
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Hence

− (1 + (∂tu)
2) ai∂t

(
X2

j + Y2
j

)
u = −ai

((
X2

j + Y2
j

)
∂tu
)+ Kiju, (44)

where

Kiju = −ai
(
(X jb j − Y ja j)∂

2
ttu∂tu + 2∂ta j X j∂tu + 2∂tb jY j∂tu

)
is a function of class C1,β

L,loc.
Finally, summing up (43) and (44) we get(

1 + (∂tu)
2) (Xi − ai∂t)

(
X2

j + Y2
j

)
u

= (
X2

j + Y2
j

)
Xiu − (

X2
j + Y2

j

)
Yiu∂tu − Yiu

(
X2

j + Y2
j

)
∂tu + Tiju + Kiju

= (
X2

j + Y2
j

)
(Xi − ai∂t)u + 2X jai X j∂tu + 2Y jaiY j∂tu + Tiju + Kiju,

where
2X jai X j∂tu + 2Y jaiY j∂tu + Tiju + Kiju ∈ C1,β

L,loc.

Then

L((Xi − ai∂t)u) = (
1 + (∂tu)

2) n∑
j=1

(
X2

j + Y2
j

)
(Xi − ai∂t)u

= (
1 + (∂tu)

2)2
(Xi − ai∂t)

(
q(·, u, a, b, ∂tu)

1 + (∂tu)2

)

− (1 + (∂tu)
2) n∑

j=1

(
2X jai X j∂tu + 2Y jaiY j∂tu + Tiju + Kiju

) ∈ C1,β
L

and, by Theorem 4.1,
(Xi − ai∂t)u ∈ C3,β

L,loc,

for every i = 1, ..., n.
In the same way one can prove that

(Yi − bi∂t)u ∈ C3,β
L,loc,

for every i = 1, ..., n.
Hence

Xiu = (Xi − ai∂t)u + (Yi − bi∂t)u∂tu

1 + (∂tu)2
∈ C3,β

L,loc,

Yiu = − (Yi − bi∂t)u − (Xi − ai∂t)u∂tu

1 + (∂tu)2
∈ C3,β

L,loc

and u ∈ C4,β
L,loc. We have proved that

u ∈ C4,β
L,loc and ∂tu ∈ C3,β

L,loc(Ω).

Finally, iterating the procedure that we have applied to deduce this from (40), we
get the result.
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A. Appendix

We assume that u ∈ C2,α is a fixed solution of equation (5) and for every function
v ∈ C2,α

L we state a representation formula in terms of Luv. This formula is the
principal tool in the proof of Theorem 1.1. Since this is a local result, we can
always fix three open sets Ω, Ω1 and Ω2 such that Ω2 ⊂⊂ Ω1 ⊂⊂ Ω, and
a function φ ∈ C∞

0 (Ω) such that φ ≡ 1 in Ω1. Then we study only v|Ω2 = vφ|Ω2 .

Theorem A.1. If v ∈ C2,α
L (Ω), then for every ξ and ξ0 ∈ Ω2 we can represent

v(ξ) = vφ(ξ) in the following way:

φv(ξ) = A(ξ, ξ0)+
n∑

i=1

Bi0(ξ, ξ0)+ ∂tv(ξ0)

n∑
i=1

Ci(ξ, ξ0)+
n∑

i=0

Ei(ξ, ξ0),

where

A(ξ, ξ0) =
∫

Γξ0(ξ, ζ)Luv(ζ)φ(ζ)dζ,

if P0
ξ0
∂tv(ζ) = ∂tv(ξ0) then for k = 0, 1 Bik is the following function

Bik(ξ, ξ0) = 2
∫

Γξ0(ξ, ζ)
(
Xiai(ζ)− Xiai(ξ0)

)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−2
∫

Xi,ξ0Γξ0(ξ, ζ)
(
ai(ζ)− P1

ξ0
ai(ζ)

)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−2
n∑

k=1

(Xkai − Xiak)(ξ0)

∫
(xξ,k − xζ,k)∂tΓξ0(ξ, ζ)·

·(ai(ζ)− P1
ξ0

ai(ζ)
)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−2
n∑

k=1

(Ykai − Xibk)(ξ0)

∫
(yξ,k − yζ,k)∂tΓξ0 ·

·(ai(ζ)− P1
ξ0

ai(ζ)
)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−
∫
∂tΓξ0(ξ, ζ)

(
ai(ζ)− P1

ξ0
ai(ζ)

)2
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

+2
∫

Γξ0(ξ, ζ)
(
Yibi(ζ)− Yibi(ξ0)

)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−2
∫

Yi,ξ0Γξ0(ξ, ζ)
(
bi(ζ)− P1

ξ0
bi(ζ)

