
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-023-09621-y

Error Analysis for 2D Stochastic Navier–Stokes Equations in
Bounded Domains with Dirichlet Data

Dominic Breit1,2 · Andreas Prohl3

Received: 5 October 2022 / Revised: 18 May 2023 / Accepted: 13 July 2023
© The Author(s) 2023

Abstract
We study a finite-element based space-time discretisation for the 2D stochastic
Navier–Stokes equations in a bounded domain supplemented with no-slip boundary
conditions. We prove optimal convergence rates in the energy norm with respect to
convergence in probability, that is convergence of order (almost) 1/2 in time and 1 in
space. This was previously only known in the space-periodic case, where higher order
energy estimates for any given (deterministic) time are available. In contrast to this,
estimates in the Dirichlet-case are only known for a (possibly large) stopping time.We
overcome this problem by introducing an approach based on discrete stopping times.
This replaces the localised estimates (with respect to the sample space) from earlier
contributions.
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1 Introduction

We are concerned with the numerical approximation of the 2D stochastic Navier–
Stokes equations in a smooth bounded domain O ⊂ R

2 supplemented with no-slip
boundary conditions. They describe the flow of a homogeneous incompressible fluid
in terms of the velocity field u and pressure function p defined on a filtered probability
space (�,F, (Ft ),P) and read as

⎧
⎨

⎩

du = μ�u dt − (u · ∇)u dt − ∇ p dt + �(u)dW in OT ,

divu = 0 in OT ,

u(0) = u0 in O,

(1.1)

P-a.s. in OT := (0, T ) × O, where T > 0, μ > 0 is the viscosity and u0 is a given
initial datum. The momentum equation is driven by a cylindrical Wiener process W
and the diffusion coefficient � takes values in the space of Hilbert-Schmidt operators;
see Sect. 2.1 for details.

Existence, regularity and long-timebehaviour of solutions to (1.1) have been studied
extensively over the last three decades, andwe refer to [23] for a complete picture.Most
of the available results consider (1.1) with respect to periodic boundary conditions.
In some cases this is only for a simplification of the presentation. For instance, the
existence of stochastically strong solutions to (1.1) is not affected by the boundary
condition. Looking at the spatial regularity of solutions the situation is completely
different:

• If O = T
2 — the two-dimensional torus — and (1.1) is supplemented with peri-

odic boundary conditions one can obtain estimates in any Sobolev space provided
the data (initial datum and diffusion coefficient) are sufficiently regular; cf. [23,
Corollary 2.4.13].

• If, on the other hand, O is a bounded domain with smooth boundary and (1.1) is
supplemented with the no-slip boundary condition

u = 0 on (0, T ) × ∂O, (1.2)

it is still an open problem if the solution satisfies

E
[‖∇u(T )‖2L2

x

]
< ∞ (1.3)

for any given T < ∞, cf. [18, 22]. Regularity estimates are only known until a
(possibly large) stopping time and even with this restriction the spatial regularity
seems limited; see Lemma 3.1 (c) and Remark 3.2.

Moment estimates such as (1.3) are crucial for the numerical analysis. If they are not
at disposal it is unclear how to obtain convergence rates for a discretisation of (1.1).
Consequently most, if not all available results are concerned with the space-periodic
problem. In particular, it is shown in [5] and [12] for the space-periodic problem that
for any ξ > 0
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P

[maxm ‖u(tm) − uh,m‖2
L2
x
+ ∑M

m=1 τ‖∇u(tm) − ∇uh,m‖2
L2
x

h2β + τ 2α
> ξ

]

→ 0 (1.4)

as h, τ → 0 (where α < 1
2 and β < 1 are arbitrary); see also [3, 4] for related

results. Here u is the solution to (1.1) and uh,m the approximation of u(tm) with
discretisation parameters τ = T /M (time) and h (space). The relation (1.4) tells us
that the convergence in probability is of order (almost) 1/2 in time and 1 in space. It
seems to be an intrinsic feature of SPDEs with general non-Lipschitz nonlinearities
such as (1.1) that the more common concept of a pathwise error (an error measured in
L2(�)) is too strong (see [26] for first contributions). Hence (1.4) is the best result we
can hope for. The proof of (1.4) is based on estimates in L2(�), which are localised
with respect to the sample set. The size of the neglected sets shrinks asymptotically
with respect to the discretisation parameters and is consequently not seen in (1.4). The
localised L2(�)-estimates in question rely on an iterative argument in them-th step of
which one can only control the discrete solution up to the stepm−1 (to avoid problems
with (Ft )-adaptedness), while the continuous solution is estimated by means of the
global regularity estimates being available in the periodic setting (recall the discussion
above).

In this work, we consider for (1.1) the semi-implicit space-time discretisation
scheme (4.1), with general stable mixed finite element pairings as detailed in (2.8)–
(2.10).We remark that many pairings are available in the literature that satisfy criterion
(2.10), see e.g. [6, 7, 17, 19]; the convective term is treated in a semi-implicit, sym-
metrized way, which is a well-known strategy in the deterministic setting that goes
back to [29] to enhance stability of this discretisation of the nonlinearity in the context
of only discretely divergence-free functions; see (4.1)2. As a result, this amounts to
solving linear (coupled) problems in the m-th iteration. It is due to the used Dirichlet
data for (1.1) that a related error analysis of this scheme (4.1) is more difficult if com-
pared to the periodic situation. In fact, in theDirichlet-case estimates in stronger norms
for the solution of (1.1) are only known for a (possibly large) stopping time since the
equality

∫

O(u · ∇)u · �u dx = 0 is no longer available. Incorporating the latter case
into the framework of the localised estimates, the iterative argument just mentioned
fails: controlling the continuous solution in the m-th step only until the time tm−1 is
insufficient for the estimates, while “looking into” the interval [tm−1, tm] in this set-up
destroys the martingale character of certain stochastic integrals we have to estimate.
We overcome this problem by using an approach based on discrete stopping times,
which replaces the localised L2(�)-estimates from earlier contributions. This allows
to control all quantities even in the interval [tm−1, tm] and, at the same time, preserves
the martingale property of the stochastic integrals (see also the discussion in Remark
4.3). As a result we obtain ‘global-in-�’ estimates up to the discrete stopping time;
cf. Theorem 4.2. The discrete stopping times are constructed such that they converge
to T , where T can be any given end-time. Consequently, the convergence in proba-
bility as in (1.4) follows for the Dirichlet-case, see our main result in Theorem 4.4.
We believe that this strategy will be of use also for other SPDEs with non-Lipschitz
nonlinearities.
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Wework under the structural assumption of a solenoidal diffusion coefficient which
vanishes at the boundary. This is crucial in the regularity estimate from Lemma 3.1 (b)
in order to control the correction term V N (t) in the proof. Due to the counterexamples
concerning the regularity for stochastic PDEs in bounded domains, see [21], this seems
to be unavoidable. In fact, the same assumptions are made in the analytical paper [18]
on which we built on.

2 Mathematical Framework

2.1 Probability Setup

Let (�,F, (Ft )t≥0,P)be a stochastic basiswith a complete, right-continuousfiltration.
The processW is a cylindricalU-valuedWiener process, that is,W (t) = ∑

j≥1 β j (t)e j
with (β j ) j≥1 being mutually independent real-valued standard Wiener processes rel-
ative to (Ft )t≥0, and (e j ) j≥1 a complete orthonormal system in a separable Hilbert
space U. Let us now give the precise definition of the diffusion coefficient Φ tak-
ing values in the set of Hilbert-Schmidt operators L2(U;H), where H can take the
role of various Hilbert spaces. We define L2

div(O,R2) and W 1,2
0,div(O,R2) to be the

closure of C∞
c,div(O,R2) – the solenoidal C∞

c (O,R2)-functions – in L2(O,R2) and

W 1,2
0 (O,R2), respectively, see e.g. [15, Chapter III]. We also work with fractional

Sobolev spaces W σ,p(0, T ; X) for p ∈ (1,∞) and σ ∈ (0, 1) and a Banach space
(X; ‖ · ‖X ) with norm given by

‖ f ‖p
W σ,p(0,T ;X)

:= ‖ f ‖p
L p(0,T ;X)

+
∫ T

0

∫ T

0

‖ f (t) − f (s)‖p
X

|t − s|1+σ p
ds dt .

Similarly, W σ,p(O,R2) is the fractional Sobolev space with norm given by

‖v‖p
W σ,p

x
:= ‖v‖p

L p
x

+
∫

O

∫

O
|v(x) − v(y)|p
|x − y|2+σ p

dx dy.

