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Abstract
In this paper, we develop a new technique to obtain improved estimates for the
computational resolution limits in two-dimensional super-resolution problems and
present a new idea for developing two-dimensional super-resolution algorithms. To
be more specific, our main contributions are fourfold: (1) Our work improves the
resolution estimates for number detection and location recovery in two-dimensional
super-resolution problems; (2) As a consequence, we derive a stability result for a
sparsity-promoting algorithm in two-dimensional super-resolution problems [or direc-
tion of arrival Problems (DOA)]. The stability result exhibits the optimal performance
of sparsity promoting in solving such problems; (3) Inspired by the new techniques, we
propose a newcoordinate-combination-basedmodel order detection algorithm for two-
dimensional DOA estimation and theoretically demonstrate its optimal performance,
and (4) we also propose a new coordinate-combination-based MUSIC algorithm for
super-resolving sources in two-dimensional DOA estimation. It has excellent perfor-
mance and enjoys some advantages compared to the conventional DOA algorithms.

Keywords Two-dimensional super-resolution · Direction of arrival algorithms ·
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1 Introduction

It is well-known that the physical nature of wave propagation and diffraction imposes
a fundamental barrier in the resolution of imaging systems, which is termed diffrac-
tion limit or resolution limit. Since the famous works of Abbe [1] and Rayleigh [57]
for quantifying the resolution limit, it is widely used in practice to date that the res-
olution limit is near half of the wavelength (see, for instance, [5, 6]). Although this
kind of resolution limit was widely used, it lacks of mathematical foundations and not
very applicable to some modern imaging modalities [15, 56]. From the mathemati-
cal perspective, the resolution limit could only be set when taking into account the
noise [12, 21, 23] and surpassing these classical resolution limits is very promising for
imaging modalities with high signal-to-noise ratio (SNR). This understanding moti-
vates new works on deriving more rigorous resolution limits [30, 31, 49, 50]. At the
beginning of this century, the dependence of two-point resolution on the noise level
has been thoroughly investigated from the perspective of statistical inference [63–65],
but the resolution estimates for resolving multiple sources only achieve substantial
breakthroughs in recent years due to its nonlinearity.

To understand the resolution in resolving multiple sources, in the earlier works
[44–46] we have defined “computational resolution limits” for number detection
and location recovery in the one- and multi-dimensional super-resolution problems
and characterized them by the signal-to-noise ratio, cutoff frequency, and number of
sources. In [45], we derived sharp estimates for the computational resolution lim-
its in one dimensional super-resolution problems. We extended the estimations to
multi-dimensional cases in [44], but the new estimation is not that sharp due to the
techniques of projection used there. Specifically, the upper bound for the resolution
increases rapidly as the source number n and space dimensionality k increases. To
address this issue, this paper aims to derive better estimates for the computational
resolution limits in two-dimensional super-resolution problems and provide a new
idea having the potential to tackle general multi-dimensional cases. The main contri-
butions of our work are fourfold: (1) Our work improves the resolution estimates in
[44] for number detection and location recovery in two-dimensional super-resolution
problems; (2) As a consequence, we derive a stability result for a sparsity-promoting
algorithm in two-dimensional super-resolution problems [or direction of arrival prob-
lems (DOA)]. Although it is well-known that the total variation optimization [11]
and many other convex optimization based algorithms [70] have a resolution limit
near the Rayleigh limit [16, 22, 69], our stability result exhibits the optimal super-
resolution ability of l0-minimization in solving such problems; (3) Inspired by the
techniques used in the proofs, we propose a new coordinate-combination-based model
order detection algorithm for two-dimensional DOA problems and demonstrate its
optimal performance both theoretically and numerically, and (4) we also propose a
new coordinate-combination-based MUSIC (states for MUltiple SIgnal Classifica-
tion) algorithm for super-resolving sources in two-dimensional DOA estimation. Our
original algorithm enjoys certain advantages compared to the conventional DOA algo-
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rithms.We also exhibit numerically the phase transition phenomenon of the algorithm,
which demonstrates its excellent resolving capacity.

1.1 ExistingWorks on the Resolution Limit Problem

The first theory for quantifying the resolution limit was derived by Ernst Abbe [1, 72].
Since then, there have been various proposals for the resolution limit [33, 57, 61, 66],
among which the famous and widely used ones are the Rayleigh limit [57] and the
full width at half maximum (FWHM) [20]. However, these classical resolution limits
neglect the effect of noise and hence are notmathematically rigorous [12, 21, 23]. From
a mathematical perspective, there is no resolution limit when one has perfect access to
the exact intensity profile of the diffraction images. Therefore, the resolution limit can
only be rigorously set when taking into account themeasurement noise or aberration to
preclude perfect access to the diffraction images. Based on this understanding, many
works were devoted to characterizing the dependence of the two-point resolution on
the signal-to-noise ratio from the perspective of statistical inference [30, 31, 49, 50,
63–65]. These classical and semi-classical limits of two-point resolution have been
well-studied and we refer the reader to [12, 17, 21, 41] for more detailed introductions.

For the resolution limit of superresolving multiple point sources, the problem
becomes much more difficult due to the high degree of nonlinearity. To our knowl-
edge, the first breakthrough was achieved by Donoho in 1992 [24]. He considered a
grid setting where a discrete measure is supported on a lattice and regularized by a so-
called Rayleigh index. The problem is to reconstruct the amplitudes of the grid points
from their noisy Fourier data in [−�,�]with� being the band limit. He derived both
the lower and upper bounds for the minimax error in the amplitude reconstruction,
emphasizing the importance of sparsity and signal-to-noise in super-resolution. But the
estimate has not been improved until recent years. In recent years, due to the enormous
development of super-resolution modalities in biological imaging [10, 29, 32, 59, 77]
and the popularity of researches of super-resolution algorithms in applied mathemat-
ics [7, 11, 22, 25, 38, 40, 52, 53, 55, 70, 71], the inherent superresolving capacity
of the imaging problem is drawing increasing interest and has been well-studied for
the one-dimensional case. In [19], the authors considered resolving n-sparse point
sources supported on a grid and improved the results of Donoho. They showed that,
in the presence of noise with intensity σ , the minimax error in the amplitude recovery
scales like SRF2n−1σ where SRF := 1

��
was called the super-resolution factor. The

case of multi-clustered point sources was considered in [8, 37] and similar minimax
error estimations were derived. In [4, 9], the authors considered the minimax error
for recovering off-the-grid point sources. Based on an analysis of the “prony-type
system”, they derived bounds for both amplitude and location reconstructions of the
point sources. More precisely, they showed that for σ � (SRF)−2p+1, where p is the
number of point sources in a cluster, the minimax error for the amplitude and the loca-
tion recoveries scale respectively as (SRF)2p−1σ and (SRF)2p−2σ/�, while for the
isolated non-clustered source, the corresponding minimax error for the amplitude and
the location recoveries scale respectively as σ and σ/�.We also refer the reader to [12,
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51] for understanding the resolution limit from the perspective of sample complexity
and to [16, 69] for the resolving limit of some algorithms.

