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Abstract Strategy flexibility, adaptivity, and the use of clever shortcut strategies are of
major importance in current primary school mathematics education worldwide. Howev-
er, empirical results show that primary school students use such shortcut strategies
rather infrequently. The aims of the present study were to analyze the extent to which
Dutch sixth graders (12-year-olds) use shortcut strategies in solving multidigit addition,
subtraction, multiplication, and division problems, to what extent student factors and
task instructions affected this frequency of shortcut strategy use, and to what extent the
strategies differed in performance. A sample of 648 sixth graders from 23 Dutch
primary schools completed a paper-and-pencil task of 12 multidigit arithmetic problems,
designed to elicit specific shortcut strategies such as compensation. Based on the
students’ written work, strategies were classified into whether a shortcut strategy was
used or not. Results showed that the frequency of shortcut strategies ranged between 6
and 21% across problem types, and that boys and high mathematics achievers were
more inclined to use shortcut strategies. An explicit instruction to look for a shortcut
strategy increased the frequency of these strategies in the addition and multiplication
problems, but not in the subtraction and division problems. Finally, the use of shortcut
strategies did not yield higher performance than using standard strategies. All in all,
spontaneous as well as stimulated use of shortcut strategies by Dutch sixth graders was
not very common.
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Introduction

The efficient and adaptive use of a variety of arithmetic strategies has become a major goal of
primary mathematics education worldwide (Verschaffel et al. 2007). Instead of focusing on
enhancing students’ mastery and efficient application of a limited range of standard strategies
(routine expertise), mathematics education reform emphasizes the importance of students’
adaptive expertise (Hatano 2003): the ability to apply meaningfully learned procedures
flexibly and creatively. In reform-oriented mathematics curricula, this striving for adaptive
expertise is reflected in the instructional content and approaches, focusing on diversity of
solution strategies. Reform movements throughout the world have identified adaptivity and
flexibility of strategy use as an important competence (e.g., Star et al. 2015) although the
implementation of this goal differs between countries. One relevant aspect of adaptive
expertise is the use of so-called shortcut strategies, in which the solution process is made
easier by adapting the numbers and/or the operation of the problem. For instance, the
subtraction problem 843 – 299 = ? may be solved by changing the operation to addition by
adding 1 and 543 to the minuend of 299. Or, one could change the numbers by subtracting 300
instead of 299, and compensating back the 1 subtracted too much.

In contrast to the importance attached to flexibility, adaptivity, and clever strategies,
empirical results have shown that primary school students do not use shortcut strategies very
frequently in Flanders (e.g., De Smedt et al. 2010; Torbeyns et al. 2009a, b), Germany (e.g.,
Heinze et al. 2009; Selter 2001), or The Netherlands (e.g., Blöte et al. 2001; Hickendorff et al.
2010). The current study aims to extend these results by investigating the use of shortcut
strategies in very favorable conditions, that is, by studying older students (with higher levels of
conceptual and procedural knowledge) who have received years of reform-based mathematics
instruction focusing on fostering adaptivity and clever strategies. Furthermore, the problems
were designed to maximally elicit shortcut strategies. Finally, the use of shortcut strategies was
stimulated by an explicit instruction to look for a clever strategy. The current study’s results
will shed light on the extent to which students use shortcut strategies in these very favorable
conditions, making it possible to place previous studies’ findings of limited use of shortcut
strategies in a broader perspective. Moreover, the results may have practical implications for
(reform-based) mathematics education striving for adaptive expertise.

Adaptivity, flexibility, and shortcut strategies

Strategic flexibility and adaptivity are considered important components of mathematical
proficiency (e.g., Baroody 2003; Xu et al. 2017). Although many different definitions and
operationalizations exist in the literature, they converge on two central themes: the knowledge
of different solution strategies and the ability to adapt them appropriately when solving a
problem (Rathgeb-Schnierer and Green 2017). Furthermore, it also clear that conceptual
knowledge of numbers, number relations, and operations is closely related to adaptivity and
flexibility (McMullen et al. 2016). In the current paper, flexibility and adaptivity are used
interchangeably as selecting the optimal strategy for a given problem in a given setting for a
given person. Although many researchers stress the importance of metacognitive processes in
regulated strategy selection, there is also ample evidence that strategies can be selected without
involving consciousness (see for instance Verschaffel et al. 2009). Furthermore, it may be that
one should speak of arriving at a strategy rather than selecting it, since it may rather be that
students notice an (adaptive) approach based on aspects of the numbers and their relations in
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the problems instead of selecting it from a number of possible strategies before starting the
solution (Threlfall 2009). Irrespective of these issues though, adaptivity and flexibility would
show in the way students answer specific mathematical problems. In this framework of
strategy flexibility and adaptivity, an important class of strategies are so-called shortcut
strategies which involve the flexible adaptation of the numbers and/or operations in the
problem to make the problem easier to solve (Torbeyns et al. 2009). Importantly, shortcut
strategies are valued not so much because of the (alleged) benefits to the students, but rather
because they signify something more “mathematical” than the acquisition of factual and
procedural knowledge (Threlfall 2009).

