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Abstract
The design principles of cognitive load theory and learning by analogy has independently 
contributed to our understanding why an instruction will or will not work. In an experimental 
study involving 97 Year 9 Australian students conducted in regular classrooms, we evalu-
ated the effect of the unguided problem-solving approach, worked examples approach and 
analogy approach on learning to solve two types of trigonometry problem. These trigonom-
etry problems (sin40° = x

6
 vs. cos50° = 14

x

 ) exhibited two levels of complexity owing to the 
location of the pronumeral (numerator vs. denominator). The solution procedure of worked 
examples provided guidance, whereas the unguided problem-solving was without any guid-
ance. Analogical learning placed emphasis on comparing a pair of isomorphic examples to 
facilitate transfer. Across the three approaches, solving practice problems contributed towards 
performance on the post-test. However, the worked examples approach and analogy approach 
were more efficient than the unguided problem-solving approach for acquiring skills to solve 
practice problems regardless of their complexity. Therefore, the worked examples approach 
and analogy approach that emphasizes algebraic transformation skills have the potential to 
reform instructional efficiency for learning to solve trigonometry problems.

Keywords Design principles · Instructional efficiency · Trigonometry problems · Cognitive 
load · Analogical learning

Introduction

Research in cognitive science has advanced our understanding of different design principles 
for the purpose of designing effective instructional methods to enhance learning. Advance-
ment in cognitive load theory has provided guidance to design instructions that promote 
effective learning across different domains (Sweller et al., 2011, 2019). The cognitive load 
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researchers advocate the design of instructions to minimize overloading the working memory 
load, which is constrained by duration (Peterson & Peterson, 1959) and capacity (Cowan, 
2001; Miller, 1956) to process novel information. The advancement of learning by analogy, 
which extends to learning by comparison has made notable impact upon maths education 
(Alfieri et al., 2013; Gentner, 1983; Richland & McDonough, 2010; Rittle-Johnson & Star, 
2007; Rittle-Johnson et al., 2017). The analogical comparison of a pair of isomorphic exam-
ples is expected to assist learners to draw inferences of a shared schema between them. In 
spite of the advancement in cognitive load theory and learning by analogy to generate design 
principles for instructional practices, regrettably, there is a gap between theory and practice.

While teaching maths in Australia, the lead author noted that maths teachers tend to 
emphasize the use of ‘rote learning’, which may fall short of addressing the conceptual 
understanding of solving two types of trigonometry problem that involve algebraic trans-
formation skills (Ngu & Phan, 2020). For example, regarding the trigonometry problem 
with a pronumeral as a numerator (e.g. sin40° = x

6
 ), students are taught to multiply sin40° 

and 6. On the other hand, for the trigonometry problem with a pronumeral as a denomina-
tor (e.g. cos50° = 14

x
) , students are taught to swap cos50° with x. We used type I problem 

and type II problem to stand for these two types of trigonometry problem. Mathematics 
education researchers have raised concern in regard to ‘rote learning’ of mathematical pro-
cedural (Kamii & Dominick, 1997), which limits opportunities to explore the nature of 
mathematics problems (Hiebert et al., 1996).

A personal conversation with a Malaysian teacher reveals that he taught students to 
memorize and use, for example, 3 = x

2
 as a point of reference for solving trigonometry 

problems such as sin40° = x
6
 (type I). Students are advised to modify 3 = x

2
 to become 3 = 

6

x
 for solving trigonometry problems such as cos50° = 14

x
 (type II). Apparently, this Malay-

sian teacher is aware that students can draw on prior knowledge of the algebraic transfor-
mation skills needed to solve linear equations with fractions (e.g. 3 = x

2
 vs. 3 = 6

x
 ), and use 

this to solve the two types of trigonometry problem (sin40° = x
6
 vs. cos50° = 14

x
 ). Nonethe-

less, it is unclear whether this is a common classroom instructional practice adopted by 
Malaysian teachers for teaching trigonometry problems. Moreover, we acknowledge that it 
is necessary to conduct research to ascertain such claim.

The empirical studies have supported the efficacy of the design principles generated by 
cognitive load theory (Sweller et al., 2011, 2019) and learning by analogy (Alfieri et al., 
2013), which could provide guidance to improve instructional practices in maths class-
rooms. A review by Renkl (2014) supports a similarity between learning from worked 
examples and analogical reasoning of worked examples, both of which highlight the acqui-
sition of generalized principles in the form of a schema. Moreover, a review on example-
based learning by Hoogerheide and Roelle (2020) reveals a similarity between the use of 
worked examples based on cognitive load theory, and analogical comparison of worked 
examples based on analogical learning theory.

As far as we are aware, there is one study that directly compared worked examples and 
analogical learning. Specifically, Timothy et  al. (2013) compared three worked example 
conditions (reading, self-explanation, analogy) in the domain of physics. The reading 
group read worked examples and solved practice problems. Although the design of the 
reading group is similar to the use of worked examples from a cognitive load perspective, 
the authors did not use the framework of cognitive load to justify the design of the reading 
group. The self-explaining group explained worked examples, and then generated expla-
nation for subsequent worked examples. The analogy group compared pairs of worked 
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examples, and then generated explanation for these pairs of worked examples. The results 
confirmed the hypotheses that the self-explaining group and analogy group outperformed 
the reading group for principle knowledge but not procedural knowledge. Presumably, not 
having opportunity to solve practice problems may have hampered the self-explanation 
group and analogy group to acquire procedural knowledge.

Given that researchers normally investigate the efficacy of the instructional design gen-
erated by cognitive load theory and analogical comparison framework separately, it is our 
purpose to fill this gap in cognitive science literature. We conducted an experimental study 
involving 97 Year 9 students in regular classrooms to examine the relative efficiency of 
the unguided problem-solving approach, worked examples approach and analogy approach 
for learning to solve trigonometry problems. The design of the unguided problem-solv-
ing approach and worked examples approach will be based on the design principles rec-
ommended by cognitive load theory, whereas the design of the analogy approach will be 
based on the framework of learning by analogy.