On the other hand, in order to characterize the exact resolution rather than the
minimax error in recovering multiple point sources, in the earlier works [42–46]
we have defined “computational resolution limits” which characterize the minimum
required distance between point sources so that their number and locations can be
stably resolved under certain noise level. By developing a nonlinear approximation
theory in a so-called Vandermonde space, we have derived sharp bounds for computa-
tional resolution limits in the one-dimensional super-resolution problem. In particular,
we have showed in [45] that the computational resolution limits for the number and

location recoveries should be respectively Cnum
�

( σ
mmin

)
1

2n−2 and
Csupp

�
( σ
mmin

)
1

2n−1 , where
Cnum and Csupp are constants and mmin is the minimum strength of the point sources.
We have extended these estimates to multi-dimensional cases in [44] but the results are
not that optimal due to the projection techniques used there. In this paper, we improve
the estimates for the two-dimensional super-resolution problem by a new technique.
The improvements shall be discussed in detail in Sect. 2.

1.2 Direction of Arrival Estimation

Our work also inspires new ideas for the two-dimensional direction of arrival esti-
mation. Direction of arrival (DOA) estimation refers to the process of retrieving the
direction information of several electromagnetic waves/sources from the received data
of a number of antenna elements in a specific array. It is an important problem in array
signal processing and finds wide applications in radar, sonar, wireless communica-
tions, etc; see, for instance, [6].

In one-dimensional DOA estimation, if the antenna elements are uniformly spaced
in a line, the well-known MUSIC, ESPRIT algorithms, and other subspace methods
can resolve the direction of each incident signal/sourcewith high resolution. But for the
two-dimensional DOA estimation with regular rectangular array (URA) where both
azimuth and elevation angles should be determined, these subspace methods cannot
be simply extended to the two-dimensional case to directly determine the azimuth
and elevation angle of each source. A major idea to solve the two-dimensional DOA
problem is to decompose it into two independent one-dimensional DOA estimations
in which the subspaces methods can be leveraged to efficiently restore the direction
components of sources corresponding to x-axis and y-axis. We call the methods with
this decoupling idea as one-dimensional-based algorithms throughout the paper for the
convenience of discussion. It is worth emphasizing that other ways for directly obtain-
ing the azimuth and elevation angles of each source were also considered [39, 78, 80],
but the signal processing in a higher dimensional space reduced their computational
efficiency.

Although the one-dimensional-based algorithms are usually much more computa-
tionally efficient, they still suffer from some issues: (1) the loss of distance separation
for x-axis or y-axis components; (2) pair matching of the estimated elevation and
azimuth angles. For the first issue, the x-axis (or y-axis) components of two sources
may be closely spaced even though the two sources are far away in the two-dimensional
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space. This causes very unstable reconstruction of the one-dimensional components
and the sources. Most of the researches usually ignored these issues and some papers
proposed different ways to enhance the reconstruction but the proposed methods are
complicated [73, 74]. For example, in [74], the authors utilized Taylor expansion, sub-
space projection, and a tree structure to enhance the reconstruction when the recovered
one-dimensional components are unstable. The second issue is that the pair matching
of the estimated elevation and azimuth angles is very time consuming when deal-
ing with multiple components of sources. It usually requires a complex process or
two-dimensional search [18, 35, 48, 68, 80].

In this paper, we propose a new efficient one-dimensional-based algorithm for
the two-dimensional DOA estimation which solves the above two issues in a simple
way. First, our algorithm employs a new idea named coordinate-combination to avoid
severe loss of distance separation between sources in certain region; see Sect. 5.4
for the detailed discussion. On the other hand, unlike conventional one-dimensional-
based algorithms, the pair matching problem of our algorithm is a simple balanced
assignment problem [54] which can be solved efficiently by many algorithms such as
the Hungarian algorithm.

1.3 Organization of the Paper

The rest of the paper is organized in the following way. In Sect. 2, we present the main
results on computational resolution limits for the number detection and the location
recovery in the two-dimensional super-resolution problem.We also provide a stability
result for a sparsity promoting algorithm. In Sect. 3, we prove themain results in Sect. 2
and discuss the generalization to higher dimensions. Inspired by the techniques in the
proofs, in Sects. 4 and 5 we introduce respectively the coordinate-combination-based
number detection and source recovery algorithms in two-dimensional DOA estima-
tions. We also conduct numerical experiments to demonstrate their super-resolution
capability. Section6 presents a nonlinear approximation theory in Vandermonde space
which is also a main part of the proof of our main results. Section7 is devoted to some
conclusions and future work. In the “Appendix”, we prove a technical lemma.

2 Main Results

2.1 Model Setting

We consider the following model of a linear combination of point sources in a two-
dimensional space:

μ =
n∑

j=1

a jδy j ,

where δ denotes Dirac’s δ-distribution in R
2, y j ∈ R

2, 1 ≤ j ≤ n, which are the
supports of the measure, represent the locations of the point sources and a j ∈ C, 1 ≤
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j ≤ n, their amplitudes. We call that the measure μ is n-sparse if all a j ’s are nonzero.
We denote the coordinates of each y j by y j,1, y j,2, and

mmin = min
j=1,...,n

|a j |, Dmin = min
p �= j

∣∣∣∣yp − y j
∣∣∣∣
1 . (2.1)

We assume that the available measurement is the noisy Fourier data of μ in a bounded
and continuous domain [0,�]2, that is,

Y(ω) = Fμ(ω) + W(ω) =
n∑

j=1

a j e
iy�

j ω + W(ω), ω ∈ [0,�]2, (2.2)

where Fμ denotes the Fourier transform of μ, � is the cutoff frequency, and W is
the noise. We assume that

|W(ω)| < σ, ω ∈ [0,�]2,

where σ is the noise level. We remark that, throughout the paper, we will use bold
symbols for vectors, matrices, and functions, and ordinary ones for scalar values.
Especially, measurements Y and noise W are viewed as functions in all sections.
Also, we will only use || · ||∞, || · ||1, || · ||2 for vectors.

We are interested in the resolution limit in superresolving a cluster of tightly spaced
point sources. To be more specific, we denote by

Bδ,∞(x) :=
{
y

∣∣∣ y ∈ R
2, ||y − x||∞ < δ

}
,

and assume that y j ∈ B (n−1)π
6� ,∞(0), j = 1, . . . , n, or equivalently

∣∣∣∣y j
∣∣∣∣∞ <

(n−1)π
6� .

