Skip to main content
Log in

Use of ultraviolet cues in female mate preference in the sailfin molly, Poecilia latipinna

  • Original Paper
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

Photopigments that allow for ultraviolet (UV) vision occur in numerous fish species. In several species that also reflect short wavelengths, there is an indication that UV cues are important in forms of social signaling including mate choice. The sailfin molly, Poecilia latipinna, is closely related to species that use UV-reflective structures in mate selection, but it is unknown whether P. latipinna possess UV-reflective structures and whether the perceived presence or absence of these structures influences mating decisions. We detected prominent UV features on males and fewer, smaller reflective areas on females and then tested the role of these markings in mate preference. We focused on female preference, as male ornamentation and signals in the visible spectrum are known to influence female mating decisions. Using a two-choice paradigm, we exposed sexually receptive females to males whose visual appearance was manipulated by filters that either transmitted the full spectrum or blocked UV wavelengths. Female mollies significantly preferred males viewed under full spectrum, whereas male controls had no preference for females in UV-present or UV-absent light environments. While the ubiquity of these markings across both sexes may suggest additional roles for UV communication (i.e., shoaling), our results suggest that female P. latipinna take into account information transmitted in the UV markings when making visual mate choice decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arellano-Aguilar O, Garcia CM (2008) Exposure of pesticides impairs the expression of fish ornaments reducing the availability of attractive males. Proc R Soc Lond B 275:1345–1351

    Google Scholar 

  • Bennett A, Cuthill I (1994) Ultraviolet vision in birds: what is its function? Vis Res 34:1471–1478

    Article  CAS  PubMed  Google Scholar 

  • Boulcott P, Walton K, Braithwaite V (2005) The role of ultraviolet wavelengths in the mate-choice decisions of female three-spined sticklebacks. J Exp Biol 208:1453

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2007) The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Mol Biol Evol 24(8):1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Church SC, Bennett ATD, Cuthill IC, Partridge JP (1998) Ultraviolet cues affect the foraging behaviour of bluetits. Proc R Soc Lond B 265:1509–1514

    Article  Google Scholar 

  • Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. Proc R Soc Lond Ser B Biol Sci 270:897

    Article  Google Scholar 

  • Cummings ME, De León FJG, Mollaghan DM, Ryan MJ (2006) Is UV ornamentation an amplifier in swordtails? Zebrafish 3:91–100

    Article  PubMed  Google Scholar 

  • Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S (2000) Ultraviolet vision in birds. In: Slater PJB, Rosenblatt JS, Snowdon CT, Roper TJ (eds) Advances in the study of behavior. Academic Press, Vol 29, pp 159–214

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  CAS  PubMed  Google Scholar 

  • Endler JA (1983) Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fish 9:173–190

    Article  Google Scholar 

  • Farr JA, Travis J (1986) Fertility advertisement by female sailfin mollies, Poecilia latipinna (Pisces: Poeciliidae). Copeia 1986:467–472

    Article  Google Scholar 

  • Farr JA, Travis J, Trexler JC (1986) Behavioural allometry and interdemic variation in sexual behaviour of the sailfin molly, Poecilia latipinna (Pisces: Poeciliidae). Anim Behav 34:497–509

    Article  Google Scholar 

  • Fleishman LJ, Loew ER, Leal M (1993) Ultraviolet vision in lizards. Nature 365:397

    Article  Google Scholar 

  • Gabor C (1999) Association patterns of sailfin mollies (Poecilia latipinna): alternative hypotheses. Behav Ecol Sociobiol 46:333–340

    Article  Google Scholar 

  • Guilford T, Harvey PH (1998) Ornithology: the purple patch. Nature 392:867–869

    Article  CAS  Google Scholar 

  • Guillermo-Ferreira R, Therézio EM, Gehlen MH, Bispo, PC, Marletta A (2013) The role of wind pigmentation, UV and fluorescence as signals in a neotropical damselfly. Journal of Insect Behavior. Published online August

  • Hasson O (1991) Sexual displays as amplifiers: practical examples with an emphasis on feather decorations. Behav Ecol 2:189–197