Cognitive load theory

Cognitive load theory is an instructional theory that generates design principles to mini-
mize the negative impact on working memory (Sweller et al., 2011, Sweller et al., 2019). 
The working memory is restricted in processing novel information which contains materi-
als that are new to a learner (Cowan, 2001; Peterson & Peterson, 1959). The working mem-
ory not only processes individual elements but it also processes the interaction between 
elements within the materials. Anything that needs to be learnt constitutes an element (e.g. 
symbol, number, procedure, etc.) (Chen et al., 2017). Once a learner has successfully pro-
cessed and understood the materials, it will be stored in the long-term memory as general-
ized knowledge structure in the form of a schema. The working memory is not limited in 
processing a schema; rather, it can process a schema as a single unit of element instead of 
multiple elements. This is because a schema encapsulates interacting elements into a single 
unit of element. Accordingly, a learner can retrieve a schema from the long-term memory 
to solve a familiar problem with minimum effort. In fact, the vast number of schemas in 
varying degrees of specification in the long-term memory enables us to function efficiently 
in a variety of contexts. Therefore, the main aim of instructional design is to ensure that the 
generation of schema will occur in working memory, and subsequently store in the long-
term memory.

There are three types of cognitive load that influences the design of instruction (Sweller, 
2010). First, the intrinsic cognitive load is determined by the level of element interactiv-
ity relative to a learner’s expertise in a domain. The interaction between elements within 
materials constitutes element interactivity. The level of element interactivity is propor-
tionate to the level of the complexity of materials. Once a learner has acquired expertise, 
the level of element interactivity and thus the imposition of intrinsic cognitive load will 
decrease and vice versa (Kalyuga et  al., 1998). Second, the extraneous cognitive load is 
determined by the level of element interactivity arises from inappropriate design of instruc-
tional materials, which interferes with learning. For example, the generation and testing 
of different solution steps via mean-end analysis in the case of problem-solving without 
any guidance is not helpful for the acquisition of schema (e.g. Sweller & Cooper, 1985). 
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Third, the germane cognitive load is determined by the level of element interactivity that 
is essential for learning and thus is intrinsic to the learning materials. For example, the 
variability practice problems increase the level of element interactivity (Likourezos et al., 
2019), but are helpful for schema acquisition. The variability practice problems require a 
learner to invest cognitive resources to distinguish a similar solution procedure across vari-
able contexts, which is helpful for the acquisition of the schema for a particular category of 
problems (Quilici & Mayer, 1996).

Unguided problem‑solving approach and worked examples approach

The design principles of cognitive load theory have mainly been applied in the context 
of well-structured domains such as mathematics that has a specific solution procedure 
(Sweller et al., 2011). One of the cognitive load effects is the worked examples effect. A 
worked example consists of a problem and solution steps. Those solution steps are consid-
ered problem-solving schemas. The worked examples effect occurs when studying worked 
examples mixes with solving practice problems imposes lower cognitive load but yields 
higher learning outcomes than solving equivalent practice problems (e.g. Renkl, 2017; van 
Gog et al., 2011, 2019). Students are likely to use weak problem-solving strategies such as 
trial-and-error or means-ends analysis to solve practice problems without any guidance. 
For example, a level of element interactivity may arise from using means-ends-analysis to 
reduce the difference between the goal and sub-goal, which is irrelevant to schemas acqui-
sition and thus imposes extraneous cognitive load. It should be noted that the unguided 
problem-solving approach for solving a well-structured domain such as trigonometry prob-
lems differs from the notion of exploring different solution paths mainly in ill-structured 
domains for gaining problem-solving competence. In the current study, the implementation 
of the unguided problem-solving approach for learning to solve trigonometry problems 
requires students to solve a set of practice problems without any guidance.

To promote learning of trigonometry problems, the design of a worked example encom-
passes both conceptual knowledge and procedural knowledge (Fig. 1). According to Rittle-
Johnson et al. (2015), conceptual knowledge refers to the underlying principle knowledge 
in a domain, whereas procedural knowledge refers to a sequence of actions to solve a prob-
lem. As shown in Fig. 1, the worked example includes a prompt (i.e. ÷ 26 becomes × 26) to 
help a learner to conceptualize ÷ 26 as an inverse operation to × 26 (conceptual knowledge). 
Moreover, the arrow aims to direct a learner’s attention to move ÷ 26 from the left-hand 
side to the right-hand side of the trigonometry problem (procedural knowledge). Therefore, 

Fig. 1  A worked example of a trigonometry problem with a pronumeral as a numerator
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the worked example highlights the interplay between conceptual knowledge and proce-
dural knowledge for learning to solve trigonometry problems that involve algebraic trans-
formation skills. In the acquisition phase, students needed to complete multiple worked 
example–practice problem pairs (Sweller, et  al., 2011; van Gog et al., 2011). They were 
expected to study and understand the solution procedure of worked examples, and then to 
transfer their understanding to solve practice problems that share similar problem structure. 
We will discuss learning by analogy in the next section.

The analogy approach

Multiple empirical studies in cognitive science research have affirmed the merit of learning 
by analogy to foster analogical transfer (e.g. Alfieri et al., 2013). A central tenet of learning 
by analogy is the use of prior knowledge of a learned problem to assist learning of a new 
problem that shares a similar problem structure and thus a similar solution procedure. In 
essence, the learned problem and new problem constitutes a pair of isomorphic problems. 
Successful one-to-one mapping of elements and their relationship between a pair of iso-
morphic problems would enable a learner to make inferences of a shared problem structure 
and thus a shared solution procedure between them.

Figure  2 shows the design of the analogy approach. The linear equation with a frac-
tion ( m

7
= 2) serves as a source example for learning to solve type I problem ( tan75◦ = x

26
) . 

