
Vol.:(0123456789)1 3

Universal Access in the Information Society (2023) 22:511–524 
https://doi.org/10.1007/s10209-021-00862-8

LONG PAPER

Constraining peripheral perception in instant messaging 
during software development by continuous work context extraction

Nghia Pham van1 · Valentino Vranić1 

Accepted: 29 November 2021 / Published online: 17 January 2022 
© The Author(s) 2022

Abstract
Colocated software development teams benefit from natural work context building, which occurs mainly thanks to the team 
members, virtually, being forced to listen to what others are talking about. They absorb the information not by directing 
their attention to the communication, but by being exposed to it and perceiving it peripherally. The same effect of peripheral 
perception can be enforced with instant messaging, which is a predominant way of communication in distributed teams. 
However, forcing team members to observe too many and mostly unrelated message notifications can be distracting and 
causing unnecessary work interruption. This paper presents an approach and tool that ensure peripheral perception in instant 
messaging constrained by a continuously extracted work context. This is achieved by maintaining a personal work context 
from developer activities and using this context to filter instant messages to be displayed. A four-week experiment carried 
out with one of the teams of seven members in the Team Project course at our university indicates that message filtering 
based on continuous work context extraction performs better over common channel based filtering (as available in Slack). 
More precisely, message filtering based on continuous work context extraction decreases work interruption and distraction.

Keywords  Peripheral perception · Agile software development · Distributed software development · Distributed teams · 
Work context · Work interruption · Distraction · Instant messaging

1  Introduction

Effective verbal communication is the key to solving prob-
lems of unstable requirements. This can be observed in agile 
software development, which favors individuals and their 
interaction over the processes and tools [2]. Personal interac-
tion problems exist in colocated teams, too, but distributed 
development makes them even more difficult [15]. Distrib-
uted teams rely mainly on instant messaging [21], although 
video conferencing tools and collaborative environments 
(such as CVE1) are also available.

It is important to note that not all communication is direct 
and explicit. Team members are exposed to what others on 
the team talk about even if that does not concern or involve 
them directly. We might say they perceive this peripherally. 

By involuntarily—and even unconsciously—absorbing 
this information, they learn the work context and become 
prepared for highly effective direct communication when 
needed. Cockburn calls this Osmotic Communication [5] as, 
like in chemical osmosis, immersed in information, people 
tend to absorb what they need. However, he also points out 
that people sometimes need quiet time in isolation to focus, 
which he calls Cone of Silence [6]. In other words, Osmotic 
Communication can be overwhelming.

This applies to instant messaging, too. Imagine being 
forced to read all the messages that occur and the moment 
they occur. Instant messaging tools, such as Slack, typically 
provide channels, so that team members can narrow down 
the communication burden to what they consider interest-
ing to them. However, this is a very rough message filter-
ing not based on personal interests that, moreover, tend to 
change over time. This is exactly the topic of this paper: how 
to ensure peripheral perception of instant messages, but to 
decrease the communication burden. For this, a tool support 
based on Slack is provided that exposes team members to 
message notifications, facilitating peripheral perception of 

 *	 Valentino Vranić 
	 vranic@stuba.sk

1	 Institute of Informatics, Information Systems and Software 
Engineering, Faculty of Informatics and Information 
Technologies, Slovak University of Technology 
in Bratislava, Bratislava, Slovakia 1  Collaborative Virtual Environment, http://​cve.​sourc​eforge.​net/

http://orcid.org/0000-0001-9044-4593
http://crossmark.crossref.org/dialog/?doi=10.1007/s10209-021-00862-8&domain=pdf
http://cve.sourceforge.net/


512	 Universal Access in the Information Society (2023) 22:511–524

1 3

instant messages, but that also enables constraining the dis-
played message notifications to only those that are of interest 
to a given team member.

The rest of the paper is organized as follows. Section 2 
shows how instant messaging can be perceived as a periph-
eral perception enabler in distributed teams. Section  3 
explains the principles behind constraining peripheral per-
ception according to the work context, identifies the possi-
bilities of extracting a personal work context from developer 
activities, and presents the implementation of message filter-
ing based on continuous work context extraction. Section 4 
describes the setting of the experiment space, along with the 
initial, small-scale experiment. Section 5 describes the main, 
team project experiment, its results, and threats to validity 
of these results. Section 6 compares the approach proposed 
in this paper to related work. Section 7 concludes the paper 
and indicates some possibilities for further work.

2 � Instant messaging as a peripheral 
perception enabler in distributed teams

Instant messaging is the main form of communication in 
distributed software development teams [21]. Part of the rea-
sons for this lies probably in that it allows people to work in 
real time and to make and test small changes immediately 
after making them [20]. This immediacy also allows for effi-
cient scheduling and coordination as instant messages tend 
to be read quickly.

One of the concerns related to written electronic commu-
nication in distributed teams is the level of work interruption 
and distraction it causes. Instant messaging tends to show 
a large window on top of other active applications, often 
accompanied by an animation, flashing, and sound notifica-
tions. As Garrett and Danziger [11] say, such notifications 
can be easily dismissed, hidden, or outright disabled, so they 
are not as distracting as a colleague coming in person or as 
a telephone call.

Not every work interruption is perceived as negative. In 
fact, some work interruptions can have a positive effect by 
bringing critical information. Actually, instant messaging 
is not a major source of work interruption, as it accounts 
only for 5% of it [23]. Furthermore, Garrett and Danziger 
[11] reported that the use of instant messaging reduces the 
overall work interruption as the same attributes that create 
opportunities for work interruption also allow for users to 
more effectively manage the interruption and that users were 
more likely to do so than to experience instant messaging 
as disruptive.

However, if instant messaging is to be used to mimic the 
ambient conversation, in which colocated team members are 
commonly immersed, this cannot be done by simply noti-
fying all the team members of all messages, as that would 

cause too much distraction. Mark et al. [18] discovered that 
albeit people perform good when interrupted even if the con-
text of the work changes significantly, this comes at a price 
of increased workload, stress, frustration, time pressure, and 
effort. Even worse, according to Ophir et al. [22], heavy 
media multitaskers are more susceptible to interference from 
irrelevant environmental stimuli and from irrelevant repre-
sentations in memory, which means they become incapable 
of distinguishing what is important, and what is not.