This assumption is because our techniques rely on the approximation theory in the
Vandermonde space (Sect. 6) and the stability is related to the distance between
eiy j,1ω

∗ + eiy j,2ω
∗
, j = 1, . . . , n, for certain ω∗. Without this assumption, although

the y j ’s are well-separated on R, the eiy j,1ω
∗ + eiy j,2ω

∗
’s may be very close. This is

a common assumption when tackling the super-resolution problem, see for instance
[9, 44, 45]. Since we are more interested in the case when y j ’s are tightly spaced, this
assumption is also reasonable.

2.2 Computational Resolution Limit for Number Detection in the
Two-Dimensional Super-Resolution Problem

In this section,we estimate the super-resolving capacity of the source number detection
in two-dimensional super-resolution problems. To be specific, we will define and
characterize a computational resolution limit for the corresponding number detection
problem. Ourmain results are built upon delicate analysis of the σ -admissiblemeasure
defined as follows:
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Definition 2.1 Given a measurement Y, we say that μ̂ = ∑m
j=1 â jδŷ j , ŷ j ∈ R

2 is a
σ -admissible discrete measure of Y if

∣∣F μ̂(ω) − Y(ω)
∣∣ < σ, for all ω ∈ [0,�]2.

Note that the set of σ -admissible measures ofY characterizes all possible solutions
to the inverse problem with the given measurement Y. If all σ -admissible measures
have at least n supports, then detecting the correct source number is possible, for
example by targeting at the sparsest admissible measures. However, if there exists
one σ -admissible measure with less than n supports, detecting the source number n
is impossible without additional prior information. This leads to the following new
definition of resolution limit, named computational resolution limit.

Definition 2.2 The computational resolution limit to the number detection problem in
two dimensions is defined as the smallest nonnegative numberD2,num such that for all
n-sparse measures

∑n
j=1 a jδy j , y j ∈ B (n−1)π

6� ,∞(0) and the associated measurement

Y in (2.2), if

min
p �= j

∣∣∣∣y j − yp
∣∣∣∣
1 ≥ D2,num,

then there does not exist any σ -admissible measure of Y with less than n supports.

The above resolution limit is termed “computational resolution limit” to distinguish
it from the classic Rayleigh limit. Compared to the Rayleigh limit, the definition of the
computational resolution limit is more rigorous from the mathematical perspective. It
is related to the noise, by which it is more applicable for modern imaging techniques.
In [44–46], the authors defined similar computational resolution limits and present
rigorous estimations for them. Here by the following theorem, we derive an estimate to
theD2,num, which substantially improves the estimate in [44] for the two-dimensional
case.

Theorem 2.1 Let n ≥ 2 and the measurement Y in (2.2) be generated by an n-sparse
measure μ = ∑n

j=1 a jδy j , y j ∈ B (n−1)π
6� ,∞(0). Assume that the following separation

condition is satisfied

min
p �= j,1≤p, j≤n

∣∣∣
∣∣∣yp − y j

∣∣∣
∣∣∣
1

≥ 16.6π(n − 1)

�

( σ

mmin

) 1
2n−2

(2.3)

with mmin being defined in (2.1). Then there does not exist any σ -admissible measures
of Y with less than n supports.

Theorem2.1 reveals thatwhenminp �= j,1≤p, j≤n

∣∣∣
∣∣∣yp−y j

∣∣∣
∣∣∣
1
≥ 16.6π(n−1)

�

(
σ

mmin

) 1
2n−2

,

recovering exactly the source number n is possible. Compared with the Rayleigh limit
c2π
�

, where c2 is a constant, Theorem 2.1 also indicates that resolving the source
number in the sub-Rayleigh regime is theoretically possible if the SNR is sufficiently
large.
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Moreover, the estimate in Theorem 2.1 substantially improves the result in [44].
To be more specific, in [44], the authors considered recovering the source number and
locations from the noisy measurement,

Y(ω) = Fμ(ω) + W(ω) =
n∑

j=1

a j e
iy�

j ω + W(ω), ||ω||2 ≤ �,

where the noise W(ω) is bounded as |W(ω)| < σ, ||ω||2 ≤ �. The upper bound
estimation for the two-dimensional computational resolution limit in number detection
is

min
p �= j,1≤p, j≤n

∣∣∣
∣∣∣yp − y j

∣∣∣
∣∣∣
2

≥ 2.2eπn(n − 1)

�

( σ

mmin

) 1
2n−2

. (2.4)

Therefore, both the model and the norm of separation distances considered in [44]
and our paper have no substantial difference that could make the problem in [44]
inherently harder. But leveraging the new techniques here, the constant factor in the
previous estimate (2.4) is improved to order n (Eq. (2.3)) now. In particular, by a simple
calculation (taking into account the model difference), for n ≥ 2, our new estimate
already becomes better.

On the other hand, it is already known from [44] that the computational resolution
limit for the number detection in the general k-dimensional super-resolution problem

is bounded below by C1
�

(
σ

mmin

) 1
2n−2

for some constantC1. Thus theD2,num is bounded

by

C1

�

( σ

mmin

) 1
2n−2 ≤ D2,num ≤ C2n

�

( σ

mmin

) 1
2n−2

, (2.5)

and our estimate for the upper bound is already very sharp.
The above estimates further indicate a phase transition phenomenon in the two-

dimensional number detection problem. Specifically, by (2.5) we expect the presence
of a line of slope 2n − 2 in the parameter space log(SRF) − log(SNR) above which
the source number can be correctly detected in each realization. This phenomenon is
confirmed exactly by the number detection algorithm (Algorithm 2) later in Sect. 4.5
and illustrated in Fig. 2.

2.3 Computational Resolution Limit for Location Recovery in the
Two-Dimensional Super-Resolution Problem

We next present our results on the resolution limit for the location recovery problem
in two dimensions. We first introduce the following concept of δ-neighborhood of
discrete measures. Define

Bδ,1(x) :=
{
y

∣∣∣ y ∈ R
2, ||y − x||1 < δ

}
.
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Definition 2.3 Let μ = ∑n
j=1 a jδy j be an n-sparse discrete measure in R

2 and let
δ > 0 be such that the n balls Bδ,1(y j ), 1 ≤ j ≤ n are pairwise disjoint. We say that
μ̂ = ∑n

j=1 â jδŷ j is within δ-neighborhood of μ if each ŷ j is contained in one and
only one of the n balls Bδ,1(y j ), 1 ≤ j ≤ n.