Solution strategies for solving multidigit arithmetic problems in the additive domain have
received ample research attention. There is a general consensus that there are three types of
mental,1 number-based solution strategies to solve multidigit addition and subtraction prob-
lems: (a) sequential strategies in which the subtrahend is decomposed: e.g., solving 45 − 29 via
45 − 20 = 25; 25 − 9 = 16, (b) decomposition strategies in which both operands are
decomposed: e.g., solving 45 − 29 via 40 − 20 = 20; 5 − 9 = − 4; 20 − 4 = 16, and (c) varying
(or shortcut) strategies: e.g., the compensation strategy 45 − 29 = 45 − 30 + 1 = 15 + 1 = 16 or
the indirect addition strategy (also called subtraction by addition) in which one adds on from
the subtrahend: e.g., 29 + 1 = 30; 30 + 15 = 45; so the answer is 1 + 15 = 16 (for overviews, see
for instance Beishuizen et al. 1997; Heinze et al. 2009; Peltenburg et al. 2012; Peters et al.
2013).

By contrast, the multiplicative domain has received much less research attention. The major
strategy categories to solve multidigit multiplication and division problems involve (a) repeat-
ed addition or subtraction: e.g., solving the multiplication problem 12 × 29 by repeatedly
adding (multiples of) 29s or solving the division problem 736 : 23 by repeatedly subtracting
(multiples of) 23s, (b) partitioning strategies in which one or both of the operands are
decomposed: e.g., solving 12 × 29 via 10 × 29 = 290; 2 × 29 = 58; 290 + 58 = 348, and (c)
simplifying (or shortcut) strategies, most notably compensation: e.g., solving 12 × 29 via
12 × 30 − 12 × 1 = 360 − 12 = 348 (Ambrose et al. 2003; Buijs 2008; Van Putten et al. 2005;
Zhang et al. 2014).

Previous studies on shortcut strategy use

In the domain of multidigit addition and subtraction, studies with German third graders
(Heinze et al. 2009; Selter 2001), Dutch second graders (Blöte et al. 2001), Flemish second
to fourth graders (De Smedt et al. 2010; Peters et al. 2013; Torbeyns et al. b; c), and recently, a
cross-national study of Dutch and Flemish third to sixth graders showed that students used the
shortcut strategies indirect addition, compensation, and other simplifying strategies rather
infrequently, usually below 20% (Torbeyns et al. 2017). In subtraction problems, compensa-
tion strategies seem to be used somewhat more often than indirect addition. The following
general patterns of factors impacting shortcut strategy use emerge. The first factor is the
instructional setting: generally speaking, students following a more reform-based investigative
or problem-solving program focusing on a diversity of strategies were more likely to use

1 The term mental strategies has been used with different meanings in the literature, referring either operating on
numbers with the head or entirely in the head (for more details, see Verschaffel et al. 2007. In the current paper,
the first definition is used: computing on numbers with the head, meaning that writing down solution steps is
possible.
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shortcut strategies than children in a more traditional skills-oriented program focusing on the
acquisition and mastery of standard strategies (Blöte et al. 2001; De Smedt et al. 2010; Heinze
et al. 2009). The second factor is problem characteristics: besides the impact of number
characteristics, the presentation format has also been found to have an effect, with word
problems eliciting more shortcut strategies than symbolically presented problems (De
Smedt et al. 2010). Third, the student factors gender, mathematics achievement level,
and grade were related to shortcut strategy use: boys more often used shortcut strategies
than girls (Blöte et al. 2001) and higher achievers and older students were also more likely
to use shortcut strategies than lower achievers and younger students (Blöte et al. 2001;
Heinze et al. 2009; Torbeyns et al. 2009; Torbeyns et al. 2017). Fourth and finally,
characteristics of the task or task instructions were important. Stimulating shortcut strat-
egies by asking students to solve a problem in different ways, or asking them to evaluate
different strategies, showed that students know more about these strategies than their
spontaneous use showed (Blöte et al. 2001; Torbeyns et al. 2009).

Very few studies have investigated the use of shortcut strategies in multiplication and
division problems. The studies of Hickendorff et al. (2010) and Fagginger Auer et al. (2016a)
with Dutch sixth graders showed that in multidigit division, shortcut strategies were used
rather frequently but still in a minority of solutions, and more often when students calculated
mentally (in the head) than when they wrote their solution steps down. However, since the
factors that were identified to affect shortcut strategy use in addition and subtraction were not
studied systematically in the studies addressing multiplication and division, it is yet unknown
whether these factors’ effects generalize beyond the additive domain.