This pair of isomorphic examples has a pronumeral that acts as a numerator and they share 
similar design feature, which is the same as the worked example in the worked examples 
approach. Thus, we will not describe their design feature separately here. Researchers have 
incorporated supporting cues to promote active comparison of a pair of isomorphic exam-
ples to facilitate analogical transfer (Alfieri et al., 2013; Richland & Simms, 2015). Prior 
research provides prompts (e.g. why might it be helpful to compare a pair of isomorphic 
examples?) to encourage deep thinking about the structural features of a pair of isomorphic 
examples (e.g. Rittle-Johnson & Star, 2007). In contrast, we provided explanatory prompts 
to assist students in conceptualizing the inverse operation, which is critical for solving the 
trigonometry problem (÷ 26 becomes × 26), and the linear equation with a fraction (÷ 7 
becomes × 7). In accordance with prior research (Richland et al., 2017), we placed a pair 
of isomorphic examples side-by-side to eliminate the cognitive load imposed in retrieving 
a source example. Furthermore, we juxtaposed a pair of isomorphic examples to encour-
age students to engage in one-to-one mapping of the relational elements (e.g. map m to x), 
which would expect to facilitate the identification of a shared solution procedure between 

pronumeral a as

Fig. 2  A pair of isomorphic examples
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them. Note that we expected students to have prior knowledge of the concept of pronu-
meral in which both m and x stand for a pronumeral.

In the acquisition phase, students were specifically instructed to study and compare 
such a pair of isomorphic examples. Having done that, they solved a practice problem. 
Prior work on analogical learning mainly focuses on conceptual understanding, and pay 
limited attention to the acquisition of procedural knowledge (e.g. Alfieri et al., 2013; Timo-
thy et  al., 2013). Conversely, research has affirmed the importance of including practice 
problems to promote procedural fluency (Loibl et  al., 2020). Therefore, to facilitate the 
acquisition of procedural knowledge, we innovated the design of analogical learning by 
requiring students to solve a practice problem after they had compared a pair of isomorphic 
examples.

Target domain

Research has investigated the effects of different approaches (geometric approach vs. ratio 
approach) on learning trigonometric functions in the domain of Trigonometry (Kendal & 
Stacey, 1998; Weber, 2005). The geometric approach emphasizes the use of a unit circle 
to illustrate the geometric process associated with the trigonometric functions. The ratio 
approach, however, uses the ratio of two sides of a right-angled triangle to define trigo-
nometric functions (e.g. sin30◦ = 1

2
 ). Apparently, the geometric approach was effective in 

assisting students to acquire conceptual understanding of the trigonometric functions in 
different quadrants (e.g. sin270◦ = −1) (Weber et al., 2008). However, Kendal and Stacey 
(1998) reported that students who were exposed to the ratio approach outperformed those 
students who learned via the unit circle model.

The focus of our enquiry is to assist students acquire the algebraic transformation skills 
involved in solving trigonometry problems (e.g. sin30◦ = �

2
 , solve for x). There is a similar-

ity between type I problems (e.g. sin30◦ = �

2
 ) and linear equations with fractions (e.g. 20 

=
�

8
 ), in which both share a similar solution procedure. In the domain of linear equations, 

Rittle-Johnson and Star (2009) assessed students’ conceptual understanding of the ‘ = ’ sign 
concept in linear equations. For example, students were required to indicate whether (i) 
2x = 30 and (ii) 15 + 2x = 30 + 15 are equivalent, and explained their reasoning. In the pre-
sent study, we assessed students’ conceptual knowledge of performing inverse operations, 
and then recognizing that such action would maintain the equality of the equations. As will 
be discussed later, in the concept test, for example, students demonstrated their concep-
tual understanding if they could indicate that (i) x

10
= sin53◦ and (ii)  x = sin53◦ × 10 are 

equivalent.

The complexity of trigonometry problems

In the domain of trigonometry, the trigonometric ratios (e.g. sin∅ =
opposite side

hypotensue
 ) are defined 

as the ratios of two sides of a right-angled triangle. In the present study, our focus is to 
assist students to acquire algebraic transformation skills required to calculate an unknown 
side length of a right-angled triangle whereby one angle and one known side length are 
given. Such a definition of trigonometric ratios results in two types of trigonometry 
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problem ( tan75◦ = x

26
 vs. sin32◦ = 50

x
 ), one of which has a pronumeral that acts as a 

numerator (type I), and the other has a pronumeral that acts as a numerator (type II). Given 
that a trigonometry problem ( tan75◦ = x

26
) and a linear equation with a fraction ( m

7
= 2 ) 

shares a similar solution procedure (Fig. 2), we unpack the complexity of the two types of 
trigonometry problem in line with prior research in the domain of linear equations (e.g. 
Nhu & Phan, 2016) from a cognitive load perspective.

Element interactivity, according to Sweller (2010), is a basic concept of cognitive load 
theory. Anything (e.g. a number, a symbol, a concept, a procedure) that requires learning 
is regarded as an element (Chen et al., 2017). Element interactivity refers to the interaction 
between elements in learning materials. The level of element interactivity acts as an index 
to determine the complexity of materials (Sweller, 2010). Using the concept of element 
interactivity, Chen et  al. (2015) explained the complexity of the solution procedure of a 
linear equation by estimating the number of interacting elements in its solution procedure. 
Likewise, building on prior work of Sweller and his colleagues (e.g. Chen et  al., 2015), 
we have classified the complexity of linear equations using the number of relational line 
and operational line (Ngu & Phan, 2015, 2016). For a linear equation such as 2x + 7 = 23, 
a relational line refers to the quantitative relationship in which the left-hand side of the 
equation equals to its right-hand side. An operational line refers to the use of an opera-
tion (i.e. + 7 becomes − 7, inverse operation) to alter the state of the problem, and such an 
action preserves its equality. The number of relational line and operational line determines 
the level of element interactivity, which reflects the complexity of the linear equations. As 
shown in Fig.  3, the type II problem with a pronumeral as a denominator ( sin32◦ = 50

x
) 

has more operational lines (2 vs. 1) and relational line (3 vs. 2) than the type I problem 
with a pronumeral as a numerator ( tan75◦ = x

26
). Furthermore, the nature of the elements 

also influences the complexity of linear equations (e.g. fraction, decimals, the pronumeral 
serves as a denominator) (Ngu & Phan, 2016). Accordingly, we distinguish two types of 
trigonometry problem that exhibits two levels of complexity where sin32◦ = 50

x
 (type II) is 

more complex than tan75◦ = x

26
 (type I).