We assume that �(u) ∈ L2(U; L2
div(O,R2)) for u ∈ L2

div(O,R2), and �(u) ∈
L2(U;W 1,2

0,div(O,R2)) for u ∈ W 1,2
0,div(O,R2), together with

‖�(u) − �(v)‖L2(U;L2
x )

≤ c‖u − v‖L2
x

∀u, v ∈ L2
div(O,R2), (2.1)

‖�(u)‖L2(U;W 1,2
x )

≤ c
(
1 + ‖u‖W 1,2

x

) ∀u ∈ W 1,2
0,div(O,R2), (2.2)

‖D�(u)‖L2(U;L(L2
x ;L2

x ))
≤ c ∀u ∈ L2

div(O,R2). (2.3)

If we are interested in higher regularity, some further assumptions are in place and we
require additionally that �(u) ∈ L2(U;W 2,2(O,R2)) for u ∈ W 2,2 ∩W 1,2

0,div(O,R2),
together with
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‖�(u)‖L2(U;W 2,2
x )

≤ c
(
1 + ‖u‖2

W 1,4
x

+ ‖u‖W 2,2
x

) ∀u ∈ W 2,2 ∩ W 1,2
0,div(O,R2), (2.4)

‖D2�(u)‖L2(U;L(L2
x×L2

x ;L2
x ))

≤ c ∀u ∈ L2
div(O,R2). (2.5)

Assumption (2.1) allows us to define stochastic integrals. Given an (Ft )-adapted
process u ∈ L2(�;C([0, T ]; L2

div(O))), the stochastic integral

t �→
∫ t

0
Φ(u) dW

is a well-defined process taking values in L2
div(O,R2); see [13] for a detailed

construction. Moreover, we can multiply by test functions to obtain

( ∫ t

0
Φ(u) dW ,φ

)

L2
x

=
∑

j≥1

∫ t

0
(Φ(u)e j ,φ)L2

x
dβ j ∀φ ∈ L2(O,R2).

Similarly, we can define stochastic integrals with values in W 1,2
0,div(O,R2) and

W 2,2(O,R2), respectively, if u belongs to the corresponding class.

2.2 The Concept of Solutions

In dimension two, pathwise uniqueness for analytically weak solutions is known under
the assumption (2.1); we refer the reader for instance to Capiński–Cutland [11],
Capiński [10]. Consequently, we may work with the definition of a weak pathwise
solution.

Definition 2.1 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Let u0 be an F0-
measurable random variable with values in L2

div(O,R2). Then u is called a weak
pathwise solution to (1.1) with the initial condition u0 provided

(a) the velocity field u is (Ft )-adapted and

u ∈ Cloc([0,∞); L2
div(O,R2)) ∩ L2

loc(0,∞;W 1,2
0,div(O,R2)) P-a.s.,

(b) the momentum equation

∫

O
u(t) · ϕ dx −

∫

O
u0 · ϕ dx

= −
∫ t

0

∫

O
(u · ∇)u · ϕ dx ds + μ

∫ t

0

∫

O
∇u : ∇ϕ dx ds

+
∫ t

0

∫

O
�(u) · ϕ dx dW

holds P-a.s. for all ϕ ∈ W 1,2
0,div(O,R2) and all t ≥ 0.
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Theorem 2.2 Suppose that � satisfies (2.1). Let (�,F, (Ft )t≥0,P) be a stochastic
basis with a complete right-continuous filtration and an (Ft )-cylindrical Wiener
process W. Let u0 be an F0-measurable random variable such that u0 ∈
Lr (�; L2

div(O,R2)) for some r > 2. Then there exists a uniqueweak pathwise solution
to (1.1) in the sense of Definition 2.1 with the initial condition u0.

We give the definition of a strong pathwise solution to (1.1) which exists
up to a stopping time t, cf. [18, 22]. The velocity field here belongs P-a.s. to
C([0, t];W 1,2

0,div(O,R2)).

Definition 2.3 Let (�,F, (Ft )t≥0,P) be stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W . Let u0 be an
F0-measurable random variable with values inW 1,2

0,div(O,R2). The tuple (u, t) is called
a strong pathwise solution to (1.1) with the initial condition u0 provided

(a) t is a P-a.s. strictly positive (Ft )-stopping time;
(b) the velocity field u is (Ft )-adapted and

u(· ∧ t) ∈ Cloc([0,∞);W 1,2
0,div(O,R2)) ∩ L2

loc(0,∞;W 2,2(O,R2)) P-a.s.,

(c) the momentum equation

∫

O
u(t ∧ t) · ϕ dx −

∫

O
u0 · ϕ dx

= −
∫ t∧t

0

∫

O
(u · ∇)u · ϕ dx ds + μ

∫ t∧t

0

∫

O
�u · ϕ dx ds

+
∫

O

∫ t∧t

0
�(u) · ϕ dW dx

(2.6)

holds P-a.s. for all ϕ ∈ C∞
c,div(O,R2) and all t ≥ 0.

Note that (2.6) certainly implies the corresponding formulation in Definition 2.1. The
reverse implication is only true for analytically strong solutions.

We finally define what a maximal strong pathwise solution is.

Definition 2.4 (Maximal strong pathwise solution) Fix a stochastic basis with a
cylindrical Wiener process and an initial condition as in Definition 2.3. A triplet

(u, (tR)R∈N, t)

is a maximal strong pathwise solution to system (1.1) provided

(a) t is a P-a.s. strictly positive (Ft )-stopping time;
(b) (tR)R∈N is an increasing sequence of (Ft )-stopping times such that tR < t on the

set [t < ∞], as well as limR→∞ tR = t P-a.s., and

tR := inf
{
t ∈ [0,∞) : ‖u(t)‖W 1,2

x
≥ R

}
on [t < ∞], (2.7)

with the convention that tR = ∞ if the set above is empty;
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(c) each tuple (u, tR), for R ∈ N, is a local strong pathwise solution in the sense of
Definition 2.3.

We talk about a global solution if we have (in the framework of Definition 2.4) t = ∞
P-a.s. Otherwise it is called a local solution. The following result concerning the
existence of a global solution is shown in [24]; see also [18] for a similar statement.
In the 3D case strong solutions are only known to exists locally, cf. [2, 8, 20].

Theorem 2.5 Suppose that (2.1)–(2.3) hold and that u0 ∈ L2(�,W 1,2
0,div(O,R2)).

Then there is a unique global maximal strong pathwise solution to (1.1) in the sense
of Definition 2.4.

2.3 Finite Elements

We work with a standard finite element set-up for incompressible fluid mechanics;
see e.g. [17]. We denote by Th a quasi-uniform subdivision [6] of O into triangles
of maximal diameter h > 0. For K ⊂ O and � ∈ N0 we denote by P�(K ) the
polynomials on K of degree less than or equal to �. Let us characterize the finite
element spaces V h(O,R2) and Ph(O) as

V h,i (O,R2) := {vh ∈ W 1,2
0 (O,R2) : vh |K ∈ (Pi (K ))2 ∀K ∈ Th}, (2.8)

Ph, j (O) := {πh ∈ L2(O)/R : πh |K ∈ P j (K ) ∀K ∈ Th}, (2.9)

where i, j ≥ 0. In order to guarantee stability of our approximation we relate
V h(O,R2) and Ph(O) by the discrete inf-sup condition, i.e., there exists a positive
constant C not depending on h such that

sup
vh∈V h,i (O,R2)

∫

O divvh πh dx

‖∇vh‖L2
x

≥ C ‖πh‖L2
x

∀πh ∈ Ph, j (O) . (2.10)

A well-known class of inf-sup stable pairings are the ‘conforming Stokes elements’,
with the simplest choice i = 2 in (2.8) and j = 0 in (2.9); see e.g. [7, Ch. 6] or [19,
Rem. 3.4] for further admissible examples of pairings.

We define the space of discretely solenoidal finite element functions by

V h,i
div (O,R2) :=

{

vh ∈ V h,i (O,R2) :
∫

O
divvh πh dx = 0 ∀πh ∈ Ph, j (O)

}

.

Let �h : L2(O,R2) → V h,i
div (O,R2) be the L2(O,R2)-orthogonal projection onto

V h,i
div (O,R2). The following results concerning the approximability of �h are well-

known (see, for instance [19, Lemma 4.3]): there is c > 0 independent of h such that
we have

‖v − �hv‖L2
x
+ h‖∇v − ∇�hv‖L2

x
≤ c h‖∇v‖L2

x
(2.11)
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for all v ∈ W 1,2
0,div(O,R2); moreover, the arguments in [19, Section 4] together with

standard interpolations arguments (see e.g. [17, LemmaA.2]) also imply forβ ∈ (0, 1]
that

‖v − �hv‖L2
x
+ h‖∇v − ∇�hv‖L2

x
≤ c h1+β‖v‖

W 1+β,2
x

(2.12)

for all v ∈ W 1+β,2∩W 1,2
0,div(O,R2). Similarly, if�π

h : L2(O)/R → Ph, j (O) denotes

the L2(O)-orthogonal projection onto Ph, j (O), we have

‖p − �π
h p‖2L2

x
≤ ch ‖∇ p‖L2

x
(2.13)

for all p ∈ W 1,2(O)/R.

3 Regularity of Solutions

In this section we analyse the regularity of the continuous solution as well as the
associated pressure function. For various purposes we need the Helmholtz-projection
P : L p(O,R2) → L2

div(O,R2), for 1 < p < ∞, given by

Pφ := φ − ∇�−1
O divφ. (3.1)

Here �−1
O div is the solution operator to the equation

�h = divg in O, νO · (∇h − g) = 0 on ∂O,

where νO denotes the unit normal of ∂O. Note that ∇�−1
O div satisfies (since ∂O was

assumed to be sufficiently smooth)

∇�−1
O div : Wr ,p(O,R2) → Wr ,p(O,R2), (3.2)

for all p ∈ (1,∞) and all r ∈ N, where W 0,p(O,R2) = L p(O,R2); see [1] for the
case r ∈ N and [15, Chapter IV] for the case r = 0. Clearly, (3.2) transfers to P .