Current study

Researchers and practitioners in contemporary mathematics education agree on the importance
of adaptive expertise, including the flexible, adaptive, and creative use of solution strategies to
solve arithmetic problems. Empirical results, however, have shown that the extent to which
students use clever, adaptive shortcut strategies spontaneously is rather limited. The current
study aims to extend these results by investigating the use of shortcut strategies in very
favorable conditions: (a) by studying older students who have, compared to younger children,
higher conceptual and procedural knowledge which is a prerequisite for using these strategies,
(b) by studying students who have received years of reform-based mathematics instruction in
which fostering adaptivity and clever strategies are part of their daily educational practices, (c)
by using arithmetic problems that all have number characteristics that maximally elicits these
shortcut strategies and that were presented as word problems, and (d) by providing an explicit
instruction to stimulate the use of these strategies. Furthermore, to give a more comprehensive
account of the adaptive use of shortcut strategies in arithmetic, problems from both the additive
and the multiplicative domains were included in the current study, allowing investigation of the
extent to which student and task factors identified to affect shortcut strategy use in addition and
subtraction problems generalize to multiplication and division problems.

To achieve these goals, a large sample of Dutch sixth graders was studied. In
The Netherlands, mathematics education can be characterized as rather heavily reform-based,
largely influenced by the principles of Realistic Mathematics Education (RME; Freudenthal
1973, 1991; Treffers 1993). In RME, the meaningful acquisition of a diversity of strategies is
central to instruction, exemplified by the early and prolonged focus on (self-invented) com-
putation strategies (e.g., van den Heuvel-Panhuizen 2008). RME became the dominant
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instructional approach in mathematics curricula for Dutch primary education at the end of the
twentieth century (Royal Dutch Society of Arts and Sciences 2009) and almost all elementary
schools use a mathematics textbook based on RME principles (Hop and Kraemer 2012;
Scheltens et al. 2013; see also Van Zanten and van den Heuvel-Panhuizen 2014). Since
teachers rely heavily on the textbook they use, it is very likely that all Dutch schools and
classes follow these principles to some extent.

All participating students completed a task of 12 multidigit arithmetic problems
(addition, subtraction, multiplication, and division) that had number characteristics ex-
pected to elicit specific shortcut strategies. For instance, the multiplication problem 6 ×
34.95 was designed to elicit the compensation strategy 6 × 35 − 6 × 0.05. The students
were required to show their working in a calculation box, which was used to infer
whether a shortcut strategy was used or not. The effects of several factors that previous
studies identified as impacting the use of shortcut strategies were investigated: the
student factors gender and mathematics achievement level and the task instructions with
or without explicit instructions to look for a shortcut strategy. Finally, the performance
with the different strategies was analyzed, since the assumed efficiency of shortcut
strategies has yet to be supported by empirical results.

This study was guided by four research questions. First, what is the overall extent to
which the Dutch sixth graders use shortcut strategies? We hypothesized the frequency of
shortcut strategies to be higher than that in previous studies, because the participating
students were older and therefore most likely had higher conceptual knowledge facilitating
the adaptation of numbers and/or operations that is required for using shortcut strategies
(McMullen et al. 2016; Robinson et al. 2016; Torbeyns et al. 2009), as well as more years of
schooling in a diversity of (shortcut) strategies. Since previous studies usually resulted in no
more than 20% shortcut strategy use, we expected the use of shortcut strategies in the current
study would be higher than 20%. Second, to which extents do the student factors gender and
general mathematics achievement level affect the likelihood to use shortcut strategies? We
hypothesized that boys are more inclined to use shortcut strategies than girls (e.g., Blöte et al.
2001; Hickendorff et al. 2010), and that students with higher mathematics achievement level
are more likely to use shortcut strategies than students with lower level achievement (Heinze
et al. 2009; Torbeyns et al. 2009; Torbeyns et al. 2006). Third, to what extent does
stimulating the use of shortcut strategies by providing an explicit instruction to “have a
close look at the numbers and use a clever strategy” increase shortcut strategy use? We
hypothesized that students solving the problems with this explicit instruction would use a
shortcut strategy more often than students who did not receive this instruction, given
previous findings of the effect of task instructions (Blöte et al. 2001; Torbeyns et al.
2009). Fourth and finally, how well do the students perform with the different strategies?
According to a rational task analysis, these shortcut strategies are more efficient than standard
strategies because they require fewer computational steps (see also Torbeyns et al. 2009).
However, the invention and execution of these strategies requires high levels of procedural
and conceptual knowledge of numbers, number relations, and operations and the ample
practice with the standard strategies most likely leads to a rather fluent efficiency in standard
strategies (Lemaire and Siegler 1995; Torbeyns et al. 2009). An unresolved question is how
these opposing mechanisms affect students’ performance with shortcut strategies. We hy-
pothesized, however, that students who choose to use a shortcut strategy do this for its
efficiency benefits, and that this would be reflected in their superior performance with
shortcut strategies compared to standard strategies.
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Method

Participants

Participants were 648 students from grade 6 with mean age 12 years 0 months (SD = 5 months)
originating from 23 different primary schools, with 9 to 79 students participating per school
(average 28 students per school). These schools were spread over the entire country of
The Netherlands. The sample consisted of 288 boys, 323 girls, and 37 students with gender
information missing.