The current study

The objective of this current study is to compare the relative efficiency of the unguided 
problem-solving approach, worked examples approach and analogy approach for learning 
to solve trigonometry problems that exhibit two levels of complexity (type I vs. type II) due 
to the location of the pronumeral ( tan75◦ = x

26
 vs. sin32◦ = 50

x
).

The first research question examined whether performance outcomes will favour type II 
problems across the three approaches. Given that the type II problems are more complex 

Fig. 3  Two types of trigonometry problem that differ due to the location of the pronumerals (numerator vs. 
denominator)
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than type I problems, we hypothesize that students will perform better for the type I prob-
lems than type II problems irrespective of the approach (hypothesis 1).

The second research question examined the relative efficiency of the three approaches 
on learning two types of trigonometry problem that exhibit two levels of complexity. On 
learning to solve trigonometry problems, an emphasis on analogical comparison activities 
would be more effective than the problem-solving without guidance. However, process-
ing two worked examples (i.e., a pair of isomorphic examples) concurrently would impose 
higher cognitive load than processing one worked examples in the worked examples 
approach, especially for students whose prior knowledge of linear equations with fractions 
were fragmented. We expect that the worked examples effect will occur in which the guid-
ance provided by the worked examples approach would be more efficient than the unguided 
problem-solving approach. Research has indicated that the impact of instructional design 
would be more pronounced for the complex problems rather than simple problems (Ngu 
et al., 2018; Chen et al., 2015; Sweller et al., 2011). Therefore, considering the design of 
the three approaches in the light of the aforementioned review, we hypothesize that per-
formance will not differ across the three approaches for the type I problems (hypothesis 
2a); however, performance on the type II problem will follow the order: worked exam-
ples > analogy > unguided problem-solving (hypothesis 2b).

The third research question tested whether performance on the concept test will dif-
fer across the three approaches. We predict that active analogical comparison of a pair of 
isomorphic examples would facilitate in-depth understanding of the structural features of 
the trigonometry problems (Rittle-Johnson & Star, 2007; Timothy et al., 2013). Moreover, 
the worked examples that show solution steps would facilitate the acquisition of problem-
solving schemas for trigonometry problems better than unguided problem-solving. Accord-
ingly, we hypothesize that performance on the concept test would follow the order: anal-
ogy > worked examples > unguided problem-solving (hypothesis 3).

The fourth research question examined whether accuracy in solving practice problems 
would reflect in success for the post-test and concept test. Research has affirmed the facili-
tative effect of solving practice problems upon learning outcomes (e.g. Ngu et al., 2018). 
We hypothesize association between scores on the practice problems and the post-test 
(hypothesis 4a), as well as scores on the practice problems and the concept test (hypothesis 
4b).

Design of the experiment

We used a 3 (approach: unguided problem-solving vs. worked examples vs. analogy) × 2 
(problem type: type I vs. type II) design to examine the impact of the three approaches on 
the pre-test, practice problems and post-test. The independent variable was the approach 
and the dependent variables were mean proportion scores for the pre-test, practice prob-
lems, and post-test. The approach was a between-subjects factor, whereas the problem type 
was a within-subjects factor. We conducted one-way ANOVA to examine the difference 
between the three instructional approaches for the concept test. We calculated the corre-
lation coefficient for the practice problems and post-test, and the practice problems and 
concept test to examine the impact of solving practice problems upon performance for the 
post-test and concept test.
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Participants

Ninety-seven Australian Year 9 students (boys = 49, girls = 48) whose mean age was 15.26 
(SD = 0.28) consented to participate in the study. They were drawn from two schools and 
two classes of each participating school in a regional area of Australia. According to the 
Head teacher, students had received lessons about the topic of trigonometry in Term 1 and 
thus they had basic knowledge of trigonometry problems. Data collection occurred in Term 
2.

Materials

The pre-test was identical to the post-test (Appendix) in terms of the number and types 
of trigonometry problem. It had a total of 18 problems with an equal number of type I 
problems (e.g. sin30◦ = x

4
) and type II problems ( cos39◦ = 5.5

x

) . The instruction sheet 
included the definition of trigonometric ratios, and solution steps of solving trigonometry 
problems (e.g. cos 55 ◦ × 9.23 = 5.29). The students had studied the definition of trigono-
metric ratio prior to participating in this study. Using a calculator, we expected the students 
to have learned, for example,  cos550 = 0.573576…. In the instruction sheet, students were 
instructed to use a calculator to check the answer, for example,  cos550 × 9.23 = 5.29 (cor-
rect to two decimal places). In other words, using a calculator, the students were expected 
to calculate  cos550 × 9.23, and then express the answer in two decimal places such as 5.29. 
This instruction sheet was common across the three approaches. All students attended a 
teaching phase, which was based on the material in the instruction sheet. Accordingly, the 
material in the instruction sheet aimed to assist students revise what they had been taught.

