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Abstract
In the framework of real Hilbert spaces, we study continuous in time dynamics as well
as numerical algorithms for the problem of approaching the set of zeros of a single-
valued monotone and continuous operator V . The starting point of our investigations
is a second-order dynamical system that combines a vanishing damping term with
the time derivative of V along the trajectory, which can be seen as an analogous of
the Hessian-driven damping in case the operator is originating from a potential. Our

method exhibits fast convergence rates of order o
(

1
tβ(t)

)
for ‖V (z(t))‖, where z(·)

denotes the generated trajectory and β(·) is a positive nondecreasing function satis-
fying a growth condition, and also for the restricted gap function, which is a measure
of optimality for variational inequalities. We also prove the weak convergence of the
trajectory to a zero of V . Temporal discretizations of the dynamical system gener-
ate implicit and explicit numerical algorithms, which can be both seen as accelerated
versions of the Optimistic Gradient Descent Ascent (OGDA) method for monotone
operators, for which we prove that the generated sequence of iterates (zk)k≥0 shares
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the asymptotic features of the continuous dynamics. In particular we show for the

implicit numerical algorithm convergence rates of order o
(

1
kβk

)
for ‖V (zk)‖ and the

restricted gap function, where (βk)k≥0 is a positive nondecreasing sequence satisfying
a growth condition. For the explicit numerical algorithm, we show by additionally
assuming that the operator V is Lipschitz continuous convergence rates of order o

( 1
k

)
for ‖V (zk)‖ and the restricted gap function. All convergence rate statements are last
iterate convergence results; in addition to these, we prove for both algorithms the
convergence of the iterates to a zero of V . To our knowledge, our study exhibits the
best-known convergence rate results for monotone equations. Numerical experiments
indicate the overwhelming superiority of our explicit numerical algorithm over other
methods designed to solve monotone equations governed by monotone and Lipschitz
continuous operators.

Keywords Monotone equation · Variational inequality · Optimistic Gradient Descent
Ascent (OGDA) method · Extragradient method · Nesterov’s accelerated gradient
method · Lyapunov analysis · Convergence rates · Convergence of trajectories ·
Convergence of iterates

Mathematics Subject Classification 47J20 · 47H05 · 65K10 · 65K15 · 65Y20 ·
90C30 · 90C52

1 Introduction

Let H be a real Hilbert space and V : H → H a monotone and continuous operator.
We are interested in developing fast converging methods aimed to find a zero of V , or
in other words, to solve the monotone equation

V (z) = 0, (1)

for which assume that it has a nonempty solution set Z . The monotonicity and the
continuity of V imply that z∗ is a solution of 1 if and only if it is a solution of the
following variational inequality

〈z − z∗, V (z)〉 ≥ 0 ∀z ∈ H. (2)

One of themainmotivations to study 1 comes fromminimax problems.More precisely,
consider the problem

min
x∈X

max
y∈Y

�(x, y) , (3)

where X and Y are real Hilbert spaces and � : X × Y → R is a continuously
differentiable and convex–concave function, i.e.,�(·, y) is convex for every y ∈ Y and
�(x, ·) is convex for every x ∈ X . A solution of 3 is a saddle point (x∗, y∗) ∈ X ×Y
of �, which means that it fulfills

�(x∗, y) ≤ �(x∗, y∗) ≤ �(x, y∗) ∀ (x, y) ∈ X × Y
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or, equivalently, {
∇x�(x∗, y∗) = 0

−∇y�(x∗, y∗) = 0.
(4)

Taking into account that the mapping

(x, y) �→
(
∇x�(x, y) ,−∇y�(x, y)

)
(5)

is monotone [43], it means that the problem of finding a saddle point of � eventually
brings us back to the problem 1.

Both 1 and 3 are fundamental models in various fields such as optimization, eco-
nomics, game theory and partial differential equations. They have recently regained
significant attention, in particular in the machine learning and data science commu-
nity, due to the fundamental role they play, for instance, in multi-agent reinforcement
learning [37], robust adversarial learning [32] and generative adversarial networks
(GANs) [18, 24].

In this paper, we develop fast continuous in time dynamics as well as numerical
algorithms for solving 1 and investigate their asymptotic/convergence properties. First
we formulate a second-order dynamical system that combines a vanishing damping
term with the time derivative of V along the trajectory, which can be seen as an analo-
gous of theHessian-driven damping in case the operator is originating from a potential.
A continuously differentiable and nondecreasing function β : [t0,+∞) → (0,+∞),
which appears in the system, plays an important role in the analysis. If β satisfies a
specific growth condition, which is for instance satisfied by polynomials including

constant functions, then the method exhibits convergence rates of order o
(

1
tβ(t)

)
for

‖V (z(t))‖, where z(t) denotes the generated trajectory, and for the restricted gap func-
tion associated with 2. In addition, z(t) converges asymptotically weakly to a solution
of 1.

By considering a temporal discretization of the dynamical system, we obtain an

implicit numerical algorithm which exhibits convergence rates of order o
(

1
kβk

)
for

‖V (zk)‖ and the restricted gap function associated with 2, where (βk)k≥0 is a nonde-
creasing sequence and (zk)k≥0 is the generated sequence of iterates. For the latter, we
also prove that it converges weakly to a solution of 1.

By a further more involved discretization of the dynamical system, we obtain an
explicit numerical algorithm, which, under the additional assumption that V is Lip-
schitz continuous, exhibits convergence rates of order o

( 1
k

)
for ‖V (zk)‖ and the

restricted gap function associated with 2, where (zk)k≥0 is the generated sequence
of iterates, which is also to converge weakly to a solution of 1.

The resulting numerical schemes can be seen as accelerated versions of the Opti-
mistic Gradient Descent Ascent (OGDA) method [33, 42] formulated in terms of a
general monotone operator V . It should be also emphasized that the convergence rate
statements for both the implicit and the explicit numerical algorithm are last iterate
convergence results and are, to our knowledge, the best-known convergence rate results
for monotone equations.
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1.1 RelatedWorks

In the following, we discuss some discrete and continuous methods from the literature
designed to solve equations governed by monotone and (Lipschitz) continuous, and
not necessarily cocoercive operators. It has been recognized that the simplest scheme
one can think of, namely the forward algorithm, which, for a starting point z0 ∈ H
and a given step size s > 0, reads for k ≥ 0

zk+1 := zk − sV
(
zk
)

,

and mimics the classical gradient descent algorithm, does not converge. Unless for the
trivial case, the operator in 5, which arises in connection with minimax problems, is
only monotone and Lipschitz continuous but not cocoercive. Therefore, it was early
recognized that explicit numericalmethods formonotone equations require an operator
corrector term.

In case V is monotone and L-Lipschitz continuous, for L > 0, Korpelevich [30]
and Antipin [2] proposed to solve 1 the nowadays very popular Extragradient (EG)
method, which reads for k ≥ 0

�zk := zk − sV
(
zk
)

zk+1 := zk − sV
(
�zk
)

,
(6)

and converges for a starting point z0 ∈ H and 0 < s < 1
L to a zero of V . The

last iterate convergence rate for the Extragradient method was only recently derived
by Gorbuno-Loizou-Gidel in [25]. For �z ∈ H and δ > 0, we denote B (�z; δ) :=
{u ∈ H : ‖�z − u‖ ≤ δ}. For z∗ ∈ Z and δ

(
z0
) := ∥∥z∗ − z0

∥∥, the restricted gap func-
tion associated with the variational inequality 2 is defined as (see [36])

Gap (z) := sup
u∈B(z∗;δ(z0))

〈z − u, V (u)〉 ≥ 0.

In [25], it was shown that

∥∥∥V
(
zk
)∥∥∥ = O

(
1√
k

)
and Gap

(
zk
)

= O
(

1√
k

)
as k → +∞.

In the same setting, Popov introduced in [42] forminmax problems and the operator
in 5 the following algorithm which, when formulated for 1, reads for k ≥ 1

zk+1 := zk − 2sV
(
zk
)

+ sV
(
zk−1

)
, (7)

and converges for starting points z0, z1 ∈ H and step size 0 < s < 1
2L to a zero of V .

This algorithm is usually known as the Optimistic Gradient Descent Ascent (OGDA)
method, a name which we adopt also for the general formulation in 7. Recently,
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Chavdarova–Jordan–Zampetakis proved in [19] that for 0 < s < 1
16L the scheme

exhibits the following best-iterate convergence rate

min
1≤i≤k

∥∥∥V
(
zi
)∥∥∥ = O

(
1√
k

)
as k → +∞.

We notice also that, according to Golowich–Pattathil–Daskalakis–Ozdaglar (see [22,
23]), the lower bound for the restricted gap function for the algorithms 6 and 7 is of

O
(
1/

√
k
)
as k → +∞.

The solving of equation 1 can be also addressed in the general framework of con-
tinuous and discrete-time methods for finding the zeros of a maximally monotone
operator. Attouch–Svaiter introduced in [14] (see also [20]) a first-order evolution
equation linked to the Newton and the Levenberg–Marquardt methods, which when
applied to 1 reads

ż (t) + λ(t)
d

dt
V (z(t)) + λ(t)V (z(t)) = 0, (8)

where t �→ λ(t) is a continuousmapping, and forwhich they proved that its trajectories
converge weakly to a zero of V . Attouch–Peypouquet studied in [12] the following
second-order differential equation with vanishing damping

z̈ (t) + α

t
ż (t) + Aγ (t) (z (t)) = 0, (9)

where A : H ⇒ H is a possibly set-valued maximally monotone operator,

Aγ := 1

γ

(
Id − Jγ A

)

stands for the Yosida approximation of A of index γ > 0, and Jγ A = (Id + γ A)−1 :
H → H stands for the resolvent of γ A. The dynamical system 9 gives rise via implicit
discretization to the following so-called Regularized Inertial Proximal Algorithm,
which for every k ≥ 1 reads

�zk := zk +
(
1 − α

k

) (
zk − zk−1

)

zk+1 := γk

γk + s
�zk + s

γk + s
J(γk+s)A

(
�zk
)

,

z0, z1 ∈ H are the starting points, α > 2, s > 0 and γk = (1 + ε) s
α2 k

2 for every

k ≥ 1, with ε > 0 fixed. In [12], it was shown that the discrete velocity zk+1 − zk

vanishes with a rate of convergence of O (1/k) as k → +∞ and that the sequence
of iterates converges weakly to a zero of A. The continuous time approach in 9 has
been extended by Attouch–László in [9] by adding a Newton-like correction term
ξ d
dt

(
Aγ (t) (z (t))

)
, with ξ ≥ 0, whereas the discrete counterpart of this scheme was

proposed and investigated in [10].
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For an inertial evolution equation with asymptotically vanishing damping terms
approaching the set of primal-dual solutions of a smooth convex optimization problem
with linear equality constraints, that can also be seen as the solution set of a monotone
operator equation, and exhibiting fast convergence rates expressed in terms of the
value functions, the feasibility measure and the primal-dual gap, we refer to the recent
works [6, 17].

We also want to mention the implicit method for finding the zeros of a maximally
monotone operator proposed by Kim in [29], which relies on the performance estima-
tion problem approach and makes use of computer-assisted tools.

In the case when V is monotone and L-Lipschitz continuous, for L > 0, Yoon-
Ryu recently proposed in [49] an accelerated algorithm for solving 1, called Extra
Anchored Gradient (EAG) algorithm, designed by using anchor variables, a technique
that can be traced back to Halpern’s algorithm (see [28]). The iterative scheme of the
EAG algorithm reads for every k ≥ 0

�zk := zk + 1

k + 2

(
z0 − zk

)
− skV

(
zk
)

zk+1 := zk + 1

k + 2

(
z0 − zk

)
− skV

(
�zk
)

,

(10)

where z0 ∈ H is the starting point and the sequence of step sizes (sk)k≥0 is either
chosen to be equal to a constant in the interval

(
0, 1

8L

]
or such that

sk+1 := sk

(
1 − 1

(k + 1) (k + 3)

s2k L
2

1 − s2k L
2

)
∀k ≥ 0, (11)

where s0 ∈ (0, 3
4 L
)
. This iterative scheme exhibits in both cases the convergence rate

of ∥∥∥V
(
zk
)∥∥∥ = O

(
1

k

)
as k → +∞.

Later, Lee-Kim proposed in [31] an algorithm formulated in the same spirit for the
problem of finding the saddle points of a smooth nonconvex-nonconcave function.

Further variants of the anchoring-based method have been proposed by Tran-Dinh
in [47] and together with Luo in [48], which all exhibit the same convergence rate for
‖V (zk)‖ as EAG. Tran-Dinh in [47] and Park-Ryu in [40] pointed out the existence
of some connections between the anchoring approach and Nesterov’s acceleration
technique used for the minimization of smooth and convex functions [34, 35].

1.2 Our Contributions

The starting point of our investigations is a second-order evolution equation associated
with problem 1 that combines a vanishing damping term with the time derivative of V
along the trajectory, which will then lead via temporal discretizations to the implicit
and the explicit algorithms. In [19], several dynamical systems of EG and OGDA type
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were proposed, mainly in the spirit of the heavy ball method, that is, with a constant
damping term, exhibiting a convergence rate of ‖V (z(t))‖ = O (

1/
√
t
)
as t → +∞

and, in case V is bilinear, weak convergence of the trajectory z(t) to a zero of the
operator.

One of the main discoveries of the last decade was that asymptotically vanishing
damping terms (see [4, 13, 46]) lead to the acceleration of the convergence of the
value functions along the trajectories of a inertial gradient systems. Moreover, when
enhancing the evolution equations also with Hessian-driven damping terms, the rate
of convergence of the gradient along the trajectories can be accelerated, too [13, 45].
It is natural to ask whether asymptomatically vanishing damping terms have the same
accelerating impact on the values of the norm of the governing operator along the
trajectories of inertial dynamical systems associated with monotone (not necessarily
potential) operators.

The dynamical system which we associate to (1) reads

⎧⎨
⎩
z̈ (t) + α

t
ż (t) + β (t)

d

dt
V (z (t)) + 1

2

(
β̇ (t) + α

t
β (t)

)
V (z (t)) = 0

z (t0) = z0 and ż (t0) = ż0

where t0 > 0, α ≥ 2,
(
z0, ż0

) ∈ H × H, β : [t0,+∞) → (0,+∞) is a con-
tinuously differentiable and nondecreasing which satisfies the following growth
condition

0 ≤ sup
t≥t0

t β̇ (t)

β (t)
≤ α − 2,

and t �→ V (z(t)) is assumed to be differentiable on [t0,+∞).

For z∗ ∈ Z and the dynamics generated by this dynamical system, we will prove
that

〈z (t) − z∗, V (z (t))〉 = O
(

1

tβ (t)

)
and ‖V (z (t))‖ = O

(
1

tβ (t)

)
.

Further, by assuming that

0 ≤ sup
t≥t0

t β̇ (t)

β (t)
< α − 2,

we will prove that the trajectory z (t) converges weakly to a solution of 1 as t → +∞
and it holds

‖ż (t)‖ = o

(
1

t

)
as t → +∞,

and

〈z (t) − z∗, V (z (t))〉 = o

(
1

tβ (t)

)
and ‖V (z (t))‖ = o

(
1

tβ (t)

)
as t → +∞.
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Polynomial parameter functions β(t) = β0tρ , for β0 > 0 and ρ ≥ 0, satisfy the
two growth conditions for α ≥ ρ + 2 and α > ρ + 2, respectively.

To the main contributions of this work belongs not only the improvement of the
convergence rates in [19] in both continuous and discrete time, but in particular the
surprising discovery that this can be achieved by means of asymptotically vanishing
damping, respectively, as we will see below, of Nesterov momentum. This shows
that the accelerating effect of inertial methods with asymptotically vanishing damp-
ing/Nesterov momentum goes beyond convex optimization and opens the gate toward
new unexpected research perspectives.