The majority of the current study’s participants (N = 618) also completed CITO’s End of
Primary School Test (CITO 2009), a widely used test in The Netherlands that aims to give an
objective advice on the most suitable track of secondary education. This covers the domains of
mathematics, language, and study skills with over 150,000 sixth graders participating each
year. On the 60-item subtest on mathematics (KR20 = .91), the current sample scored on
average 41.8 items correct (SD = 10.5), which was slightly lower than the national average of
42.8 correct (SD = 10.5). For each student, a percentile rank score based on this national
sample could be computed. The median national percentile rank in the current sample was
50.0, with first and third quartiles 23.0 and 71.0, respectively. These figures indicate that the
mathematics achievement distribution was slightly lower in the current sample than that of the
national sample. Ethnic status information was available for 553 students, and the percentage
of ethnic minority students in the current sample (21.7%) was markedly higher than that in the
national sample (12.0%).

Material

The task consisted of 12 multidigit arithmetic problems. There were three problems per
operation: addition, subtraction, multiplication, and division. Each problem was presented as
a word problem (i.e., in a realistic context) as is common in current Dutch educational and
testing setting (Hickendorff 2013). There were two problems printed per page (A4-sized).
Each problem was presented with an empty “calculation box’ next to it, in which students had
to write down their working. There was a written instruction at the start of the task stating
(translated from Dutch) “It is important to show your working in the calculation box.
Thereafter, note down your answer on the line. If you do not write anything in the calculation
box, your answer will be scored as incorrect.’

Table 1 shows the number characteristics of the problems, which were chosen to make a
shortcut strategy possible. In the addition problems, three numbers had to be added, and the
first and third number made a round hundred (problems a and b) or a round thousand (problem
c). Combining the first and third addend was the possible shortcut strategy for addition (e.g.,
316 + 178 + 284 = 600 + 178 = 778). In the subtraction problems, the subtrahend was close to
a round hundred (problems a and b) or a round thousand (problem c). This made two shortcut
strategies possible: compensation of the subtrahend (e.g., 827 − 388 = 827 − 400 + 12 = 427 +
12 = 439) or indirect addition: adding-on from the dividend (388 + 12 = 400; 400 + 427 = 827,
so the answer is 12 + 427 = 439). In the multiplication problems, one of the multiplicands was
close to a round number, making compensation possible (e.g., 7 × 54.95 = 7 × 55 − 7 × 0.05 =
385 − 0.35 = 384.65). Finally, in the division problems, the dividend was close to one hundred
times the divisor, also making compensation possible (e.g., 784 : 8 = 800 : 8 − 16 : 8 = 100 −
2 = 98).
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There were two versions of the task: version A without an explicit instruction for the
students to look for a clever shortcut strategy and version B with this explicit instruction for
problems 5 through 12. The order of the problems was the same in both task versions and is
shown in Table 2. The first four problems—one of each operation—were the baseline
problems, presented without an instruction to look for a shortcut strategy. In task version B,
these four baseline problems were followed by a written instruction (translated from Dutch)
“Compute the answer to the following problems as cleverly as possible. Have a close look at
the numbers in the problem. Show your working in the calculation box”. Furthermore, above
each calculation box of problems 5 through 12, the reminder “Compute in a clever way!”2 was
printed.

Procedure

The current task was administered as part of a pretest study for the CITO End of Primary
School Test. A complete test booklet consisted of six subtests from the domains mathematics,
language, and study skills. Students completed each subtest on a different day. One of the
subtests on mathematics included the current task of 12 problems, and an additional 16
mathematics problems that were administered for other research purposes. Classroom assign-
ment was used to assign students one of the two task versions A (320 students) or version B
(328 students).

The task was administered in the classroom, and each student worked individually without
time limit. At the start, teachers read the written instruction regarding the calculation box
together with the students. The teachers in the classrooms where task version B was admin-
istered were instructed not to mention the upcoming instruction for shortcut strategy use, in
order not to affect the spontaneous use of such strategies on the baseline problems.

The students completed the End of Primary School Test (CITO 2009) as part of their final
year’s standardized assessment at most one month after the students participated in the current
study.

Solution strategies

Students’ solution strategies were coded based on what they wrote in the calculation box. Of
all 7776 trials (648 student × 12 problems), in 556 instances (7.2%), this was not possible
because (a) the student did not write his/her working in the calculation box (3.8%), (b) the
written work was unclear (0.5%), (c) a wrong operation was used; e.g., adding instead of
subtracting the numbers (1.1%), or (d) the problem was skipped entirely (1.7%).

