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Abstract
This paper is concerned with orthonormal systems in real intervals, given with zero
Dirichlet boundary conditions. More specifically, our interest is in systems with a
skew-symmetric differentiation matrix (this excludes orthonormal polynomials). We
consider a simple construction of such systems and pursue its ramifications. In general,
given any C1(a, b) weight function such that w(a) = w(b) = 0, we can generate an
orthonormal systemwith a skew-symmetric differentiation matrix. Except for the case
a = −∞, b = +∞, only few powers of that matrix are bounded and we establish a
connection between properties of the weight function and boundedness. In particular,
we examine in detail two weight functions: the Laguerre weight function xαe−x for
x > 0 and α > 0 and the ultraspherical weight function (1 − x2)α , x ∈ (−1, 1),
α > 0, and establish their properties. Both weights share a most welcome feature of
separability,which allows for fast computation. The quality of approximation is highly
sensitive to the choice of α, and we discuss how to choose optimally this parameter,
depending on the number of zero boundary conditions.
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1 Introduction andMotivation

1.1 Spectral Methods

This work is motivated by spectral methods for time-dependent partial differential
equations (PDEs) of the form

∂u

∂t
= Lu + f (x, u), t ≥ 0, x ∈ �, (1.1)

where L is a well-posed linear operator, defining a strongly continuous semigroup,
and � ⊆ R

d , given with an initial condition for u(x, 0) and appropriate boundary
conditions on ∂�. Standard examples are L = � with f ≡ 0 (the diffusion equation)
or f a cubic polynomial in u with real zeros (the Fitzhugh–Nagumo equation) and
L = i� with either f = −iV (x) (the linear Schrödinger equation) or f = −iλ|u|2u
(the nonlinear Schrödinger equation with standard cubic nonlinearity).

In this paper, we are concerned by spectral methods applied in tandem with a
splitting approach. As an example, we may commence by approximating locally the
solution of (1.1) using the Strang splitting,

un+1 = e
1
2�tLe�t f e

1
2�tLun, n ≥ 0, (1.2)
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whereun(x) is an approximation tou(x, n�t). Here etLv is a shorthand for a numerical
solution at t of ∂u/∂t = Lu, u(0) = v, while et f v denotes a numerical solution of the
ordinary differential equation (ODE) du/ dt = f (x, u), u(0) = v. The splitting (1.2),
which incurs a local error of O(

(�t)3
)
, is but one example of operatorial splittings

[1, 2, 20] and is intended here to illustrate a general point, namely that the solution
of ‘complicated’ PDEs can be reduced to the solution of ‘simple’ PDEs and ODEs.
Once done correctly, this procedure is consistent with eventual quality of the solution,
concerning accuracy and stability alike.

Another benefit of (1.2) and of similar splittings is that it is consistent with con-
servation of the L2 energy. Many dispersive equations, e.g. Schrödinger (linear or
nonlinear), Gross–Pitaevskii, Dirac, Klein–Gordon and Korteveg–De Vries, conserve
the L2 norm of the solution. This often represents a highly significant physical feature,
and it is vital to respect it under discretisation. (Note that conservation of L2 norm
automatically implies numerical stability.) Because of the special form of (1.2) (and
of similar splittings), the overall numerical scheme preserves L2 energy if both the
discretisations of etL and et f do so. Insofar as et f is concerned, we can use the very
extensive and robust existing theory [8], e.g. use a symplecticmethod (which automati-
cally also preserves the L2 norm). It ismore challenging to ensure that ‖etLv‖2 = ‖v‖2
for every v, in other words that the discretisation of etL is unitary.

1.2 The DifferentiationMatrix

In this paper, we are concerned with spectral methods for time-dependent problems [3,
9, 27]. In a nutshell, we commence from a set� = {ϕn}n∈Z+ , where each ϕn is defined
in � and endowed with appropriate regularity. We assume that � is orthonormal in
the standard L2 inner product,

∫

�

ϕm(x)ϕn(x) dx = δm,n, m, n ∈ Z+,

and complete in L2(�), and expand a solution in the basis �,

u(x, t) =
∞∑

n=0

un(t)ϕn(x),

where the coefficients un(0)s are determined by expanding the initial condition u0,
while the un(t)s, t > 0 are typically evolved by Galerkin conditions, which for (1.1)
read

u′
m(t) =

∞∑

n=0

un(t)〈Lϕn + f ( · , ϕn), ϕm〉, m ∈ Z+.

In a practical method, we truncate the expansion and the range of m, thereby obtaining
a finite-dimensional linear system of ODEs.

Substantive advantage of spectral methods is that expansions in orthonormal bases
typically converge very rapidly indeed: for example, orthogonal polynomials converge

123



Foundations of Computational Mathematics

in a finite interval to analytic (in the interval and its neighbourhood) functions at an
exponential rate. Therefore, the number of degrees of freedom, compared to the more
usual finite difference or finite element methods, is substantially smaller. While this
is not the entire truth—finite differences and finite elements produce sparse linear
algebraic systems while spectral elements yield dense matrices which sometimes can
be also ill conditioned and,moreover, expanding a function in an orthonormal basis can
be potentially costly—spectral methods are often the approach of choice in numerical
computations. In the specific context of time-dependent problems, however, naive
spectral methods are unstable [9]. This motivates us to consider the major concept of
a differentiation matrix.

In the sequel, we restrict our narrative to the univariate case, � ⊆ R, for a number
of reasons. Firstly, surprisingly, even the univariate case (as we hope to persuade the
reader) is dramatically incomplete. Secondly, it lays the foundations to a multivariate
case, whether by tensorial extension to parallelepipeds or by more advanced means
which we intend to explore in a future paper.

The set� being a basis of L2(�)∩C1(�), any function therein can be expressed as a
linear combination of the ϕns, and this is particularly true with regard to the derivatives
ϕ′

m . This yields a linear map represented by the infinite-dimensional matrix D such
that

Dm,n =
∫

�

ϕ′
m(x)ϕn(x) dx, m, n ∈ Z+.

It is very simple to prove by integration by parts that the differentiation operator
D = ∂/∂x is skew Hermitian in the following three configurations of boundary
conditions:

1. The torus � = T (i.e. periodic boundary conditions);
2. The Cauchy problem: � = R; and
3. Zero Dirichlet boundary conditions on the boundary of � ⊂ R.

In that case ‖et D‖ = 1 (unless otherwise stated, we assume in this paper the Euclidean
norm.) and, D2 being Hermitian and negative semidefinite, ‖et D2‖ ≤ 1. More gener-
ally, D2�+1 is skew Hermitian and (−1)�−1D2� negative semidefinite for all � ∈ Z+.
Consequently, once L = ∑M

�=1 a�D�, where (−1)�−1a2� ≥ 0, it is trivial to prove
that 〈Lu, u〉 ≤ 0 for every u in the underlying Hilbert space.

This feature is retained by a spectral method, provided thatD is skew Hermitian, as
is its (N +1)×(N +1) sectionDN . In the context of the PDE (1.1), it thus follows that,
letting LN = ∑M

�=1 a�D
�
N , we have w∗LN w ≤ 0 for all w ∈ C

M+1. A consequence
is that the L2 energy is conserved for L = D (the Schrödinger case) and it dissipates
for L = D2 (the diffusion equation case). In both cases, numerical stability comes in
the wash.

1.3 Few Examples

This is the right moment to expand further on skew symmetry and differentiation
matrices in a practical setting by means of few examples, restricting ourselves for
simplicity to a single space dimension. Firstly, the reaction–diffusion equation
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∂u

∂t
= ∂2u

∂x2
+ f (u),

where f is a low-degree polynomial. In a finite-dimensional setting, the equation is
replaced by u′ = D∗D u+ f (u) and, providedD is skewHermitian,D∗D is negative
semidefinite. Once we use, e.g. the Strang splitting (1.2), the diffusion componentD 2

is assured to be dissipative. Another example is the convection–diffusion equation for
incompressible flow (assuming, for simplicity, constant vector field),

∂u

∂t
= ∂2u

∂x2
+ c

∂u

∂x
,

where c ∈ R. Its semidiscretisation is u′ = (D∗D + cD)u and, since for skew-
Hermitian matrix D

1

2
[(D∗D + cD) + (D∗D + cD)∗] = D∗D,

a negative-semidefinite matrix, stability is assured.
Yet another example (and the underlying motivation to the work that has led to this

paper) is dispersive equations of the form

i
∂u

∂t
= −�u + f (x, u)

where f (x, u) = V (x)u for linear Schrödinger equation, f (x, u) = λ|u|2u for
standard nonlinear Schrödinger equation and f (x, u) = [V (x) + λ|u|2]u for the
Gross–Pitaevskii equation. All these equations conserve the L2 energy ‖u‖ (often
known as ‘mass’ in this context), and this is a fundamental physical invariant. Once
the equation is semi-discretised in the form iu′ = −D∗D u + F(u) and solved, e.g.
with the Strang splitting (1.2), themass is conserved because iD∗D is skewHermitian.

Our last example is the KdV equation

∂u

∂t
+ ∂3u

∂x3
− 6u

∂u

∂x
= 0.

Strang splitting (1.2) means that we solve separately ∂u/∂t = −D3u and scalar
Burgers equations ∂um/∂t = −um(Du)m . In each case, once D is skew Hermitian,
the solution is stable and L2 energy conserved.

An important take-away lesson of our four examples is that we typically work (for
real D) with a specific power (or powers) of the differentiation matrix, predicated by
the space derivatives present in the differential equation. In particular, we require not
just D but its specific powers to be bounded.
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1.4 An Orthonormal Basis

The obvious choice of an orthonormal system is a set of orthogonal polynomials—
unless we use (possibly shifted) Legendre polynomials, this means replacing the L2
inner product by another, defined by the orthogonality weight function—but it is clear
that this produces a lower triangularD . While there are nontrivial ways round it [22],
there is strong motivation to consider alternative orthonormal systems.

The periodic case—without loss of generality,� = [−π, π ]with periodic boundary
conditions—is obvious: we let � = {einx }n∈Z, the Fourier basis. An added bonus is
fast expansion by means of a Fast Fourier Transform of any L2[−π, π ]∩Cper[−π, π ]
function in the underlying basis. This is the paradigmatic case whereby a spectral
method has few competitors.