Remark 1 (restrictedgap function)The convergence rates for t �→ 〈z (t) − z∗, V (z (t))〉
and t �→ ‖V (z (t))‖ can be easily transferred to the restricted gap function associ-
ated with the variational inequality 2. Indeed, for z∗ ∈ Z , let δ(z0) := ∥∥z0 − z∗

∥∥,
u ∈ B

(
z∗; δ(z0)

)
and t ≥ t0. It holds

0 ≤ 〈z (t) − u, V (u)〉 ≤ 〈z (t) − u, V (z (t))〉
= 〈z (t) − z∗, V (z (t))〉 + 〈z∗ − u, V (z (t))〉
≤ 〈z (t) − z∗, V (z (t))〉 + ‖u − z∗‖ ‖V (z (t))‖ ,

which implies that for every t ≥ t0

0 ≤ Gap (z (t)) = sup
u∈B(z∗;δ(z0))

〈z (t) − u, V (u)〉

≤ 〈z (t) − z∗, V (z (t))〉 + δ(z0) ‖V (z (t))‖ ,

which proofs our claim. The same remark can be obviously made in the discrete case.

Further we provide two temporal discretizations of the dynamical system, one of
implicit and one of explicit type.

Implicit Fast OGDA: Let α > 2, z0, z1 ∈ H, s > 0, and (βk)k≥1 a positive and
nondecreasing sequence which satisfies

0 ≤ sup
k≥1

k (βk − βk−1)

βk
< α − 2.

For every k ≥ 1 we set

zk+1 := zk +
(
1 − α

k + α

)(
zk − zk−1

)
− s (αβk + k (βk − βk−1))

2 (k + α)
V
(
zk+1

)

− skβk−1

k + α

(
V
(
zk+1

)
− V

(
zk
))

.
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We will prove that, for z∗ ∈ Z , it holds

∥∥∥zk − zk−1
∥∥∥ = o

(
1

k

)
as k → +∞,

and

〈
zk − z∗, V

(
zk
)〉

= o

(
1

kβk

)
and

∥∥∥V
(
zk
)∥∥∥ = o

(
1

kβk

)
as k → +∞,

and that the sequence
(
zk
)
k≥0 converges weakly to a solution in Z .

The constant sequence βk ≡ 1 obviously satisfies the growth condition required
in the implicit numerical scheme and for this choice the generated sequence

(
zk
)
k≥0

fulfills for every k ≥ 1

zk+1 = zk +
(
1 − α

k + α

)(
zk − zk−1

)
− sα

2 (k + α)
V
(
zk+1

)

− sk

k + α

(
V
(
zk+1

)
− V

(
zk
))

.

From the general statement, we have that

∥∥∥zk − zk−1
∥∥∥ = o

(
1

k

)
,
〈
zk − z∗, V

(
zk
)〉

= o

(
1

k

)
and

∥∥∥V
(
zk
)∥∥∥ = o

(
1

k

)

as k → +∞,

and
(
zk
)
k≥0 converges weakly to a solution in Z .

A further contribution of this work is therefore this numerical algorithm with Nes-
terov momentum for solving 1, obtained by implicit temporal discretization of the
inertial evolution equation and which reproduces all its convergence properties in
discrete time.

Only for the explicit discrete scheme, we will additionally assume that the operator
V is L-Lipschitz continuous, with L > 0.

Explicit Fast OGDA: Let α > 2, z0, z1,�z0 ∈ H, and 0 < s < 1
2L . For every

k ≥ 1 we set

�zk := zk +
(
1 − α

k + α

)(
zk − zk−1

)
− αs

2 (k + α)
V
(
�zk−1

)

zk+1 :=�zk − s

2

(
1 + k

k + α

)(
V
(
�zk
)

− V
(
�zk−1

))
.
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When taking a closer look at its equivalent formulation, which reads for every k ≥ 1

�zk := zk +
(
1 − α

k + α

)(
zk − zk−1

)
− αs

2 (k + α)
V
(
�zk−1

)

zk+1 := zk +
(
1 − α

k + α

)(
zk − zk−1

)
− αs

2 (k + α)
V
(
�zk
)

− sk

k + α

(
V
(
�zk
)

− V
(
�zk−1

))
,

one can notice that the iterative scheme can be seen as an accelerated version of
the OGDA method. An important feature of the explicit Fast OGDA method is that
it requires the evaluation of V only at the elements of the sequence

(�zk)k≥0, while
the Extragradient method 6 and the Extra Anchored Gradient method 10 require the
evaluation of V at both sequences

(
zk
)
k≥0 and

(�zk)k≥0.
We will show that, for z∗ ∈ Z , it holds

∥∥∥zk − zk−1
∥∥∥ = o

(
1

k

)
,
〈
zk − z∗, V

(
zk
)〉

= o

(
1

k

)
,

∥∥∥V
(
zk
)∥∥∥ = o

(
1

k

)
and

∥∥∥V
(
�zk
)∥∥∥ = o

(
1

k

)
as k → +∞,

and that also for this algorithm the generated sequence
(
zk
)
k≥0 converges weakly to

a solution in Z .
Another main contribution of this work is the explicit Fast OGDA method with

Nesterov momentum and operator correction terms, for which we show the best
convergence rate results known in the literature of explicit algorithms for monotone
inclusions and the convergence of the iterates to a zero of the operator. We illustrate
the theoretical findings with numerical experiments, which show the overwhelming
superiority of ourmethod over other numerical algorithms designed to solvemonotone
equations governed by monotone and Lipschitz continuous operators. These include
the algorithms designed by using “anchoring” techniques, for which the tracing of the
iterates back to the starting value seems to have a slowing effect on the convergence
performances.

Remark 2 (the role of the time scaling parameter function β) The function β which
appears in the formulation of the dynamical system can be seen as a time scaling
parameter function in the spirit of recent investigations on this topic (see, for instance,
[5, 7]) in the context of the minimization of a smooth convex function. It was shown
that, when used in combination with vanishing damping (and also with Hessian-driven
damping) terms, time scaling functions improve the convergence rates of the function
values and of the gradient. The positive effect of the time scaling on the convergence
rates can be transferred to the numerical schemes obtained via implicit discretization,
as it was recently pointed out by Attouch–Chbani–Riahi in [8], and long time ago by
Güler in [26, 27] for the proximal point algorithm, which may exhibit convergence
rates for the objective function values of o (1/kρ) rate, for arbitrary ρ > 0. On the other
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hand, this does not hold for numerical schemes obtained via explicit discretization, as
it is the gradient method for which it is known that the convergence rate of o

(
1/k2

)
for the objective function values (see [11]) cannot be improved in general [34, 35].

This explains why the discretization of the parameter function β appears only in
the implicit numerical scheme and in the corresponding convergence rates, and not in
the explicit numerical scheme.

2 The Continuous Time Approach

In this section, we will analyze the continuous time scheme proposed for 1, and which
we recall for convenience in the following.

For t0 > 0 we consider on [t0,+∞) the dynamical system

⎧⎨
⎩
z̈ (t) + α

t
ż (t) + β (t)

d

dt
V (z (t)) + 1

2

(
β̇ (t) + α

t
β (t)

)
V (z (t)) = 0

z (t0) = z0 and ż (t0) = ż0,
(12)

where α ≥ 2,
(
z0, ż0

) ∈ H × H, β : [t0,+∞) → (0,+∞) is a continuously
differentiable and nondecreasing function which satisfies the following growth
condition

0 ≤ sup
t≥t0

t β̇ (t)

β (t)
≤ α − 2, (13)

and t �→ V (z(t)) is assumed to be differentiable on [t0,+∞).

Let z∗ ∈ Z and 0 ≤ λ ≤ α − 1. We consider the following energy function
Eλ : [t0,+∞) → [0,+∞),

Eλ (t):= 1

2

∥∥∥2λ (z (t) − z∗) + t
(
2ż (t) + β (t) V (z (t))

)∥∥∥
2

+ 2λ (α − 1 − λ) ‖z (t) − z∗‖2

+ 2λtβ (t) 〈z (t) − z∗, V (z (t))〉 + 1

2
t2β2 (t) ‖V (z (t))‖2 , (14)

which will play a fundamental role in our analysis. By taking into consideration 2, for
every 0 ≤ λ ≤ α − 1 we have

Eλ (t) ≥ 0 ∀t ≥ t0.

Denote

w : [t0,+∞) → R, w (t) := 1

2

(
(α − 2)

β (t)

t
− β̇ (t)

)
. (15)

The growth condition 13 guarantees that w(t) ≥ 0 for every t ≥ t0.
First we will show that the energy dissipates with time.
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Lemma 3 Let z : [t0,+∞) → H be a solution of 12, z∗ ∈ Z and 0 ≤ λ ≤ α − 1.
Then for every t ≥ t0, it holds

d

dt
Eλ (t) ≤ −2λtw (t) 〈z (t) − z∗, V (z (t))〉

+ tβ (t)
(
(α − 1 − λ) β (t) − 2tw (t)

)
‖V (z (t))‖2

− (α − 1 − λ) t ‖2ż (t) − β (t) V (z (t))‖2 . (16)

Proof Let t ≥ t0 be fixed. From the definition of the dynamical system 12, we have

2t z̈ (t) + tβ (t)
d

dt
V (z (t)) = −2αż (t) − tβ (t)

d

dt
V (z (t))

− (
t β̇ (t) + αβ (t)

)
V (z (t)) .

Therefore,

d

dt

(
1

2

∥∥∥2λ (z (t) − z∗) + t
(
2ż (t) + β (t) V (z (t))

)∥∥∥
2
)

=
〈
2λ (z (t) − z∗) + t

(
2ż (t) + β (t) V (z (t))

)
,

2 (λ + 1) ż (t) + (
t β̇ (t) + β (t)

)
V (z (t)) + 2t z̈ (t) + tβ (t)

d

dt
V (z (t))

〉

= 〈2λ (z (t) − z∗) + 2t ż (t) + tβ (t) V (z (t)) ,

2 (λ + 1 − α) ż (t) + (1 − α) β (t) V (z (t)) − tβ (t)
d

dt
V (z (t))

〉

= 4λ (λ + 1 − α) 〈z (t) − z∗, ż (t)〉 + 2λ (1 − α) β (t) 〈z (t) − z∗, V (z (t))〉
− 2λtβ (t)

〈
z (t) − z∗,

d

dt
V (z (t))

〉
+ 4 (λ + 1 − α) t ‖ż (t)‖2

+ 2t (λ + 2 − 2α) β (t) 〈ż (t) , V (z (t))〉 − 2t2β (t)

〈
ż (t) ,

d

dt
V (z (t))

〉

+ (1 − α) tβ2 (t) ‖V (z (t))‖2 − t2β2 (t)

〈
V (z (t)) ,

d

dt
V (z (t))

〉
. (17)

By differentiating the other terms of the energy function, it yields

d

dt

(
2λ (α − 1 − λ) ‖z (t) − z∗‖2 + 2λtβ (t) 〈z (t) − z∗, V (z (t))〉

+1

2
t2β2 (t) ‖V (z (t))‖2

)

= 4λ (α − 1 − λ) 〈z (t) − z∗, ż (t)〉 + 2λ
(
β (t) + t β̇ (t)

) 〈z (t) − z∗, V (z (t))〉
+ 2λtβ (t) 〈ż (t) , V (z (t))〉 + 2λtβ (t)

〈
z (t) − z∗,

d

dt
V (z (t))

〉
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+ tβ (t)
(
β (t) + t β̇ (t)

) ‖V (z (t))‖2 + t2β2 (t)

〈
V (z (t)) ,

d

dt
V (z (t))

〉
. (18)

By summing up 17 and 18, and then using the definition of w in 15, we conclude that

d

dt
Eλ (t) = −2λtw (t) 〈z (t) − z∗, V (z (t))〉 + 4 (λ + 1 − α) t ‖ż (t)‖2

+ 4 (λ + 1 − α) tβ (t) 〈ż (t) , V (z (t))〉 − 2t2β (t)

〈
ż (t) ,

d

dt
V (z (t))

〉

− 2t2β (t) w (t) ‖V (z (t))‖2 .

Finally, we observe that

4 (λ + 1 − α) t ‖ż (t)‖2 + 4 (λ + 1 − α) tβ (t) 〈ż (t) , V (z (t))〉
= tβ (t)

(
(α − 1 − λ) β (t) − 2tw (t)

)
‖V (z (t))‖2

− (α − 1 − λ) t ‖2ż (t) − β (t) V (z (t))‖2 .

This, in combination with
〈
ż (t) , d

dt V (z (t))
〉 ≥ 0 for every t ≥ t0, which is a conse-

quence of the monotonicity of V , leads to 16. ��
The following theorem provides first convergence rates which follow as a direct

consequence of the previous lemma. Since β is positive and nondecreasing, we have
limt→+∞ tβ (t) = +∞.

Theorem 4 Let z : [t0,+∞) → H be a solution of 12 and z∗ ∈ Z . For every t ≥ t0,
it holds

0 ≤ ‖V (z (t))‖ ≤ √
2Eα−1 (t0) · 1

tβ (t)
, (19a)

0 ≤ 〈z (t) − z∗, V (z (t))〉 ≤ Eα−1 (t0)

2 (α − 1)
· 1

tβ (t)
, (19b)

and the following statements are true

∫ +∞

t0
tw (t) 〈z (t) − z∗, V (z (t))〉 dt < +∞, (20a)

∫ +∞

t0
t2β (t) w (t) ‖V (z (t))‖2 dt < +∞. (20b)

If we assume in addition that

0 ≤ sup
t≥t0

t β̇ (t)

β (t)
< α − 2, (21)
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then the trajectory t �→ z (t) is bounded, it holds

∫ +∞

t0
t ‖ż (t)‖2 < +∞, (22)

and the limit limt→+∞ Eλ (t) ∈ R exists for every λ satisfying 0 ≤ λ ≤ α − 1.

Proof First we choose λ := α − 1. Then, inequality 16 reduces to

d

dt
Eα−1 (t) ≤ −2 (α − 1) tw (t) 〈z (t) − z∗,

V (z (t))〉 − 2t2β (t) w (t) ‖V (z (t))‖2 ≤ 0 ∀t ≥ t0. (23)

This means that t �→ Eα−1 (t) is nonincreasing on [t0,+∞) and, thus, the inequalities
(19) follow from the definition of the energy function. In addition, after integration of
23, we obtain the statements in (20).

Now we suppose that 21 holds. Then, there exists 0 ≤ ε < α − 2 such that

sup
t≥t0

t β̇ (t)

β (t)
= α − 2 − ε < α − 2.

This means that

w (t) = −1

2
β̇ (t) + 1

2
(α − 2)

β (t)

t
≥ ε

2

β (t)

t
> 0 ∀t ≥ t0. (24)

Hence,
t2β (t) w (t) ≥ ε

2
tβ2 (t) ∀t ≥ t0, (25)

which, due to 20b, gives

∫ +∞

t0
tβ2 (t) ‖V (z (t))‖2 dt < +∞. (26)

In order to prove the last statements of the theorem, we notice that the estimate 16
gives for every 0 ≤ λ ≤ α − 1 and every t ≥ t0

d

dt
Eλ (t) ≤ (α − 1 − λ) tβ2 (t) ‖V (z (t))‖2 − (α − 1 − λ) t ‖2ż (t) − β (t) V (z (t))‖2

≤ 2 (α − 1 − λ) tβ2 (t) ‖V (z (t))‖2 − 2 (α − 1 − λ) t ‖ż (t)‖2 (27a)

≤ 2 (α − 1 − λ) tβ2 (t) ‖V (z (t))‖2 . (27b)

The assertion 22 follows by integration of 27a for λ := 0 and by using then 26. Finally,
as t �→ tβ2 (t) ‖V (z (t))‖2 ∈ L

1 ([t0,+∞)), we can apply LemmaA.1 to 27b in order
to obtain the existence of the limit limt→+∞ Eλ (t) ∈ R for every 0 ≤ λ ≤ α − 1. ��
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The existence and uniqueness of solutions for 12 can be guaranteed in a very general
setting, which includes the one of continuously differentiable operators defined on
finite-dimensional spaces, that are obviously Lipschitz continuous in bounded sets.
The proof of Theorem 5 is provided in the Appendix and it relies on showing that the
maximal solution given by the Cauchy–Lipschitz theorem is a global solution.