With the help of the Helmholtz projection we can define the Stokes operator as

A := P� : W 2,p ∩ W 1,p
0,div(O,R2) → L p

div(O,R2). (3.3)

Due to well-known estimates for the Stokes system there is c > 0 such that

‖u‖
Wr+2,p

x
≤ c ‖Au‖Wr ,p

x
, u ∈ Wr+2,p ∩ W 1,p

0,div(O,R2), (3.4)

for all p ∈ (1,∞) and all r ∈ N0, see, e.g., [15, Thm. IV. 6.1.], which uses sufficient
smoothness of ∂O.Moreover, there is a systemof eigenfunctions to the Stokes operator
(uk) ⊂ W 1,2

0,div(O,R2) with strictly positive eigenvalues (λk) such that λk → ∞ as
k → ∞. It is possible to choose the uk’s such that the system (uk) is orthonormal in
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L2(O,R2) and orthogonal in W 1,2
0 (O,R2). Finally, we can assume that the uk’s are

sufficiently smooth due to the assumed smoothness of ∂O. SinceA is positive, its root
A1/2 is well-defined with domain W 1,p

0,div(�,R2), and we have

‖∇u‖L p
x

≤ c
∥
∥A1/2u

∥
∥
L p
x

≤ C‖∇u‖L p
x
, u ∈ W 1,p

0,div(O,R2), (3.5)
∫

O
A1/2u · w dx =

∫

O
u · A1/2w dx, u ∈ W 1,p

0,div(O,R2), w ∈ W 1,p′
0,div(O,R2), (3.6)

where c,C > 0; cf. [16].

3.1 Estimates for the Continuous Solution

In this section we derive crucial estimates for the maximal strong pathwise solution
from Definition 2.4, which hold up to the stopping time tR . Here R > 0 is a fixed
truncation parameter and T > 0 an arbitrary but fixed time.

Lemma 3.1 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete right-
continuous filtration and an (Ft )-cylindrical Wiener process W.

(a) Assume that u0 ∈ Lr (�, L2
div(O,R2)) for some r ≥ 2 and that � satisfies (2.1).

Then we have

E

[(

sup
0≤t≤T

‖u(t)‖2L2
x
+

∫ T

0
‖∇u‖2L2

x
dt

) r
2
]

≤ cE
[
1 + ‖u0‖rL2

x

]
, (3.7)

where u is the weak pathwise solution to (1.1); cf. Definition 2.1.
(b) Assume that u0 ∈ Lr (�,W 1,2

0,div(O,R2)) for some r ≥ 2 and that � satisfies
(2.1)–(2.3). Then we have

E

[(

sup
0≤t≤T

‖u(t ∧ tR)‖2
W 1,2

x
+

∫ T∧tR

0
‖u‖2

W 2,2
x

dt

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖rW 1,2

x

]
,

(3.8)

where (u, (tR)R∈N, t) is the maximal strong pathwise solution to (1.1); cf.
Definition 2.4.

(c) Assume that u0 ∈ Lr (�,W 2,2(O,R2))∩ L5r (�,W 1,2
0,div(O,R2)) for some r ≥ 2,

we have Au0 − P(u0 · ∇u0)|∂O = 0 P-a.s. and that (2.1)–(2.5) holds. Then we
have for all β < 1

E

[(

sup
0≤t≤T

‖u(t ∧ tR)‖2
W 1+β

x
+

∫ T∧tR

0
‖u‖2

W 2+β,2
x

dt

) r
2
]

≤ cR5r
E

[
1 + ‖u0‖rW 2,2

x
+ ‖u0‖2rW 1,2

x

]
,

(3.9)

where (u, (tR)R∈N, t) is the maximal strong pathwise solution to (1.1); cf.
Definition 2.4.

123



Foundations of Computational Mathematics

Here c = c(r , T , β) > 0 is independent of R.

Proof Part (a) is the standard a priori estimate, which is a consequence of applying
Itô’s formula to t �→ ‖u‖2

L2
x
.

Forpart (b)we follow [24], where the solution to a truncated problem is considered.
For R > 1 and ζ ∈ C∞

c ([0, 1)) with 0 ≤ ζ ≤ 1 and ζ = 1 in [0, 1] we set
ζR := ζ(R−1·). Similar to Definition 2.1 we seek an (Ft )-adapted stochastic process
uR with

uR ∈ C([0, T ]; L2
div(O,R2)) ∩ L2(0, T ;W 1,2

0,div(O,R2)) P-a.s.

such that

∫

O
uR(t) · ϕ dx =

∫

O
u0 · ϕ dx +

∫ t

0
ζR(‖∇uR‖L2

x
)

∫

O
uR ⊗ uR : ∇φ dx ds

− μ

∫ t

0

∫

O
∇uR : ∇ϕ dx ds +

∫ t

0

∫

O
�(uR) · ϕ dx dW (3.10)

holds P-a.s. for all ϕ ∈ W 1,2
0,div(O,R2) and all t ∈ [0, T ]. Arguing as in [24, Lemma

3.7] one can show that a unique global strong pathwise solution to (3.10) exists in the
class C([0, T ];W 1,2

0,div(O,R2)),1 and that it satisfies

E

[

sup
0≤t≤T

‖∇uR(t)‖2L2
x
dx +

∫ T

0
‖∇2uR‖2L2

x
dt

]

≤ c(r , R, T ). (3.11)

The proof of (3.11) in [24] is based on a Galerkin approximation which we mimick
now in order to prove (3.8) and (3.9).

1) Galerkin approximation. Let (uk) ⊂ W 1,2
0,div(O,R2) be a system of eigenfunc-

tions to the Stokes operator, cf. (3.3). For N ∈ N let HN := span{u1, . . . ,uN }, and
consider the unique solution uR,N to

∫

O
uR,N (t) · ϕ dx =

∫

O
u0 · ϕ dx − μ

∫ t

0

∫

O
∇uR,N : ∇ϕ dx ds

+
∫ t

0
ζR(‖∇uR,N‖L2

x
)

∫

O
uR,N ⊗ uR,N : ∇φ dx ds

+
∫ t

0

∫

O
�(uR,N ) · ϕ dx dW

(3.12)

for all φ ∈ H
N . ByPN we denote the L2(O,R2)-projection ontoHN . Problem (3.12)

can be written as a system of SDEs with Lipschitz-continuous coefficients. Hence it
is clear that there is a unique strong solution, i.e., an (Ft )-adapted process defined on

1 Different from the solution obtained in Theorem 2.5 it can be constructed for any given deterministic
T > 0.
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(�,F,P) with values in C([0, T ];HN ) and moments of order r . Arguing as in [24,
Prop. 3.2] one can prove that as N → ∞

sup
0≤t≤T

‖uR(t) − uR,N (t)‖2L2
x
+

∫ T

0
‖∇(uR − uR,N )‖2L2

x
dx dt → 0 (3.13)

in probability. Applying Itô’s formula to t �→ ‖uR,N‖2
L2
x
and using the cancellation of

the convective term one can prove for r ≥ 2

E

[(

sup
0≤t≤T

‖uR,N (t)‖2L2
x
+

∫ T

0
‖∇uR,N‖2L2

x
dt

) r
2
]

≤ cE
[
1 + ‖u0‖rL2

x

]
, (3.14)

where c = c(r , T ) is independent of N and R.
2) Proof of (3.8). By construction we have AuR,N ∈ C([0, T ];HN ) P-a.s. such

that we can apply Itô’s formula to t �→ (uR,N (t),AuR,N (t))L2
x
and use (3.12). This

yields using uR,N |∂O = 0

‖∇uR,N (t)‖2L2
x

= −(
uR,N (t),�uR,N (t)

)

L2
x

= −(
uR,N (t),AuR,N (t)

)

L2
x

= ‖PN∇u0‖22
x
+ 2

∫ t

0
ζR(‖∇uR,N‖L2

x
)
(
(uR,N · ∇)uR,N ,AuR,N )

L2
x
ds

− 2μ
∫ t

0
‖AuR,N‖2L2

x
ds + 2

N∑

k=1

∫ t

0

(
�(uR,N )ek,AuR,N )

L2
x
dβk

+
N∑

k=1

λk

∫ t

0

(
�(uR,N )ek,uk

)2
L2
x
ds

=: IN (t) + · · · + VN (t) (3.15)

P-a.s. for all t ∈ [0, T ]. We estimate now the terms IIN , IVN and VN . First of all, we
have by definition of ζR

IIN (t) ≤ 2
∫ t

0
ζR(‖∇uR,N‖L2

x
)‖uR,N‖L4

x
‖∇uR,N‖L4

x
‖AuR,N‖L2

x
ds

≤ 2
∫ t

0
ζR(‖∇uR,N‖L2

x
)‖uR,N‖

1
2
L2
x
‖∇uR,N‖L2

x
‖AuR,N‖

3
2
L2
x
ds

≤ cR3/2
∫ t

0
‖AuR,N‖

3
2
L2
x
ds ≤ δ

∫ t

0
‖AuR,N‖2L2

x
ds + c(δ)R6,

where δ > 0 is arbitrary. Moreover, we obtain by definition of uk and using (3.6) (and
recalling that �(uR,N )ek ∈ W 1,2

0,div(O,R2) for all k ∈ N by assumption)

123



Foundations of Computational Mathematics

VN (t) =
N∑

k=1

∫ t

0

(
�(uR,N )ek,

√
λkuk

)2
L2
x
ds =

N∑

k=1

∫ t

0

(
�(uR,N )ek,A1/2uk

)2 ds

=
N∑

k=1

∫ t

0

(A1/2�(uR,N )ek,uk
)2
L2
x
ds.