In relation to acquisition problems, there was an equal distribution of 12 type I problems 
(e.g. sin30◦ = x

4
) and 12 type II problems (e.g. cos39◦ = 5.5

x

 ) across the three approaches. 
Students in the unguided problem-solving approach solved 24 problems. Students in the 
worked examples approach completed 12 worked example–practice problem pairs. For 
each pair, students studied a worked example (Fig. 1) and solved a practice problem that 
shared a similar problem structure. We graded the 12 practice problems only. The 12 
worked example–problem pairs were similar to the 24 problems in the unguided problem-
solving approach except half of these were presented as worked examples that showed 
solution steps.

For the analogy approach, there were 12 pairs of isomorphic worked examples. Each 
pair (e.g. tan75◦ = x

26
 paired with m

7
 = 2) shared a similar solution procedure (Fig. 2). Stu-

dents were required to compare the solution procedure of each pair and then solve a similar 
practice problem. Again, we graded the 12 practice problems only. Overall, students in the 
analogy approach were presented with similar acquisition problems as those students in the 
worked examples approach except for those additional 12 linear equations with fractions.

Lastly, the concept test (Appendix) aimed to evaluate students’ understanding of the 
algebraic skills involved in solving trigonometry problems. Students needed to indicate, 
for example, whether (i)  x

14
= tan63◦ and (ii)  x = tan63◦ × 14 were equivalent and justify 

their answers.
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Procedure

The procedure was identical for students across the two schools. We obtained ethics clear-
ance prior to data collections. We administered group-testing - in regular classrooms. Two 
researchers and a maths teacher supervised the group-testing for each class across the two 
schools. We distributed the written task for each phase and collected the task after the allo-
cated time had elapsed. We randomly allocated 97 Year 9 students to the unguided prob-
lem-solving approach, worked examples approach, and analogy approach, resulting in 31 
students in each approach. Two students who did not complete all tasks were eliminated in 
the final analysis of data.

The experimental procedure comprised: (i) a pre-test (10  min), (ii) a teaching phase 
(10 min), (iii) an acquisition phase that consisted of an instruction sheet (5 min), acquisi-
tion problems (15 min), (iv) a post-test (10 min), and (v) a concept test (10 min). In previ-
ous cognitive load research, the length of the experimental procedure to complete vari-
ous tasks differs across studies, which may take about an hour (Ngu et al., 2018; Carroll, 
1994; Chen et  al., 2015; Cooper & Sweller, 1987; Kalyuga et  al., 2001). We postulated 
that an hour intervention would be sufficient to assess the impact of different instructional 
approaches to assist students acquire the algebraic skills required to solve two types of 
trigonometry problem. We assessed students’ acquisition of procedural knowledge (post-
test) and conceptual knowledge (concept test) to evaluate the effects the instructional 
approaches upon their performance outcomes.

We provided a briefing in regard to the aim of the experiment and the allocated time 
to complete each task. Specifically, we informed students that they were going to learn 
how to solve trigonometry problems. They should try their best to complete the written 
tasks, which did not constitute a test of mathematics performance. Furthermore, they could 
raise their hands and seek help if they could not understand the materials in the acquisition 
phase. For example, students may seek clarification in relation to the concept of the inverse 
operation (e.g. ÷ x becomes × x). Because only a few students asked for help, we did not 
document the data.

They were told to complete each task individually. The instruction to complete each task 
was presented on the first page of each task. We informed the students to read the instruc-
tion before they worked on each task. They did not receive assistance for solving practice 
problems.

The procedure began by having all students sat for a pre-test. Next, a researcher intro-
duced the trigonometric ratios using the material in the instruction sheet as a guide. Then, 

Table 1  Scoring: samples of 
students’ solutions

Sample solutions Score Explanation

tan35◦ =
x

18

x = tan35◦ × 18

x = 14.74 (wrong)

One point Applied an inverse 
operation correctly 
but made a computa-
tion error

sin50◦ =
x

4

x = sin50◦ ÷ 4 (wrong)  
x = 3.06

Zero point Applied an inverse 
operation incorrectly 
though the answer 
was correct
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students proceeded to complete their respective acquisition phases. Once students had 
completed the acquisition phase, they undertook a post-test. Lastly, students completed a 
concept test. Across the three approaches, students were matched with similar time allo-
cation and tasks. The only difference between the three approaches was the design of the 
acquisition problems. We expected learning to occur predominately in the acquisition 
phase, though students may also learn from the teaching phase.

Coding

The respective Cronbach’s alpha for the pre-test, post-test and concept test were 0.96, 
0.96 and 0.81. Concerning the practice problems, the Cronbach’s alpha for the unguided 
problem-solving approach, worked examples approach, and analogy approach were 
0.98, 0.96 and 0.93 respectively. The two researchers graded the pre-test, practice prob-
lems, post-test and concept test.

We allocated one point for each test item in the pre-test and post-test, and each prac-
tice problem that solved accurately regardless whether students showed solution steps 
or not. As shown in Table  1, we disregarded computational errors; however, we allo-
cated zero point if students made procedural errors. For the concept test, we did not 
grade the explanations because only a few students provided explanations. We assigned 
one point if students indicated, for example, (i)  x

18
= cos43◦ and (ii)  x = cos43◦ × 18 

were equivalent. The interscorer reliability was 100% for the concept test. However, the 
interscorer reliability for the pre-test, post-test and practice problems was about 90% 

Table 2  Means and standard deviations of proportion correct scores on the pre-test, practice problems, 
post-test, and concept test

The pre-test was the same as the post-test (type I problems = 9, type II problems = 9). For the practice prob-
lems, the worked examples approach and the analogy approach had six type I problems and six type II 
problems, respectively. The unguided problem-solving approach had 12 type I problems and 12 type II 
problems. The concept test had four questions and there were two pairs of trigonometric equations for each 
question

Unguided problem-solving 
approach

Worked examples 
approach

Analogy approach

Scores (proportion) n = 31 n = 31 n = 31
M (SD) M (SD) M (SD)

Pre-test
Type I problems 0.18 (0.33) 0.39 (0.47) 0.36 (0.45)
Type II problems 0.06 (0.20) 0.14 (0.29) 0.18 (0.33)
Practice problems
Type I problems 0.50 (0.45) 0.76 (0.41) 0.84 (0.32)
Type II problems 0.24 (0.40) 0.56 (0.46) 0.55 (0.48)
Post-test
Type I problems 0.71 (0.44) 0.76 (0.41) 0.85 (0.33)
Type II problems 0.39 (0.47) 0.60 (0.44) 0.58 (0.47)
Concept test 0.59 (0.32) 0.54 (0.27) 0.52 (0.37)
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owing to some ambiguous cases: for example, a student wrote x = sin(40 ×15) instead of 
x = sin40◦ × 15 despite providing a correct answer such as 9.64. We resolved any dis-
crepancy in the scores through discussion.