The Cauchy case � = (−∞,∞) has been the subject of an extensive recent study
[11–14]. In particular, all orthonormal systems � such that D is skew Hermitian and
tridiagonal have been completely characterised. Specifically, they are in a one-to-one
relationship with Borel measures, supported on the entire real line. Let dμ(x) =
w(x) dx be such a measure (w might be a generalised function) and P = {pn}n∈Z+
the underlying set of orthonormal polynomials. It is elementary thatP obeys a three-
term recurrence relation

βn pn+1(x) = (x + αn)pn(x) − βn−1 pn−1(x), n ∈ Z+, (1.3)

where β−1 = 0, αn ∈ R and βn > 0 for n ∈ Z+. Inverse Fourier transforming
{w1/2 pn}n∈Z+ and multiplying the n term by in , we obtain an orthonormal set �,
dense in L2(R) and such that

ψ ′
n = −βn−1ψn−1 + iαnψn + βnψn+1, n ∈ Z+.

In other words, ψn = inF−1(w1/2 pn). Therefore, D is skew Hermitian (skew sym-
metric if αn ≡ 0, which is the case once w is an even function) and tridiagonal, while
orthonormality follows from the Plancherel theorem. Tridiagonality is a valuable fea-
ture because it is easy to manipulate D (e.g. multiply DN by a vector or approximate
exp(tDN )) and the powers of the infinite-dimensionalmatrixD (approximating higher
derivatives) remain bounded.

This leaves us with the third—and most difficult—case, namely zero Dirichlet
boundary conditions.1 This is the subject of this paper.

Anatural inclination is to extend theFourier transform-based theory from (−∞,∞)

to, say, (−1, 1). This can be done in one of two obvious ways and, unfortunately, both
fail. The first is to choose a measure dμ supported by (−1, 1), but this leads again
to � supported on the entire real line, the only difference being that in this case the
closure of � is not L2(−∞,∞) but a Paley–Wiener space [11]. Another possibility
is to abandon altogether the Fourier route and alternatively commence by specifying
a ϕ0, subsequently determining the ϕns for n ∈ N and the matrix D consistently

1 It is elementary to reduce nonzero Dirichlet conditions to zero ones by reformulating the PDE for unew =
u − ρ, where ρ is any sufficiently regular function that obeys the correct Dirichlet boundary conditions on
the boundary.
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with both orthogonality and tridiagonality. A forthcoming paper demonstrates how
to do this algorithmically. However, given ϕ′ = D ϕ, it follows by induction that
ϕ(s) = D sϕ for all s ∈ Z+. Consistency with zero Dirichlet boundary conditions,
though, requires ϕn(±1) ≡ 0, and this implies that ϕ

(s)
n (±1) ≡ 0 for all n, s ∈ Z+.

If ϕ0 is analytic in (−1, 1), this means that it necessarily must have an essential
singularity at the endpoints. Intuitively, this is bad news, and this is confirmed by
numerical experiments that indicate that the ϕns develop boundary layers and wild
oscillations near ±1 and their approximation power is nil.

Both ideas above fall short and the current paper embarks on an altogether different
approach, abandoning tridiagonality and the Fourier route altogether. Note that the
existence of an essential singularity at the endpoints hinged on the fact that all powers
of the infinite matrix D are bounded. This is obvious once D is tridiagonal (or, more
generally, banded); hence, our main idea is to choose an orthonormal set D such that
D s+1 blows up for some s ∈ N. At the same time, we wish to retain a major blessing
of tridiagonality, namely that DN w can be computed in O(N ) operations for any
w ∈ C

N+1 and, more generally, that DN is amenable for fast linear algebra.

1.5 Plan of this Paper

The main idea underlying this paper is exceedingly simple: given a measure dμ =
w dx , where w ∈ C

1(a, b), and an underlying set P = {pn}n∈Z+ of orthonormal
polynomials, we set

ϕn(x) = √
w(x)pn(x), x ∈ (a, b). (1.4)

It follows at once that � is orthonormal with respect to L2(a, b) and it is easy to
determine conditions so that ϕn(a) = ϕn(b) = 0 for all n ∈ Z+. It is not difficult to
specify the conditions onw for skew symmetry ofD . However, the narrative becomes
more complicated once we seek a system such that D k is bounded for k = 1, . . . , s
and blows up for k = s + 1. Likewise, it is considerably more challenging to identify
systems � that allow for fast computation of DN w for w ∈ C

N+1.
In Sect. 2, we introduce the functions (1.4) in a more rigorous setting of Sobolev

spaces and explore general properties of their differentiation matrices. Section 3 is
devoted to two families of weight functions, namely the Laguerre family wα(x) =
xαe−xχ(0,∞)(x) and the ultraspherical family wα(x) = (1 − x2)αχ(−1,1)(x). We
prove that both families have a separable differentiation matrix. This feature (put to a
good use in Sect. 4) is very special—indeed, there are good reasons to conjecture that
these two families are the only weights with this feature. We present a detailed exam-
ple of two orthogonal families, generalised Hermite weights wμ(x) = |x |2μe−x2 and
Konoplev weights wα,β(x) = |x |2β+1(1− x2)αχ(−1,1)(x), and prove that their differ-
entiation matrices cannot be separable unless (for Konoplev weights) β = − 1

2 and the
weight reduces to ultraspherical. Note, however, that separability is just one feature
lending itself to fast numerical algebra and one cannot rule out that other weights
might lead to differentiation matrices which, while non-separable, are amenable to
fast computation.
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Finally, in Sect. 4 we demonstrate how separability of the differentiation matrix
can be utilised for fast multiplication of DN w, w ∈ R

N+1, in O(N ) operations.
The original idea to consider functions of the form (1.4) in the specific case of

Freud weights has been considered first by Luong [19], who demonstrated that in this
specific caseD is a skew-symmetric, banded matrix with bandwidth seven. This was a
serendipitious choice: in Sect. 2, we prove that the only weights that produce a banded
matrix in the setting of (1.4) are generalised Freud weights!

2 W-Functions

2.1 The Definition and Some of Its Consequences

Let (a, b) be a non-empty real interval, −∞ ≤ a < b ≤ ∞, and s ∈ N ∪ {∞}. We

denote by H
◦
2
s[a, b] the Sobolev space of Hs

2[a, b] functions f such that

f (k)(a) = f (k)(b) = 0, k = 0, . . . , s − 1,

(note that Cs−1[a, b] ⊂ Hs
2[a, b], therefore the derivatives are well defined) equipped

with the inner product

〈 f , g〉s =
s∑

k=0

∫ b

a
f (k)(x)g(k)(x) dx .

Aweight function w ∈ L2(a, b)∩C1(a, b) is a positive functionwith all itsmoments

μk =
∫ b

a
xkw(x) dx, k ∈ Z+,

bounded.Given aweight functions,we can define (e.g. using aGram–Schmidt process)
a set of orthonormal polynomials P = {pn}n∈Z+ such that

∫ b

a
pm(x)pn(x)w(x) dx = δm,n, m, n ∈ Z+. (2.1)

Such a set is unique once we require, for example, that the coefficient of xn in pn is
always positive. We say that ϕn is the nth W-function once

ϕn(x) = √
w(x)pn(x), n ∈ Z+,

and let � = {ϕn}n∈Z+ . It follows at once from (2.1) that � is an orthonormal set with
respect to the standard L2 inner product.
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Remark 1 The functions ϕn inherit some features of orthonormal polynomials; in par-
ticular, they obey the same three-term recurrence relation. However, the expansion
coefficients of an arbitrary function are different:

f ∼
∞∑

n=0

f̂ P
n pn, f̂ P

n =
∫ b

a
f (x)pn(x)w(x) dx, f ∈ L2((a, b), w dx),

f ∼
∞∑

n=0

f̂ �
n ϕn, f̂ �

n =
∫ b

a
f (x)pn(x)

√
w(x) dx, f ∈ L2(a, b).

Remark 2 An important difference between P and � is that while the pn are
polynomials, hence analytic functions, the W-functions carry over potential singu-
larities of the weight function. For example, for the Chebyshev weight function
w(x) = (1 − x2)−1/2χ(−1,1)(x) the ϕns have weak singularity at the endpoints ±1,
while their derivatives possess strong singularity there.

We let D stand for the infinite-dimensional differentiation matrix

Dm,n =
∫ b

a
ϕ′

m(x)ϕn(x) dx, m, n ∈ Z+. (2.2)

We say that w is of index s ∈ N∪ {∞} and denote this by indw = s ifD k is bounded
for k = 1, . . . , s, while D s+1 is unbounded.

Lemma 1 D is skew symmetric if and only if w(a) = w(b) = 0.

Proof Assume first that −∞ < a < b < ∞ and note thatD is skew symmetric if and
only if Dm,n + Dn,m = 0, m, n ∈ Z+. Since

ϕ′
n =

∞∑

k=0

Dn,kϕk, n ∈ Z+,

it follows from (2.2) and the orthonormality of � that D is skew symmetric if

∫ b

a

d
√

w(x)pm(x)

dx

√
w(x)pn(x) dx +

∫ b

a

√
w(x)pm(x)

d
√

w(x)pn(x)

dx
dx = 0

for m, n ∈ Z+. The latter is equivalent, for every m, n ∈ Z+, to
∫ b

a

[
w′(x)

2
√

w(x)
pm(x) + √

w(x)p′
m(x)

]√
w(x)pn(x) dx

+
∫ b

a

√
w(x)pm(x)

[
w′(x)

2
√

w(x)
pn(x) + √

w(x)p′
n(x)

]
dx = 0

⇔
∫ b

a
[w′(x)pm(x)pn(x) + w(x)p′

m(x)pn(x) + w(x)pm(x)p′
n(x)] dx = 0
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⇔
∫ b

a

[
w′(x)pm(x)pn(x) + w(x)

dpm(x)pn(x)

dx

]
dx = 0

⇔
∫ b

a
w′(x)pm(x)pn(x) dx + w(x)pm(x)pn(x)

b

a
−

∫ b

a
w′(x)pm(x)pn(x) dx = 0

⇔ w(b)pm(b)pn(b) = w(a)pm(a)pn(a).

All the zeros of orthogonal polynomials reside in (a, b). Therefore, they cannot vanish
at the endpoints and (−1)k pk(a)pk(b) > 0, k ∈ N; hence, pm(a)pn(a) cannot equal
pm(b)pn(b) for all m, n ∈ N. We deduce that D is skew symmetric if and only if
w(a) = w(b) = 0.

The proof is similar—in fact, somewhat simpler—once either b = ∞ or a = −∞.
If (a, b) = (−∞,∞), then L2 boundedness and continuity imply w(±∞) = 0, D is
skew symmetric, and there is nothing to prove. ��

Consequently, we impose an additional condition on the weight function, namely
that it vanishes at the endpoints. Note that this is automatically true once an endpoint
is infinite.