3 � Constraining peripheral perception 
according to the work context

A shared context exists when team members have access 
to the same information and share the same tools, work 
processes, and work culture. It is difficult to correctly 
interpret the meaning of information and develop mutual 
understanding when this knowledge is absent. Hinds and 
Mortensen [13] describe a shared context as an emergent 
state that develops in a team. They found that the lack of 
context can make it more difficult to resolve problems before 
they devolve into a conflict. Face-to-face communication 
is appropriate for building this context because of its rich-
ness. Electronic written communication, however, is more 
suited for short and simple exchanges of information within 
an already built context [27].

According to Santoro et al. [26], the context plays an impor-
tant role in problem solving domains such as software engi-
neering. In collaborative software development, having access 
to the context is essential to properly cooperate and coordi-
nate with others. Ko et al. [14] report that the most frequently 
sought information by software developers is the information 
that increases the awareness of tasks, artifacts, and coworkers.

A work context can be defined as a more specific subset of 
the entire project context. A work context is focused solely on 
the current task or work of the team or individual and includes 
every piece of information that is relevant to this work. Gutwin 
et al. [12] describe group awareness as the understanding of 
who is working with whom, what they are doing, and how 
one’s own actions interact with others’ actions.

The main contributors to the work context of a software 
developer are the current project, developer’s intent, and 
artifacts relevant to the current task. Projects consist of a 
project plan, list of tasks, stories, bugs and issues, as well as 
project documentation and information gained from formal 
project meetings. This information is the main deciding fac-
tor for the next task for each developer, and therefore decides 
the work context that the developer will be concerned with 
in the immediate future. The developer’s intent represents 
knowledge and information about how the developer intends 
to approach and accomplish the given task. This informa-
tion can be different from the more general information 



513Universal Access in the Information Society (2023) 22:511–524	

1 3

contained in the project plan, as the intent also relies on the 
personal knowledge and experience of the developer that is 
assigned to the task. Artifacts created over the course of a 
task or artifacts that were created previously but are relevant 
to the current task include diagrams, notes, pictures, or any 
other artifacts apart from source code.

A team creates and maintains a shared work context. It 
includes knowledge about the current project, what each 
team member is currently working on, what are they profi-
cient at, the roles of each team member, and other informa-
tion relevant to the current project as a whole. The informa-
tion that is relevant to all team members contributes to the 
shared work context between them. This context changes 
over time, but a significant part of it is constant throughout 
the duration of the project.

In addition to the shared work context in a team, each 
individual team member also maintains a personal work 
context. It can be understood as a subset of the shared work 
context. A personal work context includes information rel-
evant to a developer at the current point of the project, i.e., 
to the current tasks that the developer is working on. It is 
this assigned task that the developer is currently working 
on that is the main contributing factor to the personal work 
context. A personal work context is much more volatile than 
the shared work context and changes very quickly over time 
as the developer switches and accomplishes tasks.

A personal work context can be used as a communication 
filter, i.e., to filter out irrelevant and distracting informa-
tion from electronic written communication so to improve 
chances for the critical and relevant information to reach 
the developer.

Section 3.1 explains the possibilities for extracting the 
personal work context from developer activities. Section 3.2 
describes the implementation of message filtering based 
on continuous work context extraction contributed by this 
paper.

3.1 � Extracting the personal work context 
from developer activities

The prerequisite to using a personal work context is its 
proper extraction. According to Maalej and Sahm [17], soft-
ware engineers spend only about half of their time on code 
creation. Software engineers also use on average five tools 
for a single task and read or change different artifacts, like 
source code files, bug reports, or diagrams. In a case study 
done by Zou and Godfrey [28], it was discovered that during 
a single task, eight code files are read and six are changed on 
average. Zou and Godfrey also noted that they only observed 
files within an integrated development environment and it 
is very likely that the overall number of used artifacts is 
even higher. Therefore, not only source code, but also other 

artifacts that people create or change during the task solving 
have to be considered as a part of the personal work context.

The information about what source code files develop-
ers accessed and about their activity within the source code 
files can be obtained using developer activity tracking tools. 
These often come as plugins available for various integrated 
development environments. By periodically accessing the 
log files of an activity tracking tool, the information about 
the source code files that a developer has been working on 
recently or is currently working on can be extracted. The 
name and path of the source code files also has implications 
for the personal work context. In Java, for example, pack-
ages are represented by folders. Being larger code structures, 
packages tend to have descriptive names that can be used to 
obtain information about what the developer is working on. 
For example, if a developer is accessing files in the views/
users folder, i.e., in the views.users package, we might con-
clude that the current task is about adding a front-end to 
the user management. These package names can be treated 
as keywords and can be searched for in incoming written 
communication.

Extracting the information about the personal work con-
text from the contents of the source code files is also a pos-
sibility. Berta et al. [3] identified use cases in source code by 
finding relations between use case steps and method names 
in source code using a dictionary such as WordNet. A similar 
approach could be used for extracting personal work context. 
However, this method does not provide sufficiently precise 
results for automatic extraction and an expert still has to be 
involved in the process. This method can be used for extract-
ing keywords from source code files, mainly from method 
names and comments.

Extracting information from visual artifacts such as dia-
grams or pictures is more difficult. Outside of using optical 
character recognition (OCR) tools to extract text from these 
artifacts, it is difficult to extract information from them. 
One option is to use the metadata of the artifact, such as 
the name of the file. File names tend to be descriptive for 
easier searching and archiving and therefore could be used 
as keyword as well. This could be achieved by selecting a 
directory for storing artifacts and regularly scanning this 
file directory. Having code linked to model artifacts, e.g., 
to actions in activity diagrams [16], might help with this.

Artifacts tend to be shared between team members to bet-
ter communicate task related information and are therefore 
stored on a shared repository such as GitHub or Google 
Drive. The uploaded files can be used as another source of 
information about a personal work context.

Version control systems are also a rich source of informa-
tion. Commit messages in collaborative software develop-
ment have to be descriptive about the files or functionality 
that was added or changed. By accessing the commit mes-
sages of an individual team member, the information about 



514	 Universal Access in the Information Society (2023) 22:511–524

1 3

tasks that the developer finished or is currently working 
on can be extracted. Commit logs serve as the records of 
changes made to the project. Each record or commit includes 
information such as the developer committing the change, 
files affected, number of changes, and differences between 
the old and new versions of the files. Many developers read 
commit logs in order to stay up to date with what is happen-
ing on the project and to watch for changes that may affect 
their own work [12]. Repositories such as GitHub offer APIs 
which can be used to obtain this information. Version con-
trol systems can also be linked with issue tracking tools or 
project management tools such as JIRA or ScrumDesk in 
order to have a direct link between team members, the task 
assigned to them, and their activity and commits.