    Article  Google Scholar 

  • Hawryshyn CW, McFarland WN (1987) Cone photoreceptor mechanisms and the detection of polarized light in fish. J Comp Physiol A Neuroethology Sens Neural Behav Physiol 160:459–465

    Article  Google Scholar 

  • Hrbek T, Seckinger J, Meyer A (2007) A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Mol Phylogenet Evol 43:986–998

    Article  CAS  PubMed  Google Scholar 

  • Hunt D, Wilkie S, Bowmaker J, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH (1992) Ultraviolet vision in vertebrates. Am Zool 32:544–554

  • Jeswiet SB, Godin J-GJ (2011) Validation of a method for quantifying male mating preferences in the guppy (Poecilia reticulata). Ethology 117:422–429

    Article  Google Scholar 

  • Kemp DJ, Reznick DN, Grether GF, Endler JA (2009) Predicting the direction of ornament evolution in Trinidadian guppies (Poecilia reticulata). Proc R Soc B Biol Sci 276:4335

    Article  Google Scholar 

  • Kodric-Brown A, Johnson SC (2002) Ultraviolet reflectance patterns of male guppies enhance their attractiveness to females. Anim Behav 63:391–396

    Article  Google Scholar 

  • Kodric-Brown A, Nicoletto PF (2001) Female choice in the guppy (Poecilia reticulata): the interaction between male color and display. Behav Ecol Sociobiol 50:346–351

    Article  Google Scholar 

  • Körner K, Schlupp I, Plath M, Loew E (2006) Spectral sensitivity of mollies: comparing surface and cave dwelling Atlantic mollies, Poecilia mexicana. J Fish Biol 69:54–65

    Article  Google Scholar 

  • Lim MLM, Li J, Li D (2008) Effect of UV-reflecting markings on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behav Ecol 19:61

    Article  Google Scholar 

  • Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN (1999) The UV visual world of fishes: a review. J Fish Biol 54:921–943

    Article  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  • Macías Garcia C, de Perera T (2002) Ultraviolet-based female preferences in a viviparous fish. Behav Ecol Sociobiol 52:1–6

    Article  Google Scholar 

  • MacLaren RD (2006) The effects of male proximity, apparent size, and absolute size on female preference in the sailfin molly, Poecilia latipinna. Behaviour 143:1457–1472

    Article  Google Scholar 

  • Marshall NJ (1996) Measuring colours around a coral reef. Biophoton Int 1996:52–56

    Google Scholar 

  • Marshall NJ (2000) Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos Trans R Soc Lond B Biol Sci 355:1243–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Modarressie R, Rick IP, Bakker T (2006) UV matters in shoaling decisions. Proc R Soc B Biol Sci 273:849

    Article  Google Scholar 

  • Novales Flamarique I, Hawryshyn CW (1997) Is the use of underwater polarized light by fish restricted to crepuscular time periods? Vis Res 37:975–989

    Article  CAS  PubMed  Google Scholar 

  • Odeen A, Hastad O (2003) Complex distributions of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20(6):855–861

    Article  PubMed  Google Scholar 

  • Ord TJ, Stamps JA, Losos JB (2013) Convergent evolution in the territorial communication of a classic adaptive radiation: Caribbean Anolis lizards. Anim Behav 85(6):1415–1426

    Article  Google Scholar 

  • Partridge JC, Cuthill IC (2010) Animal behaviour: ultraviolet fish faces. Curr Biol 20:R318–R320

    Article  CAS  PubMed  Google Scholar 

  • Ptacek MB (2005) Mating signal divergence, sexual selection and species recognition in mollies (Poeciliidae: Poecilia: Mollienesia). In: Grier HJ, Uribe MC (eds) Proceedings from the second international symposium on livebearing fishes. New Life Publications, Homestead, FL, pp 71–87

    Google Scholar 

  • Ptacek MB, Travis J (1997) Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51:1217–1231

    Article  Google Scholar 

  • Rémy A, Grégoire A, Perret P, Doutrelant C (2010) Mediating male-male interactions: the role of UV crest coloration in blue tits. Behav Ecol Sociobiol 64:1839–1847

    Article  Google Scholar 

  • Rick IP, Bakker T (2008a) Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others? BMC Evol Biol 8:189