A quintessential example of a family of W-functions is Hermite functions

ϕn(x) = e−x2/2
√
2nn!√π

Hn(x), n ∈ Z+,

where the Hns are standard Hermite polynomials. Hermite functions are well known
in mathematical physics, because they are eigenfunctions of the free Schrödinger
operator. They can be derived from orthonormalised Hermite polynomials via the
Fourier transform route, as mentioned in introduction and e.g. in Arieh Iserles and
MarcusWebb [11]; hence, their differentiationmatrix is tridiagonal. On the other hand,
they areW-functions withw(x) = e−x2 . Tridiagonality implies that indw = ∞. More
generally, indw = ∞ once D is a banded matrix and it is interesting to characterise
all weight functions with this feature.

Theorem 2 The differentiation matrix D of a system of W-functions is banded if and
only if w(x) = e−c(x), x ∈ R, where c is an even-degree polynomial whose highest
degree coefficient is strictly positive.

Proof Letting m ≤ n − 1, orthogonality implies that

Dm,n =
∫ b

a
w

(
1

2

w′

w
pm + p′

m

)
pn dx = 1

2

∫ b

a
w′ pm pn dx

while for m ≥ n + 1 skew symmetry yields

Dm,n = −1

2

∫ b

a
w′ pm pn dx . (2.3)
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Assume thatD has bandwidth 2L+1, in otherwords thatDm,n = 0 for |m−n| ≥ L+1.
It follows for m ≤ n − 1 that

∫ b

a
wXm pn dx = 0, n ≥ m + L + 1 where Xm = w′

w
pm .

If in addition n ≥ L , expanding Xm in the basisP it follows that Xm is a polynomial
of degree m + L + 1. However,

w′ = Xm

pm
w → w(x) = w(x0) exp

(∫ x

x0

Xm(y)

pm(y)
dy

)

for some x0. Sincew is independent ofm, necessarily pm divides Xm and the remainder
c is a polynomial independent of m. Therefore, without loss of generality w(x) =
e−c(x) where c is a polynomial of degree L+1.w being integrable andw(a) = w(b) =
0, necessarily a = −∞, b = ∞,2 L is odd and c is an even-degree polynomial with
strictly positive leading-degree coefficient. ��

We have recovered precisely the W-functions associated with generalised Freud
polynomials that have been originally considered in Luong [19]. However, such W-
functions are of little interest within the context of this paper, since we seek weight
functions of finite index.

This is the point to note the expression (2.3) for the elements of D such that
m ≥ n + 1. (If m ≤ n − 1 we need to flip the sign.) We will make much use of it in
the sequel.

2.2 The Boundedness ofD s

We assume in this section that the weight w is strictly positive in (a, b), as smooth in
[a, b] as needed in our construction, and set

q j (x) = d j√w(x)

dx j
, j ∈ Z+.

Therefore,

ϕ(�)
m =

�∑

j=0

(
�

j

)
q j p(�− j)

m , �, m ∈ Z+.

As long as D s is bounded, we have

(D s)m,n =
∫ b

a
ϕ(s)

m ϕn dx =
s∑

j=0

(
s

j

)∫ b

a

√
wq j p(s− j)

m pn dx . (2.4)

2 In a finite interval, we would have had an essential singularity at an endpoint.
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It is trivial to prove that

qr =
r∑

j=1

Ur , j

w j− 1
2

,

where each Ur , j is a linear combination of products of the form
∏

i w(�i ) such that
�i ≥ 1 and

∑
i �i = r : for example,

U4,1 = 1

2
w(4), U4,2 = −3

4
w′′2 − w′w′′′, U4,3 = 9

4
w′2w′′, U4,4 = −15

16
w′4.

In general, Ur ,r = (−1)r−1(2r)!w′r/(4r r !), r ∈ N.
Since w(x) > 0 in (a, b), the only possible source of singularity in (2.4) is that

ϕ
(s)
m is non-integrable at an endpoint. Recalling that w(a) = w(b) = 0, integrability

is lost exclusively when dividing by a power of w, and the larger the power, the more
significant the singularity. In other words, ϕ(s)

m is bounded for all m ∈ Z+ only if the
integral

∫ b

a

√
wqs p dx

is bounded for any polynomial p, and this is contingent on w̃s = w′s/ws−1 being a
signed weight function, i.e. all its moments exist and w̃s �≡ 0.3 The following theorem
is thereby true.

Theorem 3 A necessary condition for ind w ≥ s is that w̃r , r = 2, . . . , s, are signed
weight functions.

Let −∞ < a < b < ∞. Regularity and w(a) = w(b) = 0 imply that

w(x) = (x − a)α(b − x)βv(x), x ∈ [a, b], v(a), v(b) �= 0. (2.5)

Therefore, after elementary algebra,

w̃s = (x − a)α−s(b − x)s−βv

[
(αb + βa) − (α + β)x + (x − a)(b − x)

v′

v

]s

.

Theorem 4 A necessary condition for ind w ≥ s in a finite interval (a, b) is that
α, β > s − 1. Likewise, once b = ∞, we need α > s − 1 and for a = −∞ the
condition is β > s − 1.

Proof Consistently with our assumptions, v �= 0 in [a, b]; therefore, the only source
of singularity may come from (x − a)α−s and (b − x)β−s . We conclude that, for D s

to be bounded, we need α, β > s − 1. The semi-infinite cases follow in an identical
(and simpler!) manner. ��
3 w̃1 cannot be a ‘true’ weight function because w(a) = w(b) = 0; hence, w′ changes sign in (a, b).
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In the special case s = 2,we can complement Theorem3with a sufficient condition.

Theorem 5 A necessary and sufficient condition for ind w ≥ 2 is that w̃2 = w′2/w is
a signed measure.

Proof We compute D 2 directly. Using skew symmetry,

D 2
m,n =

∞∑

�=0

Dm,�D�,n = −
n−1∑

�=0

Dm,�Dn,� +
m−1∑

�=n+1

Dm,�D�,n −
∞∑

�=m+1

D�,mD�,n .

Recalling (2.3), let us consider the infinite sum

−
∞∑

�=m+1

D�,mD�,n = −1

4

∫ b

a

∫ b

a
w′(x)w′(y)pm(x)pn(y)

∞∑

�=m+1

p�(x)p�(y) dx dy

= −1

4

∫ b

a

∫ b

a
w′(x)w′(y)pm(x)pn(y)

∞∑

�=0

p�(x)p�(y) dx dy

+1

4

m∑

�=0

∫ b

a
w′(x)pm(x)p�(x) dx

∫ b

a
w′(y)pn(y)p�(y) dy

= −1

4

∫ b

a

∫ b

a
w′(x)w′(y)pm(x)pn(y)

∞∑

�=0

p�(x)p�(y) dx dy

+
n−1∑

�=0

Dm,�Dn,� −
n−1∑

�=m+1

Dm,�D�,n .

Therefore,

D 2
m,n = −1

4

∫ b

a

∫ b

a
w′(x)w′(y)pm(x)pn(y)

∞∑

�=0

p�(x)p�(y) dx dy. (2.6)

LetP be orthonormal and complete in L2((a, b), w dx) and f ∈ L2((a, b), w dx).
Then

f (x) =
∞∑

m=0

f̂m pm(x), where f̂m =
∫ b

a
w(x) f (x)pm(x) dx .

Moreover, by the Parseval theorem,

∫ b

a
w(x)| f (x)|2 dx = ‖ f ‖2 =

∞∑

m=0

| f̂m |2. (2.7)
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Since

| f̂m |2 =
∫ b

a

∫ b

a
w(x)w(y) f (x) f (y)pm(x)pm(y) dx dy,

exchanging summation and integration we have

‖ f ‖2 =
∫ b

a

∫ b

a
w(x)w(y) f (x) f (y)

∞∑

m=0

pm(x)pm(y) dx dy.

Let

K (x, y) = √
w(x)w(y)

∞∑

m=0

pm(x)pm(y)

be the Christoffel–Darboux kernel. It now follows from (2.7) that for every f ∈
L2((a, b), w dx) it is true that

∫ b

a
w(x)| f (x)|2 dx =

∫ b

a

∫ b

a

√
w(x)w(y) f (x) f (y)K (x, y) dx dy

and we deduce that
K (x, y) = δx−y . (2.8)

In other words, K is a reproducing kernel.4

We now return to (2.6), deducing that

D 2
m,n = −1

4

∫ b

a

∫ b

a

w′(x)w′(y)√
w(x)w(y)

pm(x)pn(y)K (x, y) dx dy

= −1

4

∫ b

a

w′2(x)

w(x)
pm(x)pn(x) dx = −1

4

∫ b

a
w̃2(x)pm(x)pn(x) dx .

This is bounded because w̃2 is a signed measure and pm pn a polynomial, and we
deduce that indw ≥ 2. The necessity of w̃2 being a signed measure is obvious from
the argument that led to Theorem 4. ��

3 Separable Systems

In this section, we consider two families of weight functions that share a hugely
beneficial attribute of separability, and we also provide two examples of weights that
lack this feature.

4 While this is probably known, the author failed to find this result in literature, even in the encyclopaedic
review of the Christoffel–Darboux kernel in Simon [25], see also Refs. [15, 18]—the reason might well be
that the emphasis is usually on general Borel measures, rather than on dμ = w dx with w ∈ C1(a, b). One
way or the other, the proof is included for completeness.
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We say that a weight function w is separable if there exist real sequences a =
{an}n∈Z+ and b = {bn}n∈Z+ such that

Dm,n =
⎧
⎨

⎩

ambn, m ≥ n + 1,
0, m = n,

−anbm, m ≤ n − 1,
m, n ∈ Z+ (3.1)

and it is symmetrically separable subject to the existence of real sequences a =
{an}n∈Z+ and b = {bn}n∈Z+ such that

Dm,n =

⎧
⎪⎨

⎪⎩

−ambn m + n odd, m ≥ n + 1,

0, m + n even,

ambn, m + n odd, m ≤ n − 1,

m, n ∈ Z+ (3.2)

It is demonstrated in Sect. 4 that separability or symmetric separability allows for very
rapid computation of products of the form DNv for v ∈ R

N+1. This is intimately
related to earlier results on fast computation of some structured algebraic systems in
Refs. [6, 7].

In this section, we consider two families of measures, one separable and the other
symmetrically separable: the Laguerre weight w(x) = xαe−xχ(0,∞)(x) and the ultra-
spherical weight (1−x2)αχ(−1,1)(x), respectively. In a way, they are the most obvious
measures in intervals of the form (0,∞) and (−1, 1), respectively. Yet, interestingly,
separability appears to be a very rare feature and we provide counterexamples further
in this section.