Information can also be obtained from written electronic 
communication of a developer. According to Dullemond [8], 
a large part of a developer’s time is spent on communication 
and seeking information about recent changes. Therefore, 
valuable information about a personal work context can be 
extracted from the communication.

Another possibility to collect personal work context 
information is to have people provide it explicitly. However, 
relying on developers to set and update their keywords as 
they change tasks and contexts is not viable in the long run. 
While the keywords and context would probably be quite 
accurate, people could forget to update them making the 
filter not very reliable. According to Maalej and Sahm [17], 
60% of their respondents changed focus on hourly basis. 
Asking for manual input regularly using periodic reminders 
could also cause distraction and interruption and the mes-
sages could be ignored or turned off.

3.2 � Implementing message filtering based 
on continuous work context extraction

For the purposes of the research reported here, a tool for 
message filtering based on continuous work context extrac-
tion called Indikom was developed (the tool and the user 
guide are available on GitHub2). Work context extraction 
is facilitated through the use of the Rabbit Eclipse plugin,3 
which captures developer activity in Eclipse, and the Activ-
ity Tracker plugin4 for the JetBrains family of integrated 
development environments, such as RubyMine, PyCharm, 
or IntelliJ. The plugin tracks the user activity with respect 
to the list of files accessed, duration in which they were 
accessed, as well as activities the of the user such as writing 
and deleting lines of code. For the purposes of Indikom, only 
the files that were accessed and the time by which they were 

open were used. These metrics are periodically collected by 
the integrated development environment plugin. An update 
can also be invoked manually. The activity track is stored in 
an XML file.

Another source of the work context being collected by 
Indikom is the developer activity on GitHub. Indikom is 
able to access the profile of the developer and extract com-
mits that the developer pushed to the repository. From these 
commits, the commit message and the list of changed files 
can be extracted in order to gain the information about the 
previous activity of the developer.

After loading the user activity supplied by the activity 
tracking plugin, Indikom extracts the user activity in the 
form of the files the user has recently accessed and builds 
a work context from this information. The names of the 
files that were accessed and the names of the packages they 
belong to are split into keywords which are used to define 
the work context. This process is repeated periodically in 
the background while Indikom is running, in order to keep 
the work context relevant and up to date. During each of 
these periodic updates, the files that were not accessed since 
the last update are given a lower weight in order to signify 
that these artifacts might no longer be relevant to the cur-
rent work context. Once the weight is reduced past a certain 
threshold, these files are removed from the work context 
entirely.

In order to increase the accuracy of the work context, the 
keywords extracted from file and package names have to be 
analyzed and new keywords have to be created. Indikom uses 
the Wordnik thesaurus5 in order to obtain a list of synonyms, 
word forms, and related words to each keyword extracted 
from the user activity. This process vastly increases the 
amount of keywords gathered and therefore increases the 
accuracy of a message filter that uses these keywords. The 
entire process of work context extraction is shown in Fig. 1.

Indikom connects to a Slack workspace in as a bot and 
then extracts messages from the chosen channel. Users are 
able to choose which channel should be monitored for mes-
sages from a drop-down menu. All messages are displayed 
in the main window, which serves as a history of messages.

All incoming messages are filtered by the work context 
filter. This filter searches for the keywords of the current 
work context and displays an incoming message in a trans-
parent window at the bottom right of the screen if the text of 
the message contains one of the keywords. This notification 
window persists for a few seconds before disappearing.

Indikom also offers the option to have the messages read 
out instead of displayed. A text to speech converter is used 
for this. This can be helpful in situations when the user 
would prefer to hear the message instead of reading it. The 

2  https://​github.​com/​ThePh​am/​Indik​om
3  https://​code.​google.​com/​archi​ve/p/​rabbit-​eclip​se/
4  https://​github.​com/​dkand​alov/​activ​ity-​track​er 5  https://​www.​wordn​ik.​com/

https://github.com/ThePham/Indikom
https://code.google.com/archive/p/rabbit-eclipse/
https://github.com/dkandalov/activity-tracker
https://www.wordnik.com/


515Universal Access in the Information Society (2023) 22:511–524	

1 3

downside of this approach is that the user has to be able 
to hear the message being read either through the use of 

headphones or speakers, and that sound could be more dis-
tracting than a visual notification.

Indikom is supplied in the form of an executable JAR file. 
Upon the first launch, it prompts the user for a workspace 
token in order to access the Slack workspace and channel 
that is to be monitored. It also needs to be set up with the 
location of the log files generated by the activity tracking 
plugins, API key for the Wordnik thesaurus API, Micro-
soft’s Translator Text service, and GitHub credentials. The 
configuration is saved locally in a text file and loaded on 
the next use.

4 � Setting the experiment space

In a preparation for an experiment that would enable 
assessing how message filtering based on continuous 
work context extraction as proposed in this paper and 
implemented in Indikom affects work interruption and 
distraction, which is described in the next section, we first 
mapped the overall experiment space and run a small-scale 
experiment.

The experiment space is actually given by the Indikom 
features. Feature modeling was used to capture these. The 
corresponding feature diagram showing all the features that 
can be used to create experiment configurations is presented 
in Fig. 2.

Experiments can employ different ways of notifying par-
ticipants of incoming messages. A message filter based on 
the work context, the channel filtering provided by Slack, or 
no filtering at all can be used.

The work context sources available for a message filter 
are the user input, code repository, and developer activity. At 
least one of these options has to be present in an experiment 
if the work context filtering is to be used. The developer 
activity can further be captured by using periodic updates 
or by manually triggering the update. Forcing the user to 

Fig. 1   Work context extraction process as an activity diagram

Fig. 2   Indikom feature diagram 
showing all the features that can 
be used to create experiment 
configurations



516	 Universal Access in the Information Society (2023) 22:511–524

1 3

interact with Indikom during an experiment is not preferred, 
but can be used in order to evaluate the effectiveness of auto-
matic work context extraction against the user triggering 
work context updates, as participants will always be best 
aware of their current work context and when the changes 
occur. There are two kinds of message notifications: text-to-
speech and text window notifications. They can be engaged 
simultaneously.