    Article  PubMed Central  PubMed  Google Scholar 

  • Rick IP, Bakker TCM (2008b) UV wavelengths make female three-spined sticklebacks (Gasterosteus aculeatus) more attractive for males. Behav Ecol Sociobiol 62:439–445

    Article  Google Scholar 

  • Rick IP, Modarressie R, Bakker T (2004) Male three-spined sticklebacks reflect in ultraviolet light. Behaviour 141(11):1531–1541

    Article  Google Scholar 

  • Rick IP, Modarressie R, Bakker T (2006) UV wavelengths affect female mate choice in three-spined sticklebacks. Anim Behav 71:307–313

    Article  Google Scholar 

  • Sheldon BC, Andersson S, Griffith SC, Örnborg J, Sendecka J (1999) Ultraviolet colour variation influences blue tit sex ratios. Nature 402:874–877

    Article  CAS  Google Scholar 

  • Siebeck UE (2014) Communication in the ultraviolet: unravelling the secret language of fish. In: Witzany G (ed) Biocommunication of animals. Springer, Netherlands, pp 299–320

    Chapter  Google Scholar 

  • Siebeck UW, Marshall NJ (2001) Ocular media transmission of coral reef fish - can coral reef fish see ultraviolet light? Vis Res 41:133–149

  • Siebeck UE, Parker AN, Sprenger D, Mäthger LM, Wallis G (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr Biol 20:407–410

    Article  CAS  PubMed  Google Scholar 

  • Sliney DH (2002) How light reaches the eye and its components. Int J Toxicol 21:501

    Article  CAS  PubMed  Google Scholar 

  • Smith EJ, Partridge JC, Parsons KN, White EM, Cuthill IC, Bennett ATD, Church SC (2002) Ultraviolet vision and mate choice in the guppy (Poecilia reticulata). Behav Ecol 13:11–19

    Article  Google Scholar 

  • Sumner IT, Travis J, Johnson CD (1994) Methods of female fertility advertisement and variation among males in responsiveness in the sailfin molly (Poecilia latipinna). Copeia 1994:27–34

    Article  Google Scholar 

  • Tovee MJ (1995) Ultra-violet photoreceptors in the animal kingdom: their distribution and function. Trends Ecol Evol 10:455–460

    Article  CAS  PubMed  Google Scholar 

  • Van Norren D, Schellekens P (1990) Blue light hazard in rat. Vis Res 30:1517–1520

    Article  PubMed  Google Scholar 

  • Viitala J, Korpimaki E, Palokangas P, Koivula M (1995) Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature 373:425–427

    Article  CAS  Google Scholar 

  • Walling CA, Royle NJ, Lindström J, Metcalf NB (2010) Do female association preferences predict the likelihood of reproduction? Behav Ecol Sociobiol 64:541–548

    Article  Google Scholar 

  • White EM, Partridge JC, Church SC (2003) Ultraviolet dermal reflexion and mate choice in the guppy, Poecilia reticulata. Anim Behav 65:693–700

    Article  Google Scholar 

  • Zigman S, Bagley S (1971) Near ultraviolet light effects on dogfish retinal rods. Exp Eye Res 12:155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank R. Bowes, R. Carreno, and T. Panhuis for assistance in collecting the fish. We also thank J. Lee for assistance with male preference trials, R. O’Brian for assistance with fish spectrometry, J. Nilan for assitance with photography, and T. Panhuis, H. Rhodes, and anonymous reviewers for their thoughtful suggestions that greatly improved this manuscript. The McGraw Lab at ASU offered helpful advice for running the spectroscopy software. We are grateful to the Ohio Wesleyan University Department of Zoology for advice and suggestions throughout this study.

Ethical standards

This work is in accordance with the laws governing research in the USA, and all research was conducted under approval from Ohio Wesleyan University’s Institutional Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shala J. Hankison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, M.S., Hankison, S.J. Use of ultraviolet cues in female mate preference in the sailfin molly, Poecilia latipinna . acta ethol 18, 153–160 (2015). https://doi.org/10.1007/s10211-014-0195-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-014-0195-3

Keywords

Navigation