Theorem 5 Let α > 2 and assume that V : H → H is continuously differentiable,
β : [t0,+∞) → (0,+∞) is a continuously differentiable and nondecreasing function
which satisfies condition 21 and that V and β̇ are Lipschitz continuous on bounded
sets. Then for every initial condition z (t0) = z0 ∈ H and ż (t0) = ż0 ∈ H, the
dynamical system 12 has a unique global twice continuously differentiable solution
z : [t0,+∞) → H.

Further we prove that, under the slightly stronger growth condition 21, the tra-
jectories of the dynamical system 12 converge to a zero of V . This phenomenon is
also present at inertial gradient systems with asymptotically vanishing damping terms,
where it concerns the coefficient α, too.

Theorem 6 Let α > 2 and z : [t0,+∞) → H be a solution of 12 and assume that
β : [t0,+∞) → (0,+∞) satisfies the growth condition 21, in other words

0 ≤ sup
t≥t0

t β̇ (t)

β (t)
< α − 2.

Then, z (t) converges weakly to a solution of 1 as t → +∞.

Proof Let z∗ ∈ Z and 0 ≤ λ1 < λ2 ≤ α − 1 be fixed. Then by the definition of the
energy function in 14, we have for every t ≥ t0

Eλ2 (t) − Eλ1 (t) = 2 (λ2 − λ1) t 〈z (t) − z∗, 2ż (t) + β (t) V (z (t))〉
+ 2 (λ2 − λ1) λβ (t) 〈z (t) − z∗, V (z (t))〉
+ 2 (λ2 − λ1) (α − 1) ‖z (t) − z∗‖2

= 4 (λ2 − λ1) (t 〈z (t) − z∗, ż (t) + β (t) V (z (t))〉
+1

2
(α − 1) ‖z (t) − z∗‖2

)
.

For every t ≥ t0, we define

p (t) := t 〈z (t) − z∗, ż (t) + β (t) V (z (t))〉 + 1

2
(α − 1) ‖z (t) − z∗‖2 , (28)

q (t) := 1

2
‖z (t) − z∗‖2 +

∫ t

t0
β (s) 〈z (s) − z∗, V (z (s))〉 ds. (29)

One can easily see that for every t ≥ t0
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q̇ (t) = 〈z (t) − z∗, ż (t) + β (t) 〈z (t) − z∗, V (z (t))〉〉
= 〈z (t) − z∗, ż (t) + β (t) V (z (t))〉 ,

and thus

(α − 1) q (t) + t q̇ (t) = p (t) + (α − 1)
∫ t

t0
β (s) 〈z (s) − z∗, V (z (s))〉 ds.

Since0 ≤ λ1 < λ2 ≤ α−1,Theorem4guarantees that limt→+∞
{Eλ2 (t) − Eλ1 (t)

}
∈ R exists, hence, by 28,

lim
t→+∞ p (t) ∈ R exists. (30)

Furthermore, the quantity
∫ t
t0

β (s) 〈z (s) − z∗, V (z (s))〉 ds is nondecreasing with
respect to t , and according to 24 for every t ≥ t0 it holds

ε

2

∫ t

t0
β (s) 〈z (s) − z∗, V (z (s))〉 ds ≤

∫ t

t0
sw (s) 〈z (s) − z∗, V (z (s))〉 ds.

As a consequence, we conclude from 20a that

lim
t→+∞

∫ t

t0
β (s) 〈z (s) − z∗, V (z (s))〉 ds ∈ R. (31)

Combining 30 and 31, it yields that the limit limt→+∞ {(α − 1) q (t) + t q̇ (t)} ∈
R exists, which, according to Lemma A.4, guarantees that limt→+∞ q (t) ∈ R.
Using the definition of q in 29 and once again the statement 31, we see that
limt→+∞ ‖z (t) − z∗‖ ∈ R. This proves the hypothesis (i) of Opial’s Lemma (see
Lemma A.2).

Finally, let�z be a weak sequential cluster point of the trajectory z (t) as t → +∞.
This means that there exists a sequence (z (tn))n≥0 such that

z (tn) ⇀�z as n → +∞,

where ⇀ denotes weak convergence. On the other hand, Theorem 4 ensures that

V (z (tn)) → 0 as n → +∞.

Since V is monotone and continuous, it is maximally monotone (see, for instance, [16,
Corollary 20.28]). Therefore, the graph of V is sequentially closed inHweak×Hstrong,
which means that V (�z) = 0. In other words, the hypothesis (ii) of Opial’s Lemma also
holds, and the proof is complete. ��

Next we will see that under the growth condition 21 the convergence rates obtained
in Theorem 4 can be improved from O to o, which is also a phenomenon known for
inertial gradient systems with asymptotically vanishing damping terms.
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Theorem 7 Let α > 2 and z : [t0,+∞) → H be a solution of 12, z∗ ∈ Z , and assume
that β : [t0,+∞) → (0,+∞) satisfies the growth condition 21, in other words

0 ≤ sup
t≥t0

t β̇ (t)

β (t)
< α − 2.

Then, it holds

‖ż (t)‖ = o

(
1

t

)
as t → +∞,

and

〈z (t) − z∗, V (z (t))〉 = o

(
1

tβ (t)

)
and ‖V (z (t))‖ = o

(
1

tβ (t)

)
as t → +∞.

Proof For every 0 ≤ λ ≤ α − 1, the energy function of the system can be written as

Eλ (t) = 1

2

∥∥∥2λ (z (t) − z∗) + t
(
2ż (t) + β (t) V (z (t))

)∥∥∥
2

+ 2λ (α − 1 − λ) ‖z (t) − z∗‖2

+ 2λtβ (t) 〈z (t) − z∗, V (z (t))〉 + 1

2
t2β2 (t) ‖V (z (t))‖2

= 2λ (α − 1) ‖z (t) − z∗‖2 + 4λt 〈z (t) − z∗, ż (t) + β (t) V (z (t))〉
+ 1

2
t2 ‖2ż (t) + β (t) V (z (t))‖2 + 1

2
t2β2 (t) ‖V (z (t))‖2

= 4λp (t) + t2 ‖ż (t) + β (t) V (z (t))‖2 + t2 ‖ż (t)‖2 ,

where the last equation comes from the definition of p (t) in 28 and the formula

‖x‖2 + ‖y‖2 = 1

2

(
‖x + y‖2 + ‖x − y‖2

)
∀x, y ∈ H. (32)

Recalling that as both limits limt→+∞ Eλ (t) ∈ R and limt→+∞ p (t) ∈ R exist
(see Theorem 4 and 30), we conclude that for h : [t0,+∞) → R, h(t) =
t2 ‖ż (t) + β (t) V (z (t))‖2 + t2 ‖ż (t)‖2,

lim
t→+∞ h (t) ∈ [0,+∞) exists. (33)

Moreover, from 22 and 26, we see that

∫ +∞

t0

1

t
h (t) dt ≤ 3

∫ +∞

t0
t ‖ż (t)‖2 dt + 2

∫ +∞

t0
tβ2 (t) ‖V (z (t))‖2 dt < +∞,

which in combination with 33 leads to limt→+∞ h(t) = 0. Thus,

lim
t→+∞ t ‖ż (t) + β (t) V (z (t))‖ = lim

t→+∞ t ‖ż (t)‖ = 0,
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and, consequently,
lim

t→+∞ tβ (t) ‖V (z (t))‖ = 0.

Finally, by Cauchy–Schwarz inequality and the fact that the trajectory t �→ z(t) is
bounded, we deduce that

0 ≤ tβ (t) 〈z (t) − z∗, V (z (t))〉 ≤ tβ (t) ‖z (t) − z∗‖ ‖V (z (t))‖ ∀t ≥ t0,

which finishes the proof. ��

Remark 8 One of the anonymous referees made an excellent observation regarding the
asymptotic behavior of the trajectories on which we will elaborate in the following.
For the first-order system attached to 1

u̇ (t) + V (u (t)) = 0, (34)

it is known that the solution trajectories converge weakly in ergodic (averaged)
sense toward a zero of V . In other words, there exists z∗ ∈ Z such that z (t) :=
1
t

∫ t
0 u (s) ds⇀z∗ ∈ Z as t → +∞ (see, for instance, [15, 41]).
This leads to the natural idea of considering the averaging trajectory z, that fulfills

ż (t) + 1

t
(z (t) − u (t)) = 0, (35)

and to drive the equation of its dynamics from 34. For more details on this very
powerful approach, we refer the reader to [3].

From 35, we deduce that u̇ (t) = t z̈ (t) + 2ż (t), and hence, equation 34 becomes

t z̈ (t) + 2ż (t) + V (z (t) + t ż (t)) = 0.

Taking the Taylor expansion

V (z (t) + t ż (t)) ≈ V (z (t)) + t∇V (z (t)) ż (t) = V (z (t)) + t
d

dt
V (z (t)) ,

it leads to the second-order dynamical system with correction term d
dt V (z (t))

z̈ (t) + 2

t
ż (t) + d

dt
(V (z (t))) + 1

t
V (z (t)) = 0,

which is of the same type as 12. This approach suggests that one can expect the
non-ergodic convergence of the solution trajectory of 12 to a zero of V .

The function β can be “inserted” into the system through time scaling approaches
aimed to speed up its convergence behavior (see also [3, 5, 7, 8] for related ideas).

123



Foundations of Computational Mathematics

3 An Implicit Numerical Algorithm

In this section, we formulate and investigate an implicit type numerical algorithm
which follows from a temporal discretization of the dynamical system 12. We recall
that the latter can be equivalently written as (see the proof of Theorem 5)

{
u̇ (t) =

(
t β̇ (t) + (2 − α) β (t)

)
V (z (t))

u (t) = 2 (α − 1) z (t) + 2t ż (t) + 2tβ (t) V (z (t))
, (36)

with the initializations z (t0) = z0 and ż (t0) = ż0.
We fix a time step s > 0, set τk := s (k + 1) and σk := sk for every k ≥ 1, and

approximate z (τk) ≈ zk+1, u (τk) ≈ uk+1, and β (σk) ≈ βk . The implicit finite-
difference scheme for 36 at time t := τk for (z, u) and at time t := σk for β gives for
every k ≥ 1

⎧⎨
⎩
uk+1 − uk

s
=
(
k (βk − βk−1) + (2 − α) βk

)
V
(
zk+1

)

uk+1 = 2 (α − 1) zk+1 + 2 (k + 1)
(
zk+1 − zk

)+ 2s (k + 1) βkV
(
zk+1

) ,

(37)
with the initialization u1 := z0 and u0 := z0 − sż0. Therefore, we have for every
k ≥ 1

uk = 2 (α − 1) zk + 2k
(
zk − zk−1

)
+ 2skβk−1V

(
zk
)

,

and after substraction, we get

uk+1 − uk = 2 (k + α)
(
zk+1 − zk

)
− 2k

(
zk − zk−1

)

+ 2s
(
(k + 1) βk − kβk−1

)
V
(
zk+1

)

+ 2skβk−1

(
V
(
zk+1

)
− V

(
zk
))

= s
(
k (βk − βk−1) + (2 − α) βk

)
V
(
zk+1

)
, (38)

where the last relation comes from the first equation in 37. From here, we deduce that
for every k ≥ 1

zk+1 = zk +
(
1 − α

k + α

)(
zk − zk−1

)
− s (αβk + k (βk − βk−1))

2 (k + α)
V
(
zk+1

)

− skβk−1

k + α

(
V
(
zk+1

)
− V

(
zk
))

.

For

sk := s (αβk + k (βk − βk−1))

2 (k + α)
and tk := skβk−1

k + α
,
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the algorithm can be further equivalently written as

zk+1 := (Id + (sk + tk)V )−1
(
zk +

(
1 − α

k + α

)(
zk − zk−1

)
+ tkV

(
zk
))

∀k ≥ 1,

and is therefore well defined due to the maximal monotonicity of V .
We also want to point out that the discrete version of the growth condition 21 reads

0 ≤ sup
k≥1

k (βk − βk−1)

βk
< α − 2,

where (βk)k≥0 is a positive and nondecreasing sequence. This means that there exists
some 0 ≤ ε < α − 2 such that

k (βk − βk−1)

βk
≤ α−2−ε or, equivalently, k (βk − βk−1) ≤ (α − 2 − ε) βk ∀k ≥ 1.

(39)
In addition, for every k ≥ �α�, it holds

βk ≤ k

k + 2 + ε − α
βk−1 ≤ α

2 + ε
βk−1. (40)

To sum up, the implicit algorithm we propose for solving 1 is formulated below.

Algorithm 1 (Implicit Fast OGDA) Let α > 2, z0, z1 ∈ H, s > 0, and (βk)k≥0
a positive and nondecreasing sequence which satisfies

0 ≤ sup
k≥1

k (βk − βk−1)

βk
< α − 2. (41)

For every k ≥ 1 we set

zk+1 = zk +
(
1 − α

k + α

)(
zk − zk−1

)
− s (αβk + k (βk − βk−1))

2 (k + α)
V
(
zk+1

)

− skβk−1

k + α

(
V
(
zk+1

)
− V

(
zk
))

.

Inspired by the continuous setting, we consider for 0 ≤ λ ≤ α − 1 the following
sequence defined for every k ≥ 1

Ek
λ :=1

2

∥∥∥2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ skβk−1V

(
zk
)∥∥∥

2

+ 2λ (α − 1 − λ)

∥∥∥zk − z∗
∥∥∥
2

+ 2λskβk−1

〈
zk − z∗, V

(
zk
)〉

+ 1

2
s2 (k + α) kβkβk−1

∥∥∥V
(
zk
)∥∥∥

2 ≥ 0,
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which is the discrete version of the energy function considered in the previous section.
We have for every k ≥ 1

Ek
λ = 2λ (α − 1)

∥∥∥zk − z∗
∥∥∥
2 + 4λk

〈
zk − z∗, zk − zk−1 + sβk−1V

(
zk
)〉

+ 1

2
k2
∥∥∥2
(
zk − zk−1

)
+ sβk−1V

(
zk
)∥∥∥

2 + 1

2
s2 (k + α) kβkβk−1

∥∥∥V
(
zk
)∥∥∥

2
.

(42)

The following lemma shows that the discrete energy dissipates with every iteration
of the algorithm. Its proof can be found in the Appendix. Lemma 9 is the essential
ingredient for the derivation of the convergence rates in Theorem 10.

Lemma 9 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 1 for

(βk)k≥0 a positive and nondecreasing sequence which satisfies (41). Then for every
0 ≤ λ ≤ α − 1 and every k ≥ �α� it holds

Ek+1
λ − Ek

λ ≤ 2λs
(
(k + 2 − α) βk − kβk−1

) 〈
zk+1 − z∗, V

(
zk+1

)〉

+ 2 (λ + 1 − α) (2k + α + 1)
∥∥∥zk+1 − zk

∥∥∥
2

+ 2s

((
(λ + 1 − α) (2k + α + 1) − λ

)
βk

− λk (βk − βk−1)

) 〈
zk+1 − zk, V

(
zk+1

)〉

− 2sk (k + α) βk−1

〈
zk+1 − zk, V

(
zk+1

)
− V

(
zk
)〉

+ 1

2

(
C − ε (2k + α + 1)

)
s2β2

k

∥∥∥V
(
zk+1

)∥∥∥
2

− 1

2
s2k

(
(k + α) βk + kβk−1

)
βk−1

∥∥∥V
(
zk+1

)
− V

(
zk
)∥∥∥

2
, (43)

where
C := α

2 + ε
(α − 2 − ε) (2α − 2 − ε) > 0 (44)

and ε is chosen to fulfill 39.