Furthermore, since ‖uk‖L2
x

= 1,

VN (t) ≤
∑

k≥1

∫ t

0
‖A1/2�(uR,N )ek‖2L2

x
‖uk‖2L2

x
ds ≤ c

∑

k≥1

∫ t

0
‖∇�(uR,N )ek‖2L2

x
ds

= c
∫ t

0
‖�(uR,N )‖2

L2(U;W 1,2
x )

ds ≤ c
∫ t

0

(
1 + ‖uR,N‖2

W 1,2
x

)
ds,

using (2.2) in the last step. The expectation of the right-hand side is bounded by (3.14).
Finally, by Burkholder-Davis-Gundy inequality and (2.1),

E

[(

sup
0≤t≤T

|IV(t)|
) r

2
]

≤ E

[(

sup
0≤t≤T

∣
∣
∣

∫ t

0

N∑

k=1

(
�(·,uR,N )ek,AuR,N )

L2
x
dβk

∣
∣
∣

) r
2
]

≤ cE

[( ∑

k≥1

∫ T

0

(
�(·,uR,N )ek · AuR,N )2

L2
x
dt

) r
4
]

≤ cE

[( ∑

k≥1

∫ T

0
‖�k(uR,N )ek‖2L2

x
‖AuR,N‖2L2

x
dt

) r
4
]

≤ cE

[( ∫ T

0

(
1 + ‖uR,N‖2L2

x

)‖AuR,N‖2L2
x
dt

) r
4
]

≤ c(δ)E

[(

1 + sup
0≤t≤T

‖uR,N‖2L2
x

) r
2
]

+ δ E

[( ∫ T

0
‖AuR,N‖2L2

x
dt

) r
2
]

≤ c(δ) + δ E

[( ∫ T

0
‖AuR,N‖2L2

x
dt

) r
2
]

using (3.14), where again δ > 0 is arbitrary. Choosing δ small enough and using (3.4)
we conclude that

E

[(

sup
0≤t≤T

∫

O
‖∇uR,N (t)‖2L2

x
+

∫ T

0
‖∇2uR,N‖2L2

x
dt

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖rW 1,2

x

]
, (3.16)
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uniformly in N . This implies that (uR,N )N∈N is a bounded sequence in the function
space generated by the left-hand side of (3.16). After taking a subsequence we obtain
a limit object uR which is the unique global strong solution to (3.10) recalling (3.13).
Furthermore, we can pass to the limit N → ∞ and obtain a corresponding estimate
for uR due to lower semi-continuity of the involved functionals. Since uR(· ∧ tR) =
u(· ∧ tR) we obtain (3.8).

3) Proof of (3.9). The verification of part (c) proceeds in two steps. In the first step
we show an improved version of (3.16). Applying Itô’s formula to the mapping

t �→ ‖∇uR,N (t)‖2L2
x

(
uR,N (t),AuR,N (t)

)

L2
x
,

equation (3.15) yields

‖∇uR,N (t)‖4L2
x

= ‖PN∇u0‖4L2
x
− 4μ

∫ t

0
‖∇uR,N‖2L2

x
‖AuR,N‖2L2

x
ds

+4
∫ t

0
ζR(‖∇uR,N‖L2

x
)‖∇uR,N‖2L2

x

(
(uR,N · ∇)uR,N ,AuR,N )

L2
x
ds

+4
N∑

k=1

∫ t

0
‖∇uR,N‖2L2

x

(
�(uR,N )ek,AuR,N )

L2
x
dβk

+2
N∑

k=1

λk

∫ t

0
‖∇uR,N‖2L2

x

(
�(uR,N )ek,uk

)2
L2
x
ds

+2
N∑

k=1

∫ t

0

(
�(·,uR,N )ek,AuR,N )2

L2
x
dt .

Following now step by step the arguments from the proof of (3.16) above we arrive at

E

[(

sup
0≤t≤T

‖∇uR,N (t)‖4L2
x
+

∫ T

0
‖∇uR,N‖2L2

x
‖∇2uR,N‖2L2

x
dt

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖2rW 1,2

x

]
.

Again we can pass to the limit in N obtaining

E

[(

sup
0≤t≤T

‖∇uR(t)‖4L2
x
+

∫ T

0
‖∇uR‖2L2

x
‖∇2uR‖2L2

x
dt

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖2rW 1,2

x

]
.

(3.17)

Now we turn to the proof of (3.9) stated in part (c) for which we use the mild
formulation of (3.10).

(c1) Due to the regularity proved in (3.16) and (3.17), [25, Proposition F.0.5, (i)]
applies and we can write
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uR(t) = e−tAu0 +
∫ t

0
e−(t−s)AgR ds +

∫ t

0
e−(t−s)A�(uR) dW ,

where gR : = ζR(‖∇uR‖L2
x
)P[(uR · ∇)uR].

Here (e−tA)t≥0 denotes the analytic semigroup on L2
div(O,R2) generated by the

Stokes operator A. Setting

YR(t) := e−tAu0 +
∫ t

0
e−(t−s)AgR ds,

ZR(t) :=
∫ t

0
e−(t−s)A�(uR) dW ,

we consider now the deterministic and stochastic contribution separately. We note that
YR is the unique solution to a deterministic Stokes problem with initial datum u0 and
forcing gR , whereas ZR solves a stochastic Stokes problem with homogeneous initial
datum and diffusion coefficient �(uR) – both equipped with homogeneous Dirichlet
boundary conditions.

By Ladyshenskaya’s inequality we have

E

[(∫ T

0
‖gR‖2L2

x
dt

) r
2
]

≤ E

[( ∫ T

0
‖uR‖2L4

x
‖∇uR‖2L4

x
dt

) r
2
]

≤ cE

[(∫ T

0
‖uR‖L2

x
‖∇uR‖2L2

x
‖∇2uR‖L2

x
dt

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖2rW 1,2

x

]
,

where we used (3.17) in the last step.
(c2) InterpolatingW 1/2,2(0, T ;W 1,2(O,R2)) betweenW 1,2(0, T ; L2(O,R2)) and

L2(0, T ;W 2,2(O,R2)) and applying P-a.s. classical estimates for the Stokes system
yields

E

[(

‖YR‖2
W 1/2(0,T ;W 1,2

x )
dt

) r
2
]

≤ E

[(

‖YR‖2W 1,2(0,T ;L2
x )

+ ‖YR‖2
L2(0,T ;W 2,2

x )
dt

) r
2
]

≤ cE

[( ∫ T

0
‖gR‖2L2

x
dt

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖2rW 1,2

x

]
.

(3.18)

(c3) For ZR we apply the recent results from [30, Theorems 25 and 28] proving for
any σ < 1
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E

[

‖ZR‖2Cσ/2([0,T ];L2
x )

+ ‖ZR‖2
W σ/2,2(0,T ;W 1,2

x )

]

≤ cE

[

1 + sup
0≤t≤T

‖uR‖4
W 1,2

x

]

≤ cE

[

1 + ‖u0‖4W 1,2
x

]

(3.19)

using also (2.2) and (3.17). Combining (3.18) and (3.19) and recalling that uR is the
sum of YR and ZR gives

E

[

‖uR‖2Cσ/2([0,T ];L2
x )

+ ‖uR‖2
W σ/2,2(0,T ;W 1,2

x )

]

≤ cE

[

1 + ‖u0‖4W 1,2
x

]

. (3.20)

(c4) Due to our assumption on the noise from (2.4) we know that �(uR)ek , with
k ∈ N, belongs to the domain of the Stokes operator such that we can write

AZR(t) =
∫ t

0
e−(t−s)AA�(uR) dW .

We conclude that AZR is the unique weak pathwise solution to the stochastic Stokes
problem with zero initial datum, homogeneous boundary conditions and diffusion
coefficient A�(uR). It is standard to derive for r ≥ 2 the estimate

E

[(

sup
0≤t≤T

‖AZR‖2L2
x
+

∫ T

0
‖∇AZR‖2L2

x
ds

) r
2
]

≤ cE

[( ∫ T

0
‖A�(uR)‖2L2(U;L2

x )
ds

) r
2
]

≤ cE

[( ∫ T

0
‖�(uR)‖2

L2(U;W 2,2
x )

ds

) r
2
]

≤ c

[( ∫ t

0

(
1 + ‖uR‖2

W 1,2
x

‖uR‖2
W 2,2

x
+ ‖uR‖2

W 2,2
x

)
ds

) r
2
]

,

applying Itô’s formula to t �→ ‖AuR‖2
L2
x
and using Burkholder-Davis-Gundy inequal-

ity (and (2.4) in the last step). The properties of the Stokes operator from (3.4)
yield

E

[(

sup
0≤t≤T

‖ZR‖2
W 2,2

x
+

∫ T

0
‖ZR‖2

W 3,2
x

ds

) r
2
]

≤ c

[( ∫ t

0

(
1 + ‖uR‖2

W 1,2
x

‖uR‖2
W 2,2

x
+ ‖uR‖2

W 2,2
x

)
ds

) r
2
]

