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Abstract
According to a version of Donsker’s theorem, geodesic random walks on Riemannian
manifolds converge to the respective Brownian motion. From a computational per-
spective, however, evaluating geodesics can be quite costly. We therefore introduce
approximate geodesic random walks based on the concept of retractions. We show
that these approximate walks converge in distribution to the correct Brownian motion
as long as the geodesic equation is approximated up to second order. As a result, we
obtain an efficient algorithm for sampling Brownian motion on compact Riemannian
manifolds.
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1 Introduction

Probabilistic models in continuous time with geometric constraints lead to Brownian
motion and stochastic differential equations (SDEs) on Riemannianmanifolds (M, g).
The theory of Brownian motion and SDEs on manifolds has been extensively studied
(see, e.g., [16, 20])—and many results from the Euclidean setting can be generalized
to manifold-valued SDEs. One example is Donsker’s theorem. Here, one considers a
geodesic random walk for which the update step at the current location xi is obtained
by uniformly sampling a unit tangent vector v̄ ∼ Unif(Sxi ) with Sx := {u ∈ Tx M :
‖u‖g = 1} and following a geodesic path by setting xi+1 := Expxi

(εv) for some small
enough parameter ε, where v := √

mv̄, m denotes the dimension of the manifold,
and Expx : Tx M → M is the exponential map. We will discuss the reason for
scaling by

√
m below. Jørgensen proved that on complete Riemannian manifolds

that satisfy mild assumptions (which in particular hold for compact manifolds), the
scaling limit of such a geodesic random walk is the Brownian motion on (M, g), see
[21]. This result has recently been generalized to the setting of Finsler manifolds, see
[26].

In principle, it is thus possible to simulate Brownian motion on Riemannian man-
ifolds by computing geodesic random walks—analogously to how one would use
Donsker’s theorem in the Euclidean case. Unfortunately, this procedure is not com-
putationally efficient on manifolds since the solution of a nonlinear second-order
geodesic ODE has to be computed in every step. With an eye on applications, we are
interested in efficient and simple, yet convergent, methods in order to approximate
Brownian motion on Riemannian manifolds.

We introduce a class of algorithms that yield approximate geodesic random
walks by making use of retractions that approximate the exponential map and
have been introduced in the context of numerical optimization on manifolds,
see [1–3, 8]. We show that retractions which approximate the geodesic ODE up
to second order converge to Brownian motion in the Skorokhod topology, see
Sect. 3. We consider two prevalent scenarios, where random walks based on such
second-order retractions can be computed efficiently: the case of parameterized
manifolds and the case of implicitly defined manifolds, see Sect. 2. Our approach
generalizes the setting of approximate geodesic walks on manifolds with positive
sectional curvatures presented in [27]. Moreover, our method works for arbitrary
dimensions, and its cost only depends on the evaluation of the respective retrac-
tion.

A retraction in our sense can be understood as both, an approximation of the
geodesic ODE, or, equivalently, as a 2-jet in the sense of [5], which allows for treating
coordinate-free SDEs. Armstrong and King developed a 2-jet scheme for simulat-
ing SDEs on manifolds in [6], which uses an unbounded stepsize in each iteration.
Different from our retraction-based approach, which is based on bounded stepsizes,
the case of unbounded stepsizes hampers efficiency (for the case of local charts) or
might even prohibit an implementation (for the case of implicitly defined submani-
folds when using a step-and-project approach). Moreover, our random walk method
is based on a Donsker-type theorem, while their approach improves Euler–Maruyama
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approximations—resulting in a different type of convergence in terms of the respective
topologies.

Outside the setting of 2-jets, one typically considers SDEs on embedded manifolds
M ⊂ R

n and first solves them in ambient Euclidean space, followed by projecting
back to M using Lagrange multipliers, see, e.g., [7, 25]. Projection-based approaches,
however, do not immediately extend to the case of parameterized manifolds. Within
our unified framework based on retractions, we cover both, the case of embedded
manifolds and the case of parameterizedmanifolds, see Sects. 2.1 and 2.2. In particular,
our approach leads to an efficient and convergent numerical treatment of Brownian
motion on Riemannian manifolds (including drift—see Remark 2.4).