A small-scale experiment was carried out with four stu-
dents of our university with the main purpose of decreas-
ing the technology risk for the actual experiment, which is 
covered by the next section. All four participants installed 
Indikom and cloned the project created for the purposes of 
the experiment. The participants were divided into two pairs 
and worked on their tasks for ten minutes in order to build 
a work context before launching Indikom. Subsequently, 
Indikom updated the work context every ten minutes during 
the experiment with the entire experiment taking one hour 
in total. Communication was handled through the use of a 
Slack workspace. Because the messages sent were in Slovak, 
a translator was used to translate them into English. The 
participants were only given general tasks and they were 
encouraged to discuss the details among them.

Since the number of participants was not big, after the 
experiment, all the participants were asked about their opin-
ion in a direct and open conversation rather than using a 
questionnaire. All four participants expressed a positive 
impression of the approach to extracting and using work 
context as a message filter implemented in Indikom. They 
praised that the messages deemed not relevant were not dis-
played on their screen, while still being preserved in the 
main window of Indikom, as well as in the Slack client itself 
so that they had the option to read up on what they missed 
while working on their own tasks.

Messages that were relevant to the current work were dis-
played as notifications in the bottom right part of the screen. 
The participants judged these notifications as not being dis-
ruptive, but beneficial to their work. Overall, the participants 

rated the automatic extraction of the work context and its use 
as a message filter positively and could imagine using the 
approach and tool in larger teams and projects. Particular 
remarks raised by the participants, such as the one that the 
notification window shifted focus from the other window the 
participants had open, which caused distraction if a notifica-
tion was displayed in the middle of writing either code or a 
message, could be used to improve Indikom.

5 � The team project experiment

An experiment was performed in order to compare mes-
sage filtering based on continuous work context extraction 
as proposed in this paper and implemented in Indikom and 
common channel-based filtering as it is available in Slack 
from the perspective of work interruption and distraction.

Formally, the null hypothesis can be stated as follows:

The common channel based filtering and message fil-
tering based on continuous work context extraction 
have an equal effect on work interruption and distrac-
tion.

The alternate hypothesis is then as follows:

Compared to the common channel based filtering, 
message filtering based on continuous work context 
extraction decreases work interruption and distraction.

Section 5.1 explains the experiment configuration. Sec-
tion 5.2 presents and discusses the results. Section 5.3 iden-
tifies the threats to validity.

5.1 � Experiment configuration

The two configurations of Indikom corresponding to the 
hypotheses are shown in Fig. 3. The experiment was car-
ried out with seven members of a team participating in the 
Team Project course within their master’s of science level 

Fig. 3   Indikom configurations 
featuring message filtering 
based on continuous work 
context extraction (left) and 
common channel based filtering 
(right)



517Universal Access in the Information Society (2023) 22:511–524	

1 3

studies at our university. The team was already working on 
their project in the term that preceded the experiment and 
continued to work on it over the course of the experiment. 
The project was related to the development of a web applica-
tion using PHP and the Laravel framework.

The initial idea was to employ each configuration for 
a period of one week. Indeed, in the first week, message 
filtering based on continuous work context extraction was 
employed, while in the second week, the common channel-
based filtering was employed. However, as the participants 
were willing to continue with the experiment, we returned to 
message filtering based on continuous work context extrac-
tion for additional two weeks since this was the novel con-
figuration brought by Indikom.

All participants were provided with Indikom and instruc-
tions on how to install and use it.

5.1.1 � Message tagging

In the first two weeks of the experiment, the participants 
were asked to tag each on-screen notification in Indikom 
in order to determine if the message was relevant to their 
current work context.

5.1.2 � Direct observation

A direct observation of the participants at work with Indikom 
was also carried out during one of the weekly team meet-
ings. The participants were prevented from directly commu-
nicating while working on their tasks and were forced to use 
Indikom in order to communicate and maintain peripheral 
perception.

5.1.3 � Questionnaire

A questionnaire was provided every week in order to col-
lect the data on how much work interruption and distraction 
Indikom caused (see the appendix).

5.2 � Results and discussion

Message tagging. Table 1 shows the percentage of messages 
that were tagged by experiment participants as relevant to 
their current work. Both types of filtering were used for 
one week during the same sprint of the project. Irrelevant 
messages displayed in notifications are a source of work 

interruption, so it can be concluded that message filtering 
based on continuous work context extraction causes signifi-
cantly less work interruption by successfully filtering out a 
larger percentage of irrelevant messages, which supports the 
alternate hypothesis.

Using a two tailed paired t-test at the 0.05 level to com-
pare the two approaches supports rejecting the null hypoth-
esis. The p-value of the paired t-test is 0.0002230, i.e., which 
means there is only a 0.0223% chance of a type 1 error. Such 
a small value also supports rejecting the null hypothesis.

5.2.1 � Direct observation

Although work interruption occurred during the direct 
observation of the participants at work with Indikom and 
participants stopped their work for a few seconds each time 
a message notification appeared, all participants judged 
that the messages were mostly relevant and beneficial to 
their work, making the positive effect on communication 
be greater than the negative effect of work interruption. The 
participants often joined in on conversations and were able 
to answer questions from other team members working on 
the same tasks. It can, therefore, be concluded that message 
filtering based on continuous work context extraction as it 
is implemented in Indikom is an effective way to providing 
and augmenting peripheral perception in distributed teams 
and that the benefits of using instant messaging outweigh the 
work interruption they cause.

5.2.2 � Questionnaire

The questionnaire the participants had to take each week 
included six statements and two questions each of which 
had to be assessed on a scale 1–5, where 1 meant a strong 
disagreement or “never” for questions, and 5 meant a strong 
agreement or “very often” for questions. The questionnaire 
also included two questions related to whether the partici-
pants closed Indikom. The complete answers are available 
in the appendix.

We depict the average values for each of the statements 
and questions as bar graphs. Although the averages could not 
go below 1, the graphs start at 0 in order to better visually 
distinguish the value of 1. The standard deviations are shown 
in parentheses by the average weekly values. They ara also 
depicted as error bars .