Results

The means and standards deviation of the pre-test, practice problems, post-test and concept 
test are presented in Table 2.

Pre‑test. The main effect of problem type was significant, F(1, 90) = 20.81, p < 0.001, 
η2 = 0.19, indicating higher mean score for the type I problems than type II problems. The 
approach × problem type interaction was nonsignificant, F(2, 90) = 0.90, p = 0.41, η2 = 0.02. 
The main effect of approach was also nonsignificant, F(2, 90) = 2.40, p = 0.10, η2 = 0.05. 
We performed pairwise comparisons to further examine the main effect of problem type. 
Students in the worked examples approach (p < 0.001) as well as the analogy approach 
(p = 0.01) performed better for the type I problems than type II problems. However, for the 
unguided problem-solving approach, no difference between the type I problems and type 
II problems was observed (p = 0.09). This result was a surprise given that we randomly 
assigned students to three approaches. In fact, students in the unguided problem-solving 
approach scored lower than the other two approaches for both type I and type II prob-
lems. The univariate test confirmed that students across the three approaches neither dif-
fered on type I problems, F(2, 90) = 2.23, p = 0.11, η2 = 0.05 nor on type II problems, F(2, 
90) = 1.34, p = 0.27, η2 = 0.03.

Across the three approaches, it appears that prior exposure to trigonometry problems 
assisted students to gain basic knowledge about type I problems, but their knowledge of the 
type II problems was poor. In other words, most students had almost completely forgotten 
how to solve trigonometry problem when the pronumeral acted as a denominator, point-
ing to a lack of conceptual understanding of solving trigonometry problems that involved 
algebraic transformation skills. It reveals that students had fragmented knowledge regard-
ing the application of the inverse operation to solve type II problems. Indirectly, the results 
indicated the challenge posed to students on learning to solve type II problems. Differential 
performance between the three approaches was not observed for either the type I problems 
or the type II problems. Thus, we had established a base-line performance in which students 
across the three approaches neither differed for the type I problems nor the type II problems.

Practice problems. A significant main effect for the problems type was found, F(1, 
90) = 32.36, p < 0.001, η2 = 0.27, revealing higher performance for the type I problems 
than type II problems, a nonsignificant approach × approach interaction was observed, F(2, 
90) = 0.38, p = 0.69, η2 = 0.01, and a significant main effect of approach was found, F(2, 
90) = 7.38, p < 0.001, η2 = 0.14. For the main effect of problem type, a follow-up pairwise 
comparisons revealed that students performed better for the type I problems than type II 
problems across the unguided problem-solving approach (p = 0.00), worked examples 
approach (p = 0.01) as well as analogy approach (p < 0.001). As hypothesized, students 
across the three approaches were more competent to solve the type I problems rather than 
type II problems.

For the main effect of approach, the univariate test confirmed differential perfor-
mance on the practice problems among the three approaches for the type I problems, 
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F(2, 90) = 6.37, p < 0.001, η2 = 0.13 as well as type II problems, F(2, 90) = 5.08, p = 0.01, 
η2 = 0.10. For the type I problems, pairwise comparisons indicated that students in both 
the worked examples approach (p = 0.03) and analogy approaches (p < 0.001) outper-
formed those students in the unguided problem-solving approach. Such results did not 
support hypothesis 2a. However, students in the worked examples approach and analogy 
approach did not differ (p > 0.05), thus supporting hypothesis 2a. A similar pattern of 
results emerged for the type II problems. The results supported hypothesis 2b in that both 
the worked examples approach (p = 0.02) and analogy approach (p = 0.02) performed better 
than the unguided problem-solving approach. However, the results did not support hypoth-
esis 2b in that the worked examples approach was not better than the analogy approach.

In sum, for the practice problems, as hypothesized, the type II problems posed greater 
challenge to learn than the type I problems across the three approaches. It is interesting to 
note that the beneficial effects of the worked examples approach and analogy approach not 
only were observed for the type II problems but also for the type I problems. However, the 
worked examples approach was not better than the analogy approach irrespective of the 
problem type. Presumably, prior knowledge of students pertaining to linear equations with 
fractions may have reduced cognitive load demand on processing two worked examples 
concurrently in the analogy approach.

Post‑test. Similar to the results obtained for the pre-test and practice problems, the 
main effect of problem type was significant, F(1, 90) = 25.60, p < 0.001, η2 = 0.22, indicat-
ing that the mean score for the type I problems was higher than type II problems. Neither 
the approach × problem type interaction effect, F(2, 90) = 0.91, p = 0.41, η2 = 0.02, nor the 
main effect of approach, F(2, 90) = 1.86, p = 0.16, η2 = 0.04 was significant. For the main 
effect of the problem type, in line with hypothesis 1, students in the unguided problem-
solving approach (p < 0.001), as well as in the analogy approach (p < 0.001) performed 
better for the type I problems than type II problems. Contrary to hypothesis 1, no differ-
ence between type I problems and type II problems was observed for the worked examples 
approach (p = 0.06).