In both Laguerre and ultraspherical cases, we are able to present comprehensive
analysis, deriving the sequences a,b explicitly, determining indw and (in Sect. 4) dis-
cussing the optimal choice of the parameter α. While both Laguerre and ultraspherical
polynomials have been comprehensively studied, the separability and the formulæ
(3.1) and (3.2) are, to the best of author’s knowledge, new.

3.1 The Laguerre Family

Laguerre polynomials are orthogonal with respect to the Laguerre weight,

∫ ∞

0
xαe−xL(α)

m (x)L(α)
n (x) dx = �(n + 1 + α)

n! δm,n, m, n ∈ Z+, α > −1.

[23, p. 206]. In our case, we consider just the case α > 0, so that the weight function
vanishes at the origin. We have

pn(x) =
√

n!
�(n + 1 + α)

L(α)
n (x),

ϕn(x) =
√

n!
�(n + 1 + α)

xα/2e−x/2L(α)
n (x), n ∈ Z+.
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In Theorem 12, we determine that the Laguerre weight is separable—the proof
requires a fair bit of algebraic computation and is relegated to Appendix A. The
separability coefficients are given in (A.8), which we repeat here for clarity,

am =
√

m!
2�(m + 1 + α)

∼ 1

mα/2 , bn =
√

�(n + 1 + α)

2n! ∼ nα/2, m, n ∈ Z+.

(3.3)
Note that

ambm ≡ 1

2
, m ∈ Z+ (3.4)

this will be important in the sequel.
Theorem 4 presents a necessary condition for indw ≥ s for s ≥ 2: for a Laguerre

weight w = wα it translates to α > s − 1. In the remainder of this subsection, we
wish to prove that for the Laguerre weight function this condition is also sufficient.

The matrix D s is absolutely bounded for s ≥ 0 if

∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

ks−1=0

|Dm,k1Dk1,k2 · · ·Dks−2,ks−1Dks−1,n| < ∞, m, n ∈ Z+. (3.5)

It is clear that absolute boundedness implies boundedness.
We assume that m ≥ n + 1 and observe that everything depends on the interplay

of the relative sizes of k0 = m, k1, k2, . . . , ks−1, ks = n because, for example,

k j > k j+1 ⇒ |Dk j ,k j+1 | = ak jbk j+1 , k j < k j+1 ⇒ |Dk j ,k j+1 | = ak j+1bk j .

We can disregard the case k j = k j+1 because thenDk j ,k j+1 = 0 and the entire product
vanishes; hence, we assume that always k j �= k j+1. We use the shorthand ↘ for
k j > k j+1 and ↗ for k j < k j+1. Note that once s is even then D s is symmetric and
diagonal elements no longer vanish: in that case we need to consider also the case
m = n but the proof is identical.

To illustrate our argument, for s = 4 we have eight options:
↘↘↘=↘3: k0 > k1 > k2 > k3, ↘↗↘: k0 > k1 < k2 > k3,
↘↘↗=↘2↗: k0 > k1 > k2 < k3, ↘↗↗=↘↗2: k0 > k1 < k2 < k3,
↗↘↘=↗↘2: k0 < k1 > k2 > k3, ↗↗↘=↗2↘: k0 < k1 < k2 > k3,
↗↘↗: k0 < k1 > k2 < k3, ↗↗↗=↗3: k0 < k1 < k2 < k3,

except that ↗3 is impossible because k0 = m > n = k2.
We letQN stand for a generic polynomial of degree exactly N and note for further

use the following technical result with a straightforward proof.

Proposition 6 The sum

K∑

k=1

QN (k)

kα
∼ cK N−α+1, K � 1, N �= α − 1,
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converges as K → ∞ if and only if α > N + 1. Here c is a constant, while “∼”
means that we are disregarding lower-order terms.

In general, the main idea is to write a sequence of ↗s and ↘s in the form

↗i1↘ j1↗i2↘ j2 · · · ↗it ↘ jt ,

where ik, jk ≥ 0 and
∑t

k=1(ik + jk) = s. We call ↗r a ↗-pre-chain of length r and
↘r a ↘-pre-chain of length r ; in other words, we decompose each product in (3.5)
into a sequence of alternating pre-chains.

Consider first an ↗-pre-chain of length r ≥ 1. Because of (3.4), it equals

k�−1−1∑

k�=0

k�−1∑

k�+1=0

· · ·
k�+r−2−1∑

k�+r−1=0

|Dk�−1,k�
Dk�,k�+1 · · ·Dk�+r−2,k�+r−1 |

=
k�−1−1∑

k�=0

k�−1∑

k�+1=0

· · ·
k�+r−2−1∑

k�+r−1=0

�+r−2∏

j=�−1

ak jbk j+1 = ak�−1

2r−1

k�−1−1∑

k�=0

k�−1∑

k�+1=0

· · ·
k�+r−2−1∑

k�+r−1=0

bk�+r−1 .

We say that ak�−1 and bk�+r−1 are the head and the tail of the pre-chain, respectively.
Likewise, for an ↘-pre-chain of length r ≥ 1 we have

∞∑

k�=k�−1+1

∞∑

k�+1=k�+1

· · ·
∞∑

k�+r−1=k�+r−2+1

|Dk�−1,k�
Dk�,k�+1 · · ·Dk�+r−2,k�+r−1 |

= bk�−1

2r−1

∞∑

k�=k�−1+1

∞∑

k�+1=k�+1

· · ·
∞∑

k�+r−1=k�+r−2+1

ak�+r−1 .

Now bk�−1 and ak�+r−1 are the head and the tail of the pre-chain, respectively.
Except for � = 0 and � + r = s, we join the tail of a pre-chain to the head of the

succeeding pre-chain. The outcome is ↗-chains and ↘-chains. Note thus that a chain
has no head, while its tail is multiplied by the head of its successor pre-chain. (In this
procedure, we lose the head of the leading pre-chain and the tail of the last pre-chain,
but this makes no difference to the finiteness—or otherwise—of the sum)

An ↗-chain of length r is of the form

1

2r−1

k�−1−1∑

k�=0

k�−1∑

k�+1=0

· · ·
k�+r−2−1∑

k�+r−1=0

b2k�+r−1
= 1

2r

k�−1−1∑

k�=0

k�−1∑

k�+1=0

· · ·
k�+r−2−1∑

k�+r−1=0

�(k� + r + α)

(k� + r − 1)! ,

a finite sum. Hence, it cannot be a source for unboundedness of the sum (3.5). Mat-
ters are different, though, with an ↘-chain of length r : straightforward algebra and
Proposition 6 imply that

∞∑

k�=k�−1+1

∞∑

k�+1=k�+1

· · ·
∞∑

k�+r−1=k�−r−2+1

a2k�+r−1
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Fig. 1 Laguerre W-functions: The magnitude of D s for different values of α and 1 ≤ s ≤ 3

=
∞∑

k�+r−1=k�−1+r

a2k�+r−1

k�+r−1−r+1∑

k�=k�−1+r−1

k�+r−1−r+2∑

k�+1=k�−1+r−2

· · ·
k�+r−1−1∑

k�+r−2=k�−1+1

1

=
∞∑

k�+r−1=k�−1+r

a2k�+r−1
Qr−1(k�+r−1) ∼

∞∑

�=k�−1+r

1

�α−r
.

Therefore, boundedness takes place if α − r > 1.
Since the length of any chain is at most s − 1 and ↘s−1 is impossible (recall,

k0 > ks), the maximal length of an ↘-chain is s − 2. We thus deduce that α > s − 1.

Theorem 7 ind wα ≥ s for the Laguerre weight if and only if α > s − 1.

Proof The necessity is proved in Theorem 4, while sufficiency follows because abso-
lute boundedness in (3.5) implies boundedness. ��

In Fig. 1, we display the absolute values of the entries ofD s for different values of α
and s. The computation involves infinite matrices, hence infinite products which need
be truncated in computation. Thus, we compute 300× 300 matrices and their powers,
while displaying just their 100 × 100 section, since this minimises the truncation
effects. For s = 1, all differentiation matrices are bounded and of a moderate size;
the sole difference is that as α grows, the matrix becomes more ‘centred’ about the
diagonal. However, already for s = 2 the difference is discernible. For α = 1, we are
right on the boundary ofα > s−1 (on itswrong side!) and the size ofD 2 grows rapidly:
had we displayed a section of an M × M matrix for M � 300, the magnitude would
have grown at a logarithmic rate, as indicated by the proof of absolute boundedness.
Once α > 1, the magnitude grows at a slower rate and would remain bounded for
M → ∞. Finally, for s = 3 the cases α = 1 and α = 2 correspond to polynomial and
logarithmic growth, respectively, and this is apparent in the figure. Finally, for α = 4
the rate of growth slows down and it is persuasive that the magnitude remains bounded
as M → ∞. Note that even in a ‘good’ α regime the magnitude, while decaying along
rows and columns, grows along diagonals. We refer to the discussion following Fig. 2
for an explanation of this behaviour, commenting here that this phenomenon follows
from am ∼ m−α/2 and bn ∼ nα/2.

It follows from Theorem 7 that once we approximate functions in H
◦
2
s
(0,∞), we

need to choose α > s − 1. However, there is much more to the choice of a good α and
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we defer its discussion to Section 4. As it turns out, the quality of approximation is
exceedingly sensitive to the right choice and numerical results indicate that there exists
a ‘sweet spot’ that brings about substantially improved quality of approximation.

3.2 The Ultraspherical Family

The ultraspherical weight5 a special case of the Jacobi weight, is wα(x) = (1 −
x2)αχ(−1,1)(x), α > 1—in our case the requirement wα(±1) = 0 restricts α to the
range (0,∞). We have

pn(x) = gα
n P

(α,α)
n (x),

ϕn(x) = gα
n (1 − x2)α/2P(α,α)

n (x), n ∈ Z+,

where the constant

gα
n =

√
1
2n!(2n + 2α + 1)�(n + 2α + 1)

2α�(n + α + 1)

orthonormalises an ultraspherical polynomial [23, p. 260]. Recalling the identity (2.3),
we let

Em,n = 1

αgα
m gα

n
Dm,n =

∫ 1

−1
(1 − x2)α−1xP(α,α)

m (x)P(α,α)
n (x) dx .