Table 1   Percentage of relevant 
messages over the course of one 
week

Message filtering Percentage of relevant messages for each participant Average

Continuous work con-
text extraction

77 84 62 69 72 87 71 74.5%

Common channel 59 66 43 49 40 53 58 52.6%



518	 Universal Access in the Information Society (2023) 22:511–524

1 3

As shown in Fig. 4, the rating for the statement “The 
message notifications were distracting and interrupted my 
work” (Q1) also supports the claim that the message noti-
fications were considered not distracting. The common 
channel-based filtering used in the second week carried a 
significantly higher level of distraction and interruption, 
which corresponds to the results of the message tagging. The 
standard deviations show that compared to the last week, 
the perception of how distracting message notifications var-
ied somewhat more among the participants during the first 
three weeks of the experiment. This indicates that developers 
could get used to message notifications quite quickly.

The average rating for the statement “Message notifi-
cations were noticeable and I looked at them when they 
appeared” (Q2) can be seen in Fig. 5. Virtually all partici-
pants considered message notifications as very noticeable 
and looked at them when they appeared. This is supported 
by the relatively low standard deviations at this statement.

As shown in Fig. 6, which shows the average ratings 
for the statement “Message notifications took some time 
to get used to” (Q3), the participants got used to message 

notifications quite quickly. The standard deviations are a bit 
higher, but this may be caused by different perceptions of 
what does “some time” mean. Nevertheless, as we said, the 
decreasing standard deviations at statement Q1 also indicate 
that developers could get used to message notifications quite 
quickly.

From the average rating for the statement “Message noti-
fications showed me relevant information for my current 
task” (Q4), it can be concluded that the work context based 
filtering is able to filter out more irrelevant messages and 
thus significantly reduce work interruption and distraction 
compared to the common channel based filtering. Figure 7 
shows the difference in the number of relevant messages 
displayed as perceived by the participants. These results 
further support the alternate hypothesis and correspond to 
the results presented in Table 1. This is supported by the 
standard deviations for this statement, which were quite low 
for all weeks, with a particularly low value in the last week.

The average rating for the statement “A lot of irrelevant 
messages were displayed” (Q5) also supports the alter-
nate hypothesis. The results displayed in Fig. 8 show a 

Fig. 4   Average rating for the statement “The message notifications 
were distracting and interrupted my work” (Q1)

Fig. 5   Average rating for the statement “Message notifications were 
noticeable and I looked at them when they appeared” (Q2)

Fig. 6   Average rating for the statement “Message notifications took 
some time to get used to” (Q3)

Fig. 7   Average rating for the statement “Message notifications 
showed me relevant information for my current task” (Q4)



519Universal Access in the Information Society (2023) 22:511–524	

1 3

significantly higher number of irrelevant messages displayed 
with the common channel based filtering compared to the 
work context filtering. In addition, the participants mostly 
did not perceive the tracking of their activity for the purpose 
of the work context extraction as an invasion of their privacy, 
as shown in Fig. 9. The standard deviations for statement 
Q6 were low and decreasing as the weeks of the experiment 
passed, indicating that the perception of the relevance of 
the messages being displayed to the participants was objec-
tive. The exceptionally low values of the standard deviation 
for statement Q6 indicate that the participants consistently 
perceived the approach as noninvasive with respect to their 
privacy.

Only one participant answered “yes” to the question “Did 
you close the program during your work?” (Q7) stating that 
it was distracting and he needed to focus (Q8).

The participants were also asked about the frequency 
of them joining a conversation (Q9) and changing some-
thing in their current work based on a message notification 
(Q10). The results can be seen in Figs. 10 and 11. The par-
ticipants were more reluctant to joining conversations when 

the common channel based filtering was used. This can be 
attributed to a higher number of irrelevant messages dis-
played. The number of times they changed something in 
their work remained on a similar level throughout the experi-
ment due to the tasks of each individual team member being 
defined during a team meeting before they started working 
on the task. The standard deviations vary a bit more with 
these two questions. For question Q10, the highest stand-
ard deviation is the one for the last week. This might be 
attributed to varying opportunities to join conversations and 
make modifications based on messages. Longer observation 
would be necessary to be able to draw some other conclu-
sions from this.

Table 2 shows the correlation between the question-
naire results. Only the numerically graded statements and 
questions were considered. There is a positive correlation 
between Q1 and Q2 indicating that a lot of irrelevant mes-
sages increases work interruption and distraction. There is 
a strong negative correlation between Q1 and Q4 indicat-
ing that if a participant judged messages as relevant, then 

Fig. 8   Average rating for the statement “A lot of irrelevant messages 
were displayed” (Q5)

Fig. 9   Average rating for the statement “Developer activity tracking 
felt like an invasion of privacy” (Q6)

Fig. 10   Average rating for the question “How often did you enter the 
conversation based on message notifications (1–5)?” (Q9)

Fig. 11   Average rating for the question “How often did you change 
something in your current work based on a message notification 
(1–5)?” (Q10)



520	 Universal Access in the Information Society (2023) 22:511–524

1 3

the message notifications were not perceived as distracting, 
which supports the alternate hypothesis. A negative correla-
tion between Q1 and Q9 also indicates that the participants 
tended to join conversations less often if the messages and 
notifications were perceived as distracting. There is also a 
positive correlation between Q4 and Q9 indicating that if the 
messages displayed were relevant, then participants tended 
to join a conversation more often.

From the questionnaire results, it can be concluded that 
peripheral perception was facilitated through the use of 
instant messaging and on-screen message notifications. Mes-
sage filtering based on continuous work context extraction 
was successful in augmenting peripheral perception by filter-
ing out more irrelevant messages compared to the common 
channel based message filter provided by Slack and therefore 
was able to further decrease work interruption and distrac-
tion. Due to important and relevant information being able 
to reach the participants, it can be concluded that work and 
communication effectiveness was increased, but this is dif-
ficult to quantify. Overall, the results provide no real grounds 
for sustaining the null hypothesis, while they all speak in 
favor of the alternate hypothesis.

5.3 � Threats to validity

Due to the nature of the experiment, multiple threats to 
validity arise and have to be addressed. The experiment was 
limited in scope, both in terms of time (four weeks), number 
of participants (one team with seven members), and project 
(a single project). This is a threat to internal validity that 
can be decreased by increasing the scope of the experiment 
to take several months with multiple teams working on dif-
ferent projects.