For the nonsignificant main effect on the approach, the univariate test indicated neither 
differential performance for the type I problems, F(2, 90) = 0.98, p = 0.38, η2 = 0.02 nor the 
type II problems, F(2, 90) = 2.04, p = 0.14, η2 = 0.04. Thus, the results supported hypoth-
esis 2a, but not hypothesis 2b.

Overall, the results for the post-test partially supported hypotheses. Only two 
approaches (unguided problem-solving approach and analogy approach) instead of all three 
approaches performed better for type I problems than type II problems. Neither did all 
three approached differ on type I problems (in line with hypothesis 2a), nor did they differ 
on type II problems (contrary to hypothesis 2b).

Concept test. Contrary to the hypothesis, one way ANOVA performed on the three 
approaches for the concept test revealed nonsignificant result, F(2, 90) = 0.41, p = 0.66, 
η2 = 0.01. It appears that the guidance provided by the worked examples approach as well as 
the analogy approach was not more beneficial than the unguided problem-solving approach 
in regard to the acquisition of conceptual knowledge for the trigonometry problems.

Correlation coefficient test. We conducted correlation coefficient test to examine the 
extent to which performance on practice problems was reflected in the accuracy of the 
post-test and concept test. In support of hypothesis 4a, for the post-test, significant and 
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positive correlation coefficients were found for the unguided problem-solving approach 
(r = 0.89, n = 31, p < 0.001), worked examples approach (r = 0.84, n = 31, p < 0.001) and 
analogy approach r = 0.50, n = 31, p = 0.005). Thus, the results indicated positive effects of 
solving practice problems upon accuracy of solving test problems in the post-test.

For the concept test, significant and positive correlation coefficients were found for the 
unguided problem-solving approach (r = 0.44, n = 31, p = 0.01). However, positive corre-
lation but not significant were found for the worked examples approach (r = 0.29, n = 31, 
p = 0.11) and the analogy approach (r = 0.31, n = 31, p = 0.09). Such results only partially 
supported hypothesis 4b. Notably, neither the worked examples approach nor the anal-
ogy approach assisted students to acquire better conceptual understanding of the algebraic 
transformation skills involved in solving trigonometry problems. In short, solving practice 
problems had significant positive effects on the performance for the post-test across all the 
three approaches, but it only limited to the unguided problem-solving approach for the con-
cept test. According to Rittle-Johnson et  al. (2015), maths educators in Asian countries 
have the view that an emphasis on solving practice problems leads to the development of 
conceptual understanding. Thus, it appears that the developing of procedural knowledge 
through solving many practice problems in the unguided problem-solving approach had 
facilitated the development of conceptual knowledge.

Discussion

The objective of this current study was to compare the relative efficiency of the unguided 
problem-solving approach, worked examples approach and analogy approach for learning 
to solve trigonometry problems that exhibit two levels of complexity (type I vs. type II) 
due to the location of the pronumeral (numerator vs. denominator). Consistent with prior 
studies, the findings indicated that students across the three approaches performed better 
for the type I problems than type II problems (Chen et al., 2015; Sweller et al., 2011). In 
line with the hypothesis, the design of the worked examples approach (e.g. van Gog et al., 
2019) and analogy approach (e.g. Rittle-Johnson et  al., 2017) that highlighted concep-
tual knowledge and procedural knowledge were more efficient than the unguided prob-
lem-solving approach without any guidance for acquiring skills to solve practice problems 
regardless of their complexity. That said, their advantage did not extend to solve the test 
problems.

Processing a pair of isomorphic worked examples simultaneously (analogy approach) 
would impose approximately twice the level of element interactivity as compared to the 
processing of a single worked example (worked examples approach) (Chen et al., 2017). 
Nonetheless, students in the analogy approach may have sufficient prior knowledge of lin-
ear equations with fractions, which may reduce the level of element interactivity and thus 
cognitive load imposition when they processed a pair of isomorphic worked examples con-
currently. Thus, contrary to hypothesis, the worked examples approach was not better than 
the analogy approach.

As revealed by the correlation coefficient test, across the three approaches, accuracy in 
solving practice problems led to accuracy in the post-test. In contrast, significant correla-
tion between accuracy for the practice problems was reflected in the concept test for the 
unguided problem-solving approach only. A review by Rittle-Johnson et  al. (2015) indi-
cates that the acquisition of conceptual knowledge facilitates the acquisition of procedural 
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knowledge and vice versa. Accordingly, the acquisition of procedural knowledge through 
the completion of multiple practice problems in the unguided problem-solving approach 
may have contributed towards the acquisition of conceptual knowledge.

From the theoretical point of view, the findings have supported an advantage of 
providing instructional guidance. Apparently, students could scrutinize the solution 
procedure of worked examples (worked examples approach) and a pair of isomorphic 
examples (analogy approach) that shows the interplay of conceptual knowledge and pro-
cedural knowledge, and transfer their understanding to solve similar practice problems. 
We have innovated the design of analogical learning by requiring students to solve a 
practice problem after they had performed analogical comparison for a pair of isomor-
phic examples. Therefore, building on prior research on analogical learning that empha-
sizes the identification of the underlying problem structure (Alfieri et al., 2013; Rittle-
Johnson et al., 2017; Timothy et al., 2013), we have also highlighted the importance of 
acquiring procedural knowledge through solving practice problems. There is evidence 
that accuracy in solving practice problems was associated with accuracy in the post-test 
for the analogy approach.

Considering the practical implication in maths classroom, it is important to make a dis-
tinction between two types of trigonometry problem that exhibit two levels of complexity. 
Differential levels of complexity reflect differential levels of intrinsic cognitive load asso-
ciated with two types of trigonometry problem. Thus, it would be helpful to incorporate 
the relational line and operational line (Ngu & Phan, 2016) to describe the solution steps 
of trigonometry problems in mathematics curriculum so that mathematics educators can 
assist students to differentiate two types of trigonometry problem that exhibit two levels of 
complexity.