A different scenario where geodesic random walks are commonly used is the
problem of sampling the volume measure of polytopes (defined as the convex hull
resulting from certain linear constraints). Originally, Euclidean random walk meth-
ods had been considered in this context, see [30]. Although the Euclidean perspective
is natural in this situation, small stepsizes are required in order to reach points near
the boundary, which hampers efficiency in higher dimensions. To circumvent this
issue, Lee and Vempala [24] introduced a Riemannian metric based on the Hes-
sian of a log-barrier—to the effect of rescaling space as the walk approaches the
boundary. In their implementation, they used collocation schemes for solving the
requisite ODEs in order to simulate geodesic random walks. We leave for future
research the question whether such approaches can be reformulated in terms of retrac-
tions.

Furthermore, the problem of sampling on manifolds is commonly addressed by
Markov chain Monte Carlo (MCMC) methods, see, e.g., [10–12, 31]. Different from
our focus, MCMC methods are typically concerned with obtaining samples from
a given probability distribution on M . Our algorithm, however, yields approximate
sample paths of a Brownian motion on a manifold. We are not aware of any results
concerned with proving that an MCMC method samples the correct dynamics of a
given SDE. Although not the main focus of our exposition, we show that our method
also correctly recovers the stationary measure of a geodesic random walk in the limit
of stepsize tending to zero, see Theorem 3.2.

2 Retraction-Based RandomWalks

Throughout this exposition, we consider m-dimensional compact and orientable Rie-
mannian manifolds (M, g) without boundary. We use retractions to approximate the
exponential map on such manifolds.

Definition 2.1 Let Ret : T M −→ M be a smooth map, and denote the restriction to the
tangent space Tx M by Retx for any x ∈ M . Ret is a retraction if the following two
conditions are satisfied for all x ∈ M and all v ∈ Tx M :

1. Retx (0) = x , where 0 is the zero element in Tx M and
2. d

dτ Retx (τv)
∣
∣
τ=0 = v (where we identify T0Tx M � Tx M).
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A retraction is a second-order retraction if it additionally satisfies that for all x ∈ M
and for all v ∈ Tx M one has that

D

dτ

(
d

dτ
Retx (τv)

) ∣
∣
∣
∣
τ=0

= D

dτ

(
d

dτ
Expx (τv)

) ∣
∣
∣
∣
τ=0

= 0, (1)

where D
dτ ( d

dτ γ (τ )) denotes covariant differentiation of the tangent vector field γ̇ (τ ) =
d
dτ γ (τ ) along the curve γ (following standard notation, see, e.g., [15]). If M is a
submanifold of a Euclidean space, Eq. (1) is equivalent to

d2

dτ 2
Retx (τv)

∣
∣
τ=0 ∈ Nx M ,

whereNx M denotes the normal bundle of M . Consequently, for the case of subman-
ifolds, one has

Retx (τv) = Expx (τv) + O(τ 3)

for all x ∈ M and v ∈ Tx M as τ → 0.
Clearly, the exponential map is itself a retraction. The main benefit of retractions

is, however, that they can serve as computationally efficient approximations of the
exponential map. Using retractions yields Algorithm 1 for simulating random walks
on a Riemannian manifold.

Algorithm 1 Retraction-based random walk
1: Input: Retraction Ret; iterations N ; stepsize ε; dimension m; initial position x0; set xε

0 := x0
2: for 1 ≤ i ≤ N do
3: Sample v̄ ∈ Sxε

i−1
:= {u ∈ Txε

i−1
M : ‖u‖g = 1} uniformly wrt. the Riemannian metric g

4: Set v := √
mv̄

5: xε
i := Retxε

i−1
(εv)

6: end for
7: Return: (xε

j )0≤ j≤N

Notice that the uniform sampling in Step 3 of the above algorithm is performed
with respect to the Riemannian metric restricted to the unit sphere in the attendant
tangent space.We provide details for this step in Sects. 2.1 and 2.2. Notice furthermore
that ε takes the role of a spatial stepsize, while the total physical time simulated by
Algorithm 1 is given by ε2N ; see also the time rescaling in Theorem 2.2. Step 4
of the algorithm is necessary since uniform sampling on the unit sphere in a space
of dimension m results in a covariance matrix 1

m Id, while convergence to Brownian
motion requires the identity as covariancematrix. The normalizing factor

√
m in Step 4

precisely ensures the latter. Indeed, without the renormalization in Step 4 the random
walk constructed in Algorithm 1 converges to a time-changed Brownian motion.