It is sufficient to derive theEm,ns explicitly andprove thatE is symmetrically separable.
We recall that our interest is in oddvalues ofm+n and assumewithout loss of generality
that m ≥ n + 1

Let

Sα
m,n =

∫ 1

−1
(1 − x2)α−1P(α,α)

m (x)P(α,α)
n (x) dx,

noting that Sα
m,n = 0 ifm+n is odd. The three-term recurrence relation for orthonormal

ultraspherical polynomials is

xP(α,α)
m (x)= (m + 1)(m + 2α + 1)

(m + 1 + α)(2m + 2α + 1)
P(α,α)

m+1 (x)+ m + α

2m + 2α + 1
P(α,α)

m−1 (x), (3.6)

as can be easily confirmed from Rainville [23, p. 263]. Therefore,

Em,n

=
∫ 1

−1
(1 − x2)α−1

[
(m + 1)(m + 2α + 1)

(m + 1 + α)(2m + 2α + 1)
P(α,α)

m+1 + m + α

2m + 2α + 1
P(α,α)

m−1

]
P(α,α)

n dx

5 Also known, subject to different scaling, as the Gegenbauer weight [23, p. 276].
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= (m + 1)(m + 2α + 1)

(m + 1 + α)(2m + 2α + 1)
Sα

m+1,n + m + α

2m + 2α + 1
Sα

m−1,n . (3.7)

Our next task is determining the explicit form of Sα
m,n for even m + n and, without

loss of generality, m ≥ n. This is accomplished in Appendix B and results in

Sα
m,n = 4α

α

�(m + 1 + α)�(n + 1 + α)

n!�(m + 1 + 2α)
, m ≥ n, m + n even.

We conclude from (3.7) that

Em,n = 4α

α

�(m + 1 + α)�(n + 1 + α)

n!�(m + 1 + 2α)
, m ≥ n, m + n odd

and

Dm,n = αgα
m gα

n Em,n = 1

2

√
m!(2m + 2α + 1)(2n + 2α + 1)�(n + 1 + 2α)

n!�(m + 1 + 2α)
(3.8)

is valid for all odd m + n, m ≥ n + 1—once n ≥ m + 1, we need to swap m and n
and invert the sign. (Of course, Dm,n = 0 once m + n is even.)

Our first conclusion is that the measure is symmetrically separable with

am =
√

m!(2m + 2α + 1)

2�(m + 1 + 2α)
, bn =

√
(2n + 2α + 1)�(n + 1 + 2α)

2n! . (3.9)

The next conclusion is that the rate of growth (or decay) is dramatically different
along the rows and the columns of D . It follows from (3.8) and the standard Stirling
formula [21, 5.11.3] that

Dm,n ∼ nα+ 1
2

mα− 1
2

, m, n � 1, m ≥ n + 1.

Therefore, the elements of the differentiation matrix decay geometrically (at any rate,
for α > 1

2 ) along rows (and, because of skew symmetry, columns) and increase
geometrically along diagonals. Note that, forming powers of D , it is the decay along
rows and columns that allows for boundedness. (Incidentally, it can be proved using
special functions that (D 2)0,0 = α(2α+1)/[4(α−1)], driving home the fact, already
known from Theorem 5, that α > 1 is necessary and sufficient for boundedness. We
leave the proof, which plays no further role in our narrative, as an exercise for the
reader.)

Figure 2 displays the magnitude of the powers of differentiation matrix for ultras-
pherical weights and different values of α and s, using the same rules of engagement
as in Fig. 1. Two trends are discernible, both following from our discussion. Firstly,
the decay along rows accelerates as α grows and D s is more concentrated near the
diagonal. Secondly, the terms along the diagonal (of course, with m + n of the right
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Fig. 2 Ultraspherical W-functions: The magnitude of D s for different values of α and 1 ≤ s ≤ 3

parity) grow the fastest. Their rate of growth is rapid (and grows with α), but this
need not be a problem, at any rate once we approximate sufficiently smooth functions.
In that case D , its powers and possibly functions (e.g. exp(hD)) act on the expan-
sion coefficients of functions in the underlying basis �. Provided these functions are
sufficiently smooth, it is plausible that these coefficients decay very rapidly and, for
analytic functions, at an exponential rate. (We defer to Sect. 4 for more substantive
discussion of convergence.) Thus, large terms along the diagonal will multiply small
terms in a vector of expansion coefficients—something that might conceivably cause
loss of accuracy for truly huge matrices but which is probably negligible in practice.

Similar to Laguerre weights, we now seek to prove that Theorem 4 provides also
a sufficient condition for indwα ≥ s for ultraspherical weights, i.e. that α > s − 1
implies thatD s is bounded.Ourmethod of proof is similar to that of Theorem7, except
that we need to account for a number of differences: firstlyDm,n can be nonzero only
when m +n is even, secondly, we have symmetric separability in place of separability,
and thirdly, (3.4) is no longer true and needs to be replaced by

ambm = m + α + 1

2
. (3.10)

Letting again k0 = m, ks = n, where m ≥ n + 1 (or m ≥ n once s is even), we
need to replace (3.5) by

∞∑

k1=0

� ∞∑

k2=0

�

· · ·
∞∑

ks−1=0

�

|Dk0,k1Dk1,k2 · · ·Dks−2,ks−1Dks−1,ks | < ∞,

where the star means that we sum only over pairs (ki−1, ki ) such that ki−1 + ki is odd.
Note that Proposition 6 remains true for the ‘starred sum’ except that the constant (of
which we care little) is different.

We again commencewith↗- and↘-pre-chains. Little changes for a↘ chain, since
the sum remains finite. The only possible challenge to boundedness may originate in
a ↗ chain. We analyse a ↗-pre-chain using (3.10),

∞∑

k�=k�−1+1

� ∞∑

k�+1=k�+1

�

· · ·
∞∑

k�+r−1=k�+r−2+1

�

|Dk�,k�−1Dk�+1,k�
· · ·Dk�+r−1,k�+r−2 |
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=
∞∑

k�=k�−1+1

� ∞∑

k�+1=k�+1

�

· · ·
∞∑

k�+r−1=k�+r−2+1

� �+r−2∏

j=�

ak jbk j−1

= bk�−1

∞∑

k�=k�−1+1

� (
k� + α + 1

2

) ∞∑

k�+1=k�+1

� (
k�+1 + α + 1

2

)
· · ·

∞∑

k�+r−1=k�+r−2+1

�

ak�+r−1 ,

and, using Proposition 6, transition seamlessly to a↗-chain, while disregarding lower-
order terms,

∞∑

k�=k�−1+1

� (
k� + α + 1

2

) ∞∑

k�+1=k�+1

� (
k�+1 + α + 1

2

)
· · ·

∞∑

k�+r−1=k�+r−2+1

�

a2k�+r−1

∼
∞∑

k�+r−1=k�−1+r

�

a2k�+r−1

k�+r−1−r+1∑

k�=k�−1+r−1

�

k�

k�+r−1−r+2∑

k�+1=k�−1+r−2

�

k�+1 · · ·
k�+r−1−1∑

k�+r−2=k�−1+1

�

k�+r−2

∼
∞∑

k�+r−1=k�−1+r

�

a2k�+r−1
Q2r−2(k�+r−1) ∼

∞∑

k=k�−1+r

�
1

k2α−2r+1 .

Consequently, α > r is necessary and sufficient for convergence for each ↗-chain.
Since the length of an ↗-chain is at most s −1, we deduce, similar to Theorem 7, that

Theorem 8 ind wα ≥ s for the ultraspherical weight if an only if α > s − 1.

Both Theorems 7 and 8 present the same inequality. This is not surprising since,
for both weights, α measures the ‘strength’ of a zero at the endpoint(s).

We conclude this subsection with plots displaying the �2 norms of truncated N × N
differentiation matrices for both Laguerre and ultraspherical cases for α ∈ {1, 2, 3, 4}.

As can be seen from Fig. 3, the �2 norm of an N × N principal minor ofD increases
linearly with N for Laguerre, quadratically for the ultraspherical weight. This has
obvious implications, inter alia to the implementation of Krylov subspace methods in
themanipulation of differentiationmatrices. Having said so, Krylov subspacemethods
may be problematic in this context [10]. In Sect. 4, we outline alternative approaches
to numerical algebra of separable differentiation matrices.

3.3 Counterexamples: generalised Hermite and Konoplev weights

Ultraspherical and Laguerre weights are the obvious and most elementary choice in
the intervals (−1, 1) and (0,∞), respectively, and they are both separable in the sense
of this paper. This might lead to an impression that separability is ubiquitous: this
would be highly misleading.

Lemma 9 Let

ιm,n = Dm,nDm+1,n+1 − Dm+1,nDm,n+1, (3.11)

ι̌m,n = Dm,nDm+2,n+2 − Dm+2,nDm,n+2. (3.12)
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Fig. 3 �2 norms of N ×N differentiationsmatrices as N grows inmultiples of ten. The top curve corresponds
to α = 1, underneath α = 2, then α = 3, and the bottom curve corresponds to α = 4

Separability implies that ιm,n = 0 for all m ≥ n + 2, while symmetric separability
implies that ι̌m,n = 0 for all m + n odd, m ≥ n + 2.

Proof Follows at once from the definition of (symmetric) separability. ��

Note that neither (3.11) nor (3.12) are sufficient. Thus, a skew-symmetric D such
that D2m+1,n = 0 for all m ∈ Z+ and n ≤ 2m − 1 satisfies (3.11), but in general is
not separable. Likewise, a tridiagonal skew-symmetric matrix obeys (3.12) but is not
symmetrically separable—this is the case with the differentiation matrix associated
with the Hermite weight, for example. Trying weights at random and computing, say,
ι2,0 leads time and again to non-separable weights.

To explore further the (non)existence of separable weights, we examine two
weights, generalisations of Hermite and ultraspherical weights, respectively, but
endowedwith an additional parameter: the generalised Hermite andKonoplevweights.

3.3.1 Generalised Hermite weights

Letting μ > − 1
2 , we examine the weight

wμ(x) = |x |2μe−x2 , x ∈ R (3.13)
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[5, p. 156], originally considered by Szegő.6 It can be easily deduced from Chihara
[5, p. 156–7] that the underlying W-functions are

ϕ2n(x) = (−1)n2n

√
n!

�(n + μ + 1
2 )
L

(μ− 1
2 )

n (x2)|x |μe−x2/2,

ϕ2n+1(x) = (−1)n2n+1

√
n!

2�(n + μ + 3
2 )

xL
(μ+ 1

2 )
n (x2)|x |μe−x2/2, n ∈ Z+.

Generalised Hermite weights are of marginal importance to the work of this paper,
and although their differentiation matrix can be derived explicitly,

D2n,2n−1 = √
n, D2m,2n−1 = 0, m ≥ n + 1,

D2n+1,2n = 2n + 1

2
√

n + μ + 1
2

, D2m+1,2n = (−1)m+n−1μ

√
m!

(n + μ + 1
2 )m+1−n

,

where (z)n = z(z+1) · · · (z+n−1) is the Pochhammer symbol, with skew-symmetric
complement, we will not present here a formal (and lengthy) algebra. Instead, a reader
might use a symbolic algebra package to compute the first few elements, enough to
evaluate ι2,0 and ι̌3,0 and check that they are both nonzero—in light of Lemma 9 this
is sufficient to rule out separability and symmetric separability, respectively.