The common channel-based filtering was used only dur-
ing one week of the experiment. This is also a threat to inter-
nal validity that could have been decreased by having the 
teams switch between message filtering based on continuous 
work context extraction and common channel based filtering 
several times in order to be able to better compare the two. 
However, this was difficult to the within the Team Project 
course.

Bias may have been introduced since when participants 
started employing the second approach, they had already 
become accustomed to dealing with messages. This threat 
to internal validity was addressed by employing message 
filtering based on continuous work context extraction as the 
approach we considered superior, so that when the partici-
pants started using the common channel based filtering they 
should have been better prepared to it.

By allowing the experiment to run with message filtering 
based on continuous work context extraction for additional 
two weeks, we also introduced a threat to internal validity. 
However, this did not affect message tagging, as that ran 
only for two first weeks.

Another threat to internal validity is the absence of a con-
trol group during the experiment. A control group was not 
possible due to the small number of participants.

The use of the Wordnik thesaurus represents yet another 
threat to internal validity. This dictionary is a general pur-
pose English dictionary, which does not take into account 
the context of software development. The keywords gained 
by using the dictionary can, therefore, be inaccurate. Using 
natural language processing and a corpus of software engi-
neering related documents could alleviate this problem, but 
this is outside the scope of this work. This dictionary was 
chosen due to the ability of its API to return a list of related 
words and word forms, unlike other online dictionaries that 
only supported synonym lookup.

All participants being students of the same university is 
an external threat to validity since this means they are all 
of the same age and education background. A more varied 
group of experiment participants would result in data that is 
more representative with respect to the assumed application 
of the approach in commercial projects.

All participants being students, and not software develop-
ment professionals, might be considered as another external 
threat to validity. While this is a highly debatable issue [9, 
10], we might add that our students are commonly employed 
as software development professionals, which is in particular 
true for our master’s of science level studies. Furthermore, 
the experiment was targeting distributed software develop-
ment. In such a setting, one might expect similar working 

Table 2   Correlation between 
the questionnaire results

Q1 Q2 Q3 Q4 Q5 Q6 Q9 Q10

Q1 1
Q2 0.410693 1
Q3 0.536505 0.367475 1
Q4 −0.79386 −0.31912 −0.32006 1
Q5 0.602756 0.342224 0.125759 −0.86692 1
Q6 0.096077 0.258199 0.151407 0.142189 −0.10196 1
Q9 −0.54444 −0.35089 −0.33982 0.572402 −0.32626 −0.10256 1
Q10 −0.0101 −0.05638 0.028653 0.084864 −0.01929 0.189242 0.218357 1



521Universal Access in the Information Society (2023) 22:511–524	

1 3

conditions for both software development professionals and 
students.

6 � Related work

Calefato et al. [4] developed an extension for Visual Stu-
dio in order to increase social awareness in a team. Their 
approach was to aggregate the content from multiple social 
media into the developer’s workspace in order to build trust 
among team members with the information from social 
media working as a surrogate for social awareness gained 
during informal communication. The approach proposed 
here does not take into account informal communication 
unrelated to work nor any communication occurring out-
side official communication channels. However, it can be 
extended to take into account this important part of periph-
eral perception.

Röcker [25] used an ambient display to indicate the pres-
ence of members in a distributed team. His approach consists 
of displaying patterns of light on a special wall to indicate 
the presence of distant team members and the communica-
tion between them. He notes that this approach has positive 
effects on workplace awareness and group communication. 
This method, however, is only suitable for teams that are not 
fully distributed because of the requirement of a special wall 
to indicate the information. The approach proposed here is 
limited to verbal communication, but peripheral perception 
is much broader and should take into account also visual 
stimuli.

Marx and Schmandt [19] reported a dynamic personal-
ized message filtering system capable of effective message 
prioritization based on current user interests. These actu-
ally constitute a general work context, which is picked up 
regularly (usually on hourly basis) from the calendar, e-mail 
messages, phone tags, and such, generating a set of regular 
expressions that are then used to filter messages. This is a 
similar way of maintaining a work context as in the approach 
proposed in this paper.

More sophisticated natural language processing 
approaches, such as those proposed by Adams and Martell 
[1] or Cooper et al. [7], could be used for keyword extrac-
tion. Although the approach proposed here goes beyond 
simple synonyms by using related words provided by the 
Wordnik thesaurus, it could benefit from contemporary natu-
ral language processing approaches.

Pejovic and Musolesi [24] report a library for Android 
based mobile devices that can postpone work interruptions 
to the most convenient moments. The actual communica-
tion applications can be registered to be notified of such 
moments. The moments convenient for work interruption 
are identified using machine learning to assess the changes 
in selected mobile context indicators, namely GPS location, 

accelerometer readings, Bluetooth fingerprints, and WiFi 
fingerprints (captured by another application), which are 
considered to constitute the user context, at the time of the 
notification and user response. Although the actual context 
here is specific for mobile devices and not related to software 
development, the idea could be applied to software devel-
opment. Instead of the mobile context indicators, the work 
context should be considered there. In a way, postponing 
work interruption could be used as complementary to the 
approach proposed in this paper to further postpone instant 
messages identified as relevant and expose the developer to 
them at the most convenient moments.

7 � Conclusions and further work

Colocated software development teams benefit from natu-
ral work context building, which occurs mainly thanks to 
the team members, virtually, being forced to listen to what 
others are talking about. They absorb the information not 
by directing their attention to the communication, but by 
being exposed to it and perceiving it peripherally. The same 
effect of peripheral perception can be enforced with instant 
messaging, which is a predominant way of communica-
tion in distributed teams. However, forcing team members 
to observe too many and mostly unrelated message noti-
fications can be distracting and causing unnecessary work 
interruption.

This paper presents an approach and tool—called 
Indikom—that ensure peripheral perception in instant mes-
saging constrained by a continuously extracted work context. 
This is achieved by maintaining a personal work context 
from developer activities and using this context to filter 
instant messages to be displayed. Specifically, Indikom uses 
dedicated plugins for Eclipse and the JetBrains family of 
integrated development environments to extract the list of 
files accessed, duration in which they were accessed, as well 
as activities the of the user such as writing and deleting lines 
of code. It also extracts the developer activity from GitHub. 
It uses the Wordnik thesaurus in order to better cover the 
keywords that define the personal work context. Indikom 
connects to a Slack workspace to extract messages. It dis-
plays the notifications of incoming messages in a transparent 
window if they contain one of the keywords.