Table 1 Number characteristics of the 12 problems

Problem type Problem a Problem b Problem c

Addition 316 + 178 + 284 236 + 187 + 164 3463 + 2755 + 1537
Subtraction 827 − 388 214 − 87 3115 − 2986
Multiplication 7 × 54.95 6 × 34.95 8 × 2495
Division 784 : 8 490 : 5 2772 : 28

2 In Dutch, the instruction was Reken handig! which is a phrase that is common in Dutch mathematics textbooks
to stimulate the use of clever shortcut strategies, so students were likely aware of what was intended.
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In the remaining trials, the solution strategies were categorized into whether a shortcut
strategy was used or not. The solution strategy was coded as a shortcut strategy (a) in the
addition problems if the first and third terms were combined, (b) in the subtraction problems if
either adding-on from the subtrahend using round numbers or compensation of the subtrahend
was used, (c) in the multiplication problems if compensation of the second term (i.e., rounding
up) was used, and (d) in the division problems if compensation of the dividend (i.e., rounding
up) was used.

Six independent raters (undergraduate research assistants) each coded one-sixth of the
material. To assess the agreement in categorization, the solution strategies of 63 students
(756 trials; 10–11 students per coder) were double-coded by another of the six raters using a
rotational design (rater B coded 11 students originally coded by rater A; rater C coded 11
students originally coded by rater B; etc). The percentage agreement was 92.5% and Cohen’s
kappa (Cohen 1960) was .75, indicating substantial and satisfactory agreement between raters.

Statistical analyses

The data had a hierarchical structure with problems nested in students and students nested in
schools, which necessitated a multilevel modeling approach. Because the dependent variables
were dichotomous (shortcut strategy used yes or no in research questions 1 to 3, and answer
correct or incorrect in research question 4), we used binary logistic random effect models, or
equivalently multilevel logistic regression models, (Jaeger 2008; see also applications by
Fagginger Auer et al. 2016a, 2016b). We specified these models with random intercepts for
students, schools, and items (De Boeck 2008). Likelihood ratio (LR) tests were used to
statistically test whether certain main effects or interaction effects were significant. In LR-
tests, the improvement in model fit (log-likelihood) of the more complex model containing a
specific effect, compared with the simpler model without that effect, yields a χ2 statistics that is
tested for statistical significance (Jaeger 2008). The logistic regression parameter estimates b
are scaled on a logit scale. They are tested for statistical significance with the Wald statistics

z ¼ b
SEb

. They can be converted to the effect sizes by computing the odds ratio: OR= eb. The

analyses were carried out in the general computing platform R (R Core team 2015) using the
glmer-function in the lme4-package (Bates et al. 2015).

Results

The results are presented along the four research questions, regarding (1) the overall extent
of shortcut strategy use, (2) the influence of students’ gender and mathematics

Table 2 Design of the two task versions

Problem no. 1 2 3 4 5 6 7 8 9 10 11 12

Version A Aa Sa Ma Da Ab Sc Mb Dc Ac Sb Mc Db

Version B Aa Sa Ma Da Ab
a Sc

a Mb
a Dc

a Ac
a Sb

a Mc
a Db

a

A addition, S subtraction, M multiplication, D division
aWith explicit instruction to use a clever shortcut strategy

584 M. Hickendorff



achievement level, (3) the effect of stimulating shortcut strategy use with the explicit
instructions to “look for a clever strategy,” and (4) the performance with the different
strategies.

Overall extent of shortcut strategy use

The overall frequency distribution of the number of problems solved with a shortcut strategy
was very skewed: nearly half of the students (45%) solved none of the problems with a
shortcut strategy, and a small percentage of students (3%) solved more than half of the
problems with a shortcut strategy. On average, students solved 1.5 problems (SD = 2.1) out
of the 12 problems with a shortcut strategy. Thus, shortcut strategies were not very common.

Influence of student factors: gender and mathematics achievement level

Table 3 shows the percentage of shortcut strategy use by problem type, gender, and general
mathematics level. Twelve students who skipped half or more of the baseline problems and/or
the remaining problems and 35 students without gender information and/or mathematics
achievement level score were excluded from the multilevel logistic regression analyses, yielding
an effective sample size of 600. The empty model showed that the between-schools variance
accounted for 7.6% of all variance in shortcut strategy use (intra-class correlation of .076).

Next, the effects of gender and mathematics achievement level were added to the model.
Both variables significantly affected shortcut strategy use. Girls were less inclined to use a
shortcut strategy than boys (b = − 0.51, z = − 3.08, p = 0.002, OR = 0.60), and the higher
students’ mathematics level, the larger the probability to use a shortcut strategy (b = 0.52,
z = 5.82, p < .001, OR= 1.68). The interaction between gender and mathematics achievement
level was not significant (LR χ2 (1) = 0.29, p > .05).