The next theorem shows convergence of the retraction-based randomwalk resulting
fromAlgorithm 1 and provides an explicit expression for the generator of the resulting
limit process:
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Theorem 2.2 Consider the sequence of random variables (Xε
i )i∈N constructed in

Algorithm 1 (with N = ∞). The continuous-time process Xε := (

Xε
�ε−2t�

)

t≥0 con-
verges in distribution to the stochastic process with generator

(L f )(x) = 1

2
(�g f )(x) + m

2ωm

∫

Sx

d f
∣
∣
x

(
D

dτ

d

dτ
Retx (τ v̄)

) ∣
∣
∣
∣
τ=0

dv̄ (2)

in the Skorokhod topology (see Sect.3 for details). Here, Sx denotes the unit sphere in
Tx M, ωm is the volume of this sphere, and �g is the Laplace–Beltrami operator on
(M, g).

We defer the proof to Sect. 3. Notice that Theorem 2.2 immediately implies a
necessary and sufficient condition for a retraction-based random walk to converge
to Brownian motion on a Riemannian manifold (M, g):

Corollary 2.3 Using the same notation as in Theorem 2.2, the continuous-time process
Xε converges in distribution to the Brownian motion on M if and only if the Laplacian
(also known as the tension) of Retx : Tx M −→ M vanishes at 0 ∈ Tx M for every
x ∈ M. In particular, this holds for second-order retractions.

Proof By definition, the Laplacian of Retx : Tx M −→ M is defined as

�Retx := trace∇d Retx ,

where ∇d Retx is the Hessian of the C∞-map Retx . Clearly, the Laplacian of Retx
vanishes at 0 ∈ Tx M if and only if

0 =
∫

Sx

D

dτ

d

dτ
Retx (τ v̄)

∣
∣
∣
∣
τ=0

dv̄.

Applying Theorem 2.2 proves the first claim. If Retx is a second-order retraction, the
second claim immediately follows since D

dτ
d
dτ Retx (τv)

∣
∣
τ=0 = 0 for all v ∈ Tx M .

��
Thus, random walks generated by second-order retractions converge to the Brow-

nian motion on (M, g).

Remark 2.4 Drift can seamlessly be incorporated into our approach. Indeed, when
modeling drift by a vector field X , then Step 4 of Algorithm 1 needs to be altered
according to v := √

mv̄ + εX |xε
i−1

. The stochastic process resulting from this altered
version of Algorithm 1 converges to the process with generator L f +d f (X), where L f
is the generator given by (2). The proof of this fact follows the proof of Theorem 2.2
with obvious modifications.

In the next two subsections, we consider two concrete examples of second-order
retractions that are computationally efficient.
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2.1 Retractions Based on Local Parameterizations

Our first example of computationally efficient retractions is based on local param-
eterizations of compact m-dimensional Riemannian manifolds (M, g). Consider an
atlas consisting of finitely many charts {(Ui , φi )}i∈I , where every Ui ⊂ R

m is open,
φi : Ui → M is a diffeomorphism onto its image in M , and where the relatively open
sets {φi (Ui )} cover M . In concrete applications, such parameterizations often arise
naturally, e.g., for isometrically embedded manifolds M ⊂ R

n .
For a given x ∈ M , v ∈ Tx M , and (Ui , φi ) with x ∈ φi (Ui ), let x̃ = φ−1

i (x) and
ṽ = (dφ−1

i )|xv. We assume that for some fixed ε > 0 and any x ∈ M , there exists a
chart (Uk, φk) with x̃ ∈ Uk such that

x̃ + ṽ − 1

2
�i j ṽ

i ṽ j ∈ Uk

for all ṽ = (dφ−1
k )|x (ε√m v̄) with v̄ ∈ Sx , where (�i j ) denotes the Christoffel

symbols of the respective chart. This assumption is readily satisfied for any compact
M , provided that ε is chosen small enough. In order to find such a sufficiently small
ε in Algorithm 1, we propose to restart the algorithm with stepsize ε

2 if the condition
is violated. Then, we define the retraction

p-Retx (v) := φk

(

x̃ + ṽ − 1

2
�i j ṽ

i ṽ j
)

. (3)

Notice that Christoffel symbols can be computed numerically. For low-dimensional
manifolds, symbolic differentiation accelerates their computation.

Lemma 2.5 The retraction defined by Eq. (3) is of second order.

Proof Let (γ (τ ))τ≥0 denote the geodesic satisfying γ (0) = x and γ̇ (0) = v. In the
parameter domain, γ satisfies the ordinary differential equation

γ̈ k + �k
i j γ̇

i γ̇ j = 0. (4)

The Taylor expansion of γ reads

γ k(τ ) = γ k(0) + τ γ̇ k(0) + τ 2

2
γ̈ k(0) + O(τ 3)

= γ k(0) + τ γ̇ k(0) − τ 2

2
�k

i j γ̇
i (0)γ̇ j (0) + O(τ 3)

= p-Retkx (v) + O(τ 3).