According to the above definition, a measure μ̂ in a δ-neighborhood of μ pre-
serves the inner structure of the collection of point sources. For a stable location (or
support of measure) recovery algorithm, the output should be a measure in some δ-
neighborhood of the underlying sources. Moreover, δ should tend to zero as the noise
level σ tends to zero. We now introduce the computational resolution limit for the sup-
port recovery problem. For ease of exposition, we only consider measures supported
in B (2n−1)π

12� ,∞(0), where n is the source number.

Definition 2.4 The computational resolution limit in the two-dimensional location
recovery problem is defined as the smallest non-negative number D2,supp so that for
any n-sparse measure μ = ∑n

j=1 a jδy j , y j ∈ B (2n−1)π
12� ,∞(0) and the associated mea-

surement Y in (2.2), if

min
p �= j,1≤p, j≤n

∣∣∣∣yp − y j
∣∣∣∣
1 ≥ D2,supp,

then there exists δ > 0 such that any σ -admissible measure of Y with n supports in
B (2n−1)π

12�
(0) is within δ-neighborhood of μ.

We have the following estimate for the upper bound of D2,supp.

Theorem 2.2 Let n ≥ 2. Let the measurement Y in (2.2) be generated by an n-sparse
measure μ = ∑n

j=1 a jδy j , y j ∈ B (2n−1)π
12� ,∞(0) in the two-dimensional space. Assume

that

Dmin := min
p �= j

∣∣∣
∣∣∣yp − y j

∣∣∣
∣∣∣
1

≥ 15.3π(n − 1
2 )

�

( σ

mmin

) 1
2n−1

. (2.6)

If μ̂ = ∑n
j=1 â jδŷ j supported on B (2n−1)π

12� ,∞(0) is a σ -admissible measure of Y, then

μ̂ is in a Dmin
2 -neighborhood of μ. Moreover, after reordering the ŷ j ’s, we have

∣∣∣
∣∣∣ŷ j − y j

∣∣∣
∣∣∣
1

≤ C(n)

�
SRF2n−2 σ

mmin
, 1 ≤ j ≤ n, (2.7)

where SRF := π
Dmin�

is the super-resolution factor and

C(n) = (1 + √
3)2n−125n−1(2n − 1)2n−1π

32n−0.5
.

Theorem 2.2 demonstrates that when minp �= j,1≤p, j≤n

∣∣∣
∣∣∣yp − y j

∣∣∣
∣∣∣
1

≥
15.3π(n− 1

2 )

�

(
σ

mmin

) 1
2n−1

, it is possible to recover stably the source locations. For suf-

ficiently large SNR, the limit in Theorem 2.2 is less than the Rayleigh limit. This
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indicates that super-resolution is possible for two-dimensional imaging problems.
Moreover, for all n ≥ 2, the estimate here is better than the one obtained in [44],
which is

11.76eπn(n − 1)

�

( σ

mmin

) 1
2n−1

.

Especially, the constant factor in our new estimate is of order n, while in the previous
one it is of order n2.

It has been already shown in [44] that the computational resolution limit for the
location recovery in the k-dimensional super-resolution problem is bounded below by

C3
�

(
σ

mmin

) 1
2n−1

for some constant C3. Thus the D2,supp is bounded by

C3

�

( σ

mmin

) 1
2n−1 ≤ D2,supp ≤ C4n

�

( σ

mmin

) 1
2n−1

, (2.8)

and our estimate for the upper bound is sharp.
On the other hand, (2.8) indicates a phase transition in the location recovery prob-

lem. From (2.8) we expect that there exists a line of slope 2n − 1 in the parameter
space of log SRF − log SNR such that the location recovery is stable in every point
above the line. This is confirmed by Algorithm 4 in Sect. 5.4.2 and illustrated in Fig. 4.

Note that the bounds for the minimum separation distance to ensure a correct num-

ber detection scale like 1
�

(
σ

mmin

) 1
2n−2

, while for the minimum separation distance to

guarantee a stable location recovery, they scale like 1
�

(
σ

mmin

) 1
2n−1

. How to understand

the difference between the exponents in the estimates is also a very interesting ques-
tion. One way is from the derivation of the lower bounds of the two resolution limits
[43, 45]. In the analysis of the resolution limit in the number detection, we actually
consider when the measurement from n sources can be approximated by the measure-
ment generated by n − 1 sources, but in the location recovery, we consider when the
measurement from n sources can be approximated by themeasurement from another n
sources. Thus for the number detection, we can use at most 2n−1 sources to construct
the worst-case scenario, i.e., the measurement generated by specific n − 1 sources is
close to the measurement from specific n sources. While for the location recovery, we
can use 2n sources to construct the worst-case scenario, whence the location recovery
has more freedom and becomes worse. This results in a difference between the expo-
nents of the noise-to-signal ratio in both resolution estimates. The interested reader is
referred to [43, 45] for detailed proofs of the lower bounds.

2.4 Stability of a Sparsity-Promoting Algorithm

Sparsity-promoting algorithms are popular methods in imaging processing and many
other fields. By the results for resolution limit, we can derive a stability result for a
l0-minimization in the two-dimensional super-resolution problems. We consider the
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following l0-minimization problem:

min
ρ supported on O

||ρ||0 subject to |Fρ(ω) − Y(ω)| < σ, ω ∈ [0,�]2, (2.9)

where ||ρ||0 is the number of Dirac masses representing the discrete measure ρ. As a
corollary of Theorems 2.1 and 2.2, we have the following stability result.

Theorem 2.3 Let n ≥ 2 and σ ≤ mmin. Let the measurement Y in (2.2) be generated
by an n-sparse measure μ = ∑n

j=1 a jδy j , y j ∈ B (n−1)π
6� ,∞(0) in the two-dimensional

space. Assume that

Dmin := min
p �= j

∣∣∣
∣∣∣yp − y j

∣∣∣
∣∣∣
1

≥ 16.6π(n − 1
2 )

�

( σ

mmin

) 1
2n−1

. (2.10)

Let O in the minimization problem (2.9) be B (n−1)π
6� ,∞(0), then the solution to (2.9)

contains exactly n point sources. For any solution μ̂ = ∑n
j=1 â jδŷ j , it is in a Dmin

2 -
neighborhood of μ. Moreover, after reordering the ŷ j ’s, we have

∣∣∣
∣∣∣ŷ j − y j

∣∣∣
∣∣∣
1

≤ C(n)

�
SRF2n−2 σ

mmin
, 1 ≤ j ≤ n, (2.11)

where SRF := π
Dmin�

and

C(n) = (1 + √
3)2n−125n−1(2n − 1)2n−1π

32n−0.5
.