As a matter of fact,D has an interesting shape: its (2m + 1)st columns (hence also
the (2n+1)st rows) are consistent with a tridiagonal matrix, more specifically with the
differentiation matrix corresponding to the standard Hermite weight (i.e. withμ = 0).
More specifically,

ι2n,2n−1 =
(

n + 1

2

) √
n

n + μ + 1
2

�= 0, ι2n+1,2n =
(

n + 1

2

)√
n + 1

n + μ + 1
2

�= 0,

otherwise ιm,n = 0 for m ≥ n + 2, while

ι̌2n+3,2n = μ
√

(n + 2)![μ√
(n + 1)! + n + 3

2 ]
(n + μ + 3

2 )

√
(n + μ + 1

2 )(n + μ + 5
2 )

�= 0,

ι̌2m+4,2n+1 = 0, m ≥ n + 2

In each case, the separability tests (3.11) and (3.12) fail only marginally—but fail
nonetheless.

6 We resist calling them “Szegő polynomials” since the name is reserved for another type of polynomials,
orthogonal in the complex unit circle [24, 26].
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3.3.2 Konoplev weights

Letting α, γ > −1, we set

wα,γ (x) = |x |2γ+1(1 − x2)α, x ∈ (−1, 1). (3.14)

The weight (3.14), which has been considered in [16, 17] and described in Chihara [5,
p. 155], generalises ultraspherical weights by adding the possible weakly singular
factor |x |2γ+1. Specifically, wα,γ ∈ Cs(−1, 1) if and only if

either γ ∈
{

k

2
: k ∈ {−1, 0, . . . , s − 2}

}
or γ >

s − 1

2
.

The underlying orthogonal polynomial system is

S2n(x) = P(α,γ )
n (2x2 − 1), S2n+1(x) = xP(α,γ+1)

n (2x2 − 1), n ∈ Z+,

and the monic polynomials obey the three-term recurrence relation

Ŝn+1(x) = x Ŝn(x) − cn Ŝn−1(x),

where

c2n = n(n + α)

(2n + α + γ )(2n + 1 + α + γ )
, c2n+1 = (n + 1 + γ )(n + 1 + α + γ )

(2n + α + γ )(2n + 1 + α + γ )
.

Replacing Jacobi polynomials by their orthonormal counterparts and using a formula
from Rainville [23, p. 260], easy algebra confirms that

κ
α,γ
2m =

∫ 1

−1
wα,γ (x)S2

2m(x) dx = (m + 1 + α + γ )m�(m + 1 + α)�(m + 1 + γ )

m!�(2m + 2 + α + γ )
,

κ
α,γ
2m+1 =

∫ 1

−1
wα,γ (x)S2

2m+1(x) dx = (m + 2 + α + γ )m�(m + 1 + α)�(m + 2 + γ )

m!�(2m + 3 + α + γ )
,

therefore

ϕ2m(x) = |x |γ+ 1
2 (1 − x2)α/2
√

κ
α,γ
2m

P(α,γ )
m (2x2 − 1),

ϕ2m+1(x) = x |x |γ+ 1
2 (1 − x2)α/2

√
κ

α,γ
2m+1

P(α,γ+1)
m (2x2 − 1).
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The weights (3.14) are symmetric; thus, we examine the possibility of symmetric
separability. A brute force computation yields

ι̌3,0 = (5 + α + γ )(2γ + 1)

√
(4 + α + γ )(6 + α + γ )

2(1 + α)(2 + α)(1 + γ )(3 + γ )
,

ruling out symmetric separability except for the case γ = − 1
2 , which corresponds to

the ultraspherical weight.

3.3.3 A Limiting Behaviour of the �m,ns

While separability, hence ιm,n = 0 for m ≥ n + 2, appears to be exceedingly rare, we
claim that the latter holds more broadly in a much weaker, asymptotic form.

Let w be a weight in (a, b), w(a) = w(b) = 0, with the underlying orthonormal
polynomials {pn}∞n=0, where the coefficient of xn in pn is kn > 0. Comparing the
coefficients of xn+1 in the three-term recurrence relation (1.3), we deduce at once that
kn+1/kn = β−1

n .

Theorem 10 Assuming that βn ≥ β∗ > 0 and w̃(x) = [w′(x)]2/w(x) is itself a
weight function in (a, b), it is true that

lim
m→∞ ιm,n = 0, n ∈ Z+. (3.15)

Proof Letting m ≥ n + 2, (2.3) yields

ιm,n = 1

4

∫ b

a
w′(y)pm(y)pn(y) dy

∫ b

a
w′(x)pm+1(x)pn+1(x) dx

−1

4

∫ b

a
w′(x)pm+1(x)pn(x) dx

∫ b

a
w′(y)pm(y)pn+1(y) dy

= 1

4

∫ b

a

∫ b

a
w′(x)w′(y)pm+1(x)pm(y)[pn+1(x)pn(y) − pn(x)pn+1(y)] dx dx .

We recall the Christoffel–Darboux formula,

n∑

�=0

p�(x)p�(y) = kn

kn+1

pn+1(x)pn(y) − pn(x)pn+1(y)

x − y
,

where kn > 0 is the coefficient of xn in pn [5, p. 153]. Therefore,

ιm,n = kn+1

kn

∫ b

a

∫ b

a
w′(x)w′(y)pm+1(x)pm(y)(x − y)

n∑

�=0

p�(x)p�(y) dx dy

≤ 1

β∗

∣
∣∣∣
∣

∫ b

a

∫ b

a
w′(x)w′(y)pm+1(x)pm(y)(x − y)

n∑

�=0

p�(x)p�(y) dx dy

∣
∣∣∣
∣
, (3.16)
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because β−1
n ≤ β∗−1. Letting n → ∞ in (3.16), we obtain

lim
n→∞ ιm,n ≤ 1

β∗

∣∣
∣∣∣

∫ b

a

∫ b

a
w′(x)w′(y)pm+1(x)pm(x)(x − y)

∞∑

�=0

p�(x)p�(y) dx dy

∣∣
∣∣∣

= 1

β∗

∣∣∣
∣∣

∫ b

a

∫ b

a

w′(x)w′(y)
√

w′x)w(y)
pm+1(x)pm(x)(x − y)K (x, y) dx dy

∣∣∣
∣∣
,

where K is tha Christoffel–Darbeaux kernel from the proof of Theorem 5. According
to (2.8), it is a reproducing kernel and it follows at once that the double integral
vanishes. ��

The condition βn > β∗, n ∈ Z+, is very weak: we already know that βn > 0, all
the condition says is that, in addition, the βns are bounded away from zero.

4 Computational Aspects

4.1 A Product ofD by aVector

Practical implementation of the ideas of this paper requires manipulation of expres-
sions involving a matrix D which is either separable or symmetrically separable:
formation of products of the formD r f for r ∈ N, the solution of algebraic linear sys-
tems of the form p(D) y = x, where p is a polynomial and the computation of ehDu.
Tridiagonal differentiation matrices, of the form considered in [11], enjoy substantial
advantage in this context. Yet, once a weight function is separable (or symmetrically
separable), all these objectives can be attained using fast algorithms. The matrix D is
a special case of a semiseparable matrix [7, p. 50]: all its minors located either wholly
above the diagonal or wholly beneath it are of rank 1. This allows for fast products
and fast computation of linear systems [6, 7, 28] and, using the Cauchy–Dunford inte-
gral formula (also known as the Dunford–Taylor or Riesz–Fantappié formula, [4]),
compute ehDu.

In this subsection, we examine in detail the formation of products of the form
h = D f , where f is a (real or complex) infinite-dimensional vector, while D is
either separable or symmetrically separable. While the main idea is not new—cf. for
example, [6]—there is merit in presenting it for the convenience of the reader, as an
elementary example of more advanced numerical algebra computations in [6, 7, 28].
As a matter of fact, our algorithm is somewhat more general, because it is based on
infinite-dimensional computations.

Consider a separable weight function, e.g. a Laguerre weight. The starting point is
an integer N , typically much larger than M , such that | fm | is negligible (in practical
terms, smaller than a user-provided error tolerance) for m > N , and we wish to form

hm =
N∑

n=0

Dm,n fn, m = 0, . . . , M . (4.1)
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We commence by assuming that a weight is separable, whereby (3.1) yields

hm = −am

m−1∑

n=0

bn fn + bm

N∑

n=m+1

an fn = σm + ρm, m = 0, . . . , M,

where

σm =
m−1∑

n=0

bn fn, ρm =
N∑

n=m+1

an fn, m = 0, . . . , M .

Then

h0 = b0ρ0,

hm = −amσm + bmρm, m = 1, . . . , M,

where σm = σm−1 + bm−1 fm−1, ρm = ρm−1 − am fm .

Assuming that the ams and bns have been precomputed (and this needs to be done
only once, no matter how many products are required), the calculation (4.1) takes just
≈ N +4M flops—and by the same token, computing the first M +1 entries ofD r

N fN
takes ≈ r(N + 4M) flops.

Similar operations count applies to symmetrically separable weight, whereby the
entries of D obey (3.2). Assuming that both M and N are even, we have

h2m =
N/2∑

n=0

D2m,2n+1 f2n+1,

h2m+1 =
N/2∑

n=0

D2m+1,2n f2n, m = 0, . . . ,
M

2
.

Therefore

h2m = a2m

m−1∑

n=0

b2n+1 f2n+1 − b2m

N/2∑

n=m+1

a2n+1 f2n+1,

h2m+1 = a2m+1

m−1∑

n=0

b2n f2n − b2m+1

N/2∑

n=m+1

a2n f2n, m = 0, . . . ,
M

2
.

Set

σE
m =

m−1∑

n=0

b2n f2n, σO
m =

m−1∑

n=0

b2n+1 f2n+1,
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ρE
m =

N/2∑

n=m+1

a2n f2n, ρO
m =

N/2∑

n=m+1

a2n+1 f2n+1,

hence

h2m = a2mσO
m − b2mρO

m , h2m+1 = a2m+1σ
E
m − b2m+1ρ

E
m, m = 0, . . . ,

M

2
.

However,

σE
0 = σO

0 = 0, ρE
0 =

N/2∑

m=1

a2n f2n, ρO
0 =

N/2∑

m=1

a2n+1 f2n+1,

and
σE

m = σE
m−1 + b2m−2 f2m−2, σO

m = σO
m−1 + b2m−1 f2m−1,

ρE
m = ρE

m−1 − a2m f2m, ρO
m = ρO

m−1 − a2m+1 f2m+1, m = 1, . . . ,
M

2
.