.
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(c5) To sharpen the estimates for YR is slightly more involved as the convective term
gR does not lie in the domain of the Stokes operator since it does not necessarily have
a zero trace. We can choose p < 2 such that the embedding W 1,p(O) ↪→ W σ,2(O)

holds. We obtain by continuity of P , cf. (3.2),

‖gR‖W σ,2
x

≤ c ‖gR‖
W 1,p

x
≤ c‖(uR · ∇)uR‖

W 1,p
x

≤ c‖∇uR‖2
L2p
x

+ c‖uR‖Lq
x
‖∇2uR‖L2

x
≤ c‖∇uR‖L2

x
‖∇2uR‖L2

x
,

where we used Hölder’s inequality with exponents 2/p and q := 2/(2− p) as well as
Sobolev’s embedding W 1,2(O,R2) ↪→ Lq(O,R2) and Ladyshenskaya’s inequality.
By (3.17) we conclude that

gR ∈ L2(0, T ;W σ,2(O,R2)) P-a.s. (3.21)

We argue now similarly for the temporal regularity of order σ/2 obtaining for any
σ ′ ∈ (σ, 1)

‖gR‖p
W σ/2,p(0,T ;L p

x )

≤ c
∫ T

0

∫ T

0

‖uR(t)∇uR(t) − uR(s)∇uR(s)‖p
L p
x

|t − s|1+pσ/2 dt ds

≤ c
∫ T

0

∫ T

0

(‖uR(t) − uR(s)‖L2
x

|t − s|σ ′/2 ‖∇uR(t)‖Lq
x

)p dt ds

|t − s|1+ (σ−σ ′)p
2

+ c
∫ T

0

∫ T

0

(‖uR(s)‖Lq
x
‖∇uR(t) − ∇uR(s)‖L2

x

|t − s|σ/2

)p dt ds

|t − s|
≤ c‖uR‖p

Cσ ′/2([0,T ];L2
x )

∫ T

0
‖∇uR(t)‖p

Lq
x
dt

+ c sup
0≤s≤t

‖uR(s)‖p
Lq
x

∫ T

0

∫ T

0

‖∇uR(t) − ∇uR(s)‖p
L2
x

|t − s|1+pσ/2 dt ds

≤ c‖uR‖p

Cσ ′/2([0,T ];L2
x )

∫ T

0

(
1 + ‖uR(t)‖2

W 2,2
x

)
dt

+ c sup
0≤s≤t

‖uR(s)‖p

W 1,2
x

‖uR‖p

W σ/2,p(0,T ;W 1,2
x )

≤ c

(

‖uR‖2
Cσ ′/2([0,T ];L2

x )
+ ‖uR‖2

W σ ′/2,2(0,T ;W 1,2
x )

+ 1

)

+ c

(

sup
0≤s≤t

‖uR(s)‖2
W 1,2

x
+

∫ T

0
‖uR‖2

W 2,2
x

dt

)q

.
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The expectation of the right-hand side is bounded using (3.9) and (3.20); in particular,
for any σ < 1

gR ∈ W σ/2,2(0, T ; L2(O,R2)) P-a.s. (3.22)

using the embedding decreasing the value of σ and using W σ/2,p(0, T ) ↪→
W σ ′/2,2(0, T ) for an appropriate choice of σ > σ ′ and p < 2. By (3.21) and (3.22)
classical results on the Stokes system (see [28, Thm. 15] and note the compability
assumption Au0 − P(u0 · ∇u0)|∂O = 0 P-a.s.) and interpolation yield

YR ∈ W 1+σ/2(0, T ; L2(O,R2)) ∩ L2(0, T ;W 2+σ,2(O,R2)) P-a.s.

and thus, again by interpolation and appropriate choice of σ ∈ (β, 1) and the
embedding Wα,2(0, T ) ↪→ L∞(0, T ) for α > 1/2,

YR ∈ L∞(0, T ;W 1+β,2(O,R2)) ∩ L2(0, T ;W 2+β,2(O,R2)) P-a.s. (3.23)

together with

sup
0≤t≤T

‖YR‖2
W 1+β,2

x
+

∫ T

0
‖YR‖2

W 2+β,2
x

ds

≤ c

[

‖u0‖2W 1+σ,2
x

+ ‖gR‖2
W σ/2,2

t (L2
x )

+
∫ T

0
‖gR‖2

W σ,2
x

ds

]

P-a.s.

Combining the estimates for YR and ZR , choosing κ sufficiently small and using
(3.16) and (3.17) we arrive at

E

[(

sup
0≤t≤T

‖uR(t)‖2
W 1+σ,2

x
dx +

∫ T

0
‖uR‖2

W 2+σ,2
x

dt

) r
2
]

≤ cR5r
E

[
1 + ‖u0‖rW 2,2

x
+ ‖u0‖2rW 1,2

x

]
.

uniformly in R. ��
Remark 3.2 1. It seems not possible to prove Lemma 3.1 (c) for β ≥ 1, see (3.23). In
fact, even for the deterministic Stokes system high regularity is only possible if the
forcing is regular in space and time or belongs to the domain of the Stokes opera-
tor. Since neither is true for the convective term P(u · ∇)u (its temporal regularity is
restricted by that of the driving Wiener process) we conjecture that the spatial reg-
ularity from 3.1 (c) is optimal. Interestingly, this is just enough to prove an optimal
convergence rate for the discretisation of (1.1) in Theorem 4.4.

2. Using a recent result from [30] we can show that the gradient of the velocity
field and hence the convective has a fractional time derivative of order β/2 < 1/2.
This is optimal in view of the limited regularity of the driving Wiener process in the
momentum equation. It is classical for deterministic parabolic equations (see [28] for
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the Stokes equations and [27] for the heat equation) that the solution gains two spatial
and one temporal derivatives compared to the right-hand side. Hence the regularity of
the latter has to be measured in space and time with respect to the parabolic scaling;
pure space regularity does not transfer unless additional assumptions are in place such
that we can only hope for 2 + β spatial derivatives.

3.2 Regularity of the Pressure

Since we will be working with discretely divergence-free function spaces in the finite-
element analysis for (4.1) in Sect. 4, it is inevitable to introduce the pressure function.
Note that the strong formulation of the momentum equation in (2.6) even allows test
functions from the class L2

div(O,R2) (using a standard smooth approximation argu-
ment), i.e., functions which do not have zero traces on ∂O. Hence for φ ∈ C∞

c (O,R2)

we can insert

Pφ = φ − ∇�−1
O divφ

with the Helmholz projection P; cf. (3.1). We obtain

∫

O
u(t ∧ tR) · ϕ dx −

∫ t∧tR

0

∫

O
μ�u · φ dx dσ +

∫ t∧tR

0

∫

O
(u · ∇)u · φ dx dσ

=
∫

O
u(0) · ϕ dx +

∫ t∧tR

0

∫

O
π divφ dx dσ

+
∫

O

∫ t∧tR

0
�(u) dW · ϕ dx, (3.24)

where

π = −�−1
O div

(
(u · ∇)u − μ�u

)
.

In the following we will analyse how the regularity of u transfers to π , where again
R > 0 is a fixed truncation parameter and T > 0 an arbitrary but fixed time.

Lemma 3.3 (a) Under the assumptions of Lemma 3.1 (b) we have

E

[( ∫ T∧tR

0
‖π‖2

W 1,2
x

dt

) r
4
]

≤ cR3r
E

[
1 + ‖u0‖rW 1,2

x

]
.

(b) Under the assumptions of Lemma 3.1 (c) we have

E

[( ∫ T∧tR

0
‖π‖2

W 2,2
x

dt

) r
4
]

≤ cR5r
E

[
1 + ‖u0‖rW 2,2

x

]
.

Here c = c(r , T ) > 0 is independent of R.
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Proof Ad (a). Arguing as in [5, Corollary 2.5] and using (3.2) we obtain

E

[( ∫ T∧tR

0
‖π‖2

W 1,2
x

dt

) r
4
]

≤ cE

[(

1 + sup
t∈[0,T∧tR ]

‖u‖2
W 1,2

x
+

∫ T∧tR

0
‖u‖2

W 2,2
x

dt

) r
2
]

.

Consequently, Lemma 3.1 (b) implies (a).
Ad (b). Using (3.2) we have for p > 2 close to 2 and q := 2p

p−2

E

[(∫ T∧tR

0
‖π‖2

W 2,2
x

dt

) r
4
]

≤ cE

[(∫ T∧tR

0
‖u · ∇u‖2

W 1,2
x

dt

) r
4
]

≤ cE

[(∫ T∧tR

0
‖∇u‖4L4

x
dt +

∫ T∧tR

0
‖u‖2

Lq
x
‖∇2u‖2

L p
x
dt

) r
4
]

≤ cE

[(∫ T∧tR

0
‖u‖4

W 1+β,2
x

dt + sup
0≤t≤T∧tR

‖u‖2
W 1,2

x

∫ T∧tR

0
‖u‖2

W 2+β,2
x

dt

) r
4
]

≤ cE

[(

sup
0≤t≤T∧tR

‖u‖2
W 1+β,2

x
+

∫ T∧tR

0
‖u‖2

W 2+β,2
x

dt

) r
2
]

using the embeddings W 1+β,2(O,R2) ↪→ W 1,4(O,R2) and W 2+β,2(O,R2) ↪→
W 2,p(O,R2), which hold for an appropriate choice ofβ ∈ (0, 1). Hence using Lemma
3.1 (c) completes the proof. ��
Corollary 3.4 (a) Let the assumptions of Lemma 3.1 (b) be satisfied for some r > 2.