Theorem 10 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 1 for

(βk)k≥0 a positive and nondecreasing sequencewhich satisfies (41), and 0 ≤ ε < α−2
be such that 39 is satisfied. Then, it holds

〈
zk − z∗, V

(
zk
)〉

= O
(

1

kβk

)
and

∥∥∥V
(
zk
)∥∥∥ = O

(
1

kβk

)
as k → +∞.
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In addition, for every α − 1 − ε
4 < λ < α − 1, the sequence

(Ek
λ

)
k≥1 converges,(

zk
)
k≥0 is bounded and

∑
k≥1

βk

〈
zk+1 − z∗, V

(
zk+1

)〉
< +∞, (45a)

∑
k≥1

k
∥∥∥zk+1 − zk

∥∥∥
2

< +∞, (45b)

∑
k≥1

kβ2
k

∥∥∥V
(
zk+1

)∥∥∥
2

< +∞. (45c)

Proof Let 0 < α − 1 − ε
4 < λ < α − 1. First we show that for sufficiently large k, it

holds

Rk := (λ + 1 − α) (2k + α + 1)
∥∥∥zk+1 − zk

∥∥∥
2

+ 2s

((
(λ + 1 − α) (2k + α + 1) − λ

)
βk − λk (βk − βk−1)

)

〈
zk+1 − zk, V

(
zk+1

)〉

+ 1

4

(
C − ε (2k + α + 1)

)
s2β2

k

∥∥∥V
(
zk+1

)∥∥∥
2 ≤ 0, (46)

where C > 0 is given by 44. By setting Kα := 2k + α + 1 ≥ 1, for every k ≥ 0 we
have

Rk = (λ + 1 − α) Kα

∥∥∥zk+1 − zk
∥∥∥
2 + 1

4
s2 (C − εKα) β2

k

∥∥∥V
(
zk+1

)∥∥∥
2

+ 2s

((
(λ + 1 − α) Kα − λ

)
βk − λk (βk − βk−1)

) 〈
zk+1 − zk, V

(
zk+1

)〉
.

To guarantee that Rk ≤ 0 for sufficiently large k, we show that

�k

s2
:= 4

((
(λ + 1 − α) Kα − λ

)
βk − λk (βk − βk−1)

)2

− (λ + 1 − α) (C − εKα) Kαβ2
k ≤ 0

sufficiently large k. Since (βk)k≥0 is nondecreasing and λ < α − 1, it follows from
39 that for every k ≥ 1

0 ≥
(
(λ + 1 − α) Kα − λ

)
βk − λk (βk − βk−1)

≥
(
(λ + 1 − α) Kα − λ

)
βk − λ (α − 2 − ε) βk

=
(
(λ + 1 − α) Kα − λ (α − 1 − ε)

)
βk,
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and thus

�k

s2β2
k

:= 4

β2
k

((
(λ + 1 − α) Kα − λ

)
βk − λk (βk − βk−1)

)2

− (λ + 1 − α) (C − εKα) Kα

≤ 4
(
(λ + 1 − α) Kα − λ (α − 1 − ε)

)2 − (λ + 1 − α) (C − εKα) Kα

= 4 (λ + 1 − α)2 K 2
α − 8λ (λ + 1 − α) (α − 1 − ε) Kα + 4λ2 (α − 1 − ε)2

− (λ + 1 − α)CKα + ε (λ + 1 − α) K 2
α

= (λ + 1 − α)
(
4 (λ + 1 − α) + ε

)
K 2

α

− (λ + 1 − α)
(
8λ (α − 1 − ε) + C

)
Kα + 4λ2 (α − 1 − ε)2 .

Since α − 1− ε
4 < λ < α − 1, we have (λ + 1 − α)

(
4 (λ + 1 − α) + ε

)
< 0, hence

for sufficiently large k ≥ 0 it holds �k ≤ 0 and, consequently, Rk ≥ 0.
From 39, we deduce that (k + 2 − α) βk − kβk−1 ≤ −εβk for every k ≥ 1. Hence,

for every α − 1− ε
4 < λ < α − 1, from Lemma 9 and 46 we have that for sufficiently

large k it holds

Ek+1
λ − Ek

λ

≤ −ε2λsβk

〈
zk+1 − z∗, V

(
zk+1

)〉
+ (λ + 1 − α) (2k + α + 1)

∥∥∥zk+1 − zk
∥∥∥
2

− 2sk (k + α) βk−1

〈
zk+1 − zk, V

(
zk+1

)
− V

(
zk
)〉

+ 1

4

(
C − ε (2k + α + 1)

)
s2β2

k

∥∥∥V
(
zk+1

)∥∥∥
2

− 1

2
s2k

(
(k + α) βk + kβk−1

)
βk−1

∥∥∥V
(
zk+1

)
− V

(
zk
)∥∥∥

2
,

which means the sequence
{Ek

λ

}
k≥1 is nonincreasing for sufficiently large k, thus it

is convergent and the boundedness of
(
zk
)
k≥0 and the convergence rates follow from

the definition of Ek
λ and 40. The remaining assertions follow from Lemma A.6. ��

Next we prove the weak convergence of the generated sequence of iterates.

Theorem 11 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 1

for (βk)k≥0 a positive and nondecreasing sequence which satisfies (41). Then, the
sequence

(
zk
)
k≥0 converges weakly to a solution of 1.

Proof Let 0 ≤ ε < α−2 such that 39 is satisfied and 0 < α−1− ε
4 < λ1 < λ2 < α−1.

For every k ≥ 1, we set

pk := 1

2
(α − 1)

∥∥∥zk − z∗
∥∥∥
2 + k

〈
zk − z∗, zk − zk−1 + sβk−1V

(
zk
)〉

, (47)
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qk := 1

2

∥∥∥zk − z∗
∥∥∥
2 + s

k∑
i=1

βi−1

〈
zi − z∗, V

(
zi
)〉

, (48)

and notice that

(α − 1) qk + k (qk − qk−1) = pk + (α − 1) s
k+1∑
i=1

βi−1

〈
zi − z∗, V

(
zi
)〉

−k

2

∥∥∥zk − zk−1
∥∥∥
2
.

We have that

lim
k→+∞ pk = lim

k→+∞
1

4(λ2 − λ1)

(
Ek

λ2
− Ek

λ1

)
∈ R exists (49)

and, thanks to (45), that the limit limk→+∞
∑k+1

i=1 βi−1
〈
zi − z∗, V

(
zi
)〉 ∈ R exists

and

lim
k→+∞ k

∥∥∥zk+1 − zk
∥∥∥
2 = 0.

Consequently,
lim

k→+∞ ((α − 1) qk + k (qk − qk−1)) ∈ R exists.

From Theorem 10, we deduce that (qk)k≥1 is bounded. This allows us to apply Lemma
A.5 and to conclude from here that limk→+∞ qk ∈ R also exists. Once again, by the

definition of qk and the fact that the sequence
(∑k

i=1 βi−1
〈
zi − z∗, V

(
zi
)〉)

k≥1
con-

verges, it follows that limk→+∞ ‖zk − z∗‖ ∈ R exists. In other words, the hypothesis
(i) in Opial’s Lemma (see Lemma A.3) is fulfilled.

Now let�z be a weak sequential cluster point of
(
zk
)
k≥0, meaning that there exists

a subsequence
(
zkn
)
n≥0 such that

zkn⇀�z as n → +∞.

From Theorem 10, we have

V
(
zkn
)

→ 0 as n → +∞.

Since V monotone and continuous, it is maximally monotone [16, Corollary 20.28].
Therefore, the graph of V is sequentially closed inHweak × Hstrong, which gives that
V (�z) = 0, thus �z ∈ Z . This shows that hypothesis (ii) of Opial’s Lemma is also
fulfilled, and completes the proof. ��

We close the section with a result which improves the convergence rates derived in
Theorem 10 for the implicit algorithm.
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Theorem 12 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 1 for

(βk)k≥0 a positive and nondecreasing sequence which satisfies (41). Then, it holds

∥∥∥zk − zk−1
∥∥∥ = o

(
1

k

)
as k → +∞

and

〈
zk − z∗, V

(
zk
)〉

= o

(
1

kβk

)
and

∥∥∥V
(
zk
)∥∥∥ = o

(
1

kβk

)
as k → +∞.

Proof Let 0 ≤ ε < α − 2 such that 39 is satisfied and 0 < α − 1 − ε
4 < λ < α − 1.

In the view of 47, the discrete energy sequence can be written as

Ek
λ = 4λpk + 1

2
k2
∥∥∥2
(
zk − zk−1

)
+ sβk−1V

(
zk
)∥∥∥

2

+1

2
s2 (k + α) kβkβk−1

∥∥∥V
(
zk
)∥∥∥

2 ∀k ≥ 1.

According to Theorem 10, we have

lim
k→+∞ kβkβk−1

∥∥∥V
(
zk
)∥∥∥

2 = 0.

This statement together with the fact that the limits limk→+∞ Ek
λ ∈ R and

limk→+∞ pk ∈ R (according to 49) exist, allows us to deduce that for the sequence

hk := k2

2

(∥∥∥2
(
zk − zk−1

)
+ sβk−1V

(
zk
)∥∥∥

2 + s2βkβk−1

∥∥∥V
(
zk
)∥∥∥

2
)

∀k ≥ 1,

the limit
lim

k→+∞ hk ∈ [0,+∞) exists.

Furthermore, by taking into consideration the relation 40, Theorem 10 also guarantees
that

∑
k≥�α�

1

k
hk ≤ 2

∑
k≥�α�

k
∥∥∥zk − zk−1

∥∥∥
2 + s2

∑
k≥�α�

k

(
βk−1 + βk

2

)
βk−1

∥∥∥V
(
zk
)∥∥∥

2

≤ 2
∑
k≥�α�

k
∥∥∥zk − zk−1

∥∥∥
2

+ s2
(
1 + α

2 (2 + ε)

)∑
k≥1

kβ2
k−1

∥∥∥V
(
zk
)∥∥∥

2
< +∞.
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Fromherewe conclude that limk→+∞ hk = 0, and since hk is a sumof twononnegative
terms and, since (βk)k≥0 is nondecreasing, we further deduce

lim
k→+∞ k

∥∥∥2
(
zk − zk−1

)
+ sβk−1V

(
zk
)∥∥∥ = lim

k→+∞ k
√

βkβk−1

∥∥∥V
(
zk
)∥∥∥

= lim
k→+∞ kβk−1

∥∥∥V
(
zk
)∥∥∥ = 0.

Using once again 40, we obtain

lim
k→+∞ kβk

∥∥∥V
(
zk
)∥∥∥ = 0.

Since (zk)k≥0 is bounded, we use the Cauchy–Schwarz inequality to derive

0 ≤ lim
k→+∞ kβk

〈
zk − z∗, V

(
zk
)〉

≤ lim
k→+∞ kβk

∥∥∥zk − z∗
∥∥∥
∥∥∥V

(
zk
)∥∥∥ = 0,

and the proof is complete. ��

4 An Explicit Algorithm

In this section, additional to its monotonicity, we will assume that the operator V is
L-Lipschitz continuous, with L > 0.We propose and investigate an explicit numerical
algorithm for solving 1, which follows from a temporal discretization of the dynamical
system 12.

The starting point is again its reformulation 36. We fix a time step s > 0, set
τk := s (k + 1) for every k ≥ 1, and approximate z (τk) ≈ zk+1 and u (τk) ≈ uk+1.
In addition, we choose β (τk) = 1 for every k ≥ 1 and refer to Remark 2 for the
explanation of why the time scaling parameter function β is discretized via a constant
sequence. The finite-difference scheme for 36 at time t := τk gives for every k ≥ 0

⎧⎨
⎩
uk+1 − uk

s
= (2 − α) V

(�zk)

uk+1 = 2 (α − 1) zk+1 + 2 (k + 1)
(
zk+1 − zk

)+ 2s (k + 1) V
(�zk)

.

(50)
Therefore, we have for every k ≥ 1

uk = 2 (α − 1) zk + 2k
(
zk − zk−1

)
+ 2skV

(
�zk−1

)
, (51)

and after substraction we get
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uk+1 − uk = 2 (k + α)
(
zk+1 − zk

)
− 2k

(
zk − zk−1

)
+ 2sV

(
�zk
)

+ 2sk
(
V
(
�zk
)

− V
(
�zk−1

))

= (2 − α) sV
(
�zk
)

, (52)

where the last relation comes from the first equation in 50.
On the other hand, the second equation in 50 can be rewritten for every k ≥ 0 as

zk+1 = 1

2 (k + α)
uk+1 + k + 1

k + α

(
zk − sV

(
�zk
))

. (53)

To get an explicit choice for�zk , we opt for

�zk := 1

2 (k + α)
uk+ k + 1

k + α

(
zk − sk

k + 1
V
(
�zk−1

))
− αs

2 (k + α)
V
(
�zk−1

)
∀k ≥ 1.

(54)
From here, 51 gives for all k ≥ 1

�zk = zk + k

k + α

(
zk − zk−1

)
− αs

2 (k + α)
V
(
�zk−1

)

= zk +
(
1 − α

k + α

)(
zk − zk−1

)
− αs

2 (k + α)
V
(
�zk−1

)
,

thus, by subtracting 54 from 53, we obtain

zk+1 −�zk = 1

2 (k + α)

(
uk+1 − uk

)
− s (k + 1)

k + α
V
(
�zk
)

+ sk

k + α
V
(
�zk−1

)

− αs

2 (k + α)
V
(
�zk−1

)

= − αs

2 (k + α)
V
(
�zk
)

− sk

k + α

(
V
(
�zk
)

− V
(
�zk−1

))

+ αs

2 (k + α)
V
(
�zk−1

)

= − s

2

(
1 + k

k + α

)(
V
(
�zk
)

− V
(
�zk−1

))
. (55)

This gives the following important estimate, which holds for every s > 0 such that
sL ≤ 1 and every k ≥ 1

∥∥∥V
(
zk+1

)
− V

(
�zk
)∥∥∥ ≤ L

∥∥∥zk+1 −�zk
∥∥∥ ≤ sL

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
≤
∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥ . (56)

Now we can formally state our explicit numerical algorithm.
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Algorithm 2 (Explicit FastOGDA) Let α > 2, z0, z1,�z0 ∈ H, and 0 < s < 1
2L .

For every k ≥ 1 we set

�zk := zk +
(
1 − α

k + α

)(
zk − zk−1

)
− αs

2 (k + α)
V
(
�zk−1

)

zk+1 :=�zk − s

2

(
1 + k

k + α

)(
V
(
�zk
)

− V
(
�zk−1

))
.

For z∗ ∈ Z , 0 ≤ λ ≤ α − 1 and z∗ ∈ Z 0 < γ < 2, we define first in analogy to
the implicit case the discrete energy function for every k ≥ 1 by

Ek
λ := 1

2

∥∥∥ukλ
∥∥∥
2 + 2λ (α − 1 − λ)

∥∥∥zk − z∗
∥∥∥
2 + 2 (2 − γ ) λsk

〈
zk − z∗, V

(
�zk−1

)〉

+ 1

2
(2 − γ ) s2k (γ k + α)

∥∥∥V
(
�zk−1

)∥∥∥
2
, (57)

where
ukλ := 2λ

(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)
. (58)

In strong contrast to the implicit case, the discrete energy sequence (Ek
λ)k≥1 might not

dissipate with every iteration of the algorithm and be even negative. This is the reason
why we consider instead the following regularized sequence of the energy function,
defined for every k ≥ 2 as

Fk
λ := Ek

λ − 2 (2 − γ ) sk2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉

+ 1

2
(2 − γ ) s2k

√
k
(
2sL

√
k + α

) ∥∥∥V
(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2

− 1

2
λ (α − 2) s2

(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2
. (59)

Its properties are collected in the following lemma, the proof of which is deferred to
the Appendix.

Lemma 13 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 2 for

0 < γ < 2 and 0 ≤ λ ≤ α − 1. Then, the following statements are true:

(i) for every k ≥ k0 := max
{
2, � 1

α−2�
}
it holds

Fk+1
λ − Fk

λ ≤ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

− 1

2
s2μk

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

+ 2
(
ω2k + ω3

√
k
) ∥∥∥zk+1 − zk

∥∥∥
2

+ 2s
(
ω0k + ω1

) 〈
zk+1 − zk, V

(
�zk
)〉

+ 1

2
s2
(
ω4k + ω5

√
k
) ∥∥∥V

(
�zk
)∥∥∥

2
,
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where

μk := (2 − γ )
(
2 (1 − 2sL) (k + 1) + α2

√
k + 1 + α − 4

)
(k + 1)

− (2 − γ ) (α − 2) − 2λ (α − 2) , (60a)

ω0 := (2 − γ ) λ + γ − α + γ (λ + 1 − α) , (60b)

ω1 := γ − α + α (λ + 1 − α) < 0, (60c)

ω2 := 2 (λ + 1 − α) ≤ 0, (60d)

ω3 := (2 − γ )
√

α − 2 > 0, (60e)

ω4 := 2γ (2 − α) < 0, (60f)

ω5 := (2 − γ ) α > 0. (60g)

(ii) if 1 < γ < 2, then for every k ≥ k1 := � 2λ(α−2)
(2−γ )α

� it holds

Fk
λ ≥ 2 − γ

γ

∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥
2

+ (2 − γ )2

2γ
k2
∥∥∥zk − zk−1

∥∥∥
2 + 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥
2
. (61)

In Lemma 13, we have two degrees of freedom in the choice of the parameters γ

and λ. The next result proves that there are choices for these parameters for which
the discrete energy starts to dissipate with every iteration after a finite number of
iterations and in the same time it is bounded from below by a nonnegative term. These
two statements are fundamental in the derivation of the convergence rates and finally
in the proof of the convergence of the iterates. The proof of Lemma 14 can be found
in the Appendix.