Since Expx (τv) = γ (τ), this shows that

p-Retx (τv) = Expx (τv) + O(τ 3)

as τ → 0, which proves that p-Ret is indeed a second-order retraction. ��
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Table 1 Comparison between geodesic and retraction-based random walks

Dimension Sampling (SVD) Computing geodesics Computing retractions

m = 2 0.107s 6.112s 0.083s (74×)

m = 5 0.193s 13.151s 0.190s (69×)

m = 10 0.322s 43.581s 0.675s (65×)

m = 15 0.516s 125.081s 1.994s (63×)

m = 20 0.873s 319.442s 4.987s (64×)

Computation times for geodesic and retraction-based random walks on m-dimensional tori with a non-
diagonal metric (gi j ) = BT (ḡi j )B, where ḡi i = 1.5 + cos(xm−(i−1)) for i = 1, . . . , m, ḡi j = 0 for
i �= j , and B is a random orthogonal matrix
In each case, 10,000 steps were calculated in varying dimensions with stepsize ε = 0.1. All computations
were performed on a standard laptop inMATLAB, usingMATLAB’smethod ode45 for solving the geodesic
equation. The Christoffel symbols were computed numerically

Another aspect of parameterization-based approaches concerns the computation
of tangent vectors ṽ in the parameter domain that are uniformly distributed with
respect to the Riemannian metric g. An efficient procedure for this task is presented in
Algorithm 2.

Algorithm 2 Uniform sampling of ṽ w.r.t. the Riemannian metric
1: Input: Chart (U , φ); current position x̃ ∈ U ⊂ R

m

2: Sample m standard normal variates w1, . . . , wm .
3: Compute

z :=
⎛

⎝

m
∑

i=1

w2
i

⎞

⎠

− 1
2

(w1, . . . , wm )T . (5)

4: Compute the singular value decomposition (SVD) of the pullback metric (gi j ) = φ∗g at point x̃ :

(gi j )|x̃ = V	VT

with diagonal matrix 	 and orthogonal matrix V.
5: Compute

ṽ :=
m

∑

i=1

zi√
	i i

Vi ,

where Vi the i th column vector of V.
6: Return: ṽ

Notice that Eq. (5) is well defined since wk �= 0 a.s. for all 1 ≤ k ≤ m and that z is
a sample of a uniformly distributed random variable on Sm−1. It is straightforward to
verify the following claim:

Lemma 2.6 The vector ṽ constructed in Algorithm 2 is a unit tangent vector that is
uniformly sampled with respect to the Riemannian metric (gi j ).
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Fig. 1 Results for a parametric surface defined as φ(s, t) = ((1.1 + cos(s)) cos(t), (1.1 +
cos(s)) sin(t), sin(s)). Left: Contour plot for the density of the stationary measure (i.e., the volume form
of the Riemannian metric) in the parameter domain. Middle and right: Result of an approximate geodesic
random walk based on p-Ret (using a single chart with periodic boundary conditions) with 100.000 steps
and stepsize ε = 0.5, depicted in the parameter domain and in R

3, respectively. Using an implementation
in Mathematica on a standard laptop, the computation takes a few seconds. For a discussion of the rela-
tionship between the stationary measure and the empirical measure resulting from the random walk, see
Sect. 2.3

In summary, using ṽ as computed in Algorithm 2, setting v̄ = ṽ in Step 3 of
Algorithm 1, and using the retraction p-Ret from (3), provides an efficient method for
computing random walks for parameterized manifolds. See Table 1 for a comparison
between geodesic random walks and retraction-based random walks, showing that the
latter are significantly faster than the former. Notice that the attendant algorithmmight
require to update the respective local chart during the simulated random walk. Results
of a simulated random walk on a 2-torus (using a single chart with periodic boundary
conditions) are presented in Fig. 1.

2.2 Projection-Based Retractions

Our second example of computationally efficient retractions is based on a step-and-
project method for compact manifolds that are given as zero-level sets of smooth
functions. More specifically, we consider the setting where

f : Rn → R
k

is a smooth function, k < n, and the m-dimensional manifold in question, with m =
(n − k), is given by

M = {x ∈ R
n : f (x) = 0}. (6)

We assume that 0 is a regular value of f , i.e., that the differential d f has full rank
along M . In this case, a retraction can be defined via

π -Retx (v) = πM (x + v),

where x ∈ M , v ∈ Tx M , and πM (y) = argminp∈M ‖p − y‖ denotes the (closest
point) projection to M . Notice that πM (y) is well defined as long as the distance
d(y, M) is less then the so-called reach of M . The reach of M is the distance of M
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to its medial axis, which in turn is defined as the set of those points in R
n that do not

have a unique closest point on M . Smoothly embedded compact manifolds always
have positive reach.