Theorem2.3 reveals that sparsity promoting over admissible solutions could resolve
the source locations to the resolution limit level. It provides an insight that the-
oretically sparsity-promoting algorithms would have excellent performance on the
two-dimensional super-resolution problems. Especially, under the separation con-
dition (2.10), any tractable sparsity-promoting algorithms (such as total variation
minimization algorithms [11]) rendering the sparsest solution could stably reconstruct
all the source locations.

3 Proofs of theMain Results

The idea for proving the main results of the paper is to use some new techniques to
reduce the two-dimensional super-resolution problem to an approximation problem
of specific complex vectors, for which we develop a nonlinear approximation theory
in Vandermonde space in Sect. 6. The reduction techniques are mainly based on three
crucial observations in the following subsection.
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3.1 Three Crucial Observations

We here introduce three crucial observations that reduce the two-dimensional super-
resolution problem to its one-dimensional analog, by which we are able to derive the
resolution limit theory of this paper. These ideas also inspire a new direction for the
DOA algorithms; see Sects. 4 and 5.

Translation invariance By translation invariance we mean that if a measure
μ̂ = ∑q

j=1 â jδŷ j is a σ -admissible measure for the measurement Y, then μ̂ =
∑q

j=1 â jδŷ j+v is a σ -admissible measure for the measurement eiv
�ωY(ω), for any

vector v ∈ R
2. More precisely, we have

∣∣∣∣∣∣

q∑

j=1

â j e
i(ŷ j+v)�ω − eiv

�ωY(ω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

q∑

j=1

â j e
i ŷ�

j ω − Y(ω)

∣∣∣∣∣∣
< σ, ω ∈ [0,�]2.

(3.1)

In addition, if for certain δ ≥ 0,

∣∣∣∣∣∣

q∑

j=1

â j e
i ŷ�

j ω −
n∑

j=1

a j e
iy�

j ω

∣∣∣∣∣∣
< δ, ω ∈ [0,�]2, (3.2)

then for any vector v ∈ R
2,

∣∣∣∣∣∣

q∑

j=1

â j e
i(ŷ j+v)�ω −

n∑

j=1

a j e
i(y j+v)�ω

∣∣∣∣∣∣
< δ, ω ∈ [0,�]2.

Combination of coordinates The second observation is that if (3.2) holds, we have a
similar estimate for the summation of combinations of eiτ ŷ j,1 , eiτ ŷ j,2 and eiτy j,1 , eiτy j,2

for certain τ . Specifically, we have the following lemma. Throughout the paper, we
denote the combinatorial numbers by

( t
t1

)
for certain t ≥ t1.

Lemma 3.1 For any integer t ≥ 0 and τ ≤ �
t , the measurement constraint (3.2)

implies

∣∣∣∣∣∣

q∑

j=1

â j (e
ir1eiτ ŷ j,1+eir2eiτ ŷ j,2)t−

n∑

j=1

a j (e
ir1eiτy j,1+eir2eiτy j,2)t

∣∣∣∣∣∣
<2tδ, r1, r2 ∈ R.
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Proof Let d̂ j = eir1eiτ ŷ j,1 + eir2eiτ ŷ j,2 and d j = eir1eiτy j,1 + eir2eiτy j,2 . We have

∣∣∣∣∣∣

q∑

j=1

â j d̂
t
j −

n∑

j=1

a jd
t
j

∣∣∣∣∣∣
=

∣∣∣∣∣∣

q∑

j=1

â j (e
ir1eiτ ŷ j,1 + eir2eiτ ŷ j,2)t

−
n∑

j=1

a j (e
ir1eiτy j,1 + eir2eiτy j,2)t

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

)( q∑

j=1

â j e
ir1t1eir2t2eiτ ŷ j,1t1eiτ ŷ j,2t2

−
n∑

j=1

a j e
ir1t1eir2t2eiτy j,1t1eiτy j,2t2

)
∣∣∣∣∣∣

≤
∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

) ∣∣∣∣∣∣

q∑

j=1

â j e
iτ ŷ j,1t1eiτ ŷ j,2t2 −

n∑

j=1

a j e
iτy j,1t1eiτy j,2t2

∣∣∣∣∣∣

=
∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

) ∣∣∣∣∣∣

q∑

j=1

â j e
i(t1τ,t2τ)ŷ j −

n∑

j=1

a j e
i(t1τ,t2τ)y j

∣∣∣∣∣∣

<
∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

)
δ

(
by τ ≤ �

t
and (3.2)

)

= 2tδ.


�

This is the key observation of the paper. It reduces the two-dimensional super-
resolution problem to nearly a one-dimensional super-resolution one. Since it is
about the difference between summation of combinations of eiτ ŷ j,1 , eiτ ŷ j,2 and
eiτy j,1 , eiτy j,2 , we refer to this observation as combination of coordinates and call the
elements eiτy j,1+eiτy j,2 coordinate-combined elements. This coordinate-combination
technique will be used in deriving new algorithms for the DOA problem in Sects. 4
and 5.

Compared to the projection techniques in [12, 44] which utilize the measurement
constraint only in several one-dimensional spaces to derive stability results, our formu-
lation utilizes moremeasurement constraints and consequently yields better estimates.

Preservation of the separation distance for the coordinate-combined elements The last
observation is that, for θ j ’s in [0, 2π

3 ]2, the coordinate-combined elements eiθ j,1+eiθ j,2

still preserve the separation distance between the θ j ’s. This is revealed by Lemma 3.2.
Note that the projection trick in [12, 44] andmany conventional two-dimensional DOA
algorithms do not preserve the separation distance between the original source. This
causes many issues in the reconstruction and resolution estimation. Lemma 3.2 is the
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main result of this paper by which we can overcome the above issues and hence find
a new way to solve two-dimensional DOA problems.

Lemma 3.2 For two different vectors θ j ∈ [0, 2π
3 ]2, j = 1, 2 with π

3 ≤ θ j,2 − θ j,1 ≤
2
3π, j = 1, 2, if ||θ1 − θ2||1 ≥ �, then

∣∣∣eiθ1,1 + eiθ1,2 − (eiθ2,1 + eiθ2,2)
∣∣∣ ≥ 3

2π
�.

Proof Note that 0 ≤ θ j,1 < θ j,2 ≤ 2π
3 , j = 1, 2. We prove the lemma by considering

the following two cases.
Case 1 0 ≤ θ1,1 ≤ θ2,1 < θ2,2 ≤ θ1,2 ≤ 2π

3 .
In this case,

∣∣∣eiθ1,1 + eiθ1,2 − (eiθ2,1 + eiθ2,2)
∣∣∣ ≥

∣∣∣eiθ2,1 + eiθ2,2
∣∣∣ −

∣∣∣eiθ1,1 + eiθ1,2
∣∣∣

=2

(
cos

(
φ2

2

)
− cos

(
φ1

2

))
,

where φ j = θ j,2 − θ j,1, j = 1, 2. By the assumption made in the lemma, we have
� ≤ φ1 − φ2 ≤ π

3 . Note also that
π
6 ≤ φ1+φ2

4 ≤ π
3 . Thus

2

(
cos

(
φ2

2

)
− cos

(
φ1

2

))
= 4 sin

(
φ1 + φ2

4

)
sin

(
φ1 − φ2

4

)

≥ 4 sin
(π

6

)
sin

(
�

4

)
≥ 3�

2π
,

where the last inequality uses sin(�
4 ) ≥ 3

π
�
4 for 0 < �

4 ≤ π
12 .