Lemma 14 The following statements are true:

(i) if γ and δ are such that

1 + 1

α − 1
< γ < 2, (62)

and

max

{√
2

(
1 − 1

γ

)
,

√
(2 − γ ) (α − 1) + (γ − 1) (α − 2)

γ (α − 2)

}
< δ < 1, (63)

then there exist two parameters

0 ≤ λ (α, γ ) < λ (α, γ ) ≤ γ

2
(α − 1) , (64)

such that for every λ satisfying λ (α, γ ) < λ < λ (α, γ ) one can find an integer
k2 (λ) ≥ 1 with the property that the following inequality holds for every k ≥
k2 (λ)
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Rk := 2δ
(
ω2k + ω3

√
k
) ∥∥∥zk+1 − zk

∥∥∥
2 + 2s

(
ω0k + ω1

) 〈
zk+1 − zk, V

(
�zk
)〉

+ δ

2
s2
(
ω4k + ω5

√
k
) ∥∥∥V

(
�zk
)∥∥∥

2 ≤ 0; (65)

(ii) there exists a positive integer k3 such that for every k ≥ k3 it holds

μk ≥ (2 − γ ) (1 − 2sL) (k + 1)2 . (66)

Now we are in position to provide first convergence rates statements for Algorithm
2.

Theorem 15 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 2. Then,

the following statements are true:

(i) it holds

∑
k≥1

〈
�zk − z∗, V

(
�zk
)〉

< +∞, (67a)

∑
k≥1

k2
∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥
2

< +∞, (67b)

∑
k≥1

k
∥∥∥zk+1 − zk

∥∥∥
2

< +∞, (67c)

∑
k≥1

k
∥∥∥V

(
�zk
)∥∥∥

2
< +∞; (67d)

(ii) the sequence
(
zk
)
k≥0 is bounded and it holds

∥∥∥zk − zk−1
∥∥∥ = O

(
1

k

)
,
〈
zk − z∗, V

(
zk
)〉

= O
(
1

k

)
,

∥∥∥V
(
zk
)∥∥∥ = O

(
1

k

)
,

∥∥∥V
(
�zk
)∥∥∥ = O

(
1

k

)
as k → +∞;

(iii) if 1 + 1

α − 1
< γ < 2, then there exist 0 ≤ λ (α, γ ) < λ (α, γ ) ≤ γ

2 (α − 1)

such that for every λ (α, γ ) < λ < λ (α, γ ) both sequences
(Ek

λ

)
k≥1 and

(Fk
λ

)
k≥2

converge.

Proof Let 1 + 1

α − 1
< γ < 2 and 0 < δ < 1 such that 63 holds. According to

Lemma 14 there exist λ (α, γ ) < λ (α, γ ) such that 64 holds. We choose λ (α, γ ) <

λ < λ (α, γ ) and get, according to the same result, an integer k2(λ) ≥ 1 such that for
every k ≥ k2(λ) the inequality 65 holds. In addition, according to Lemma 14(ii), we
get a positive integer k3 such that 66 holds for every k ≥ k3.

This means that for every k ≥ k4 (λ) := max {k0, k2 (λ) , k3}, where k0 is the
positive integer provided by Lemma 13(i), we have
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Fk+1
λ − Fk

λ ≤ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

− 1

2
(2 − γ ) (1 − 2sL) s2 (k + 1)2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

+ 2 (1 − δ)
(
ω2k + ω3

√
k
) ∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
(1 − δ) s2

(
ω4k + ω5

√
k
) ∥∥∥V

(
�zk
)∥∥∥

2
.

Sinceω2 < 0, ω4 < 0 andω3, ω5 ≥ 0, we can choose k5 := �max
{
− 2ω3

ω2
,− 2ω5

ω4

}
� >

0, which then means that for every k ≥ k6 := max {k4 (λ) , k5}

Fk+1
λ − Fk

λ ≤ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

− 1

2
(2 − γ ) s2 (1 − 2sL) (k + 1)2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

+ (1 − δ) ω2k
∥∥∥zk+1 − zk

∥∥∥
2 + 1

4
(1 − δ) s2ω4k

∥∥∥V
(
�zk
)∥∥∥

2
. (68)

In view of 61 and by taking into account that λ <
γ
2 (α − 1), we get that Fk

λ ≥ 0
starting from the index k1, thus the sequence

(Fk
λ

)
k≥2 is bounded from below. Under

these premises, we can apply Lemma A.6 to 68, and obtain (i) as well as that the
sequence

(Fk
λ

)
k≥1 converges.

According to 68, we also have that
(Fk

λ

)
k≥k6

is nonincreasing, which, according to
61, implies that following estimate holds for every k ≥ k6

2 − γ

γ

∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥
2

+ (2 − γ )2

2γ
k2
∥∥∥zk − zk−1

∥∥∥
2 + 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥
2

≤ Fk
λ ≤ Fk6

λ < +∞.

This yields that the sequences
(
2λ
(
zk − z∗

)+ k
(
zk − zk−1

)+ γ skV
(�zk−1

))
k≥1,(

k
(
zk − zk−1

))
k≥1, and

(
zk
)
k≥0 are bounded. In particular, for every k ≥ k6 we

have

∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥ ≤ C0 :=
√

γFk6
λ

2 − γ
< +∞,

k
∥∥∥zk − zk−1

∥∥∥ ≤ C1 :=
√
2γFk6

λ

2 − γ
< +∞,

∥∥∥zk − z∗
∥∥∥ ≤ C2 :=

√
γFk6

λ

2λ (γ (α − 1) − 2λ)
< +∞.
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Using the triangle inequality, we deduce from here that for every k ≥ k6

∥∥∥V
(
�zk−1

)∥∥∥ ≤ 1

γ sk

(∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)

+γ skV
(
�zk−1

)∥∥∥+ 2λ
∥∥∥zk − z∗

∥∥∥
)

+ 1

γ s

∥∥∥zk − zk−1
∥∥∥ ≤ C3

k
, (69)

where

C3 := 1

γ s
(C0 + C1 + 2λ (α, γ )C2) > 0.

The statement 67b yields

lim
k→+∞ k

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥ = 0 ⇒ C4 := sup
k≥1

{
k
∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥
}

< +∞,

(70)
which, together with 56 implies that for every k ≥ k6

∥∥∥V
(
zk+1

)∥∥∥ ≤
∥∥∥V

(
zk+1

)
− V

(
�zk
)∥∥∥+

∥∥∥V
(
�zk
)∥∥∥

≤
∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥+
∥∥∥V

(
�zk
)∥∥∥ ≤ C5

k
, (71)

where
C5 := C3 + C4 > 0.

The last assertion in (ii) follows from the Cauchy–Schwarz inequality and the bound-
edness of

(
zk
)
k≥0, namely, for for every k ≥ k6 it holds

0 ≤
〈
zk − z∗, V

(
zk
)〉

≤
∥∥∥zk − z∗

∥∥∥
∥∥∥V

(
zk
)∥∥∥ ≤ C2C5

k − 1
.

To complete the proof of (iii), we are going to show that in fact

lim
k→+∞ Ek

λ = lim
k→+∞Fk

λ ∈ R.

Indeed, we already have seen that

lim
k→+∞ (k + 1)

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥ = lim
k→+∞

∥∥∥V
(
�zk
)∥∥∥ = 0,

which, by the Cauchy–Schwarz inequality and 56, yields

0 ≤ lim
k→+∞ k2

∣∣∣
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉∣∣∣

≤ C1 lim
k→+∞ k

∥∥∥V
(
zk
)

− V
(
�zk−1

)∥∥∥
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≤ C1 lim
k→+∞ k

∥∥∥V
(
�zk−1

)
− V

(
�zk−2

)∥∥∥ = 0.

From here we obtain the desired statement. ��
The following theorem addresses the convergence of the sequence of iterates to an

element in Z .

Theorem 16 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 2. Then,

the sequence
(
zk
)
k≥0 converges weakly to a solution of 1.

Proof Let 1 + 1

α − 1
< γ < 2 and λ (α, γ ) < λ (α, γ ) be the parameters provided

by Lemma 14 such that 64 holds and with the property that for every λ (α, γ ) < λ <

λ (α, γ ) there exists an integer k2(λ) ≥ 1 such that for every k ≥ k2(λ) the inequality
65 holds. The proof relies on Opial’s Lemma and follows the line of the proof of
Theorem 11, by defining this time for every k ≥ 1

pk := 1

2
(α − 1)

∥∥∥zk − z∗
∥∥∥
2 + k

〈
zk − z∗, zk − zk−1 + sV

(
�zk−1

)〉
, (72)

qk := 1

2

∥∥∥zk − z∗
∥∥∥
2 + s

k∑
i=1

〈
zi − z∗, V

(
�zi−1

)〉
. (73)

One can notice that the limit

lim
k→+∞

k∑
i=1

〈
zi − z∗, V

(
�zi−1

)〉
= lim

k→+∞

k∑
i=1

〈
zi −�zi−1, V

(
�zi−1

)〉

+ lim
k→+∞

k∑
i=1

〈
�zi−1 − z∗, V

(
�zi−1

)〉
∈ R

exists due to 67a and the fact that the series
∑

k≥2

〈
zk −�zk−1, V

(�zk−1
)〉
is absolutely

convergent, which follows from

k∑
i=2

∣∣∣
〈
zi −�zi−1, V

(
�zi−1

)〉∣∣∣ ≤
k∑

i=2

∥∥∥V
(
�zi−1

)∥∥∥
∥∥∥zi −�zi−1

∥∥∥

≤ sC3C4

∞∑
i=2

1

i (i − 1)
< +∞ ∀k ≥ 2,

where we make use of 56, 70, and 69, and of the constants C3,C4 defined in the proof
of Theorem 15. ��

As for the implicit algorithm, we can improve also for the explicit algorithm the
convergence rates.
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Theorem 17 Let z∗ ∈ Z and
(
zk
)
k≥0 be the sequence generated by Algorithm 2. Then,

it holds

∥∥∥zk − zk−1
∥∥∥ = o

(
1

k

)
,
〈
zk − z∗, V

(
zk
)〉

= o

(
1

k

)
,

∥∥∥V
(
zk
)∥∥∥ = o

(
1

k

)
,

∥∥∥V
(
�zk
)∥∥∥ = o

(
1

k

)
as k → +∞.

Proof Let 1 + 1

α − 1
< γ < 2 and λ (α, γ ) < λ (α, γ ) be the parameters provided

by Lemma 14 such that 64 holds and with the property that for every λ (α, γ ) < λ <

λ (α, γ ) there exists an integer k2(λ) ≥ 1 such that for every k ≥ k2(λ) the inequality
65 holds.

We fix λ (α, γ ) < λ < λ (α, γ ) and recall that according to Theorem 15(iii) the
sequence (Ek

λ)k≥1 converges.
From 58 and 57, we have that for every k ≥ 1

Ek
λ = 1

2

∥∥∥2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥
2

+ 2λ (α − 1 − λ)

∥∥∥zk − z∗
∥∥∥
2

+ 2 (2 − γ ) λsk
〈
zk − z∗, V

(
�zk−1

)〉
+ 1

2
(2 − γ ) s2k (γ k + α)

∥∥∥V
(
�zk−1

)∥∥∥
2

= 2λ (α − 1)
∥∥∥zk − z∗

∥∥∥
2 + 4λk

〈
zk − z∗, zk − zk−1 + sV

(
�zk−1

)〉

+ 1

2
(2 − γ ) αs2k

∥∥∥V
(
�zk−1

)∥∥∥
2

+ k2

2

(∥∥∥2
(
zk − zk−1

)
+ γ sV

(
�zk−1

)∥∥∥
2 + (2 − γ ) γ s2

∥∥∥V
(
�zk−1

)∥∥∥
2
)

.

We set for every k ≥ 1

hk := k2

2

(∥∥∥2
(
zk − zk−1

)
+ γ sV

(
�zk−1

)∥∥∥
2 + (2 − γ ) γ s2

∥∥∥V
(
�zk−1

)∥∥∥
2
)

,

and notice that, in view of 72, we have

Ek
λ = 4λpk + 1

2
(2 − γ ) αs2k

∥∥∥V
(
�zk−1

)∥∥∥
2 + hk .

Theorem 15 asserts that

lim
k→∞ k

∥∥∥V
(
�zk−1

)∥∥∥
2 = 0,

which, together with limk→+∞ Ek
λ ∈ R and limk→+∞ pk ∈ R, yields

lim
k→+∞ hk ∈ R exists.
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In addition, 67c and 67d in Theorem 15 guarantee that

∑
k≥1

1

k
hk ≤ 4

∑
k≥1

k
∥∥∥zk − zk−1

∥∥∥
2 + 1

2
(2 + γ ) γ s2

∑
k≥1

k
∥∥∥V

(
�zk−1

)∥∥∥
2

< +∞.

Consequently, limk→+∞ hk = 0, which yields

lim
k→∞ k

∥∥∥2
(
zk − zk−1

)
+ γ sV

(
�zk−1

)∥∥∥ = lim
k→∞ k

∥∥∥V
(
�zk−1

)∥∥∥ = 0.

This immediately implies limk→+∞ k
∥∥zk − zk−1

∥∥ = 0. The fact that limk→+∞
k
∥∥V (zk)∥∥ = 0 follows from 70 and 71, since

0 ≤ lim
k→+∞ k

∥∥∥V
(
zk
)∥∥∥ ≤ lim

k→+∞ k
∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥+ lim
k→+∞ k

∥∥∥V
(
�zk
)∥∥∥ = 0.

Finally, using the Cauchy–Schwarz inequality and the fact that
(
zk
)
k≥0 is bounded,

we obtain that limk→+∞ k
〈
zk − z∗, V

(
zk
)〉 = 0. ��

5 Numerical Experiments

In this section, we perform numerical experiments to illustrate the convergence rates
derived for the explicit Fast OGDA method and to compare our algorithm with other
numerical schemes from the literature designed to solve equations governed by a
monotone and Lipschitz continuous operator. To this end, we consider a minmax
problem studied in [39], which has then been used in [49] to illustrate the performances
of anchoring-based numerical methods. This reads

min
x∈Rn

max
y∈Rn

L (x, y) := 1

2
〈x, Hx〉 − 〈x, h〉 − 〈y, Ax − b〉 , (74)

where

A := 1

4

⎛
⎜⎜⎜⎜⎝

−1 1

. .
.

. .
.

−1 1
−1 1
1

⎞
⎟⎟⎟⎟⎠

∈ R
n×n, H := 2AT A, b := 1

4

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠

∈ R
n and

h := 1

4

⎛
⎜⎜⎜⎜⎝

0
0
...