Spontaneous versus stimulated shortcut strategy use

To investigate whether including an explicit instruction to “have a close look at the
numbers and use a clever strategy” affected students’ use of shortcut strategies, the
difference between students completing task versions A (without this instruction) and B

Table 3 Frequency of shortcut strategy use by problem type, gender, and general mathematics level (ML)

Shortcut Standard Not codable

Addition 393 (20%) 1506 (77%) 45 (2%)
Subtraction 111 (6%) 1728 (89%) 105 (5%)
Multiplication 219 (11%) 1612 (83%) 113 (6%)
Division 225 (12%) 1425 (73%) 294 (15%)

Boys 512 (15%) 2603 (75%) 341 (10%)
Girls 393 (10%) 3336 (86%) 147 (4%)

Low ML 179 (7%) 2134 (83%) 267 (10%)
Medium ML 328 (13%) 2085 (82%) 131 (5%)
High ML 403 (18%) 1787 (78%) 102 (4%)

Overall 948 (12%) 6271 (81%) 557 (7%)
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(with this instruction on problems 5–12) was analyzed in the multilevel logistic regres-
sion models. These two groups did not differ in their shortcut strategy use on the four
baseline problems, which were presented without this instruction in both task versions
(b = − 0.19, z = − 0.65, p > .05, OR = 0.83). Students who received the instructions to
look for a clever strategy on problems 5–12 (task version B) were significantly more
likely to use a shortcut strategy on those problems than students who did not receive
these instructions (task version A), b = 0.71, z = 3.81, p < .001, OR = 2.03. Thus, the task
instructions designed to stimulate the use of shortcut strategies did increase students’
shortcut strategy use.

To investigate the influence of these task instructions further, interaction effects of task
instruction with problem type, gender, and general mathematics level were tested. The
interaction effect of task instruction with problem type was significant (LR χ2 (3) = 17.07,
p < .001), as was the interaction effect of task instruction with mathematics achievement level
(LR χ2 (1) = 16.66, p < .001). The interaction effect of task instruction with gender was not
significant (LR χ2 (1) = 0.37, p > .05). Furthermore, the three-way interaction between task
instruction, problem type, and mathematics achievement level was significant (LR χ2 (3) =
25.74, p < .001). Further inspection of this effect showed that the task instructions only
affected the shortcut strategy use in the addition and multiplication problems, see Fig. 1.
The effect of the instruction was significant on the addition and the multiplication problems
(b = 1.24, z = 5.01, p < .001, OR = 3.54 and b = 0.65, z = 2.53, p = .011, OR = 1.91, respective-
ly). The instruction did not have a significant effect on shortcut strategy use on the subtraction
and the division problems (b = 0.52, z = 1.71, p > .05, OR = 1.68 and b = 0.28, z = 1.12,
p > .05, OR = 1.32, respectively). Furthermore, the effect of the instruction was larger for
students with a higher mathematics achievement level than for students with a lower level in
the addition problems only (b = 1.06, z = 6.28, p < .001, OR= 2.89), see Fig. 2. For the other
problem types, the effect of the instruction was not affected by students’ mathematics
achievement level.

Performance with the different strategies

Table 4 presents the average percentage of correct answers for trials solved with a
shortcut strategy and with a standard strategy, by problem type and by gender. Mathe-
matics achievement level was left out of these analyses because of its large overlap with
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task performance, and including it could obscure relevant effects of other variables. To
statistically test the performance difference between shortcut and standard strategies,
again, a multilevel logistic regression analysis with random intercepts for students,
schools, and items was performed but now with accuracy (0 = incorrect; 1 = correct) as
a dependent variable. The empty binary logistic random effect models showed that the
between-schools variance accounted for 15.6% of all variance in performance (intra-class
correlation of .156). Next, the variable strategy use (shortcut vs. standard) was added as a
trial-specific predictor (see for more details Fagginger Auer et al. 2016a; Hickendorff et
al. 2009). Overall, the effect of shortcut strategy use on accuracy was not significant (b =
− 0.05, z = − 0.42, p > .05, OR = 0.95). However, the interaction effects of strategy use
with problem type and with gender were both significant (LR χ2 (3) = 15.34, p < .001
and LR χ2 (1) = 7.17, p < .01, respectively).

Figure 3 graphically illustrates these interaction effects. For addition problems, performance
with shortcut strategies was significantly lower than that with standard strategies (b = − 0.55,
z = 2.81, p < .01, OR= 0.58). For division problems, the opposite pattern emerged: perfor-
mance with shortcut strategies was significantly higher than that with standard strategies (b =
0.52, z = 2.41, p = .02, OR = 1.68). On the subtraction and multiplication problems, the
difference between shortcut and standard strategies was not significant (b = − 0.45, z = −
1.53, p > .05, OR= 0.64 and b = 0.11, z = 2.41, p > .05, OR= 1.12). Regarding gender, the
performance difference between shortcut and standard strategies was not significant for boys
(b = 0.24, z = 1.58, p < .001, OR = 1.27). By contrast, for girls, the performance with the

Table 4 Percentage correct within shortcut and standard strategies, by problem type and by gender

Shortcut (%) Standard (%)

Addition 89 91
Subtraction 81 87
Multiplication 71 73
Division 84 80

Boys 84 81
Girls 82 84

Overall 83 82
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shortcut strategies was significantly lower than that with the standard strategies (b = − 0.37, z =
− 2.27, p = .024, OR = 0.69).