The following result is important in our setup. For a proof, see, e.g., Theorem 4.10
in [3].

Lemma 2.7 π -Ret is a second-order retraction.

It remains to specify the computation of a random unit direction v ∈ Tx M as well
as the implementation of the projection step. As for the former, a uniformly sampled
unit tangent direction at some x ∈ M can be computed by first sampling a randomly
distributed unit vector u ∈ S

n−1 in ambient space, and denoting its projection to
im(d f |x ) by ũ. Then,

v̄ = u − ũ

‖u − ũ‖ (7)

yields the requisite uniformly distributed unit tangent vector. Finally, for computing
the closest point projection of some given point y ∈ R

n to M , consider the Lagrangian

Ly(z, λ) = 1

2
‖z − y‖2 − λT f (z),

where λ ∈ R
k denotes the (vector-valued) Lagrange multiplier. Then, Newton’s

method offers an efficient implementation for solving the Euler–Lagrange equations
resulting fromLy . In our implementation, we let Newton’smethod run until the thresh-
old | f (z)|/‖d f |z‖ < ε3 is satisfied. Notice that efficiency results from the fact that
the point y = x + τv is close to M for x ∈ M and τ small enough.

In summary, using v̄ as computed in (7) for Step 3 of Algorithm 1, together with the
retraction π -Ret from (6), provides an efficient method for computing random walks
for implicitly given submanifolds. Results of a simulated random walk on the 2-torus
are presented in Fig. 2.

Remark 2.8 Our projection-based retraction is an instance of retractions induced by
so-called normal foliations. The latter are defined as foliations in a local neighbor-
hood of M = f −1(0) whose leaves have dimension k and intersect M orthogonally.
As shown in [32], retractions induced by normal foliations are always of second
order and therefore provide alternative approaches for sampling Brownian motion
on implicit manifolds. Examples of retractions induced by normal foliations include
the gradient flow along −∇ f and Newton retractions based on the update step
δz = −(d f )†(z) f (z), where (d f )† is the Moore–Penrose pseudo-inverse of the Jaco-
bian d f .

2.3 Stationary Measure

For second-order retractions, we show below that the stationarymeasure of the process
in Algorithm 1 converges to the stationary measure of the Brownian motion, which is
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Fig. 2 Result of a random walk using π -Ret for a genus two surface given as the zero-level set of f :
R
3 → R, f (x, y, z) = (x2(1 − x2) − y2)2 + z2 − 0.01 with 100.000 steps and stepsize ε = 0.1. Using

an implementation in Mathematica on a standard laptop, the computation takes less than a minute

the normalizedRiemannian volume form, seeTheorem3.2.Nonetheless, the empirical
approximation 1

N

∑N
i=1 δxε

i
of the Riemannian volume form using random walks—

e.g., in order to obtain results as in Figs. 1 and 2—requires the stepsize ε and the
number of steps N in Algorithm 1 to be chosen appropriately. An indicator at which
time the empirical approximation is close to the stationary measure is the so-called
δ-cover time, i.e., the time needed to hit any δ-ball. Hence, as a rough heuristic choice
of ε and N , one may utilize [13, 14]. For a Brownian motion on a 2-dimensional
manifold M , the δ-cover time Cδ of M satisfies [14, Theorem 1.3]

lim
δ→0

Cδ

(log δ)2
= 2A

π
a.s.,

where A denotes the Riemannian area of M . Based on the observation that a second-
order retraction converges to Brownian motion in the limit of vanishing stepsize ε,
and using that the physical time of the walk resulting from Algorithm 1 is given by
ε2N , one may set ε2N = Cδ . If δ is small enough, one may then choose N according
to

N ≥ 2A

π

(
log δ

ε

)2

.