)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−2
n∑

k=1

(Xkbi − Yiak)(ξ0)

∫
(xξ,k − xζ,k)∂tΓξ0 ·

·(bi(ζ)− P1
ξ0

bi(ζ)
)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ
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−2
n∑

k=1

(Ykbi − Yibk)(ξ0)

∫
(yξ,k − yζ,k)∂tΓξ0 ·

·(bi(ζ)− P1
ξ0

bi(ζ)
)
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ

−
∫
∂tΓξ0(ξ, ζ)

(
bi(ζ)− P1

ξ0
bi(ζ)

)2
φ(ζ)

(
∂tv(ζ)− Pk

ξ0
∂tv(ζ)

)
dζ,

Ci(ξ, ξ0) = −2
∫

Γξ0(ξ, ζ)
(
ai(ζ)− P1

ξ0
ai(ζ)

)
Xi,ξ0φ(ζ)dζ

−2
∫

Γξ0(ξ, ζ)
(
bi(ζ)− P1

ξ0
bi(ζ)

)
Yi,ξ0φ(ζ)dζ

−
∫

Γξ0(ξ, ζ)
(
ai(ζ)−P1

ξ0
ai(ζ)

)2
∂tφ(ζ)dζ−

∫
Γξ0(ξ, ζ)

(
bi(ζ)−P1

ξ0
bi(ζ)

)2
∂tφ(ζ)dζ,

E0(ξ, ξ0) =
∫

Γξ0(ξ, ζ)v(ζ)Lξ0φ(ζ)dζ,

Ei(ξ, ξ0) = 2
∫

Γξ0(ξ, ζ)Xiv(ζ)Xi,ξ0φ(ζ)dζ

+2
∫

Γξ0(ξ, ζ)Yiv(ζ)Yi,ξ0φ(ζ)dζ

+
∫

Γξ0(ξ, ζ)
(
ai(ζ)− P1

ξ0
ai(ζ)

)2
∂tv(ζ)∂tφ(ζ)dζ

+
∫

Γξ0(ξ, ζ)
(
bi(ζ)− P1

ξ0
bi(ζ)

)2
∂tv(ζ)∂tφ(ζ)dζ,

We omit the proof, since it is similar to the analogous result in [5]: here we
have used (22) in the expression of Bik.

If v is more regular we also have the following formula:

Theorem A.2. Assume that v ∈ C2,α
L (Ω) and ∂tv ∈ C1,α

L (Ω). Then for every
φ ∈ C∞

0 (Ω) we have

φv(ξ) = A1(ξ, ξ0)+
n∑

i=1

Bi1(ξ, ξ0)+∂tv(ξ0)

n∑
i=1

Ci(ξ, ξ0)+D1(ξ, ξ0)+
n∑

i=0

Fi(ξ, ξ0)

where Bi1 and Ci have been defined in the previous theorem, and

D1(ξ, ξ0) = t
(
P1
ξ0
∂tv(ξ)− ∂tv(ξ0)

)
,

A1(ξ, ξ0) =
∫

Γξ0(ξ, ζ)
(

Luv(ζ)− 2
n∑

i=1

(ai Xi∂tv(ξ0)+ biYi∂tv(ξ0))
)
φ(ζ)dζ,

F0(ξ, ξ0) =
∫

Γξ0(ξ, ζ)(v(ζ)− t(P1
ξ0
∂tv(ξ)− ∂tv(ξ0)))Lξ0φ(ζ)dζ
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Fi(ξ, ξ0) = 2
∫

Γξ0(ξ, ζ)
(
Xiv(ζ)−tXi∂tv(ξ0)−ai

(
P1
ξ0
∂tv(ξ)−∂tv(ξ0)

))
Xi,ξ0φ(ζ)dζ

+2
∫

Γξ0(ξ, ζ)
(
Yiv(ζ)− tYi∂tv(ξ0)− bi

(
P1
ξ0
∂tv(ξ)− ∂tv(ξ0)

))
Yi,ξ0φ(ζ)dζ

+
∫

Γξ0(ξ, ζ)
(
ai(ζ)− P1

ξ0
ai(ζ)

)2(
∂tv(ζ)− P1

ξ0
∂tv(ζ)

)
∂tφ(ζ)dζ

+
∫

Γξ0(ξ, ζ)
(
bi(ζ)− P1

ξ0
bi(ζ)

)2(
∂tv(ζ)− P1

ξ0
∂tv(ζ)

)
∂tφ(ζ)dζ.

Proof. The assertion can be proved by applying Theorem A.1 to the function

w(ξ) = v(ξ)− t
(
P1
ξ0
∂tv(ξ) − ∂tv(ξ0)

)
.
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