Thus, again, we need just ≈ 4M + N flops to compute the first M + 1 terms of
DN fN .

4.2 The Speed of Convergence

The convergence of orthogonal polynomials to ‘nice’ (in particular, analytic) functions
is well understood, and this can be leveraged to the case of W-functions. It is benefi-
cial first, though, to present some computational results, to highlight the importance
of choosing the right value of α in the context of either Laguerre or ultraspherical
weights, while comparing them to standard approximation by the underlying orthog-
onal polynomials.

It rapidly becomes apparent that we have a competition between different impera-
tives:

• The number of zero boundary conditions: This determines the value of α and,

according to Theorems 7 and 8, we need α > s − 1 in H
◦
2
s
(a, b).

• Regularity of approximating functions: While P consists of polynomials, hence
analytic functions, this is not the case with�, whether in the context of ultraspher-
ical or Laguerre weights: it all depends on the value of α. If α is an even integer,
then the ϕns are analytic; otherwise, analyticity fails at the endpoints.

• The underlying function space: Much depends on how the error is measured.

Among the many possibilities, we single out two: the H
◦
2
p
(a, b) norm for a suitable

value of p (in particular, the L2(a, b) norm) and the L∞[a, b] (and, more generally,
Hp∞[a, b]) norm. The choice of a norm depends on the underlying application.

Preliminary numerical experimentation reveals a remarkable state of affairs. In Fig. 4,
we let α be in {1, 2, 3, 4}. In this and all figures in this paper, we denote α = 1 by a red,
dotted line, α = 2 by a magenta solid line, α = 3 by a green dashed line and, finally,
α = 4 by a blue dash-dotted line. Because of the rapid decay of errors, we display
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Fig. 4 Ultraspherical W-functions: The errors log10 ‖F P
N − f ‖∞ (top left), log10 ‖dF P

N − f ′‖∞ (top

right), log10 ‖F�
N − f ‖∞ (bottom left) and log10 ‖dF�

N − f ′‖∞ (bottom right) for α = 1, 2, 3, 4 and
N = 1, 2, . . . , 30 (except that in the bottom-right plot only α = 2 is displayed)

them all in a logarithmic scale to base 10—in other words, the y-axis displays the
number of decimal digits. Given a function f and recalling the expansion coefficients
f̂ P
n and f̂ �

n from Remark 1, corresponding to expansions in P and �, respectively,
we let

F P
N (x) =

N∑

n=0

f̂ P
n pn(x), F�

N (x) =
N∑

n=0

f̂ �
n ϕn(x), N ∈ Z+.

Thus, F P
N − f and F�

N − f are the (pointwise) errors with respect to the polynomial
and theW-function basis, respectively, and we need to measure them in an appropriate
norm. We denote by dF P

N the derivative expansion, i.e. with pn and f replaced by p′
n

and f ′, respectively, similarly for higher derivatives and for F�
N .

4.2.1 Ultraspherical W-Functions

We commence from ultraspherical weights and consider

f (x) = (1 − 2x) cos
πx

2
∈ H

◦
2
1
(−1, 1). (4.2)

In Fig. 4, we display in logarithmic norm the L∞[−1, 1] error for polynomial
approximation to f and its first derivative (top row) and for W-functions for the
ultraspherical weight.7 Polynomial approximation—as can be expected from general
theory and the analyticity of f —decays at an exponential speed and, for N = 30, we
attain ≈ 32 significant digits. This is also the case with derivatives, with a very minor

7 Polynomial approximation, of course, leads to an unstable spectral method. Yet, its error and its compar-
ison with the error committed by W-functions are of independent interest.
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Fig. 5 Ultraspherical
W-functions: The errors
log10 ‖F P

N − f ‖2 (left) and

log10 ‖F�
N − f ‖2 (right) for

α = 1, 2, 3, 4

degradation in accuracy. The error for W-functions, though, is radically different. The
errors for α ∈ {1, 3, 4} decay very slowly, at a polynomial rate, and for N = 30 we
recover just ≈ 4 significant digits, an unacceptably large error. On the other hand,
the error for α = 2 at N = 30 is ≈ 3 × 10−39, significantly better than polynomial
approximation!

The reason for this ‘miraculous’ behaviour for α = 2 bears some attention. Little
surprise perhaps that α = 1 behaves poorly because it is at the wrong end of the
boundedness condition forD 2. However, as amatter of fact, we do not consider second
derivatives in this particular instance and α ∈ {3, 4} are just as bad. The reasons are
as follows. For α ∈ {1, 3}, the ϕns have a weak singularity along the boundary, while
ϕ′

n becomes singular there. For α = 4, on the other hand, ϕ′
n(±1) = 0 mean that L∞

convergence of derivatives is impossible unless also the derivatives of f vanish at the
endpoints. (This is the reason why log10 ‖dF�

N − f ′‖∞ is displayed only for α = 2.)

Not much changes if, instead of L∞, we compute an H
◦
2
p error, except that in gen-

eral L2-like norms are more forgiving. In principle, neither singularities or excessive
vanishing of derivatives at the endpoints need prevent convergence. Thus, in Fig. 5
we plot the L2(−1, 1) errors for example (4.2). The overall picture remains the same:
polynomial approximation decays at exponential rate and we attain, regardless of the
choice of α, about 34 significant digits for N = 30, while W-function approximation
for α ∈ {1, 3, 4} is very poor yet, for α = 2, we again hit the ‘sweet spot’ and recover
≈ 38 significant digits. W-functions are vastly superior for α = 2 but fail dismally
otherwise.

To explore further the error committed by ultraspherical W-functions, we consider

f (x) = (1 − 2x) cos2
πx

2
(4.3)

the only difference in this (not very imaginative!) choice is that now f (±1) =
f ′(±1) = 0. We display the L∞ error for f (i), i = 0, 1, 2, in Fig. 6 for the W-
functions. The error in polynomial approximation is roughly independent of α, and
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Fig. 6 Ultraspherical
W-functions: The errors
log10 ‖F�

N − f ‖2 (left)

log10 ‖dF�
N − f ′‖2 (centre) and

log10 ‖ddF�
N − f ′′‖2 (right) for

α = 1, 2, 3, 4 and the function
(4.3)

for N = 30 we attain ≈ 24 decimal digits for f , ≈ 21 for f ′ and ≈ 19 for f ′′. By this
stage, we should not be surprised that α = 1 and α = 3 do badly in approximating f
because of the weak singularity at the endpoints and they fail altogether approximating
derivatives. For α ∈ {2, 4}, the endpoints are analytic and indeed the underlying func-
tions do very well indeed, definitely better than polynomial approximation. α = 4 is

a winner, unsurprisingly because f ∈ H
◦
2
2
(−1, 1) and this is matched by �. However,

α = 2 does quite well, worse by perhaps two decimal digits but still beating polyno-
mial approximation. The reason is that too few zero Dirichlet boundary conditions do
not prevent L∞ convergence of an orthogonal sequence, although they might slow it
up to a modest extent. On the other hand, excessive zero Dirichlet boundary conditions
prevent L∞ convergence at the endpoints. Thus, the interplay between the number of
zero boundary conditions and the choice of α is not symmetric! It is always better to
err by choosing smaller α, as long as it is an even integer, consistent with the bound
of Theorem 8.

4.2.2 Laguerre W-Functions

We are now concerned with the Laguerre weight and choose the model problem

f (x) = e−x sin x, x ≥ 0. (4.4)

Note that f (0) = 0, f ′(0) �= 0.
An expansion in Laguerre (or any other) polynomials cannot be bounded in an

infinite interval; hence, instead of plotting log10 ‖F P
N − f ‖2 for increasing values of

N , we choose N = 40 and plot the pointwise error in the interval [0, 30]. This is
evident on the left of Fig. 7: the error is just about fine for small x > 0, subsequently
growing rapidly (as a matter of fact, exponentially). On the other hand, as can be
seen on the right of that figure, the error of W-functions is uniformly bounded. For
α ∈ {1, 3, 4}, it is fairly similar—and unacceptably large—while for α = 2 we attain
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Fig. 7 Laguerre W-functions:
The errors
log10 |F P

40(x) − f (x)| (left) and
log10 |F�

40(x) − f (x)| (right) for
x ∈ [0, 30] and α = 1, 2, 3, 4

≈ 10 decimal digits of accuracy, apparently uniformly in [0,∞). Yet again we have
the ‘sweet spot’ forα = 2. This state of affairs remains true for the first few derivatives,
and the deterioration in accuracy using W-functions is very mild indeed.

Finally, we consider
f (x) = e−x sin2 x, x ≥ 0. (4.5)

Now f (0) = f ′(0) = 0 and f ′′(0) �= 0. There is no need to display the L∞[0,∞)

error committed by Laguerre polynomials since, again, it is unbounded.
In Fig. 8, we employ the same colour and style scheme to plot the errors committed

in [0, 30] for f , f ′ and f ′′. Clearly, α = 2 and α = 4, the two values associated with
analyticity at the origin, win insofar as approximating the function itself is concerned,
although the margin is somewhat smaller than in our other examples. The approxima-
tion of the first and the second derivatives is more interesting: on the face of it, it is
a dead heat between α = 2 and α = 4, but closer examination of the behaviour near
the left endpoint unravels a crucial difference. For example, for η = 10−10 we have
(to four significant digits)

α 1 2 3 4

|F�
60(η) − f (η)| 2.128−08 9.631−15 1.434−16 7.778−24

|dF�
60(η) − f ′(η)| 1.064+02 9.631−05 2.151−06 9.555−14

|ddF�
60(η) − f ′′(η)| 5.319+11 4.092−03 1.075+05 9.555−04

The conclusion is clear. Once the inequality of Theorem 7 is breached, the approx-
imation blows up at the origin: this happens with α = 1 and any derivative. The error
for α = 3 decays for N � 1 for the function value and the first derivative, but it blows
up for the second derivative, while for α = 2 the progression to the correct boundary
condition is considerably slower than for α = 4. This is apparent from Fig. 9: α = 4
wins, although by a small margin.
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Fig. 8 Laguerre W-functions:
The errors
log10 |F�

60(x) − f (x)| (left)
log10 |dF�

60(x) − f ′(x)| (right)
and log10 |ddF�

60(x) − f ′′(x)|
for the function (4.5),
x ∈ [0, 30] and α = 1, 2, 3, 4

Fig. 9 Laguerre W-functions: A
close-up of the bottom plot in
Fig. 8 near the left endpoint
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4.2.3 The Speed of Convergence Redux

As promised, we leverage standard theory on the convergence of orthogonal expan-
sions of analytic functions to the setting of W-functions. For simplicity, we consider
just the ultraspherical weight, supported in [−1, 1], but our argument readily extends
to all other settings. Thus, suppose that the function f is analytic in a Bernstein ellipse
enveloping [−1, 1] and f (±1) = 0 and let f̃ (x) = f (x)/(1− x2). Note that f̃ is also
analytic in [−1, 1]. Expanding f in powers of an ultraspherical W-function yields the
coefficients

f̂n =
∫ 1

−1
(1 − x2)α/2 f (x)P(α,α)

n (x) dx =
∫ 1

−1
(1 − x2)α/2+1 f̃ (x)P(α,α)

n (x) dx, n ∈ Z+

and, once α = 2, we have standard expansion of f̃ in the ultraspherical polynomial
basis {P(2,2)

n }n∈Z+ and standard results for expansions in orthogonal polynomials (cf.
for example [29]) apply. In particular,

lim sup
n→∞

| f̂n|1/n = ρ ∈ [0, 1)

and the rate of convergence in the L2 norm is at least exponential. The same is true
for any even integer α ≥ 2.