0
1

⎞
⎟⎟⎟⎟⎠

∈ R
n .
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Fig. 1 Explicit Fast OGDA outperforms all other explicit methods

We notice thatL is nothing else than the Lagrangian of a linearly constrained quadratic
minimization problem. It has been shown in [39] that ‖A‖ ≤ 1

2 , thus ‖H‖ ≤ 1
2 , and,

consequently, for the monotone mapping (x, y) �→
(
∇xL (x, y) ,−∇yL (x, y)

)
we

can take L = 1 as Lipschitz constant.
In the following, we summarize all the algorithms we use in the numerical experi-

ments and the corresponding step sizes:

(i) OGDA: Optimistic Gradient Descent Ascent method 7 (see [42]) with s := 0.48
L ;

(ii) EG: Extragradient method 6 (see [2, 30]) with s := 0.96
L ;

(iii) EAG-V: Extra Anchored Gradient method 10 (see [49]) with variable step sizes
(sk)k≥0 satisfying 11;

(iv) Nesterov-EAG: Nesterov’s accelerated variant of the Extra Anchored Gradient
method, which has been proposed in [47] and can be obtained from 10 be taking

in the first update line the sequence
(

k+1
L(k+2)

)
k≥0

as step sizes, and in the second

one the constant step size 1
L (see [47, Theorem 5.1, Lemma 5.1, Theorem 5.2]);

(v) Halpern-OGDA: OGDA mixed with the Halpern anchoring scheme, which has
been proposed in [48] and can be obtained from the variant of 10 with variable
step sizes by replacing in the first update line V

(
zk
)
by V

(�zk−1
)
;

(vi) Fast OGDA: our explicit algorithm with s := 0.48
L and various choices of α.

For the first numerical experiments, we consider the same setting as in [49], namely,
we take n = 200,whichmeans that the underlying space isR400, and allow amaximum
number of iterations of 5 × 105. Figure1 presents the convergence behavior of the
differentmethodswhen solving 74 in logarithmic scale.One can see that the anchoring-
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Fig. 2 The parameter α influences the convergence behavior of explicit Fast OGDA

based methods perform better than the classical algorithms EG and OGDA, and that
Nesterov-EAG performs better than Halpern-OGDA, which reconfirms a finding of
[47] and is not surprisingwhen one takes into account that the first allows for larger step
sizes thanEAG-V (andHalpnern-OGDA).On the other hand, Fast OGDAoutperforms
all the other methods in spite of the fact that the step size is restricted to

(
0, 1

2L

)
.

Figure2 shows that the parameter α > 2 influences significantly the convergence
behavior of the explicit Fast OGDA method. For this numerical experiment, we take
n = 1000, which means that the underlying space is R2000, and allow a maximum
number of iterations of 5 × 105. The speed of convergence increases with increase
in α and seems to be much better than o (1/k). Let us mention that the minimax
problem 74 was constructed to show lower complexity bounds of first-order methods
for convex–concave saddle point problems.

For Nesterov’s dynamical systems with α
t as damping coefficient and the corre-

sponding numerical algorithms approaching the minimization of a smooth and convex
function, it is known that α influences in the same way the convergence rates of the
objective function values. Another intriguing similarity with Nesterov’s continuous
and discrete schemes is the evident oscillatory behavior of the trajectories, however,
there for the objective function values, while for explicit Fast OGDA for the norm
of the operator along the trajectory/sequence of generated iterates. This suggests that
Nesterov’s acceleration approach can improve the convergence behavior of continuous
and discrete-time approaches beyond the optimization setting.

In the following we complement the comparative study of the above numerical
methods by following the performance profile developed by Dolan and Moré [21].
We denote by S the set of the algorithms/solvers (i)–(vi) from above, where for the
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Fig. 3 The performance profiles of the six solvers

Fast OGDA method, we take α := 3. We solve minmax problems of the form 74
with L : Rn × R

m → R, for 10 different pairs (n,m) such that 20 ≤ m ≤ n ≤ 200
and, for each such pair, for 100 randomly generated sparse matrices A ∈ R

m×n and
vectors b ∈ R

m and h ∈ R
n , and H := 2AT A. For each pair (n,m), we also take

10 initial points with normal distribution, which leads to a set of problems P with
Np = 10 × 100 × 10 = 10000 instances.

For each problem p ∈ P and each solver s ∈ S, we denote by tp,s the number of
iterations needed by solver s to solve the problem p successfully, i.e., by satsifying
the following stopping criteria before kmax := 105 iterations

‖V (xk, yk)‖
‖V (x0, y0)‖ ≤ Tolop = 10−6 and

‖(xk, yk) − (xk−1, yk−1)‖
‖(xk, yk)‖ + 1

≤ Tolvec = 10−5.

The two stopping criteria quantify the relative errors measured for the operator norm
and the discrete velocity. We define the performance ratio as

rp,s :=
⎧⎨
⎩

tp,s
min

{
tp,s : s ∈ S

} if tp,s < kmax,

0 otherwise,

and the performance of the solver s as

ρs (τ ) := 1

Np
size

{
p ∈ P : 0 < rp,s ≤ τ

}
,
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where τ is a real factor. The performance ρs (τ ) for solver s gives the probability that
the performance ratio rp,s is within a factor τ ∈ R of the best possible ratio. Therefore,
the value of ρs (1) gives the probability that the solver s gives the best numerical
performance when compared to the others, while ρs (τ ) for large values of τ measures
its robustness.

Figure3 represents the performance profiles of the six solvers. We observe that the
Fast OGDA method is the most efficient, followed by EAG-V and Halpern-OGDA.
We note that for τ ≥ 3 these three solvers are robust and solve 90% of the problems,
while Nesterov-EGA and EG solve for τ ≥ 4 80% of the problems.
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A Appendix

In the first subsection of the appendix, we collect some fundamental auxiliary results
for the analysis carried out in the paper. Further, we present the proof of the existence
and uniqueness theorem for 12 and also the proofs of technical lemmas used in the
convergence analysis of the numerical algorithms.

A.1 Auxiliary Results

The following result can be found in [1, Lemma 5.1].

Lemma A.1 Let δ > 0. Suppose that f : [δ,+∞) → R is locally absolutely contin-
uous, bounded from below, and there exists g ∈ L

1 ([δ,+∞)) such that for almost
every t ≥ δ

d

dt
f (t) ≤ g (t) .

Then, the limit lim
t→+∞ f (t) ∈ R exists.

Opial’s Lemma [38] in continuous form is used in the proof of theweak convergence
of the trajectory of the dynamical system 12.

Lemma A.2 Let S be a nonempty subset of H and z : [t0,+∞) → H. Assume that
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(i) for every z∗ ∈ S, lim
t→+∞ ‖z (t) − z∗‖ exists;

(ii) every weak sequential cluster point of the trajectory z (t) as t → +∞ belongs to
S.

Then, z(t) converges weakly to a point in S as t → +∞.

For the convergence proof of the iterates generated by the two numerical algorithms,
we use the discrete counterpart of Opial’s Lemma.

Lemma A.3 Let S be a nonempty subset ofH and (zk)k≥1 be a sequence inH. Assume
that

(i) for every z∗ ∈ S, lim
k→+∞ ‖zk − z∗‖ exists;

(ii) every weak sequential cluster point of the sequence (zk)k≥1 as k → +∞ belongs
to S.

Then, (zk)k≥1 converges weakly to a point in S as k → +∞.

The following result can be found in [13, Lemma A.2].

Lemma A.4 Let a > 0 and q : [t0,+∞) → H be a continuously differentiable func-
tion such that

lim
t→+∞

(
q (t) + t

a
q̇ (t)

)
= l ∈ H.

Then, it holds lim
t→+∞ q (t) = l.

The discrete counterpart of this result is stated below. We provide a proof for it, as
we could not find any reference for this result in the literature.

Lemma A.5 Let a ≥ 1 and (qk)k≥0 be a bounded sequence inH such that

lim
k→+∞

(
qk+1 + k

a
(qk+1 − qk)

)
= l ∈ H.

Then, it holds lim
k→+∞ qk = l.

Proof For every k ≥ 0, we set rk := qk − l. We fix ε > 0. Then, there exists k0 ≥ 1
such that for every k ≥ k0

∥∥∥∥rk+1 + k

a
(rk+1 − rk)

∥∥∥∥ ≤ ε.

Multiplying both side by aka−1, we obtain for every k ≥ k0
∥∥∥
(
aka−1 + ka

)
rk+1 − kark

∥∥∥ ≤ εaka−1.

Then by applying the triangle inequality and using the fact that r := supk≥0 ‖rk‖ <

+∞, we deduce that for every k ≥ k0

∥∥(k + 1)a rk+1 − kark
∥∥ ≤ εaka−1 +

∣∣∣(k + 1)a − ka − aka−1
∣∣∣ r . (75)
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The Lagrange error bound of a Taylor series says that for every k ≥ k0, there exists
mk ∈ (k, k + 1) such that

∣∣∣(k + 1)a − ka − aka−1
∣∣∣ ≤ 1

2
a |a − 1|ma−2

k .

From here we consider two cases.
The case 1 ≤ a < 2. Then for every k ≥ k0 and every m ∈ (k, k + 1), we have
ma−2 ≤ 1 and thus 75 leads to

∥∥(k + 1)a rk+1 − kark
∥∥ ≤ εaka−1 + 1

2
a |a − 1| r .

We choose K ≥ k0 and use a telescoping sum argument to get

∥∥(K + 1)a rK+1 − ka0rk0
∥∥ =

∥∥∥∥∥∥
K∑

k=k0

(
(k + 1)a rk+1 − kark

)
∥∥∥∥∥∥

≤
K∑

k=k0

∥∥(k + 1)a rk+1 − kark
∥∥

≤ εa
K∑

k=k0

ka−1 + 1

2
a |a − 1| r

K∑
k=k0

1

≤ εa (K + 1)a + 1

2
a |a − 1| r (K + 1) .

Once again, using the triangle inequality, we conclude that

‖rK+1‖ ≤ 1

(K + 1)a
∥∥(K + 1)a rK+1 − ka0rk0

∥∥+ ka0
(K + 1)a

∥∥rk0
∥∥

≤ εa + a |a − 1| r
2 (K + 1)a−1 + ka0r

(K + 1)a
.

The case a ≥ 2. For for every k ≥ k0 and every m ∈ (k, k + 1), we have ma−2 ≤
(k + 1)a−2, hence 75 leads to

∥∥(k + 1)a rk+1 − kark
∥∥ ≤ εaka−1 + 1

2
a (a − 1) r (k + 1)a−2 .

We choose also in this case K ≥ k0 and by a similar argument as above we have that

∥∥(K + 1)a rK+1 − ka0rk0
∥∥ =

∥∥∥∥∥∥
K∑

k=k0

(
(k + 1)a rk+1 − kark

)
∥∥∥∥∥∥
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≤
K∑

k=k0

∥∥(k + 1)a rk+1 − kark
∥∥

≤ εa
K∑

k=k0

ka−1 + 1

2
a (a − 1) r

K∑
k=k0

(k + 1)a−2

≤ εa (K + 1)a−1
K∑

k=0

1 + 1

2
a (a − 1) r (K + 1)a−2

K∑
k=0

1

≤ εa (K + 1)a + 1

2
a (a − 1) r (K + 1)a−1 .

This leads to

‖rK+1‖ ≤ εa + a (a − 1) r

2 (K + 1)
+ ka0r

(K + 1)a
.

Therefore, in both scenarios we obtain

lim sup
k→+∞

‖rk‖ ≤ εa,

which leads to the desired conclusion, as ε > 0 was arbitrarily chosen. ��
The following result is a particular instance of [16, Lemma 5.31].

Lemma A.6 Let (ak)k≥1, (bk)k≥1 and (dk)k≥1 be sequences of real numbers. Assume
that (ak)k≥1 is bounded from below, and (bk)k≥1 and (dk)k≥1 are nonnegative
sequences such that

∑
k≥1 dk < +∞. If

ak+1 ≤ ak − bk + dk ∀k ≥ 1,

then the following statements are true:

(i) the sequence (bk)k≥1 is summable, namely
∑

k≥1 bk < +∞;
(ii) the sequence (ak)k≥1 is convergent.

The following elementary result is used several times in the paper.

Lemma A.7 Let a, b, c ∈ R be such that a �= 0 and b2 − ac ≤ 0. The following
statements are true:

(i) if a > 0, then it holds

a ‖x‖2 + 2b 〈x, y〉 + c ‖y‖2 ≥ 0 ∀x, y ∈ H;

(ii) if a < 0, then it holds

a ‖x‖2 + 2b 〈x, y〉 + c ‖y‖2 ≤ 0 ∀x, y ∈ H.
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A.2 Proof of the Existence and Uniqueness Theorem for the Evolution Equation

In this subsection, we provide the proof of the existence and uniqueness of the trajec-
tories of 12.

Proof of Theorem 5 The system 12 can be rewritten as a first-order ordinary differential
equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż (t) = 1

2t
u (t) − 1

t
(α − 1) z (t) − β (t) V (z (t))

u̇ (t) =
(
t β̇ (t) + (2 − α) β (t)

)
V (z (t))(

z (t0) , u (t0)
)

=
(
z0, 2 (α − 1) z0 + 2t0 ż0 + 2t0β (t0) V

(
z0
))

, (76)

where for every t ≥ t0 we define

u (t) := 2 (α − 1) z (t) + 2t ż (t) + 2tβ (t) V (z (t)) .

We define G : [t0,+∞) × H × H → H × H by

G (t, ζ, μ) :=
((

t β̇ (t) + (2 − α) β (t)
)
V (ζ ) ,

1

2t
μ − 1

t
(α − 1) ζ − β (t) V (ζ )

)
,

so that 76 becomes

⎧⎨
⎩

(
u̇ (t) , ż (t)

)
= G (t, z (t) , u (t))(

z (t0) , u (t0)
)

=
(
z0, 2 (α − 1) z0 + 2t0 ż0 + 2t0β (t0) V

(
z0
)) .

Since G is Lipschitz continuous on bounded sets, the local existence and uniqueness
theorem (see, for instance, [44, Theorems 46.2 and 46.3]) allows to conclude that there
exists a unique continuous differentiable solution (z, u) ∈ H × H of 76 defined on a
maximally interval [t0, Tmax) where 0 < t0 < Tmax ≤ +∞. Furthermore, either

Tmax = +∞ or lim
t→Tmax

‖(z (t) , u (t))‖ = +∞.

In the following, we will show that indeed Tmax = +∞.
According to 23, for z∗ ∈ Z fixed, for every t0 ≤ t < Tmax it holds

Eα−1 (t) + 2
∫ t

t0
τ 2β (τ) w (τ) ‖V (z (τ ))‖2 dτ ≤ Eα−1 (t0) < +∞,

which implies that
t �→ u(t) is bounded on [t0, Tmax). (77)
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On the other hand, inequality 25 implies that

∫ Tmax

t0
τβ2 (τ ) ‖V (z (τ ))‖2 dτ ≤ Eα−1 (t0)

ε
< +∞,

for some ε > 0. Now for 0 < λ < α − 1, we have according to 27b that for every
t0 ≤ t < Tmax

2λ (α − 1 − λ) ‖z (t) − z∗‖2 ≤ Eλ (t) ≤ Eλ (t0) + 2

ε
(α − 1 − λ) Eα−1 (t0) < +∞.

(78)

From 77 and 78, we have that limt→Tmax ‖(z (t) , u (t))‖ < +∞, therefore Tmax =
+∞. ��

A.3 Proof of the Technical Lemma Used in the Analysis of the Implicit Algorithm

In this subsection, we provide the proof of Lemma 9 which shows that the discrete
energy 42 dissipates with every iteration of the implicit Fast OGDA method.