For dimension m > 2, the corresponding result in [13], Theorem 1.1 yields the heuris-
tic choice

N ≥ mκM
−δ2−m log δ

ε2
,

where

κM = 2

(m − 2)ωm
V (M),

V (M) denotes the volume of M , and ωm the volume of the unit sphere in Rm .
Such heuristics, however, do not quantify the error between the empirical measure

obtained by simulating a random walk and the Riemannian volume measure. In the
setting of Euclidean random walks (Yn)n∈N with invariant distribution ν, it has been
shown in [23] that under some conditions on Y the expectation of the 1-Wasserstein
distance between the empirical and the invariant measure asymptotically decreases
according to the law
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Fig. 3 Convergence speed of retraction-based random walks to the invariant measures on m-dimensional
tori parametrized by [0, 2π ]m with periodic boundary conditions and equipped with the diagonal metric
gii = 1.5+cos(xm−(i−1)) for i = 1, . . . , m and gi j = 0 for i �= j . Results are shown for varying dimension
m and fixed stepsize ε (left) as well as fixed dimension m and varying stepsize ε (right). Simulations were
performed 10 times for each combination of dimension and stepsize. The points display the arithmetic mean
of the total variation distances between the invariant measure and the empirical measures resulting from a
box count using 20m equally sized cubes

E

∥
∥
∥
∥
∥

1

n

n
∑

i=1

δYi − ν

∥
∥
∥
∥
∥

W 1

� α
(log(ϑn))β

(ϑn)γ
(8)

as N → ∞ with constants α, β, γ > 0 depending on the dimension m and ϑ ∈ (0, 1)
depending on the process Y . Our simulations, see Fig. 3, followed by a simple fit to the
model given by the right-hand side of Eq. (8) suggest that a similar qualitative behavior
might be present for retraction-based random walks on Riemannian manifolds. We
leave a deeper analysis for future research.

3 Convergence

This section is devoted to the proof of Theorem 2.2, which yields convergence in the
Skorokhod topology of the process constructed in Algorithm 1 as the stepsize ε →
0. The Skorokhod space DM [0,∞) is the space of all càdlàg, i.e., right-continuous
functions with left-hand limits from [0,∞) to M , equipped with a metric turning
DM [0,∞) into a complete and separable metric space, and hence a Polish space
(see, e.g., [17], Chapter 3.5). The topology induced by this metric is the Skorokhod
topology, which generalizes the topology of local uniform convergence for continuous
functions [0,∞) → M in a natural way. For local uniform convergence, we have
uniform convergence on any compact time interval K ⊂ [0,∞). In the Skorokhod
topology, functions with discontinuities converge if the times and magnitudes of the
discontinuities converge (in addition to local uniform convergence of the continuous
parts of the functions). Thus, DM [0,∞) is a natural and—due to its properties—also
a convenient space for convergence of discontinuous stochastic processes.

With reference to the notation used in Theorem 2.2, notice that the process Xε =
(

Xε
�ε−2t�

)

t≥0 has deterministic jump times and is therefore not Markov as a process
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in continuous time. In order to apply the theory of Markov processes, let (ηt )t≥0 be a
Poisson processwith rate ε−2 and define the pseudo-continuous process Z ε = (Z ε

t )t≥0
by Z ε

t := Xε
ηt

for any t ≥ 0, which is Markov since the Poisson process is Markov.
Then, the convergence of Z ε implies convergence of Xε to the same limit by the law
of large numbers (see [22], Theorem 19.28). First we restate Theorem 2.2, using an
equivalent formulation based on the process Z ε:

Theorem 3.1 Consider the sequence of random variables (Xε
i )i∈N obtained by the

construction from Algorithm 1. The process Z ε =
(

Xε
ηt

)

t≥0
converges in distribu-

tion in the Skorokhod topology to the L-diffusion Z, i.e., the stochastic process with
generator L defined in (2). This means that for any continuous and bounded function
f : DM [0,∞) → R we have

E( f ((Z ε
t )t≥0)) → E( f ((Zt )t≥0)) ε → 0.

Certainly one cannot, in general, deduce convergence of stationary measures from
time-local convergence statements about paths. However, standard arguments from the
theory of Feller processes indeed allow to do so. This yields the following statement
regarding stationary measures.

Theorem 3.2 Let με be the stationary measure of the retraction-based random walk
with stepsize ε. Then, the weak limit of (με)ε>0 as ε → 0 is the stationary measure of
the L-diffusion, with generator L defined in (2). In the case of second-order retractions,
the limit is the Riemannian volume measure.

Remark 3.3 Notice that due to the approximation of the exponential map, the process
Z ε is not in general reversible and the generator of Z ε is not in general self-adjoint.
This is relevant since the stationary measure corresponds to the kernel of the adjoint
of the generator.

Our proof of Theorems 3.1 and 3.2 (presented below) hinges on convergence of
generators that describe the infinitesimal evolution ofMarkov processes, see, e.g., [17,
Chapter 4]. We show that the generator of Z ε converges to the generator L defined in
(2). The generator of the process Z ε is spelled out in Lemma 3.4, and the convergence
of this generator to L is treated in Lemma 3.5.