A four-week experiment carried out with one of the teams 
of seven members in the Team Project course at our uni-
versity indicates that message filtering based on continuous 
work context extraction performs better over common chan-
nel based filtering (as available in Slack). More precisely, 
message filtering based on continuous work context extrac-
tion decreased work interruption and distraction.

In the future, a more extensive experiment in terms 
of time and participants (their number and variety of 



522	 Universal Access in the Information Society (2023) 22:511–524

1 3

background) could be performed in order to validate the 
results obtained in the experiments reported here. Using 
eye tracking and EEG devices would also allow to assess 
more objectively how the participants perceived the mes-
sage notifications and how distracted they were by them. 
The use of visual stimuli, such as periodical displaying of 
the desktop or windows of development tools, could further 
enhance peripheral perception in distributed teams by mim-
icking the way colocated team members accidentally spot 
each other’s monitors.

Questionnaire and answers

A weekly questionnaire on how much work interruption 
and distraction Indikom caused consisted of the following 
questions: 

Q1	The message notifications were distracting and inter-
rupted my work (1–5).

Q2	Message notifications were noticeable and I looked at 
them when they appeared (1–5).

Q3	Message notifications took some time to get used to 
(1–5).

Q4	Message notifications showed me relevant information 
for my current task (1–5).

Q5	A lot of irrelevant messages were displayed (1–5).
Q6	Developer activity tracking felt like an invasion of pri-

vacy (1–5).
Q7	Did you close the program during your work (yes/no)?
Q8	 If you answered “yes” to [Q7, explain why (1–5).
Q9	How often did you enter the conversation based on mes-

sage notifications (1–5, 1 = not at all, 5 = very often)?
Q10	 How often did you change something in your cur-

rent work based on a message notification (1–5, 1 = not 
at all, 5 = very often)?

Table 3 shows the questionnaire answers. Each row repre-
sents an answer provided by one participant. A Likert-type 
scale was used in most questions, with 1 representing the 
least agreement with the statement, and 5 representing a full 

Table 3   Questionnaire answers Week Member Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q9 Q10

1 1 2 4 4 4 2 1 no 3 3
2 1 5 3 4 2 1 no 4 2
3 3 5 4 4 1 2 yes 2 2
4 2 5 2 4 2 1 no 3 3
5 4 5 5 3 2 1 no 2 2
6 1 4 2 5 1 1 no 4 3
7 2 5 2 4 1 1 no 2 1

2 1 3 4 4 2 2 3 no 2 2
2 4 5 3 2 4 1 no 2 2
3 3 5 3 2 4 1 no 3 3
4 2 4 1 3 3 1 no 2 2
5 2 5 2 3 3 1 no 2 2
6 4 5 4 1 5 1 no 2 2
7 3 4 2 3 3 1 no 2 2

3 1 1 4 3 4 2 1 no 3 2
2 1 4 2 5 1 1 no 4 2
3 1 4 2 4 2 1 no 3 1
4 2 5 1 4 3 2 no 4 2
5 2 5 2 4 3 1 no 3 3
6 3 5 3 3 3 1 no 2 1
7 1 5 2 4 2 1 no 2 2

4 1 2 4 2 4 1 1 no 3 3
2 2 5 3 4 2 1 no 2 2
3 2 4 2 4 2 1 no 4 1
4 3 5 3 3 3 1 no 3 1
5 2 4 1 4 2 1 no 4 3
6 2 4 3 4 2 1 no 3 2
7 1 4 1 4 2 1 no 3 1



523Universal Access in the Information Society (2023) 22:511–524	

1 3

agreement. Only one participant answered “yes” to the ques-
tion “Did you close the program during your work?” (Q7) 
stating that it was distracting an he needed to focus (Q8).

Acknowledgements  The work reported here was supported by the 
Scientific Grant Agency of Slovak Republic (VEGA) under grant No. 
VG 1/0759/19, Slovak Research and Development Agency under the 
contract No. APVV-16-0213, and Operational Programme Integrated 
Infrastructure for the project Research and Development of Soft-
ware Solution with the Application of Blockchain Technology in the 
Field of International Rail and Container Transport of Goods (ITMS: 
313022V816), co-funded by the European Regional Development Fund 
(ERDF).

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Ethical approval  The study involved monitoring students carrying out 
their work tasks, which were a part of their study duties. Since students 
are normally monitored, this study did not introduce any additional 
ethical burden. All the results have been anonymized. All students 
agreed to participate in the study and were fully aware of the monitor-
ing and its purpose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Adams, P.H., Martell, C.H.: Topic detection and extraction in 
chat. In: Proceedings of 2008 IEEE International Conference on 
Semantic Computing, ICSC ’08. IEEE, Santa Clara, CA, USA 
(2008)

	 2.	 Beck, K., et al.: Manifesto for agile software development. http://​
agile​manif​esto.​org/ (2001)

	 3.	 Berta, P., Bystrický, M., Krempaský, M., Vranić, V.: Employing 
issues and commits for in-code sentence based use case identifica-
tion and remodularization. In: Proceedings of 5th European Con-
ference on the Engineering of Computer-Based Systems, ECBS 
2017. ACM, Larnaca, Cyprus (2017)

	 4.	 Calefato, F., Lanubile, F., Sanitate, N., Santoro, G.: Augmenting 
social awareness in a collaborative development environment. In: 
Proceedings of 2012 5th International Workshop on Co-operative 
and Human Aspects of Software Engineering, CHASE 2012. 
IEEE, Zurich, Switzerland (2012)

	 5.	 Cockburn, A.: Agile software development: the cooperative game, 
2nd edn. Addison-Wesley, USA (2006)

	 6.	 Cockburn, A.: The cone of silence and related project management 
strategies. http://​web.​archi​ve.​org/​web/​20170​61302​3457/http://​
alist​air.​cockb​urn.​us/​The+​cone+​of+​silen​ce+​and+​relat​ed+​proje​
ct+​manag​ement+​strat​egies (2008)

	 7.	 Cooper, R., Ali, S., Bi, C.: Extracting information from short 
messages. In: Proceedings of 10th International Conference on 
Application of Natural Language to Information Systems, NLDB 
2005, LNCS 3513. Springer, Alicante, Spain (2005)