Proof of Lemma 9 Let 0 ≤ λ ≤ α − 1. For brevity, we denote for every k ≥ 0

uk+1
λ := 2λ

(
zk+1 − z∗

)
+ 2 (k + 1)

(
zk+1 − zk

)
+ s (k + 1) βkV

(
zk+1

)
. (79)

This means that for every k ≥ 1 it holds

ukλ = 2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ skβk−1V

(
zk
)

,

therefore taking the difference and using 38 we deduce that

uk+1
λ − ukλ = 2 (λ + 1 − α)

(
zk+1 − zk

)
+ 2 (k + α)

(
zk+1 − zk

)
− 2k

(
zk − zk−1

)

+ s
(
(k + 1) βk − kβk−1

)
V
(
zk+1

)
+ skβk−1

(
V
(
zk+1

)
− V

(
zk
))

= 2 (λ + 1 − α)
(
zk+1 − zk

)
+ (1 − α) sβkV

(
zk+1

)

− skβk−1

(
V
(
zk+1

)
− V

(
zk
))

. (80)

In the following, we want to use the following identity

1

2

(∥∥∥uk+1
λ

∥∥∥
2 −

∥∥∥ukλ
∥∥∥
2
)

=
〈
uk+1

λ , uk+1
λ − ukλ

〉
− 1

2

∥∥∥uk+1
λ − ukλ

∥∥∥
2 ∀k ≥ 1. (81)

Using the relations 79 and 80, for every k ≥ 1 we derive that
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〈
uk+1

λ , uk+1
λ − ukλ

〉

= 4λ (λ + 1 − α)
〈
zk+1 − z∗, zk+1 − zk

〉

+ 2λ (1 − α) sβk

〈
zk+1 − z∗, V

(
zk+1

)〉

− 2λskβk−1

〈
zk+1 − z∗, V

(
zk+1

)
− V

(
zk
)〉

+ 4 (λ + 1 − α) (k + 1)
∥∥∥zk+1 − zk

∥∥∥
2

+ 2s (λ + 2 − 2α) (k + 1) βk

〈
zk+1 − zk, V

(
zk+1

)〉

− 2s (k + 1) kβk−1

〈
zk+1 − zk, V

(
zk+1

)
− V

(
zk
)〉

+ (1 − α) s2 (k + 1) β2
k

∥∥∥V
(
zk+1

)∥∥∥
2

− s2 (k + 1) kβkβk−1

〈
V
(
zk+1

)
, V

(
zk+1

)
− V

(
zk
)〉

, (82)

and

−1

2

∥∥∥uk+1
λ − ukλ

∥∥∥
2 = −2 (λ + 1 − α)2

∥∥∥zk+1 − zk
∥∥∥
2

− 1

2
(1 − α)2 s2β2

k

∥∥∥V
(
zk+1

)∥∥∥
2

− 1

2
s2k2β2

k−1

∥∥∥V
(
zk+1

)
− V

(
zk
)∥∥∥

2

− 2 (λ + 1 − α) (1 − α) sβk

〈
zk+1 − zk, V

(
zk+1

)〉

+ 2 (λ + 1 − α) skβk−1

〈
zk+1 − zk, V

(
zk+1

)
− V

(
zk
)〉

+ (1 − α) s2kβkβk−1

〈
V
(
zk+1

)
, V

(
zk+1

)
− V

(
zk
)〉

. (83)

A direct computation shows that

(
(λ + 2 − 2α) (k + 1) − (λ + 1 − α) (1 − α)

)
βk

=
(
(λ + 1 − α) (2k + α + 1) − λ (k + 1)

)
βk

=
(
(λ + 1 − α) (2k + α + 1) − λ

)
βk − λk (βk − βk−1) + λkβk−1. (84)

By plugging 82 and 83 into 81, we get for every k ≥ 1

1

2

(∥∥∥uk+1
λ

∥∥∥
2 −

∥∥∥ukλ
∥∥∥
2
)

= 4λ (λ + 1 − α)
〈
zk+1 − z∗, zk+1 − zk

〉
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+ 2λ (1 − α) sβk

〈
zk+1 − z∗, V

(
zk+1

)〉

− 2λskβk−1

〈
zk+1 − z∗, V

(
zk+1

)
− V

(
zk
)〉

+ 2 (λ + 1 − α) (2k + α + 1 − λ)

∥∥∥zk+1 − zk
∥∥∥
2

+ 2s
(
(λ + 1 − α) (2k + α + 1) − λ (k + 1)

)
βk

〈
zk+1 − zk, V

(
zk+1

)〉

− 2sk (k + α − λ) βk−1

〈
zk+1 − zk, V

(
zk+1

)
− V

(
zk
)〉

+ 1

2
(1 − α) s2β2

k (2k + α + 1)
∥∥∥V

(
zk+1

)∥∥∥
2

− s2 (k + α) kβkβk−1

〈
V
(
zk+1

)
, V

(
zk+1

)
− V

(
zk
)〉

− 1

2
s2k2β2

k−1

∥∥∥V
(
zk+1

)
− V

(
zk
)∥∥∥

2
. (85)

Next we are going to consider the remaining terms in the difference of the discrete
energy functions. First we observe that for every k ≥ 0

2λ (α − 1 − λ)

(∥∥∥zk+1 − z∗
∥∥∥
2 −

∥∥∥zk − z∗
∥∥∥
2
)

= 2λ (α − 1 − λ)

(
2
〈
zk+1 − z∗, zk+1 − zk

〉
−
∥∥∥zk+1 − zk

∥∥∥
2
)

. (86)

Some algebra shows that for every k ≥ 1

2λs (k + 1) βk

〈
zk+1 − z∗, V

(
zk+1

)〉
− 2λskβk−1

〈
zk − z∗, V

(
zk
)〉

= 2λs
(
(k + 1) βk − kβk−1

) 〈
zk+1 − z∗, V

(
zk+1

)〉

+ 2λskβk−1

(〈
zk+1 − z∗, V

(
zk+1

)〉
−
〈
zk − z∗, V

(
zk
)〉)

= 2λs
(
(k + 1) βk − kβk−1

) 〈
zk+1 − z∗, V

(
zk+1

)〉

+ 2λskβk−1

〈
zk+1 − z∗, V

(
zk+1

)
− V

(
zk
)〉

+ 2λskβk−1

〈
zk+1 − zk, V

(
zk
)〉

= 2λs
(
(k + 1) βk − kβk−1

) 〈
zk+1 − z∗, V

(
zk+1

)〉

− 2λskβk−1

〈
zk+1 − zk, V

(
zk+1

)
− V

(
zk
)〉

+ 2λskβk−1

〈
zk+1 − z∗, V

(
zk+1

)
− V

(
zk
)〉

+ 2λskβk−1

〈
zk+1 − zk, V

(
zk+1

)〉
. (87)
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Finally, according to 39 and 40, we have for every k ≥ �α�

(k + α + 1) (k + 1) βk+1 − (k + α) kβk−1

= (k + α + 1) (k + 1)
(
βk+1 − βk

)+ (k + α) k
(
βk − βk−1

)+ (2k + α + 1) βk

≤ (α − 2 − ε)
(
(k + α + 1) βk+1 + (k + α) βk

)
+ (2k + α + 1) βk

= (α − 2 − ε)
(
(k + 1) (βk+1 − βk) + αβk+1 + (2k + α + 1) βk

)

+ (2k + α + 1) βk

≤ (α − 2 − ε) (2α − 2 − ε) βk+1 + (α − 1 − ε) (2k + α + 1) βk

≤ α

2 + ε
(α − 2 − ε) (2α − 2 − ε) βk + (α − 1 − ε) (2k + α + 1) βk

and thus it holds

1

2
s2 (k + α + 1) (k + 1) βk+1βk

∥∥∥V
(
zk+1

)∥∥∥
2

− 1

2
s2 (k + α) kβkβk−1

∥∥∥V
(
zk
)∥∥∥

2

= 1

2
s2
(
(k + α + 1) (k + 1) βk+1 − (k + α) kβk−1

)
βk

∥∥∥V
(
zk+1

)∥∥∥
2

+ 1

2
s2 (k + α) kβkβk−1

(∥∥∥V
(
zk+1

)∥∥∥
2 −

∥∥∥V
(
zk
)∥∥∥

2
)

≤ 1

2

( α

2 + ε
(α − 2 − ε) (2α − 2 − ε)

+ (α − 1 − ε) (2k + α + 1)
)
s2β2

k

∥∥∥V
(
zk+1

)∥∥∥
2

+ s2 (k + α) kβkβk−1

〈
V
(
zk+1

)
, V

(
zk+1

)
− V

(
zk
)〉

− 1

2
s2 (k + α) kβkβk−1

∥∥∥V
(
zk+1

)
− V

(
zk
)∥∥∥

2
. (88)

After adding the relations 85–88 and by taking into consideration 84, we obtain 43.
��

A.4 Proofs of the Technical Lemmas Used in the Analysis of the Explicit Algorithm

In this subsection, we provide the proofs of the two main technical lemmas used in
the analysis of the explicit Fast OGDA method.

Proof of Lemma 13 Let z∗ ∈ Z , 0 < γ < 2 and 0 ≤ λ ≤ α − 1. First we prove that
for every k ≥ 1

Ek+1
λ − Ek

λ = 2λ (2 − α) s
〈
zk+1 − z∗, V

(
�zk
)〉
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+ 2 (λ + 1 − α) (2k + α + 1)
∥∥∥zk+1 − zk

∥∥∥
2

+ 2s
((
(2 − γ ) λ + γ − α + γ (λ + 1 − α)

)
k + γ

− α + α (λ + 1 − α)
)〈
zk+1 − zk, V

(
�zk
)〉

− 2 (2 − γ ) sk (k + α)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

+ 1

2
(2 − α) s2 (2γ k + α + γ )

∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
(2 − γ ) s2k (2k + α)

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2
. (89)

For every k ≥ 1, we have

uk+1
λ := 2λ

(
zk+1 − z∗

)
+ 2 (k + 1)

(
zk+1 − zk

)
+ γ s (k + 1) V

(
�zk
)

, (90)

and after substraction we deduce from 52 that

uk+1
λ − ukλ = 2 (λ + 1 − α)

(
zk+1 − zk

)
+ 2 (k + α)

(
zk+1 − zk

)
− 2k

(
zk − zk−1

)

+ γ sV
(
�zk
)

+ γ sk
(
V
(
�zk
)

− V
(
�zk−1

))

= 2 (λ + 1 − α)
(
zk+1 − zk

)
+ (γ − α) sV

(
�zk
)

+ (γ − 2) sk
(
V
(
�zk
)

− V
(
�zk−1

))
. (91)

Next we recall the identities in 81 and 86

1

2

(∥∥∥uk+1
λ

∥∥∥
2 −

∥∥∥ukλ
∥∥∥
2
)

=
〈
uk+1

λ , uk+1
λ − ukλ

〉
− 1

2

∥∥∥uk+1
λ − ukλ

∥∥∥
2 ∀k ≥ 1, (92)

2λ (α − 1 − λ)

(∥∥∥zk+1 − z∗
∥∥∥
2 −

∥∥∥zk − z∗
∥∥∥
2
)

= 4λ (α − 1 − λ)
〈
zk+1 − z∗, zk+1 − zk

〉

− 2λ (α − 1 − λ)

∥∥∥zk+1 − zk
∥∥∥
2 ∀k ≥ 0, (93)

respectively, as they are required also in the analysis of the explicit algorithm.
We first use the relations 90 and 91 to derive for every k ≥ 1 that

〈
uk+1

λ , uk+1
λ − ukλ

〉

= 4λ (λ + 1 − α)
〈
zk+1 − z∗, zk+1 − zk

〉
+ 2λ (γ − α) s

〈
zk+1 − z∗, V

(
�zk
)〉
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+ 2λ (γ − 2) sk
〈
zk+1 − z∗, V

(
�zk
)

− V
(
�zk−1

)〉

+ 4 (λ + 1 − α) (k + 1)
∥∥∥zk+1 − zk

∥∥∥
2

+ 2
(
γ − α + γ (λ + 1 − α)

)
s (k + 1)

〈
zk+1 − zk, V

(
�zk
)〉

+ 2 (γ − 2) s (k + 1) k
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

+ γ (γ − α) s2 (k + 1)
∥∥∥V

(
�zk
)∥∥∥

2

+ γ (γ − 2) s2 (k + 1) k
〈
V
(
�zk
)

, V
(
�zk
)

− V
(
�zk−1

)〉
, (94)

and

− 1

2

∥∥∥uk+1
λ − ukλ

∥∥∥
2

= −2 (λ + 1 − α)2
∥∥∥zk+1 − zk

∥∥∥
2 − 1

2
(γ − α)2 s2

∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
(γ − 2)2 s2k2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

− 2 (λ + 1 − α) (γ − α) s
〈
zk+1 − zk, V

(
�zk
)〉

− 2 (λ + 1 − α) (γ − 2) sk
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

− (γ − 2) (γ − α) s2k
〈
V
(
�zk
)

, V
(
�zk
)

− V
(
�zk−1

)〉
. (95)

A direct computation shows that

(
γ − α + γ (λ + 1 − α)

)
(k + 1) − (λ + 1 − α) (γ − α)

= (
γ − α + γ (λ + 1 − α)

)
k + γ − α + α (λ + 1 − α) ,

therefore, by replacing 94 and 95 into 92, we get for every k ≥ 1

1

2

(∥∥∥uk+1
λ

∥∥∥
2 −

∥∥∥ukλ
∥∥∥
2
)

= 4λ (λ + 1 − α)
〈
zk+1 − z∗, zk+1 − zk

〉
+ 2λ (γ − α) s

〈
zk+1 − z∗, V

(
�zk
)〉

+ 2λ (γ − 2) sk
〈
zk+1 − z∗, V

(
�zk
)

− V
(
�zk−1

)〉

+ 2 (λ + 1 − α) (2k + α + 1 − λ)

∥∥∥zk+1 − zk
∥∥∥
2

+ 2s
((

γ − α + γ (λ + 1 − α)
)
k + γ − α + α (λ + 1 − α)

) 〈
zk+1 − zk, V

(
�zk
)〉

+ 2 (γ − 2) sk (k + α − λ)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

+ 1

2
(γ − α) s2 (2γ k + α + γ )

∥∥∥V
(
�zk
)∥∥∥

2
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+ (γ − 2) s2k (γ k + α)
〈
V
(
�zk
)

, V
(
�zk
)

− V
(
�zk−1

)〉

− 1

2
(γ − 2)2 s2k2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2
. (96)

Furthermore, one can show that for every k ≥ 1 it holds

2λs (k + 1)
〈
zk+1 − z∗, V

(
�zk
)〉

− 2λsk
〈
zk − z∗, V

(
�zk−1

)〉

= 2λs
〈
zk+1 − z∗, V

(
�zk
)〉

+ 2λsk
(〈
zk+1 − z∗, V

(
�zk
)〉

−
〈
zk − z∗, V

(
�zk−1

)〉)

= 2λs
〈
zk+1 − z∗, V

(
�zk
)〉

+ 2λsk
〈
zk+1 − z∗, V

(
�zk
)

− V
(
�zk−1

)〉

− 2λsk
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉
+ 2λsk

〈
zk+1 − zk, V

(
�zk
)〉

. (97)

and

1

2
s2 (k + 1)

(
γ (k + 1) + α

) ∥∥∥V
(
�zk
)∥∥∥

2 − 1

2
s2k (γ k + α)

∥∥∥V
(
�zk−1

)∥∥∥
2

= 1

2
s2 (2γ k + α + γ )

∥∥∥V
(
�zk
)∥∥∥

2

+ 1

2
s2k (γ k + α)

(∥∥∥V
(
�zk
)∥∥∥

2 −
∥∥∥V

(
�zk−1

)∥∥∥
2
)

= 1

2
s2 (2γ k + α + γ )

∥∥∥V
(
�zk
)∥∥∥

2 + s2k (γ k + α)
〈
V
(
�zk
)

, V
(
�zk
)

− V
(
�zk−1

)〉

− 1

2
s2k (γ k + α)

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2
. (98)

Hence, multiplying 97 and 98 by 2 − γ > 0, and summing up the resulting identities
with 93 and 96, we obtain 89.