The following result is standard for transition kernels U ε on compact state spaces,
see, e.g., [17, Chapter 8.3]:

Lemma 3.4 The process (Z ε
t )t≥0 is Feller, and its generator is given by

Lε f = 1

ε2
(U ε f − f ) (9)

for all f ∈ C(M), the continuous real-valued functions on M. Here, (U ε f )(x) =
1

ωm

∫

Sx
f (Retx (ε

√
m v̄))dv̄ and ωm is the volume of the unit (m − 1)-sphere.

Notice that Lemma 3.4 additionally states that the process Z ε satisfies the Feller
property, i.e., that its semigroup is a contraction semigroup that also fulfills a right-
continuity property. Therefore, in particular, the process Z ε is Markov.
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In the following, C (2,α)(M), 0 < α ≤ 1 denotes the space of two times differen-
tiable functions on M with α-Hölder continuous second derivative.

Lemma 3.5 For any f ∈ C (2,α)(M) with 0 < α ≤ 1,

∥
∥Lε f − L f

∥
∥∞ → 0

as ε → 0, where Lε is the operator from Lemma 3.4 and L as defined in (2).

Proof Let Pε be the transition kernel of the geodesic random walk, i.e.,

(Pε f )(x) = 1

ωm

∫

Sx

f (Expx (ε
√

m v̄))dv̄.

For x ∈ M and v ∈ Tx M , define

(G f )(x, v) := 1

2
d f

∣
∣
x

(
D

dτ

d

dτ
Retx (τv)

) ∣
∣
∣
∣
τ=0

and

(G̃ f )(x) := m

ωm

∫

Sx

(G f )(x, v̄)dv̄.

Then, since L f = 1
2�g f + G̃ f ,

∥
∥Lε f − L f

∥
∥∞ ≤

∥
∥
∥
∥

1

ε2
(U ε f − Pε f ) − G̃ f

∥
∥
∥
∥∞

+
∥
∥
∥
∥

1

ε2
(Pε f − f ) − 1

2
�g f

∥
∥
∥
∥∞

.

Proposition 2.3 in [21] proves that the second summand on the right-hand side con-
verges to 0 as ε → 0. Let ε̃ := √

m ε. Then,

∣
∣
∣
∣

1

ε2
(U ε f (x) − Pε f (x)) − (G̃ f )(x)

∣
∣
∣
∣

≤ m

ωm

∫

Sx

∣
∣
∣
1

ε̃2
[ f (Retx (ε̃v̄)) − f (Expx (ε̃v̄))] − (G f )(x, v̄)

∣
∣
∣dv̄ .

Now, consider the Taylor expansions of the functions f ◦ Retx and f ◦ Expx in ε̃ at
0. To this end, notice that for any x ∈ M and v ∈ Tx M , one has

d

dτ
f (Retx (τv)) = d f |Retx (τv)(vτ ) ,

where vτ = d
dτ Retx (τv). Hence, we obtain that

Rx,v
Ret (τ ) := d2

dτ 2
f (Retx (τv)) = Hess f (vτ , vτ ) + d f |Retx (τv)

(
D

dτ
vτ

)

,

123



Foundations of Computational Mathematics

where Hess f = ∇d f is the Riemannian Hessian of f . Using that v0 = v, the desired
Taylor expansion takes the form

f (Retx (ε̃v)) = f (x) + ε̃d f |x (v) + 1

2
ε̃2Rx,v

Ret (ξ1),

where ξ1 ∈ [0, ε̃]. Defining uτ = d
dτ Expx (τv), we similarly obtain that

f (Expx (ε̃v)) = f (x) + ε̃d f |x (v) + 1

2
ε̃2Rx,v

Exp(ξ2)

with ξ2 ∈ [0, ε̃] and

Rx,v
Exp(τ ) = Hess f (uτ , uτ ),

where for the last equality we used the fact that D
dτ uτ = 0. Since Rx,v

Ret (0) = Rx,v
Exp(0)+ 2(G f )(x, v), we obtain that

| f (Retx (ε̃ v)) − f (Expx (ε̃ v)) − ε̃2(G f )(x, v)|

= ε̃2

2
|Rx,v

Ret(ξ1) − Rx,v
Ret(0) − Rx,v

Exp(ξ2) + Rx,v
Exp(0)|

≤ ε̃2

2

(

|Rx,v
Ret(ξ1) − Rx,v

Ret (0)| + |Rx,v
Exp(ξ2) − Rx,v

Exp(0)|
)

.