For all α < 1
2 we have

E

[(
‖u(· ∧ tR)‖Cα([0,T ];L2

x )

) r
2
]

≤ cR3r
E

[
1 + ‖u0‖rW 1,2

x

]
. (3.25)

(b) Let the assumptions of Lemma 3.1 (c) be satisfied for some r > 2. For all α < 1
2

we have

E

[(
‖u(· ∧ tR)‖Cα([0,T ];W 1,2

x )

) r
2
]

≤ cR5r
E

[
1 + ‖u0‖rW 2,2

x
+ ‖u0‖2rW 1,2

x

]
. (3.26)

Here c = c(r , T , α) > 0 is independent of R.

Proof As in [5, Corollary 2.6] we can combine Lemmas 3.1 and 3.3 to conclude the
result concerning the time regularity of u form (a). As far is (b) is concerned we
analyse each term in equation (3.24) separately. Lemma 3.1 (b) implies

∫ ·∧tR

0
�u dσ ∈ Lr (�; L2(0, T ;Wβ,2(O,R2))),
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whereas Lemmas 3.1 (c) and 3.3 (b) yield

∫ ·∧tR

0

(
div(u ⊗ u) + ∇π

)
dσ ∈ L

r
2 (�; L2(0, T ;Wβ,2(O,R2))).

Finally, we have

∫ ·∧tR

0
�(u) dW ∈ Lr (�;Cα([0, T ]; L2(O,R2))).

by combing Lemma 3.1 (a) with (2.2). We conclude that

E

[(
‖u(· ∧ tR)‖

Cα([0,T ];Wβ,2
x )

) r
2
]

≤ cR5r
E

[
1 + ‖u0‖rW 2,2

x
+ ‖u0‖2rW 1,2

x

]
.

for all β < 1. Interpolating this with the estimate from Lemma 3.1 (c) gives the claim.
��

4 Error Analysis: Direct Comparison

Now we consider a fully practical scheme combining a semi-implicit Euler scheme in
time with a finite element approximation in space. It is defined on the given filtered
probability space (�,F, (Ft ),P) on whichW as well as the maximal strong pathwise
solution to (1.1) are defined. For a given h > 0 let uh,0 be an F0-measurable random
variable with values in V h,i

div (O,R2) (for instance �hu0; see (2.11)). We aim at con-
structing iteratively a sequence of random variables (uh,m, ph,m) such that for every
(φ, χ) ∈ V h,i (O,R2) × Ph, j (O) it holds true P-a.s.

∫

O
uh,m · ϕ dx + τ

∫

O
(
(uh,m−1 · ∇)uh,m + (divuh,m−1)uh,m

) · φ dx

+ μτ

∫

O
∇uh,m : ∇φ dx − τ

∫

O
ph,m divϕ dx

=
∫

O
uh,m−1 · ϕ dx +

∫

O
�(uh,m−1)�mW · ϕ dx ,

∫

O
divuh,m · χ dx = 0 ,

(4.1)

where �mW = W (tm) − W (tm−1). Here the interval [0, T ] is decomposed into an
equidistant grid of time points tm = mτ = m T

M with M ∈ N. For our theoretical
analysis it is convenient to work with the pressure-free formulation of (4.1): For every
φ ∈ V h,i

div (O,R2) it holds true P-a.s.
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∫

O
uh,m · ϕ dx + τ

∫

O
(
(uh,m−1 · ∇)uh,m + (divuh,m−1)uh,m

) · φ dx

=
∫

O
uh,m−1 · ϕ dx − μτ

∫

O
∇uh,m : ∇φ dx

+
∫

O
�(uh,m−1)�mW · ϕ dx .

(4.2)

We quote the following result concerning the solution (uh,m)Mm=1 to (4.2) from [9,
Lemma 3.1].

Lemma 4.1 Fix T > 0. Assume that uh,0 ∈ L2q (�, V h,i
div (O,R2)) with q ∈ N is

an F0-measurable random variable. Suppose that � satisfies (2.1). Then the iterates
(uh,m)Mm=1 given by (4.2) are (Ftm )-measurable. Moreover, the following estimate
holds uniformly in M and h:

E

[

max
1≤m≤M

‖uh,m‖2qL2
x
+ τ

M∑

k=1

‖uh,m‖2q−2
L2
x

‖∇uh,m‖2L2
x

]

≤ c(q, T )E
[
1 + ‖uh,0‖2qL2

x

]
.

(4.3)

Our error analysis for (4.2) is based on an auxiliary problem which coincides with
(4.2) until a discrete stopping time. As we shall see below both problems coincide
with high probability. For every m ≥ 1 we introduce the discrete stopping time

tRm := max
1≤n≤m

{
tn : tn ≤ tR

}
, (4.4)

which is obviously (Ftm )-stopping time (but not an (Ft )-stopping time). Setting τ R
m :=

tRm − tRm−1 we introduce u
R
h,m as the V h,i

div (O,R2)-valued solution to

∫

O
uR
h,m · ϕ dx + τ R

m

∫

O
(
(uR

h,m−1 · ∇)uR
h,m + (divuR

h,m−1)u
R
h,m

) · φ dx

=
∫

O
uR
h,m−1 · ϕ dx − μτ R

m

∫

O
∇uR

m : ∇φ dx

+ τ R
m

τ

∫

O
�(uR

h,m−1)�mW · ϕ dx

(4.5)

for every φ ∈ V h,i
div (O,R2). Obviously uR

h,m = uh,m in [tm = tRm]. Our main effort
is dedicated to the proof of an error estimate for (4.5) in the following theorem, for
which R > 0 is a fixed truncation parameter and T > 0 an arbitrary but fixed time.

Theorem 4.2 Let u0 ∈ L8(�,W 2,2(O,R2)) ∩ L20(�;W 1,2
0,div(O,R2)) be F0-

measurable, we have Au0 − P(u0 · ∇u0)|∂O = 0 P-a.s. and assume that � satisfies
(2.1)–(2.5). Let

(u, (tR)R∈N, t)
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be the uniquemaximal global strongpathwise solution to (1.1) in the sense ofDefinition
2.4. Let (tRm)Mm=1 be defined by (4.4). Then we have for all R ∈ N and all α < 1

2 , β < 1

E

[

max
1≤m≤M

‖u(tRm) − uR
h,m‖2L2

x
+

M∑

m=1

τ R
m ‖∇u(tRm) − ∇uR

h,m‖2L2
x

)]

≤ cecR
4 (
h2β + τ 2α

)
,

(4.6)

where (uR
h,m)Mm=1 is the solution to (4.5) with u

R
h,0 = �hu0. The constant c in (4.6) is

independent of τ , h and R.

Remark 4.3 1. In previous papers concerning the periodic problem, in particular [12],
the idea is to consider the equation for the error in the m-th step and multiply by the
indicator function of a set �

h,τ
m−1 ⊂ �. Hereby �

h,τ
m−1 ⊂ � is Ftm−1 -measurable and

certain quantities up to time tm−1 are bounded in �
h,τ
m−1. It is, however, not necessary

to control the continuous solution in this way since global estimates are available, see,
e.g., [12, Lemma 2.1] or [5, Lemma 2].

In our situation, having only stopped estimates as in Lemma 3.1, it is necessary to
also control the continuous solution. For certain quantities, having control until time
tm−1 is not sufficient (see, for instance, the estimates for I2(m) and I3(m) below, where
norms of u over [tm−1, tm] appear). Using Ftm -measurable sets �

h,τ
m ⊂ � instead is

not possible either as it destroys the martingale property ofM 1 given below in (4.7).
Both problems are overcome by the use of the discrete stopping time tRm : we can

control norms of u over [tm−1, tm], andM 1 is estimated at time tR ≥ tRm such that the
martingale property can be used.

2. The (discrete) gradient of the noise term in (4.1) need not be subtracted here, as
is in [14], since a simultaneous space-time error analysis is used to prove Theorem
4.4 below.

Our main result is now a direct consequence of Theorem 4.2: Setting for ε > 0
arbitrary R = c−1/4 4

√−2ε logmin{h, τ }, we have for any ξ > 0

P

[max1≤m≤M ‖u(tm) − uh,m‖2
L2
x
+ ∑M

m=1 τ‖∇u(tm) − ∇uh,m‖2
L2
x

h2β−2ε + τ 2α−2ε > ξ

]

≤ P

[max1≤m≤M ‖u(tRm) − uR
h,m‖2

L2
x
+ ∑M

m=1 τ R
m ‖∇u(tRm) − ∇uR

h,m‖2
L2
x

h2β−2ε + τ 2α−2ε > ξ

]

+ P
[{tR < T }] → 0

as h, τ → 0 (recall that tR → ∞ P-a.s. by Theorem 2.5 and that tRM < tM implies
tR < T ). Relabeling α and β we have proved the following result.