Contrary to prior research that indicates instructional consequences for complex prob-
lems rather than simple problems (Ngu et al., 2018; Chen et al., 2015), the results point to 
the efficacy of the worked examples approach and analogy approach to enhance learning of 
the trigonometry problems irrespective of their complexity. Accordingly, we recommend 
the incorporation of the worked examples approach and analogy approach in maths cur-
riculum for learning to solve trigonometry problems.

Limitations and future directions

In terms of the research design, cognitive load researchers normally do not measure stu-
dents’ motivation during the learning phase. The students in the present study may not 
share a similar level of motivation during the acquisition phase. Given that we randomly 
assigned students to three groups, the percentage of students who may not be motivated to 
complete the written tasks may be similar across the three groups and thus would not have 
affected the overall learning outcomes. Nonetheless, we could incorporate a measure of 
students’ motivation in future study to tease out such issue.

Prior research has used a pre-test to control prior knowledge between groups (Rittle-
Johnson, 2006). While we randomly assigned students to three groups and used a pre-test 
to establish a base-line performance on the trigonometry problems, we will also include 
mathematics test scores that consist of various topics to establish group equivalence in 
future enquiry. Moreover, to improve the reliability of the results, we will conduct a large-
scale investigation across multiple schools in future research.
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Prior studies have revealed that the inverse method is more efficient than the balance 
method for learning to solve linear equations especially for complex linear equations (Ngu 
et al., 2018). The main difference between the inverse method and balance method lies in 
the operational line (e.g. + 2 becomes − 2 vs. − 2 on both sides). Thus, familiarity with the 
use of the inverse method would facilitate understanding of not only the solution procedure 
of the worked examples, but also one-to-one mapping of a pair of isomorphic examples. 
Importantly, it should assist students to improve their performance on the concept test, 
which essentially evaluated the algebraic transformation skills related to the inverse opera-
tion. Therefore, the design of the intervention programme in future research should include 
an opportunity to practise the test items in the concept test.

Research has indicated the benefit of placing a pair of isomorphic examples in the same 
orientation to facilitate one-to-one mapping task between a pair of isomorphic examples 
(Kurtz & Gentner, 2013; Matlen et al., 2020). Instead, as shown in Fig. 2, we placed the 
fraction of the linear equation (i. e. m

7
 ). and the fraction of the trigonometry problem (i.e. 

x

26
 ) in opposite direction (right-hand side vs. left-hand side). It would be worthwhile to 

tease out this issue in additional research. We speculated that the processing of a pair of 
isomorphic examples simultaneously would incur higher cognitive load than processing 
one worked example as in the case of the worked examples approach. It is important to 
include a measure of cognitive load in future enquiry to validate this prediction.

The mathematics educators tend to view problem-solving in the context of solving ill-
structured mathematical problems that have multiple solutions (Hong & Kim, 2016). Thus, 
a problem-solver will explore and test different solution paths to arrive at multiple ways to 
solve an ill-structured problem. However, the cognitive science researchers tend to view 
problem-solving mostly in well-structured problems that have fixed schemas and thus spe-
cific solution procedures, and to lesser extent, ill-structured problems (Sweller et al., 2011). 
In their seminal work, Sweller and Cooper (1985) compared worked examples and con-
ventional solving problems to facilitate learning of algebraic transformation problems (e.g. 
a − c = (d + e)/c, solve for d). Other cognitive science researchers have documented a com-
parison between worked examples and unaided problem-solving (Hoogerheide & Roelle, 
2020) or studying worked examples and solving practice problems (van Gog, et al., 2019) 
to enhance problem-solving skills mainly in well-structured problems.

The theoretical rationale of the present study is based on cognitive science literature. 
The target domain of the present study is trigonometry problems that involve specific 
algebraic transformation skills. Accordingly, we named one of the compared instructional 
approaches as an unguided problem-solving approach. Nonetheless, additional research 
could replace ‘unguided problem-solving approach’ with ‘unguided solving task approach’ 
in line with the view of mathematics educators who tend to use problem-solving in the 
context of ill-structured problems rather than well-structured problems.

Conclusion

To conclude, it is timely to explore alternative instructional practices to enhance learn-
ing of trigonometry problems that posed a challenge to students. The facilitative effect 
of solving practice problems upon the post-test was evidence across the three approaches 
(unguided problem-solving, worked examples, analogy); moreover, it extends to the con-
cept test for the unguided problem-solving approach. Importantly, the inclusion of practice 
problems for the analogy approach had assisted students to acquire procedural knowledge. 
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The advantage of the worked examples approach and analogy approach over the unguided 
problem-solving approach was manifested for the practice problems only. Nevertheless, 
we contend that the worked examples approach and analogy approach have the potential 
to reform instructional practices for learning to solve trigonometry problems — if we 
strengthen students’ prior knowledge of the inverse operation concept, which is central to 
the algebraic transformation skills involved in solving trigonometry problems.

Appendix

Pre-test or Post-test 

You have 10 minutes to solve as many questions as you can. Show working in the space 
provided. Give the answers correct to two decimal places.

Section 1
1. 30° = 2. 15° =

.

3.       = 46°

Section 2

1.  75° = 2. 50° =

3. 39° =
.

Concept test

Are two equation pairs (i) & (ii) equivalent (have the same answer)? Circle ‘Yes’ or ‘No’ and 
give a reason (a short sentence). Are two equation pairs (a) & (b) equivalent (have the same
answer)? Circle ‘Yes’ or ‘No’ and give a reason (a short sentence). You have 10 minutes to 
complete this section.

Equation Equation Circle 
‘Yes ‘or  
‘No’

Reason

(i) cos 27° = 18 (ii)  cos

cos

cos

27° = Yes No

(a) cos 27° = 18 (b) =
18

cos 27°

Yes No
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