Since Hess f is Hölder-continuous by assumption and Exp and Ret are smooth, both
RExp and RRet are Hölder-continuous as products and sums of Hölder-continuous
functions. Therefore, there exists a constant C > 0 such that one has the uniform
bound

| f (Retx (ε̃ v)) − f (Expx (ε̃ v)) − ε̃2(G f )(x, v)| ≤ C

2
(ξα

1 + ξα
2 )ε̃2 ≤ C ε̃2+α .

Hence,

sup
x∈M

∣
∣
∣
∣

1

ε2

(

U ε f (x) − Pε f (x)
) − (G̃ f )(x)

∣
∣
∣
∣
≤ Cm1+ α

2 εα ε→0−−→ 0 ,

which proves the lemma. ��
Using the above results, we can finish the proof of Theorem 3.1.

Proof of Theorem 3.1 By the proof of Theorem 2.1 and the remark on page 38 in [21],
the space C (2,α)(M) is a core for the differential operator L . For a sequence of Feller
processes (Z ε)ε>0 with generators Lε, ε > 0 and another Feller process Z with
generator L and core D, the following are equivalent [22, Theorem 19.25]:

(i) If f ∈ D, there exists a sequence of fε ∈ Dom(Lε) such that ‖ fε − f ‖∞ → 0
and ‖Lε fε − L f ‖∞ → 0 as ε → 0.
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(ii) If the initial conditions satisfy Z ε
0 → Z0 in distribution as ε → 0 in M , then

Z ε → Z as ε → 0 in distribution in the Skorokhod space DM ([0,∞)).

In our case, D = C (2,α)(M) and fε = f ∈ D satisfy (i) due to Lemma 3.5. This
concludes the proof of Theorem 3.1 since the L-diffusion is also a Feller process on
a compact manifold. ��

From an analytical point of view, it is perhaps not surprising that convergence of
generators, see Lemma 3.5, implies convergence of stationary measures as stated in
Theorem 3.2. For the proof, we here follow standard arguments of the theory of Feller
processes.

Proof of Theorem 3.2 The family of (unique) stationary measures (με)ε>0 is a tight
family of measures since all measures are supported on the same compact manifold
M . By Prokhorov’s theorem, which provides equivalence of tightness and relative
compactness, any subsequence of the family (μεn )n∈N with εn → 0 as n → ∞ has
a convergent subsubsequence. But the uniform convergence of the generators that we
showed in Lemma 3.5, see also (i) in the proof of Theorem 3.1, is also equivalent to
the convergence of the associated semigroups with respect to the supremum norm in
space, see again [22, Theorem 19.25]. This implies [17, Chapter 4, Theorem 9.10] that
all subsequential limits must be the unique stationary measure of the L-diffusion, and
therefore, all subsubsequences converge to the same measure. A standard subsubse-
quence argument then proves the theorem. ��

Retractions on Sub-RiemannianManifolds

A possible extension of our work concerns random walks in sub-Riemannian geome-
tries. Indeed, sub-Riemannian structures can be used to model low-dimensional noise
that lives in a higher dimensional state space [19]. A sub-Riemannian structure on a
smooth manifold M consists of a smoothly varying positive definite quadratic form on
a sub-bundle E of the tangent bundle T M . Similar to the Riemannian setting, so-called
normal sub-Riemannian geodesics arise from a first-order ODE on the cotangent bun-
dle [28]. Such geodesics are uniquely determined by an initial position x ∈ M and a
1-form α ∈ T ∗

x M and can therefore be approximated by a second-order Taylor expan-
sion of the respective ODE on the cotangent bundle. Such an approximation would
algorithmically resemble our retraction-based approach,when attempting to efficiently
simulate a sub-Riemannian geodesic random walk. However, in general, there exists
no canonical choice for sampling a requisite 1-formα in every step in order to construct
a sub-Riemannian geodesic random walk (or an approximation thereof). Indeed, one
requires an additional choice of a measure for such sampling, and different choices
may lead to different limiting processes, see [4, 9]. Notice that once such a choice has
beenmade, one can seamlessly adapt our algorithm to the sub-Riemannian setting.We
leave for future work a respective convergence analysis. Moreover, there might exist
canonical choices of suchmeasures for special sub-Riemannian structures—e.g., when
considering the frame bundle of a smooth manifold M in order to model anisotropic
Brownian motion and general diffusion processes [18, 29].
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