Theorem 4.4 Let (�,F, (Ft )t≥0,P) be a given stochastic basis with a complete
right-continuous filtration and an (Ft )-cylindrical Wiener process W. Let u0 ∈
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L8(�,W 2,2(O,R2)) ∩ L20(�;W 1,2
0,div(O,R2)) be F0-measurable, we have Au0 −

P(u0 · ∇u0)|∂O = 0 P-a.s. and assume that � satisfies (2.1)–(2.5). Let

(u, (tR)R∈N, t)

be the unique maximal global strong pathwise solution to (1.1) from Theorem 2.5.
Then we have for any ξ > 0, α < 1

2 , β < 1

P

[max1≤m≤M ‖u(tm) − uh,m‖2
L2
x
+ ∑M

m=1 τ‖∇u(tm) − ∇uh,m‖2
L2
x

h2β + τ 2α
> ξ

]

→ 0

as h, τ → 0, where (uh,m)Mm=1 is the solution to (4.2) with uh,0 = �hu0.

In order to finish the proof of our main result stated in Theorem 4.4 above, we focus
now on proving the error estimate from Theorem 4.2 concerning the auxiliary problem
(4.5).

Proof of Theorem 4.2 Define the error eh,m = u(tRm) − uR
h,m . Subtracting (3.24) and

(4.5) and recalling that functions fromW 1,2
0 (O,R2) are admissible in (3.24) we obtain

∫

O
eh,m · ϕ dx +

∫ tRm

tRm−1

∫

O
μ∇u(σ ) : ∇φ dx dσ − τ R

m

∫

O
μ∇uR

h,m : ∇φ dx

=
∫

O
eh,m−1 · ϕ dx −

∫ tRm

tRm−1

∫

O
(u(σ ) · ∇)u(σ ) · φ dx dσ

+ τ R
m

∫

O
(
(uR

h,m−1 · ∇)uR
h,m + (divuR

h,m−1)u
R
h,m

) · φ dx

+
∫

O

∫ tRm

tRm−1

�(u(σ )) dW · ϕ dx −
∫

O

∫ tRm

tRm−1

�(uR
h,m−1) dW · ϕ dx

+
∫ tRm

tRm−1

∫

O
π(σ) divφ dx dσ

for every φ ∈ V h,i (O,R2), which is equivalent to

∫

O
eh,m · ϕ dx + τ R

m

∫

O
μ

(
∇u(tRm) − ∇uR

h,m

)
: ∇φ dx

=
∫

O
eh,m−1 · ϕ dx +

∫ tRm

tRm−1

∫

O
μ

(∇u(tRm) − ∇u(σ )
) : ∇φ dx dσ

+
∫ tRm

tRm−1

∫

O

(
(u(tRm−1) · ∇)u(tRm) − (u(σ ) · ∇)u(σ )

)
· φ dx dσ

− τ R
m

∫

O

(
(u(tRm−1) · ∇)u(tRm) − (

(uR
h,m−1 · ∇)uR

h,m + (divuR
h,m−1)u

R
h,m

)) · φ dx
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+
∫

O

∫ tRm

tRm−1

(
�(u(σ )) − �(uR

h,m−1)
)
dW · ϕ dx +

∫ tRm

tRm−1

∫

O
π(σ) divφ dx dσ.

Setting φ = �heh,m and applying the identity a · (a− b) = 1
2

(|a|2 − |b|2 + |a− b|2)
(which holds for any a,b ∈ R

n) we gain

1

2

(‖�heh,m‖2L2
x
− ‖�heh,m−1‖2L2

x
+ ‖�heh,m − �heh,m−1‖2L2

x

) + τ R
m μ‖∇eh,m‖2L2

x

= τ R
m

∫

O
μ∇eh,m : ∇(

u(tRm) − �hu(tRm)
)
dx

+
∫ tRm

tRm−1

∫

O
μ

(∇u(tRm) − ∇u(σ )
) : ∇�heh,m dx dσ

+
∫ tRm

tRm−1

∫

O

(
(u(tRm−1 · ∇)u(tRm) − (u(σ ) · ∇)u(σ )

)
· �heh,m dx dσ

− τ R
m

∫

O

(
(u(tRm−1) · ∇)u(tRm) − (

(uR
h,m−1 · ∇ + divuR

h,m−1)u
R
h,m

)) · �heh,m dx

+
∫

O

∫ tRm

tRm−1

(
�(u(σ )) − �(uR

h,m−1)
)
dW · �heh,m dx

+
∫ tRm

tRm−1

∫

O
π(σ) div�heh,m dx dσ

=: I1(m) + · · · + I6(m).

Eventually, we will take the maximum with respect to m ∈ {1, . . . , M} and apply
expectations. Let us explain how to deal with E

[
maxm I1(m)], . . . ,E[maxm I6(m)]

independently.
We clearly have for any κ > 0

I1(m) ≤ κτ R
m ‖∇eh,m‖2L2

x
+ c(κ)τ R

m ‖∇(u(tRm) − �hu(tRm)‖2L2
x

≤ κτ R
m ‖∇eh,m‖2L2

x
+ c(κ)τh2β‖u(tRm)‖2

W 1+β,2
x

due to the W 1,2
x -stability of �h , cf. (2.12). Note that the expectation of the last term

may be bounded with the help of Lemma 3.1 (c) using tRm ≤ tR . We continue with
I2(m), for which we obtain

I2(m) ≤ κτ R
m ‖∇�heh,m‖2L2

x
+ c(κ)

∫ tRm

tRm−1

‖∇(u(tRm) − u(σ ))‖2L2
x
dσ

≤ κτ R
m ‖∇eh,m‖2L2

x
+ κτ R

m ‖∇(u(tRm) − �hu(tRm))‖2L2
x

+ c(κ)τ 1+2α‖∇u‖2
Cα([tRm−1,t

R
m ];L2

x )
,
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where the last term can be controlled by Corollary 3.4 and the second last one by
(2.12) and 3.1 (c) as for I2(m). We proceed by

I3(m) = −
∫ tRm

tRm−1

∫

O

(
u(tRm) ⊗ u(tRm−1) − u(σ ) ⊗ u(σ )

)
: ∇�heh,m dx dσ

≤ κτ R
m ‖∇�heh,m‖2L2

x
+ c(κ)

∫ tRm

tRm−1

‖u(tRm) ⊗ u(tRm−1) − u(σ ) ⊗ u(σ )‖2L2
x
dσ

≤ κτ R
m ‖∇eh,m‖2L2

x
+ κτ R

m ‖∇(u(tRm) − �hu(tRm))‖L2
x

+ c(κ)τ 1+2α‖u‖2
L∞((tRm−1,t

R
m )×O)

‖u‖2
Cα([tRm−1,t

R
m ];L2

x )

≤ κτ R
m ‖∇eh,m‖2L2

x
+ c(κ)τh2β‖u(tRm)‖2

W 1+β,2
x

+ c(κ)τ 1+2α‖u‖2
L∞(tRm−1,t

R
m ;W 2,2

x )
‖u‖2

Cα([tRm−1,t
R
m ];L2

x )
,

where we used Sobolev’s embedding W 2,2(O,R2) ↪→ L∞(O,R2). We can apply
again Lemma 3.1 (c) and Corollary 3.4 to the last term. The term I4(m) can be
decomposed as

I4(m) = I 14 (m) + I 24 (m) + I 34 (m),

I 14 (m) = −τ R
m

∫

O
(u(tRm−1 · ∇)eh,m · (

u(tRm) − �hu(tRm)
)
dx,

I 24 (m) = τ R
m

∫

O
(eh,m−1 · ∇)eh,m · (

u(tRm) − �hu(tRm)
)
dx

+ τ R
m

∫

O
(diveh,m−1)eh,m · (

u(tRm) − �hu(tRm)
)
dx,

I 34 (m) = −τ R
m

∫

O
(eh,m−1 · ∇)�heh,m · u(tRm) dx

− τ R
m

∫

O
(diveh,m−1)�heh,m · u(tRm) dx .

We obtain for any κ > 0

I 14 (m) ≤ τ R
m ‖∇eh,m‖2L2

x
‖u(tRm−1)‖L4

x
‖u(tRm) − �hu(tRm)‖L4

x

≤ cτ R
m ‖∇eh,m‖2L2

x
‖u(tRm−1)‖W 1,2

x
‖u(tRm) − �hu(tRm)‖

1
2
L2
x
‖u(tRm) − �hu(tRm)‖

1
2

W 1,2
x

≤ cτ R
m ‖∇eh,m‖L2

x
h1+β/2R‖u(tRm)‖

W 1+β,2
x

≤ κτ R
m ‖∇eh,m‖2L2

x
+ c(κ)h2+β R2τ R

m ‖u(tRm)‖2
W 1+β,2

x

by the embedding W 1,2(O,R2) ↪→ L4(O,R2), Ladyshenskaya’s inequality, the def-
inition of tRm , and (2.12). The first term can be absorbed for κ small enough, whereas
the second one (in summed form and expectation) is bounded by h2+β R12 due Lemma
3.1 (c). Similarly, we have
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I 24 (m) ≤ τ R
m ‖∇eh,m‖L2

x
‖eh,m−1‖L4

x
‖u(tRm) − �hu(tRm)‖L4

x

+ τ R
m ‖∇eh,m−1‖L2

x
‖eh,m‖L4

x
‖u(tRm) − �hu(tRm)‖L4

x

≤ cτ R
m h1+β/2‖∇eh,m‖L2

x
‖eh,m−1‖

1
2
L2
x
‖∇eh,m−1‖

1
2
L2
x
‖u(tRm)‖

W 1+β,2
x

+ cτ R
m h1+β/2‖∇eh,m−1‖L2

x
‖eh,m‖

1
2
L2
x
‖∇eh,m‖

1
2
L2
x
‖u(tRm)‖

W 1+β,2
x

≤ κτ R
m

(
‖∇eh,m−1‖2L2

x
+ ‖∇eh,m‖2L2

x

)

+ c(κ) τ R
m h4+2β

(
max

1≤n≤m
‖eh,n‖2L2

x

)
‖u(tRm)‖4

W 1+β
x

.