	 8.	 Dullemond, K., van Gameren, B., van Solingen, R.: Supporting 
distributed software engineering in a fully distributed organiza-
tion. In: Proceedings of 5th International Workshop on Coopera-
tive and Human Aspects of Software Engineering, CHASE 2012, 
ICSE 2012 Workshop. IEEE, Zurich, Switzerland (2012)

	 9.	 Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., 
Jedlitschka, A., Oivo, M.: Empirical software engineering experts 
on the use of students and professionals in experiments. Empir. 
Softw. Eng. 23, 452–489 (2018)

	10.	 Feldt, R., Zimmermann, T., Bergersen, G.R., Falessi, D., 
Jedlitschka, A., Juristo, N., Münch, J., Oivo, M., Runeson, P., 
Shepperd, M., Sjøberg, D.I.K., Turhan, B.: Four commentaries on 
the use of students and professionals in empirical software engi-
neering experiments. Empir. Softw. Eng. 23, 3801–3820 (2018)

	11.	 Garrett, R.K., Danziger, J.N.: IM = interruption management? 
instant messaging and disruption in the workplace. J. Computer-
Mediated Commun. 13(1), 23–42 (2007)

	12.	 Gutwin, C., Penner, R., Schneider, K.: Group awareness in dis-
tributed software development. In: Proceedings of 2004 ACM 
Conference on Computer Supported Cooperative Work, CSCW 
’04. ACM, Chicago, IL, USA (2004)

	13.	 Hinds, P.J., Mortensen, M.: Understanding conflict in geographi-
cally distributed teams: the moderating effects of shared identity, 
shared context, and spontaneous communication. Organ. Sci. 
16(3), 290–307 (2005)

	14.	 Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated 
software development teams. In: Proceedings of 29th International 
Conference on Software Engineering, ICSE’07. IEEE, Minneapo-
lis, MN, USA (2007)

	15.	 Korkala, M., Abrahamsson, P.: Communication in distributed 
agile development: A case study. In: Proceedings of 33rd EURO-
MICRO Conference on Software Engineering and Advanced 
Applications, SEAA 2007. IEEE, Lübeck, Germany (2007)

	16.	 Lang, J., Spišák, D.: Activity diagram as an orientation catalyst 
within source code. Acta Polytechnica Hungarica 18(3), 127–146 
(2021)

	17.	 Maalej, W., Sahm, A.: Assisting engineers in switching artifacts 
by using task semantic and interaction history. In: Proceedings 
of 2nd International Workshop on Recommendation Systems 
for Software Engineering, RSSE ’10. ACM, Cape Town, South 
Africa (2010)

	18.	 Mark, G., Gudith, D., Klocke, U.: The cost of interrupted work: 
More speed and stress. In: Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems, CHI ’08. ACM, Flor-
ence, Italy (2008)

	19.	 Marx, M., Schmandt, C.: CLUES: Dynamic personalized message 
filtering. In: Proceedings of 1996 ACM Conference on Computer 
Supported Cooperative Work. ACM, Boston, Massachusetts, USA 
(1996)

	20.	 Nardi, B.A., Whittaker, S., Bradner, E.: Interaction and outerac-
tion: Instant messaging in action. In: Proceedings of 2000 ACM 
Conference on Computer Supported Cooperative Work, CSCW 
’00. ACM, Philadelphia, Pennsylvania, USA (2000)

	21.	 Niinimaki, T.: Face-to-face, email and instant messaging in dis-
tributed agile software development project. In: 2011 IEEE 6th 
International Conference on Global Software Engineering, ICGSE 
’11. IEEE, Helsinki, Finland (2011)

http://creativecommons.org/licenses/by/4.0/
http://agilemanifesto.org/
http://agilemanifesto.org/
http://web.archive.org/web/20170613023457/
http://alistair.cockburn.us/The+cone+of+silence+and+related+project+management+strategies
http://alistair.cockburn.us/The+cone+of+silence+and+related+project+management+strategies
http://alistair.cockburn.us/The+cone+of+silence+and+related+project+management+strategies


524	 Universal Access in the Information Society (2023) 22:511–524

1 3

	22.	 Ophir, E., Nass, C., Wagner, A.D.: Cognitive control in media 
multitaskers. Proc. Nat. Acad. Sci. (PNAS) 106(37), 370–379 
(2009)

	23.	 Ou, C.X.J., Davison, R.M.: Interactive or interruptive? instant 
messaging at work. Decis. Support Syst. 52(1), 61–72 (2011)

	24.	 Pejovic, V., Musolesi, M.: InterruptMe: Designing intelligent 
prompting mechanisms for pervasive applications. In: Proceedings 
of 2014 ACM International Joint Conference on Pervasive and 
Ubiquitous Computing, UbiComp ’14. ACM, Seattle, Washington 
(2014)

	25.	 Röcker, C., Prante, T., Streitz, N.A., van Alphen, D.: Using ambi-
ent displays and smart artefacts to support community interaction 
in distributed teams. In: Proceedings of OZCHI Conference 2004. 
Wollongong, NSW, Australia (2004)

	26.	 Santoro, F.M., Brezillon, P., de Araujo, R.M.: Management of 
shared context dynamics in software design. In: Proceedings of 

9th International Conference on Computer Supported Cooperative 
Work in Design. IEEE, Coventry, UK (2005)

	27.	 Zack, M.H.: Electronic messaging and communication effective-
ness in an ongoing work group. Inf. Manage. 26(4), 231–241 
(1994)

	28.	 Zou, L., Godfrey, M.W.: An industrial case study of program arti-
facts viewed during maintenance tasks. In: Proceedings of 13th 
Working Conference on Reverse Engineering, WCRE ’06. IEEE, 
Benevento, Italy (2006)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Constraining peripheral perception in instant messaging during software development by continuous work context extraction
	Abstract
	1 Introduction
	2 Instant messaging as a peripheral perception enabler in distributed teams
	3 Constraining peripheral perception according to the work context
	3.1 Extracting the personal work context from developer activities
	3.2 Implementing message filtering based on continuous work context extraction

	4 Setting the experiment space
	5 The team project experiment
	5.1 Experiment configuration
	5.1.1 Message tagging
	5.1.2 Direct observation
	5.1.3 Questionnaire

	5.2 Results and discussion
	5.2.1 Direct observation
	5.2.2 Questionnaire

	5.3 Threats to validity

	6 Related work
	7 Conclusions and further work
	Questionnaire and answers
	Acknowledgements 
	References