Case 2 0 ≤ θ1,1 ≤ θ2,1 ≤ θ1,2 ≤ θ2,2 ≤ 2π
3 .

The idea is to calculate the angle between eiθ1,1 + eiθ1,2 and eiθ2,1 + eiθ2,2 . By simple
analysis of the angle relations between eiθ1,1, eiθ1,2 , eiθ2,1 , eiθ2,2 , we obtain that the
angle between eiθ1,1 + eiθ1,2 and eiθ2,1 + eiθ2,2 is θ2,1−θ1,1+θ2,2−θ1,2

2 , which is larger
than �

2 . Thus

∣∣∣eiθ1,1 + eiθ1,2 − (eiθ2,1 + eiθ2,2)
∣∣∣≥max

( ∣∣∣eiθ1,1+eiθ1,2
∣∣∣ ,

∣∣∣eiθ2,1+eiθ2,2
∣∣∣
)
sin

(
�

2

)
.

Since π
3 ≤ θ j,2 − θ j,1 ≤ 2

3π, j = 1, 2, we have

max
( ∣∣∣eiθ1,1 + eiθ1,2

∣∣∣ ,
∣∣∣eiθ2,1 + eiθ2,2

∣∣∣
)

≥ 1.

Therefore,

∣∣∣eiθ1,1 + eiθ1,2 − (eiθ2,1 + eiθ2,2)
∣∣∣ ≥ sin

(
�

2

)
≥ 3�

2π
,
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where the last inequality uses sin(�
2 ) ≥ 3

π
�
2 for 0 < �

2 ≤ π
6 . 
�

3.2 Proof of Theorem 2.1

Proof Theproof of this theorem is by contradiction. Suppose that there exists ameasure
μ̂ = ∑q

j=1 â jδŷ j with q < n which is a σ -admissible measure of Y. Then, by the
measurement constraint (2.2) and |W(ω)| < σ , we have

∣∣∣∣∣∣

q∑

j=1

â j e
i ŷ�

j ω −
n∑

j=1

a j e
iy�

j ω

∣∣∣∣∣∣
< 2σ, ω ∈ [0,�]2. (3.3)

Since y j ∈ [−λ, λ]2 with λ = (n−1)π
6� , by letting v = (0, 6λ)�, we obtain

y j + v ∈ [−λ, λ] × [5λ, 7λ]. (3.4)

On the other hand, by (3.3) we also get

∣∣∣∣∣∣

q∑

j=1

â j e
i(ŷ j+v)�ω −

n∑

j=1

a j e
i(y j+v)�ω

∣∣∣∣∣∣
< 2σ, ω ∈ [0,�]2.

Thus with a slight abuse of notation, we still denote those ŷ j + v and y j + v by ŷ j ,
y j respectively and consider them in the rest of the proof. Note that we have

y j ∈ [−λ, λ] × [5λ, 7λ], j = 1, . . . , n.

Let τ = �
2(n−1) , together with λ = (n−1)π

6� , we have τy j ∈ [− π
12 ,

π
12 ]× [ 5π12 , 7π

12 ]. This
yields

− π

12
≤ τy j,1 ≤ π

12
,

5π

12
≤ τy j,2 ≤ 7π

12
,

π

3
≤ τy j,2 − τy j,1 ≤ 2π

3
. (3.5)

On the other hand, let d̂ j = eiτ ŷ j,1 + eiτ ŷ j,2 and d j = eiτy j,1 + eiτy j,2 . By Lemma 3.1
and (3.3) we have that

∣∣∣∣∣∣

q∑

j=1

â j d̂
t
j −

n∑

j=1

a jd
t
j

∣∣∣∣∣∣
< 2t+1σ, t = 0, 1, . . . , 2n − 2. (3.6)
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Let

b =
( q∑

j=1

â j d̂
0
j −

n∑

j=1

a jd
0
j ,

q∑

j=1

â j d̂
1
j −

n∑

j=1

a jd
1
j , . . . ,

q∑

j=1

â j d̂
2n−2
j −

n∑

j=1

a jd
2n−2
j

)�
.

Since (3.5) holds, Lemma 3.2 yields

dmin := min
p �=q

∣∣dp − dq
∣∣ ≥ 3

2π
min
p �=q

τ

∣∣∣
∣∣∣yp − yq

∣∣∣
∣∣∣
1

> 12.4
( σ

mmin

) 1
2n−2

> 2
√
6(1 + √

3)
( 4√

3

σ

mmin

) 1
2n−2

,

where the second to the last inequality is due to the separation condition (2.3). On the
other hand, we have |d̂p| ≤ 2, p = 1, . . . , q and |d j | ≤ √

3, j = 1, . . . , n since (3.5)
holds. Thus we can apply Theorem 6.2 and get

||b||2 ≥ mmin(dmin)
2n−2

(2(1 + 2)(1 + √
3))(n−1)

>
4nσ√
3

.

Note that the results and proofs of Theorem 6.2 are presented in Sect. 6, but the readers
can first focus only on the results before going through their detailed proofs. However,
(3.6) implies that ||b||2 < 4nσ√

3
, which is a contradiction. This proves the theorem. 
�

3.3 Proof of Theorem 2.2

Proof Note that y j , ŷ j ’s are in [−λ, λ]2 with λ = (2n−1)π
12� and μ̂ = ∑n

j=1 â jδŷ j is a

σ -admissible measure ofY. Let τ = �
2n−1 . Similarly to the proof in the above section,

we can construct x j = y j + v, x̂ j = ŷ j + v so that τ x̂ j , τx j ∈ [− π
12 ,

π
12 ] × [ 5π12 , 7π

12 ]
and

∣∣∣∣∣∣

n∑

j=1

â j e
i x̂�

j ω −
n∑

j=1

a j e
ix�

j ω

∣∣∣∣∣∣
< 2σ, ω ∈ [0,�]2. (3.7)

Thus we have

− π

12
≤ τx j,1 ≤ π

12
,

5π

12
≤ τx j,2 ≤ 7π

12
,

π

3
≤ τx j,2 − τx j,1 ≤ 2π

3
,

(3.8)

− π

12
≤ τ x̂ j,1 ≤ π

12
,

5π

12
≤ τ x̂ j,2 ≤ 7π

12
,

π

3
≤ τ x̂ j,2 − τ x̂ j,1 ≤ 2π

3
.