The last term (in summed form and expectation) can be controlled by Lemma 3.1 (c)
(with r = 8) and Lemma 4.1 (with q = 2). Note that we have either have uh,m = uR

h,m

or τ R
m = 0. Finally, by definition of tRm ,

I 34 (m) ≤ τ R
m ‖∇�heh,m‖L2

x
‖eh,m−1‖L4

x
‖u(tRm)‖L4

x

+ τ R
m ‖∇eh,m−1‖L2

x
‖�heh,m‖L4

x
‖u(tRm)‖L4

x

≤ τ R
m ‖∇eh,m‖L2

x
‖eh,m−1‖

1
2
L2
x
‖∇eh,m−1‖

1
2
L2
x
‖u(tRm)‖W 1,2

x

+ τ R
m ‖∇eh,m−1‖L2

x
‖�heh,m‖

1
2
L2
x
‖∇�heh,m‖

1
2
L2
x
‖u(tRm)‖W 1,2

x

≤ κτ R
m

(
‖∇eh,m−1‖2L2

x
+ ‖∇�heh,m‖2L2

x

)
+ cκ τ R

m R4(‖�heh,m‖2L2
x
+ ‖eh,m−1‖2L2

x

)

≤ κτ R
m

(
‖∇eh,m−1‖2L2

x
+ ‖∇eh,m‖2L2

x

)
+ c(κ) τ R

m R4(‖�heh,m‖2L2
x
+ ‖�heh,m−1‖2L2

x

)

+ c(κ) τ R
m ‖∇(u(tRm) − �hu(tRm))‖2L2

x
+ c(κ) τ R

m R4‖u(tRm−1) − �hu(tRm−1)‖2L2
x
.

The second last term will be dealt with by Gronwall’s lemma leading to a constant
of the form cecR

4
. The final line is bounded by c(κ) τ R

m R4 h2β‖u(tRm−1)‖2W 1+β,2
x

using

(2.12) and hence can be controlled by Lemma 3.1 (c).
In order to estimate the stochastic term we write

Mm =
m∑

n=1

I5(n) =
m∑

n=1

∫

O

∫ tRn

tRn−1

(
�(u) − �(uR

h,n−1)
)
dW · �heh,n dx

=
m∑

n=1

∫

O

∫ tRn

tRn−1

(
�(u) − �(uR

h,n−1)
)
dW · �heh,n−1 dx

+
m∑

n=1

∫

O

∫ tRn

tRn−1

(
�(u) − �(uR

h,n−1)
)
dW · �h(eh,n − eh,n−1) dx

=
∫ tRm

0

M∑

n=1

1[tn−1,tn)

∫

O
(
�(u) − �(uR

h,n−1)
)
dW · �heh,n−1 dx
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+
m∑

n=1

∫

O

∫ tRn

tRn−1

(
�(u) − �(uR

h,n−1)
)
dW · �h(eh,n − eh,n−1) dx

=: M 1(tRm) + M 2
m . (4.7)

Since the process (M 1(t ∧ tR))t≥0 is an (Ft )-martingale we gain by the Burgholder-
Davis-Gundy inequality (using that tRM ≤ tR by definition)

E

[

max
1≤m≤M

∣
∣M 1(tRm)

∣
∣

]

≤ E

[

sup
s∈[0,tRM ]

∣
∣M 1(s)

∣
∣

]

≤ E

[

sup
s∈[0,T ]

∣
∣M 1(s ∧ tR)

∣
∣

]

≤ cE

[(∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖�(u) − �(uR
h,n−1)‖2L2(U,L2

x )
‖�heh,n−1‖2L2

x
dt

) 1
2
]

≤ cE

[

max
1≤n≤M

‖�heh,n‖L2
x

( ∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖�(u) − �(uR
h,n−1)‖2L2(U,L2

x )
dt

) 1
2
]

≤ κ E

[

max
1≤n≤M

‖�heh,n‖2L2
x

]

+ cκ E

[ ∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖u − uR
h,n−1‖2L2

x
dt

]

.

Here, we also used (2.1) as well as Young’s inequality for κ > 0 arbitrary. Since
uR
h,n−1 = eh,n−1 + u(tRn−1) is V

h,i
div (O,R2)-valued, we further estimate

E

[

max
1≤m≤M

∣
∣M 1(tRm)

∣
∣

]

≤ κ E

[

max
1≤n≤M

‖�heh,n‖2L2
x

]

+ c(κ)E

[ ∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖u − u(tRn−1)‖2L2
x
dt

]

+ c(κ)E

[ ∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖u(tRn−1) − �hu(tRn−1)‖2L2
x
dt

]

+ c(κ)E

[ ∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖�heh,n−1‖2L2
x
dt

]

We bound the last term by

E

[ ∫ T∧tR

0

M∑

n=1

1[tn−1,tn)‖�heh,n−1‖2L2
x
dt

]

≤ E

[ M+1∑

n=1

τ R
n ‖�heh,n−1‖2L2

x
dt

]

≤ E

[ M∑

n=0

τ R
n ‖�heh,n‖2L2

x
dt

]
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using that tR ∧ tM ≤ tRM+1 and τ R
n ≤ τ R

n−1 with τ R
0 := τ . Applying (2.12) as well as

Lemma 3.1 (b) and Corollary 3.4 (b) we gain

E

[

max
1≤m≤M

∣
∣M 1(tRm)

∣
∣

]

≤ κ E

[

max
1≤n≤M

‖�heh,n‖2L2
x

]

+ c(κ)E

[ M∑

n=0

τ R
n ‖�heh,n‖2L2

x

]

+ c(κ)τ 2αE
[‖u‖2Cα([0,T∧tR ],L2

x )

] + c(κ)h1+β
E

[

sup
t∈[0,T ]

∫

O
|∇u(t ∧ tR)|2 dx

]

≤ κ E

[

max
1≤n≤M

‖�heh,n‖2L2
x

]

+ c(κ)E

[ M∑

n=0

τ‖�heh,n‖2L2
x

]

+ c(κ)τ 2αR20 + c(κ)h1+β R6.

Similarly: on using Cauchy-Schwartz inequality, Young’s inequality, Itô-isometry and
(2.1) we have for κ > 0

E

[

max
1≤m≤M

|M 2
m |

]

≤ E

[ M∑

n=1

(

κ‖�h(eh,n − eh,n−1)‖2L2
x
+ c(κ)

∥
∥
∥
∥
∥

∫ tRn

tRn−1

(
�(u) − �(uR

h,n−1)
)
dW

∥
∥
∥
∥
∥

2

L2
x

)]

≤ κE

[ M∑

n=1

‖�h(eh,n − eh,n−1)‖2L2
x

]

+ c(κ)E

[ M∑

n=1

∫ tRn

tRn−1

‖u − uR
h,n−1‖2L2

x
dt

]

≤ κE

[ M∑

n=1

‖�h(eh,n − eh,n−1)‖2L2
x

]

+ c(κ)E

[ M∑

n=1

∫ tRn

tRn−1

‖u − u(t Rn−1)‖2L2
x
dt

]

+ cκ E

[ M∑

n=1

τ R
n,h‖u(tRn−1) − �hu(tRn−1)‖2L2

x

]

+ c(κ)E

[ M∑

n=1

τ R
n ‖�heh,n−1‖2L2

x

]

≤ κE

[ M∑

n=1

‖�h(eh,n − eh,n−1)‖2L2
x

]

+ c(κ)E

[ M∑

n=1

τ R
n ‖�heh,n−1‖2L2

x

]

+ c(κ)τ 2αR20 + c(κ)h2R6

as a consequence Lemma 3.1 (b) (using also (2.11)) and Corollary 3.4 (b).
Finally, we have by (2.13)

I6(m) =
∫ tRm

tRm−1

∫

O
(
π − �π

h π
)
div�heh,m dx dσ

≤ c(κ)

∫ tRm

tRm−1

‖π − �π
h π‖2L2

x
dσ + κτ ‖∇�heh,m‖2L2

x
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≤ c(κ)h2
∫ tRm

tRm−1

‖∇π‖2L2
x
dσ + κτ ‖∇eh,m‖2L2

x
,

where κ > 0 is arbitrary. The first term is summable in expectation with bound
c(κ)h2R12 due to Lemma 3.3 (b) and the last one can be absorbed. Collecting all
estimates, choosing κ small enough implies

E

[

max
1≤m≤M

‖�heh,m‖2L2
x
+

M∑

m=1

τ R
m ‖�h(eh,m − eh,m−1)‖2L2

x
+

M∑

m=1

τ R
m ‖∇eh,m‖2L2

x

)]

≤ cR4
E

[ M∑

m=1

τ R
m max

1≤n≤m
‖eh,n‖2L2

x

]

+ cecR
4 (
h2β + τ 2α

)
.

Controlling the error between eh,m and �heh,m by (2.11) as well as Lemma 3.1 (b)
and applying Gronwall’s lemma yields the claim. ��
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