Similar reasoning applies to other weights and to higher-order zero boundary con-
ditions.

Needless to say, choosing α ∈ 2N is essential, but the ultimate choice depends on
the number of zero boundary conditions, in the spirit of the previous two subsections.

4.3 Outstanding Computational and Theoretical Challenges

This is the first paper to consider W-functions in an organised way, although of course
Hermite functions have been used and investigated extensively and W-functions asso-
ciated with Freud weights (and which are special because of Theorem 2) have been
introduced in [19]. Needless to say, this work neither resolves all the mathematical and
computational issues associated withW-functions nor claims to do so. While there are
important theoretical questions, e.g. to characterise all separable or symmetrically sep-
arable weight functions, perhaps the most urgent issues are related to the applications
of W-functions to spectral methods. This concerns issues in approximation theory
(speed of convergence in different function classes), as well as purely computational
questions. The speed of approximation points out an imperfect duality between W-
functions and the functions � = {ψn}n∈Z+ from Sect. 1. Recalling the f̂ �

n , the nth
expansion coefficient inP and letting w̌(x) = w(x)χ(a,b)(x), the Plancherel theorem
yields at once for every n ∈ Z+

f̂ �
n =

∫ b

a
f (x)φn(x) dx =

∫ ∞

−∞

√
w̌(x) f (x)pn(x) dx = (−i)n

∫ ∞

−∞
f̂ (ξ)ψn(x) dx,
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andwe recover an expansion in� of the Fourier transformof f . This duality, though, is
imperfect because, unless (a, b) = R, it is valid (insofar as� is concerned) only in the
Paley–Wiener space P(a,b)(R) rather than in L2(R) [11]. Moreover, comprehensive
convergence theory for functions of the form� is also lacking. Yet, even an imperfect
duality might potentially lead to useful outcomes.

The final issue we wish to mention is fast computation of expansion coefficients in
a W-function basis, similar perhaps to fast expansion algorithms in polynomial bases
[22]. All this is a matter for future research.
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A Separability Coefficients for LaguerreWeights

Our starting point is the generating function

∞∑

n=0

L(α)
m (x)zn = 1

(1 − z)1+α
exp

(
xz

z − 1

)

[23, p. 202] and we recall that

∫ ∞

0
[L(α)

m (x)]2xαe−x dx = �(m + 1 + α)

m! = �(1 + α)(1 + α)m

m! . (A.6)

Set

qm,n = −1

2

∫ ∞

0
L(α)

m (x)L(α)
n (x)

dxαe−x

dx
dx, m, n ∈ Z+.

Because of

p̃m(x) =
√

m!
�(m + 1 + α)

L(α)
m (x)

and (2.3), it follows that

Dm,n =
√

m!n!
�(m + 1 + α)�(n + 1 + α)

qm,n, m ≥ n + 1.
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We set

Q(s, t) =
∞∑

m=0

∞∑

n=0

qm,nsmtn

= −1

2

∫ ∞

0

∞∑

m=0

∞∑

n=0

L(α)
m (x)L(α)

n (x)smtn(−xα + αxα−1)e−x dx .

Using (A.6) it follows that for |s|, |t | < 1,

Q(s, t) = 1

2

∞∑

m=0

�(m + 1 + α)

m! (st)m

− α

2(1 − s)1+α(1 − t)1+α

∫ ∞

0
xα−1 exp

(
−x + xt

t − 1
+ xs

s − 1

)
dx

= 1

2
�(1 + α)1F0

[
1 + α;
—; st

]

− α

2(1 − s)1+α(1 − t)1+α)

∫ ∞

0
xα−1 exp

(
− (1 − ts)x

(1 − s)(1 − t)

)
dx

= �(1 + α)

2

1

(1 − st)α+1 − �(1 + α)

2(1 − s)(1 − t)(1 − st)α
.

(Cf. for example, [23] for the definition and basic facts§on confluent hypergeometric
functions.) We now expand: all it takes is elementary (but long) algebra:

1

(1 − st)1+α
=

∞∑

m=0

(1 + α)m

m! (st)m,

1

(1 − s)(1 − t)(1 − st)α
=

∞∑

m=0

∞∑

n=0

⎡

⎣
min{m,n}∑

k=0

(α)k

k!

⎤

⎦ smtn .

The following proposition can be trivially proved by induction.8

Proposition 11

j∑

k=0

(α)k

k! = (1 + α) j

j ! .

We thus deduce from the definition of Q that qn,n = 0 and

qm,n = �(α)

2

(1 + α)n

n! , m ≥ n + 1,

8 And it might well be already known.
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and conclude that

Dm,n = �(1 + α)

2

√
m!n!

�(m + 1 + α)�(n + 1 + α)

(1 + α)n

n! = 1

2

√
m!�(n + 1 + α)

�(m + 1 + α)n!
(A.7)

for m ≥ n + 1, with skew-symmetric completion for m ≤ n.
We have just determined both separability and the explicit form of the sequences a

and b.

Theorem 12 The Laguerre weight is separable and

am =
√

m!
2�(m + 1 + α)

, bn =
√

�(n + 1 + α)

2n! , m, n ∈ Z+. (A.8)

B Symmetric Separability Coefficients for Ultraspherical Weights

We recall that

Sα
m,n =

∫ 1

−1
(1 − x2)α−1P(α,α)

m (x)P(α,α)
n (x) dx, α > 0,

and we are concerned with m ≥ n (Sm,n is symmetric) and even m +n. We commence
by dividing P(α,α)

n by (1 − x2)—it follows from the Euclidean algorithm that

P(α,α)
n (x) = (1 − x2)γn(x) + δn(x),

where γn ∈ Pn−1 and δn(x) = δn,0 + δn,1x is linear. Because of parity, if n is even
then δ1 = 0, while if it is odd, then δ0 = 0. The description of δ can be completed by
considering x = 1,

δ2n,0 = P(α,α)
2n (1) = (1 + α)2n

(2n)! , δ2n+1,1 = P(α,α)
2n+1(1) = (1 + α)2n+1

(2n + 1)! ;

therefore,

δ2n ≡ (1 + α)2n

(2n)! , δ2n+1(x) = (1 + α)2n+1

(2n + 1)! x .

Since deg γ ≤ n − 1 ≤ m − 1, it follows from orthogonality that

Sα
m,n =

∫ 1

−1
(1 − x2)α−1P(α,α)

m (x)[(1 − x2)γn(x) + δn(x)] dx

=
∫ 1

−1
(1 − x2)α−1P(α,α)

m (x)δn(x) dx .
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Letting

em =
∫ 1

−1
(1 − x2)α−1P(α,α)

2m (x) dx, om =
∫ 1

−1
(1 − x2)α−1xP(α,α)

2m+1(x) dx,

we thus have

Sα
2m,2n = (1 + α)2n

(2n)! em, Sα
2m+1,2n+1 = (1 + α)2n+1

(2n + 1)! om .

We wish to prove that

em = 4α

α

�(2m + 1 + α)�(1 + α)

�(2m + 1 + 2α)
, om = 4α

α

�(2m + 2 + α)�(1 + α)

�(2m + 2 + 2α)
. (B.1)

To this end, it is helpful to rewrite (B.1) in the form

em =
√

π

4m

(m + 1 + α)m�(α)

�(m + α + 1
2 )

, om =
√

π(m + 1 + α)m+1�(α)

2 · 4m�(α + m + 3
2 )

. (B.2)

To prove that (B.1) is identical to (B.2) for em we commence from the latter, noting
that it is the same as

em =
√

π

4m

�(2m + 1 + α)�(α)

�(m + α + 1
2 )�(m + 1 + α)

and use the Gamma duplication formula

�(2z) = π−1/222z−1�(z)�(z + 1
2 ), z ∈ C \ −Z+

[21, 5.5.5]. Letting z = m + α + 1
2 , we have

�(m + α + 1
2 )�(m + 1 + α) =

√
π�(2m + 1 + 2α)

4m+α
.

and obtain (B.1) following elementary manipulation. An identical procedure applies
to om .

Replacing m by 2m in (3.6) results in the recursion

em = 1

2

(2m + α)(4m − 1 + 2α)

m + α
om−1 − 1

2

(2m − 1 + α)(2m + α)

m + α
em−1, (B.3)

while replacing m by 2m + 1 results in

om = (2m + 1 + α)(4m + 1 + 2α)

2m + 1 + 2α

∫ 1

−1
(1 − x2)α−1x2P(α,α)

2m (x) dx
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− (2m + α)(2m + 1 + α)

2m + 1 + 2α
om−1.

Replacing x2 = 1 − (1 − x2) and using orthogonality,

∫ 1

−1
(1 − x2)α−1x2P(α,α)

2m (x) dx =
∫ 1

−1
(1 − x2)α−1P(α,α)

2m (x) dx

−
∫ 1

−1
(1 − x2)αP(α,α)

2m (x) dx = em

for m ∈ N. Thus,

om = (2m + 1 + α)(4m + 1 + 2α)

2m + 1 + 2α
em − (2m + α)(2m + 1 + α)

2m + 1 + 2α
om−1. (B.4)

We compute directly

e0 =
√

π(1 + α)�(α)

�(α + 1
2 )

, o0 =
√

π(1 + α)�(α)

2�(α + 3
2 )

(this is consistent with (B.2) for m = 0), whereby (B.2) follows from (B.3) and (B.4)
by easy induction. We deduce that

Sα
m,n = 4α

α

�(m + 1 + α)�(n + 1 + α)

n!�(m + 1 + 2α)
, m ≥ n, m + n even. (B.5)
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