(3.9)
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Moreover, it follows that

− π

12
≤ τx j,1 ≤ π

12
,

−7π

12
≤ τx j,2 − π ≤ −5π

12
,

π

3

≤ τx j,1 − (τx j,2 − π) ≤ 2π

3
, (3.10)

− π

12
≤ τ x̂ j,1 ≤ π

12
,

−7π

12
≤ τ x̂ j,2 − π ≤ −5π

12
,

π

3

≤ τ x̂ j,1 − (τ x̂ j,2 − π) ≤ 2π

3
. (3.11)

Let d̂ j = eiτ x̂ j,1 + eiτ x̂ j,2 , d j = eiτx j,1 + eiτx j,2 and ĝ j = eiτ x̂ j,1 + ei(τ x̂ j,2−π), g j =
eiτx j,1 + ei(τx j,2−π). By (3.7) and Lemma 3.1, we arrive at

∣∣∣∣∣∣

n∑

j=1

â j d̂
t
j −

n∑

j=1

a jd
t
j

∣∣∣∣∣∣
< 2t+1σ, t = 0, 1, . . . , 2n − 1, (3.12)

∣∣∣∣∣∣

n∑

j=1

â j ĝ
t
j −

n∑

j=1

a j g
t
j

∣∣∣∣∣∣
< 2t+1σ, t = 0, 1, . . . , 2n − 1. (3.13)

Let

d =
( n∑

j=1

â j d̂
0
j −

n∑

j=1

a jd
0
j ,

n∑

j=1

â j d̂
1
j −

n∑

j=1

a jd
1
j , . . . ,

n∑

j=1

â j d̂
2n−1
j −

n∑

j=1

a jd
2n−1
j

)�
,

and

g =
( n∑

j=1

â j ĝ
0
j −

n∑

j=1

a j g
0
j ,

n∑

j=1

â j ĝ
1
j −

n∑

j=1

a j g
1
j , . . . ,

n∑

j=1

â j ĝ
2n−1
j −

n∑

j=1

a j g
2n−1
j

)�
.

Equations (3.12) and (3.13) imply respectively

||d||2 <
22n+1σ√

3
, ||g||2 <

22n+1σ√
3

.

Note also that by (3.8), (3.9), (3.10), and (3.11), we get

|d̂ j |, |d j |, |ĝ j |, |g j | ≤ √
3, j = 1, . . . , n.
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Define dmin := minp �=q
∣∣dp − dq

∣∣ and gmin := minp �=q
∣∣gp − gq

∣∣. Applying Theorem
6.2, we thus have that

∣∣∣
∣∣∣ηn,n(d1, . . . , dn, d̂1, . . . , d̂n)

∣∣∣
∣∣∣∞ <

(1 + √
3)2n−1

dn−1
min

22n+1

√
3

σ

mmin
, (3.14)

and

∣∣∣
∣∣∣ηn,n(g1, . . . , gn, ĝ1, . . . , ĝn)

∣∣∣
∣∣∣∞ <

(1 + √
3)2n−1

gn−1
min

22n+1

√
3

σ

mmin
, (3.15)

where ηn,n(. . .)’s are vectors defined as in (6.10). We now demonstrate that we can
reorder d̂ j , ĝ j to have |d̂ j − d j | < dmin

2 and |ĝ j − g j | <
gmin
2 , j = 1, . . . , n. First,

since (3.8) and (3.10) hold, by Lemma 3.2 we have

dmin ≥ 3

2π
min
p �=q

τ

∣∣∣
∣∣∣yp − yq

∣∣∣
∣∣∣
1

≥ 11.475
( σ

mmin

) 1
2n−1

> 23/2(1 + √
3)

(25/2√
3

σ

mmin

) 1
2n−1

,

(3.16)

and

gmin ≥ 3

2π
min
p �=q

τ

∣∣∣
∣∣∣yp − yq

∣∣∣
∣∣∣
1

≥ 11.475
( σ

mmin

) 1
2n−1

> 23/2(1 + √
3)

(25/2√
3

σ

mmin

) 1
2n−1

,

(3.17)

where we also use separation condition (2.6) in the above derivation. Let

εd = (1 + √
3)2n−1

dn−1
min

22n+1

√
3

σ

mmin
, εg = (1 + √

3)2n−1

gn−1
min

22n+1

√
3

σ

mmin
.

By (3.16),

d2n−1
min ≥ (1 + √

3)2n−123n+1

√
3

σ

mmin
, or equivalently, dnmin ≥ 2nεd ,

and by (3.17),

g2n−1
min ≥ (1 + √

3)2n−123n+1

√
3

σ

mmin
, or equivalently, gnmin ≥ 2nεg.

Thus the conditions of Lemma 6.8 are satisfied. By Lemma 6.8, we have that after
reordering d̂ j , ĝ j ,

∣∣∣d̂ j − d j

∣∣∣ <
dmin

2
,

∣∣∣ĝ j − g j

∣∣∣ <
gmin

2
,
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and

∣∣∣d̂ j − d j

∣∣∣ ≤
( 2

dmin

)n−1
εd =

( 1

dmin

)2n−2 (1 + √
3)2n−123n√
3

σ

mmin
,

∣∣ĝ j − g j
∣∣ ≤

( 2

gmin

)n−1
εg =

( 1

gmin

)2n−2 (1 + √
3)2n−123n√
3

σ

mmin
.

Observing

eiτ x̂ j,1 − eiτx j,1 = 1

2

(
d̂ j − d j + ĝ j − g j

)
,

eiτ x̂ j,2 − eiτx j,2 = 1

2

(
d̂ j − d j − (ĝ j − g j )

)
, (3.18)

we conclude that

∣∣∣eiτ x̂ j,1 − eiτx j,1

∣∣∣ +
∣∣∣eiτ x̂ j,2 − eiτx j,2

∣∣∣ ≤
(( 1

dmin

)2n−2 +
( 1

gmin

)2n−2)

(1 + √
3)2n−123n√
3

σ

mmin
. (3.19)

On the other hand, by (3.8) and (3.9),

|x̂ j,1 − x j,1| ≤ π

6
and |x̂ j,2 − x j,2| ≤ π

6
.