Discussion

One of the mathematics education reform aims is that children use efficient, clever strategies
depending on the number characteristics of the problem (Verschaffel et al. 2007). The present
study’s findings, however, show that Dutch children at the end of primary school are not very
much inclined to use such shortcut strategies, although the characteristics of the problems
administered were very favorable for shortcut strategies. The use of shortcut strategies—
spontaneous as well as stimulated by explicit instruction—ranged between 6% (subtraction
problems) and 21% (addition problems). In line with previous studies’ results on flexible and
various strategy use, boys were more inclined to use shortcut strategies than girls and students
with higher mathematics achievement used shortcut strategy more often than their lower
achieving peers. Although an explicit instruction in the task to look for a clever strategy
increased shortcut strategy use significantly, the effect was small and turned out to be
significant for the addition and multiplication problems only. Moreover, in the addition
problems, the effect of the instruction was stronger for higher achievers than for lower
achievers, similar to the findings of Torbeyns, De Smedt, and colleagues (2009). Finally,
overall, shortcut strategies were not more accurate than standard strategies. Thus, the assumed
efficiency benefits of shortcut strategies are not reflected in the empirical performance.

One explanation for the overall rather low frequency of shortcut strategy use may be that
since children this age have been instructed standard procedures for multidigit arithmetic, they
prefer these standardized procedures (cf Selter 2001; Torbeyns and Verschaffel 2013, 2016)
and are therefore less inclined to look for specific efficient strategies than before these
procedures were instructed. Once students are explicitly taught the digit-based algorithms,
they tend to prefer these algorithms over the previously learnt number-based strategies, also on
tasks for which the use of shortcut strategies would be equally or even more efficient
(Verschaffel et al. 2007). The current study’s findings may well be another example of such
“procedural habituation,” even in a mathematics education setting that puts less emphasis on
standard procedures, illustrating the pervasiveness of this phenomenon. A related issue is that
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the current study’s classroom administration procedure with the requirement to write down the
solution steps in a calculation box may have implicitly (and unintendedly) conveyed the socio-
mathematical norm that the use of a standardized procedure is preferred (see for instance
Verschaffel et al. 2009), leading to an underestimation of spontaneous shortcut strategy use.

Similarly, previous studies have shown that what students do on a standard task (their strategic
behavior) does not fully reflect what they know (their strategic knowledge) (e.g., Blöte et al. 2001).
Xu et al. (2017) recently found this so-called potential flexibility (what students know) and practical
flexibility (what students do) in the domain of equation solving to be distinct but related. The
current study only measured practical flexibility, ignoring potential flexibility. That implies that
some studentsmay have known the shortcut strategies but did not use them (for instance because of
procedural habituation, or because of the task administration procedure). Other administration
procedures, such as individual interviews where students solve this kind of problems and verbally
report their solution steps, may yield higher frequencies of shortcut strategies. Furthermore, other
task instructions, for instance the request to generatemultiple strategies, may yield amore complete
account of whether students know shortcut strategies but do not use them in a setting like the
current one. However, even if these results would show more knowledge and/or use of shortcut
strategies, the finding, that in a standard school, mathematics task students hardly show this
knowledge in their strategic behavior remains. An educational implication may be that the socio-
mathematical norms should support the adaptive, flexible, and creative use of (shortcut) strategies
also in mathematics tests, and should discourage the routine use of standard procedures without
having had a close look at the numbers of the specific problem at hand.

Another interesting finding is the difference between problem types. Compared to the other
three arithmetic operations, the addition problems were solved more frequently with a shortcut
strategy and the effect of the explicit instruction to look for a clever strategy was larger. A
possible explanation may be the specific shortcut strategy aimed for. In the subtraction,
multiplication, and division problems, the compensation strategy was the intended shortcut
strategy, because one of the operands was slightly below a round number. The addition problems
targeted a different shortcut strategy, efficiently regrouping the three addends, which could
require other processes, such as inhibiting the left-to-right procedure (Robinson et al. 2016).
Future studies may overcome this in two different ways. The first possibility is to replace the
current addition problems by ones facilitating the use of the compensation strategy (i.e., where
one of the addends is slightly below a round number, such as 54.95 + 132 = ?). This would allow
a more consistent comparison of the use of shortcut strategies between problem types/opera-
tions. The other possibility is to include a wider range of shortcut strategies, and consequently
problems, for all four arithmetic operations, which would allow for a more complete picture of
students’ (shortcut) strategy repertoire. Such a varied set of problems could form the basis of
developing a measurement instrument of individual differences in shortcut strategy use, which
might be used in research evaluating the impact of instruction on students’ adaptivity.