(i) Let k ≥ 2 be fixed. By the definition of Fk
λ in 59, we have for every k ≥ 2

Fk+1
λ − Fk

λ

= Ek+1
λ − Ek

λ − 1

2
λ (α − 2) s2

[(
2 − α

k + α + 1

)∥∥∥V
(
�zk
)∥∥∥

2

−
(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2
]

− 2s (2 − γ )
[
(k + 1)2

〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

−k2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉]

+ 1

2
(2 − γ ) αs2

[
(k + 1)

√
k + 1

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

−k
√
k
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
]
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+ (2 − γ ) s3L

[
(k + 1)2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

−k2
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
]

. (99)

By using the definition of ω0, ω1, ω2 and ω4 in (60) the fact that 0 ≤ λ ≤ α − 1 and
0 < γ < 2, from 89 we obtain that for every k ≥ 1 it holds

Ek+1
λ − Ek

λ

= 2λ (2 − α) s
〈
zk+1 − z∗, V

(
�zk
)〉

− 2 (2 − γ ) sk (k + α)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

+ 2s (ω0k + ω1)
〈
zk+1 − zk, V

(
�zk
)〉

+ 2
(
ω2k + (λ + 1 − α) (α + 1)

) ∥∥∥zk+1 − zk
∥∥∥
2

+ 1

2
s2
(
ω4k + (2 − α) (α + γ )

) ∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
(2 − γ ) s2k (2k + α)

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

≤ 2λ (2 − α) s
〈
zk+1 − z∗, V

(
�zk
)〉

− 2 (2 − γ ) sk (k + α)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

+ 2s (ω0k + ω1)
〈
zk+1 − zk, V

(
�zk
)〉

+ 2ω2k
∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
s2ω4k

∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
(2 − γ ) s2k (2k + α)

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2
. (100)

Plugging 100 into 99, it yields for every k ≥ 2

Fk+1
λ − Fk

λ

≤ 2λ (2 − α) s
〈
zk+1 − z∗, V

(
�zk
)〉

− 2 (2 − γ ) sk (k + α)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

− 1

2
λ (α − 2) s2

[(
2 − α

k + α + 1

)∥∥∥V
(
�zk
)∥∥∥

2

−
(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2
]

− 2s (2 − γ )
[
(k + 1)2

〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

−k2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉]
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+ 1

2
(2 − γ ) αs2

[
(k + 1)

√
k + 1

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

−k
√
k
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
]

+ (2 − γ ) s3L

[
(k + 1)2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

−k2
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
]

+ 2s (ω0k + ω1)
〈
zk+1 − zk, V

(
�zk
)〉

+ 2ω2k
∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
s2ω4k

∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
(2 − γ ) s2

(
2k2 + αk

) ∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2
. (101)

Our next aim is to derive upper estimates for the first two terms on the right-hand side
of 101, which will eventually simplify the subsequent four terms. First we observe
that from 55 we have for every k ≥ 1

2λ (2 − α) s
〈
zk+1 − z∗, V

(
�zk
)〉

= 2λ (2 − α) s
〈
zk+1 −�zk, V

(
�zk
)〉

+ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

= λ (α − 2) s2
(
1 + k

k + α

) 〈
V
(
�zk
)

− V
(
�zk−1

)
, V

(
�zk
)〉

+ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

= 1

2
λ (α − 2) s2

(
2 − α

k + α

)∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

+ 1

2
λ (α − 2) s2

(
2 − α

k + α

)∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
λ (α − 2) s2

(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2

+ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

≤ λ (α − 2) s2
∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥
2

+ 1

2
λ (α − 2) s2

(
2 − α

k + α + 1

)∥∥∥V
(
�zk
)∥∥∥

2

− 1

2
λ (α − 2) s2

(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2

+ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

. (102)
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The monotonicity of V and relation 52 yield for every k ≥ 1

− 2sk (k + α)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

≤ 2sk (k + α)
〈
zk+1 − zk,

(
V
(
zk+1

)
− V

(
�zk
))

−
(
V
(
zk
)

− V
(
�zk−1

))〉

= 2sk (k + α)
〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

− 2sk (k + α)
〈
zk+1 − zk, V

(
zk
)

− V
(
�zk−1

)〉

= 2s (k + 1)2
〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

− 2sk2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉

+ 2s
(
(α − 2) k − 1

) 〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

+ αs2k
〈
V
(
�zk
)

, V
(
zk
)

− V
(
�zk−1

)〉

+ 2s2k2
〈
V
(
�zk
)

− V
(
�zk−1

)
, V

(
zk
)

− V
(
�zk−1

)〉
. (103)

Young’s inequality together with 56 show that for every k ≥ � 1
α−2� it holds

2s
(
(α − 2) k − 1

) 〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

≤ 2
√

(α − 2) k − 1
∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
s2
(
(α − 2) k − 1

)√
(α − 2) k − 1

∥∥∥V
(
zk+1

)
− V

(
�zk
)∥∥∥

2

≤ 2
√

(α − 2) k
∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
(α − 1)

√
α − 1s2 (k + 1)

√
k + 1

∥∥∥V
(
zk+1

)
− V

(
�zk
)∥∥∥

2

≤ 2
√

(α − 2) k
∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
(α − 1)

√
α − 1s4L2 (k + 1)

√
k + 1

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

≤ 2
√

(α − 2) k
∥∥∥zk+1 − zk

∥∥∥
2

+ 1

2
(α − 1) αs2 (k + 1)

√
k + 1

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2
, (104)

where in the second estimate we use the fact that (α − 2) k − 1 ≤ (α − 1) (k + 1),
while in the last one we combine

√
α − 1 ≤ α and sL < 1/2 < 1.

In addition, for every k ≥ 2 it holds

αs2k
〈
V
(
�zk
)

, V
(
zk
)

− V
(
�zk−1

)〉
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≤ 1

2
αs2

√
k
∥∥∥V

(
�zk
)∥∥∥

2 + 1

2
αs2k

√
k
∥∥∥V

(
zk
)

− V
(
�zk−1

)∥∥∥
2

≤ 1

2
αs2

√
k
∥∥∥V

(
�zk
)∥∥∥

2 + 1

2
αs2k

√
k
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
, (105)

and, by using the Cauchy–Schwarz inequality and 56,

2s2k2
〈
V
(
�zk
)

− V
(
�zk−1

)
, V

(
zk
)

− V
(
�zk−1

)〉

≤ s3Lk2
(∥∥∥V

(
�zk
)

− V
(
�zk−1

)∥∥∥
2 +

∥∥∥V
(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
)

. (106)

By plugging 104 - 106 into 103 and adding then the result to 102, we get after rear-
ranging the terms for every k ≥ k0

2λ (2 − α) s
〈
zk+1 − z∗, V

(
�zk
)〉

− 2 (2 − γ ) sk (k + α)
〈
zk+1 − zk, V

(
�zk
)

− V
(
�zk−1

)〉

≤ 1

2
λ (α − 2) s2

[(
2 − α

k + α + 1

)∥∥∥V
(
�zk
)∥∥∥

2

−
(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2
]

+ 2s (2 − γ )
[
(k + 1)2

〈
zk+1 − zk, V

(
zk+1

)
− V

(
�zk
)〉

−k2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉]

− 1

2
(2 − γ ) αs2

[
(k + 1)

√
k + 1

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

−k
√
k
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
]

− (2 − γ ) s3L

[
(k + 1)2

∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

−k2
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
]

+ 2λ (2 − α) s
〈
�zk − z∗, V

(
�zk
)〉

− 1

2
s2
(
μk − (2 − γ )

(
2k2 + αk

)) ∥∥∥V
(
�zk
)

− V
(
�zk−1

)∥∥∥
2

+ 2 (2 − γ )
√

(α − 2) k
∥∥∥zk+1 − zk

∥∥∥
2 + 1

2
(2 − γ ) αs2

√
k
∥∥∥V

(
�zk
)∥∥∥

2
, (107)

where we set

μk := − 2λ (α − 2) − (2 − γ )
(
(α − 1) α (k + 1)

√
k + 1
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+α (k + 1)
√
k + 1 + 4sL (k + 1)2

)

+ (2 − γ )
(
2k2 + αk

)

= (2 − γ )
(
(2 − 4sL) (k + 1)2 + (α − 4) k

−2 − α2 (k + 1)
√
k + 1

)
− 2λ (α − 2)

= (2 − γ )
(
2 (1 − 2sL) (k + 1) + α2

√
k + 1 + α − 4

)
(k + 1)

− (2 − γ ) (α − 2) − 2λ (α − 2) .

Finally, by summing up the relations 101 and 107, we obtain the desired estimate.
(ii) By the definition of ukλ in 58 and by using the identity 32, for every k ≥ 1 it

holds

Ekλ = 1

2

∥∥∥ukλ
∥∥∥2 + 2λ (α − 1 − λ)

∥∥∥zk − z∗
∥∥∥2 + 2 (2 − γ ) λsk

〈
zk − z∗, V

(
�zk−1

)〉

+ 1

2
(2 − γ ) s2k (γ k + α)

∥∥∥V
(
�zk−1

)∥∥∥2

= 1

2

∥∥∥2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥2

+ 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥2

+ 1

2
(2 − γ ) αs2k

∥∥∥V
(
�zk−1

)∥∥∥2 + 2 − γ

2γ

∥∥∥2λ
(
zk − z∗

)
+ γ skV

(
�zk−1

)∥∥∥2

= 2 − γ

2γ

(∥∥∥2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥2

+
∥∥∥2λ

(
zk − z∗

)
+ γ skV

(
�zk−1

)∥∥∥2
)

+ 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥2 + 1

2
(2 − γ ) αs2k

∥∥∥V
(
�zk−1

)∥∥∥2

+ γ − 1

γ

∥∥∥2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥2

= 2 − γ

γ

(∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥2 + k2
∥∥∥zk − zk−1

∥∥∥2
)

+ 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥2 + 1

2
(2 − γ ) αs2k

∥∥∥V
(
�zk−1

)∥∥∥2

+ γ − 1

γ

∥∥∥2λ
(
zk − z∗

)
+ 2k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥2 .

Consequently, as 1 < γ < 2, for every k ≥ k1 = � 2λ(α−2)
(2−γ )α

� we have

Fk
λ = Ek

λ − 2 (2 − γ ) sk2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉
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+ 1

2
(2 − γ ) s2k

√
k
(
2sL

√
k + α

) ∥∥∥V
(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2

− 1

2
λ (α − 2) s2

(
2 − α

k + α

)∥∥∥V
(
�zk−1

)∥∥∥
2

≥ 2 − γ

γ

(∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)

+γ skV
(
�zk−1

)∥∥∥
2 + k2

∥∥∥zk − zk−1
∥∥∥
2
)

+ 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥
2

− 2 (2 − γ ) sk2
〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉

+ (2 − γ ) s3Lk2
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2
.

Now we use relation 56 and apply Lemma A.7 with (a, b, c) :=
(
1
2 ,−s, s

L

)
to verify

that for every k ≥ 1

1

2
k2
∥∥∥zk − zk−1

∥∥∥
2 − 2sk2

〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉

+ s3Lk2
∥∥∥V

(
�zk−1

)
− V

(
�zk−2

)∥∥∥
2

≥ k2
(
1

2

∥∥∥zk − zk−1
∥∥∥
2 − 2s

〈
zk − zk−1, V

(
zk
)

− V
(
�zk−1

)〉

+ s

L

∥∥∥V
(
zk
)

− V
(
�zk−1

)∥∥∥
2
)

≥ 0.

Combining the last two estimates, one can easily conclude that for every k ≥ k1 it
holds

Fk
λ ≥ 2 − γ

γ

∥∥∥2λ
(
zk − z∗

)
+ k

(
zk − zk−1

)
+ γ skV

(
�zk−1

)∥∥∥
2

+ (2 − γ )2

2γ
k2
∥∥∥zk − zk−1

∥∥∥
2 + 2λ

(
α − 1 − 2λ

γ

)∥∥∥zk − z∗
∥∥∥
2
,

which is the desired inequality. ��

Proof of Lemma 14 (i) First we notice that 2
(
1 − 1

γ

)
= 2 − 2

γ
< 1 and

1

γ (α − 2)

(
(2 − γ ) (α − 1) + (γ − 1) (α − 2)

)
< 1 ⇔ 1 + 1

α − 1
< γ < 2.
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This means, if γ satisfies 62, it holds

max

{√
2

(
1 − 1

γ

)
,

√
(2 − γ ) (α − 1) + (γ − 1) (α − 2)

γ (α − 2)

}
< 1,

and thus one can choose δ to fulfill 63.
For the quadratic expression in Rk , we calculate

�′
k

s2
:= (ω0k + ω1)

2 − δ2k
(
ω2

√
k + ω3

)(
ω4

√
k + ω5

)

=
(
ω2
0 − δ2ω2ω4

)
k2 − δ2 (ω2ω5 + ω3ω4) k

√
k +

(
2ω0ω1 − δ2ω3ω5

)
k + ω2

1.

Since
(
ω2
0 − δ2ω2ω4

)
k2 is the dominant term in the above polynomial, it suffices to

guarantee that ω2
0 − δ2ω2ω4 < 0 in order to be sure that there exits some integer

k2 (λ) ≥ 1 such that �′
k ≤ 0 for every k ≥ k2 (λ) and to obtain from here, due to

Lemma A.7 (ii), that Rk ≤ 0 for every k ≥ k2 (λ).
It remains to show that there exists a choice of λ for which ω2

0 −δ2ω2ω4 < 0 holds.
We set ξ := λ + 1 − α ≤ 0 and get

ω0 = 2λ + γ − α + γ (1 − α) = 2λ − α + γ (2 − α) = 2ξ + (γ − 1) (2 − α) ,

ω2ω4 = −4γ (α − 2) ξ.

This means that we have to guarantee that there exists a choice for ξ for which

ω2
0 − δ2ω2ω4 =

(
2ξ − (γ − 1) (α − 2)

)2 + 4δ2γ (α − 2) ξ

= 4ξ2 + 4 (α − 2)
(
δ2γ − γ + 1

)
ξ + (γ − 1)2 (α − 2)2 < 0.

(108)

A direct computation shows that, according to 63,

�′
ξ := 4 (α − 2)2

[(
δ2γ − γ + 1

)2 − (γ − 1)2
]

= 4 (α − 2)2 δ2γ
(
δ2γ − 2 (γ − 1)

)
> 0.

Hence, in order to get 108, we have to choose ξ between the two roots of the quadratic
function arising in this formula, in other words

ξ1 (α, γ ) := −1

2
(α − 2)

(
δ2γ − γ + 1

)
−
√

�′
ξ

4

< ξ = λ + 1 − α < ξ2 (α, γ ) := −1

2
(α − 2)

(
δ2γ − γ + 1

)
+
√

�′
ξ

4
.
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Obviously ξ1 (α, γ ) < 0 and fromViète’s formula ξ1 (α, γ )·ξ2 (α, γ ) = (γ−1)2(α−2)2

4 ,
it follows that ξ2 (α, γ ) < 0 as well.

Therefore, going back to λ, in order to be sure that ω2
0 − δ2ω2ω4 < 0 this must be

chosen such that

α − 1 + ξ1 (α, γ ) < λ < α − 1 + ξ2 (α, γ ) .

Next we will show that

0 < α − 1 − 1

2
(α − 2)

(
δ2γ − γ + 1

)
<

γ

2
(α − 1) . (109)

Indeed, the left-hand side inequality 109 is straightforward since

0 < α − 1 − 1

2
(α − 2)

(
δ2γ − γ + 1

)
⇔ δ2 < 1 + 1

γ

(
1 + 2

α − 2

)
.

The right-hand side inequality 109 is equivalent to

α − 1 − 1

2
(α − 2)

(
δ2γ − γ + 1

)
<

γ

2
(α − 1) ⇔ δ2 >

1

γ (α − 2)

(
(2 − γ ) (α − 1)

+ (γ − 1) (α − 2)
)
,

which is true according to 63.
From 109, we immediately deduce that

0 < α − 1 + ξ2 (α, γ ) and α − 1 + ξ1 (α, γ ) <
γ

2
(α − 1) ,

which allow us to choose

λ (α, γ ) := max {0, α − 1 + ξ1 (α, γ )} < λ (α, γ )

:= min
{γ

2
(α − 1) , α − 1 + ξ2 (α, γ )

}
.

In conclusion, choosing λ to satisfy λ (α, γ ) < λ < λ (α, γ ), we have ω2
0 −

δ2ω2ω4 < 0 and therefore there exists some integer k2 (λ) ≥ 1 such that Rk ≤ 0 for
every k ≥ k2 (λ).

(ii) For every k ≥ 1, we have

μk − (2 − γ ) (1 − 2sL) (k + 1)2

= (2 − γ ) (1 − 2sL) (k + 1)2 + (2 − γ ) α2 (k + 1)
√
k + 1

+ (2 − γ ) (α − 4) (k + 1) − (2 − γ ) (α − 2) − 2λ (α − 2) ,

and the conclusion is obvious since γ < 2 and s <
1

2 L
. ��
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