Another remarkable finding is that shortcut strategies generally did not yield more correct
answers than the standard strategies, although this differed by problem type (shortcut strategies
weremore efficient than standard strategies in division problems, but less efficient than standard
strategies in addition problems, whereas there was no efficiency difference in the subtraction
andmultiplication problems) and by gender (shortcut strategies were less efficient than standard
strategies in girls, whereas there was no efficiency difference in boys). That means that the
assumed efficiency benefits of shortcut strategies are not supported by the empirical efficiency
data. This probably related to the normative definition of “efficient shortcut strategy” that was
used, which ignores individual differences between students. A shortcut strategy is likely not an
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efficient strategy for all individual students, since it is not necessarily an easy strategy: it
requires conceptual understanding and perhaps increased cognitive load (Robinson et al. 2016;
Torbeyns et al. 2009). The finding that children with higher mathematical achievement levels
used shortcut strategies more often than their lower achieving peers supports this idea.
Moreover, they add to the body of literature questioning the desirability and feasibility of
striving for adaptivity and flexibility for low mathematics achievers (e.g., Fagginger Auer et al.
2016a; Hickendorff et al. 2010; Torbeyns et al. 2006), although there are studies showing
promising results (e.g., Peltenburg et al. 2012). Several scholars argue that low mathematics
achievers might benefit from instruction in a single strategy instead of multiple strategies
(Kroesbergen & Van Luit 2003; National Mathematics Advisory Panel 2008; Royal Dutch
Society of Arts and Sciences 2009; Timmermans & van Lieshout 2003). Further research into
the levels of flexibility and adaptivity low mathematical achievers can obtain in different
domains and under different (instructional) conditions are necessary, to provide insights into
the feasibility of fostering flexibility and adaptivity for students of all levels of mathematical
competence. However, this cannot go without a discussion about the desirability of this aim.
Since instructional time and efforts can only be spent once, it is important to prioritize the goals
of mathematics education, in particular for low mathematics achievers.

Regarding the efficiency of shortcut strategies, it is important to note that the current study’s
strategy performance data are possibly biased by selection effects (Siegler and Lemaire 1997).
For instance, characteristics of the students that selected specific strategies may have biased the
accuracy data. Such a selection effect may explain the opposite results for division and
addition problems: in division, shortcut strategies were used rather infrequently and therefore
possibly predominantly by high achieving students, explaining that shortcut strategies were
more accurate than standard strategies. By contrast, shortcut strategies were used rather
frequently in addition problems, and therefore by higher as well as lower achieving students,
which may explain why shortcut strategies were less accurate than standard strategies.

Furthermore, the current study’s choice-only design does not allow for assessment of how
students would have performed with the strategy they did not select. It might be that students
did not choose a shortcut strategy since it was not the most efficient strategy for them, and
consequently they made an adaptive strategy choice by not using the shortcut strategy. The
gender differences in use and efficiency of shortcut strategies corroborate with this pattern: it
may be that girls were less inclined to use shortcut strategies than boys because for girls, there
were efficiency costs of using shortcut strategies, whereas for boys, there were no costs (nor
benefits). To investigate such adaptivity with respect to individual strategy efficiency charac-
teristics, a choice/no-choice design is necessary (Siegler and Lemaire 1997; see also Luwel et al.
2009). In such a study, students would solve problems in two different types of conditions: one
in which they are free to choose between a shortcut or a non-shortcut strategy (the choice
condition) and the other in which they are required to use one particular strategy (the no-choice
conditions: one for shortcut strategies and another for non-shortcut strategies). However, such a
procedure may negatively affect the ecological validity of the findings: the possible strategies
are constrained to only two types or approaches and the artificiality of the situation may well
affect students’ behavior (see for a more elaborate argumentation Threlfall 2009).

A final issue is that the characterization of mathematics instruction was based solely on the
written materials (educational goals, curricular guidelines, and mathematics textbooks), and we
did not collect data on how this “written curriculum” was implemented in the classroom (the
“enacted curriculum”; Stein et al. 2009). Future research could attempt to measure how the use
of shortcut strategies is implemented in the enacted curriculum, for instance by teacher
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interviews or classroom observations, to evaluate the effect of instruction on students’ adaptive
use of shortcut strategies in a more direct way.

In conclusion, the present study is the first to investigate students’ use of shortcut strategies
across the four arithmetic operations simultaneously, using a large and representative sample of
sixth graders who followed an instructional trajectory based on mathematics education reform
principles. By incorporating the current study’s problems in a regular mathematics test, the
spontaneous use of shortcut strategies was assessed in an ecologically valid setting. Overall,
this spontaneous use of shortcut strategies was low, in particular for students with below-
average mathematics achievement level. Furthermore, an explicit written instruction to look
for a clever strategy had minor effects at most. These outcomes have relevant implications for
the instructional trajectories that emphasize the importance of these strategies, such as realistic
mathematics education. In particular, the feasibility of striving for adaptive expertise in
children of low mathematics level can be called into question.
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