We further have

τ

∣∣∣x̂ j,1 − x j,1

∣∣∣ + τ

∣∣∣x̂ j,2 − x j,2

∣∣∣ ≤ π

3

(∣∣∣ei x̂ j,1 − eix j,1

∣∣∣ +
∣∣∣ei x̂ j,2 − eix j,2

∣∣∣
)

≤
(( 1

dmin

)2n−2 +
( 1

gmin

)2n−2) (1 + √
3)2n−123nπ

3
√
3

σ

mmin
.

Recalling that τ = �
2n−1 , we have

∣∣∣x̂ j,1 − x j,1

∣∣∣ +
∣∣∣x̂ j,2 − x j,2

∣∣∣ ≤ 2n − 1

�

(( 1

dmin

)2n−2 +
( 1

gmin

)2n−2)

(1 + √
3)2n−123nπ

3
√
3

σ

mmin
.

Note that by (3.16), we obtain that

Dmin ≤ 2π(2n − 1)

3�
dmin and Dmin ≤ 2π(2n − 1)

3�
gmin.
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Thus

∣∣∣∣x̂ j − x j
∣∣∣∣
1 ≤ (1 + √

3)2n−123n+1π(2n − 1)

3
√
3�

(2(2n − 1)

3

)2n−2( π

�Dmin

)2n−2 σ

mmin

= (1 + √
3)2n−125n−1(2n − 1)2n−1π

32n−0.5�

( π

�Dmin

)2n−2 σ

mmin
.

Since ||ŷ j − y j ||1 = ||x̂ j − x j ||1, we further get

∣∣∣∣ŷ j − y j
∣∣∣∣
1 ≤ (1 + √

3)2n−125n−1(2n − 1)2n−1π

32n−0.5�

( π

�Dmin

)2n−2 σ

mmin
.

Since Dmin ≥ 15.3π(n−0.5)
�

(
σ

mmin

) 1
2n−1

, together with the above estimate, we can also

show that

∣∣∣∣ŷ j − y j
∣∣∣∣
1 <

Dmin

2
.

This completes the proof. 
�

3.4 Discussion on the Generalization to Higher Dimensions

The techniques in this paper seem to have the potential to improve the estimates
of resolution limits in higher dimensions in [44]. First, it is not difficult to see that
translation invariance and combination of coordinates discussed in Sect. 3.1 can be
generalized to any k-dimensional space. After that, the k-dimensional super-resolution
problems can be transformed into the following approximation:

∣∣∣∣∣∣

q∑

j=1

â j d̂
t
j −

n∑

j=1

a jd
t
j

∣∣∣∣∣∣
< Cσ, t = 0, 1, . . . , s(n), (3.20)

where â j ∈ C, d̂ j ∈ C, a j ∈ C, d j ∈ C and s(n) are 2n − 2 or 2n − 1. Note
that d j , d̂ j ’s are from the combination of coordinates as in the definition in Sect. 3.2
(after Eq. (3.5)). Problem (3.20) is still what is considered in Sect. 6 and the results
there can be directly applied. The only requirement now is that the separation distance
between the d j ’s should be large enough to ensure that we can detect the correct source
number or stably recover the d j ’s from constraint (3.20). Thus, the main obstacle is to
generalize Lemma 3.2 to the k-dimensional space, which says that when the sources
y j ’s are well-separated, the d j ’s should also preserve the separation distance to some
extent. This will help to generalize Theorems 2.1 and 2.2 to the k-dimensional space
and improve significantly the estimates of resolution limits in higher dimensions.

However, a direct generalization ofLemma3.2 is already hard by the currentmethod
where we should analyze the geometry of the problem case by case. In the future, we
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seek to find new ways to get around this delicate issue and solve the problem in all
dimensional spaces in a unified way.

On the other hand, the problem in k-dimensional space is actually more than just a
direct generalization of Lemma 3.2. In particular, in order to analyze the stability of
the location recovery in the k-dimensional space, we must not only prove that

∣∣∣eiθ1,1 + eiθ1,2 + · · · + eiθ1,k −
(
eiθ2,1 + eiθ2,2 + · · · + eiθ2,k

)∣∣∣ ≥ c(k)�

holds for some constant c(k) when ‖θ1 − θ2‖1 ≥ �, but also show that

∣∣eiθ1,1 − eiθ1,2 + · · · + eiθ1,k − (
eiθ2,1 − eiθ2,2 + · · · + eiθ2,k

)∣∣ ≥ c(k)�,∣∣eiθ1,1 + eiθ1,2 − · · · + eiθ1,k − (
eiθ2,1 + eiθ2,2 − · · · + eiθ2,k

)∣∣ ≥ c(k)�,
...∣∣eiθ1,1 + eiθ1,2 + · · · − eiθ1,k − (

eiθ2,1 + eiθ2,2 + · · · − eiθ2,k
)∣∣ ≥ c(k)�

under the same condition. This is because we need to construct more complex values
like d j , g j (defined after Eq. (3.11)) and use the above results to obtain estimates such
as (3.16) and (3.17) in order to get the stability of the reconstruction of each coordinate
by treatments like (3.18) and (3.19). Therefore, the generalization of our results to
higher dimensions is quite complicated. This definitely deserves further researches. It
may inspire new algorithms in solving imaging and DOA problems in k-dimensional
spaces. As discussed, the generalization and treatment in the k-dimensional space
are still unclear, so we can not comment further on the extensions of our algorithms
(proposed in Sects. 4 and 5) in higher dimensions.

4 An Algorithm for theModel Order Detection in Two-Dimensional
DOA Estimation

In this section, based on the observations made in Sect. 3.1, we propose a new algo-
rithm, named coordinate-combination-based sweeping singular-value-thresholding
number detection algorithm, for the model order detection in two-dimensional DOA
estimations.

4.1 Problem Formulation

The existing two-dimensional DOA algorithms usually try to estimate the azimuth
and elevation angles (θ j , φ j )’s that are shown in Fig. 1. More precisely, we consider n
narrowband signals/sources impinging on an (� + 1) × (� + 1) uniform rectangular
array (URA) with (�+1)2 well calibrated and identically polarized antenna elements.
The signal received by these antenna elements in a single snapshot can be expressed
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Fig. 1 The geometry of a uniform rectangular array

by

Y(ω) =
n∑

j=1

s j p j e
jkdxω1y j,1e jkdyω2y j,2 + W(ω), ω ∈ {0, 1, . . . , �}2 , (4.1)

where s j is the j th incident signal, p j is a complex constant denoting the signal/antenna
polarization mismatch, k represents the wavenumber of the carrier frequency, and
dx and dy denote the distance between adjacent antenna element along the x-axis
and y-axis, respectively. y j,1 = sin φ j cos θ j is the direction component of signal s j
propagating along the x-axis and y j,2 = sin φ j sin θ j is the one propagating along
the y-axis. The φ j and θ j denote respectively the elevation and azimuth angles of s j .
W(ω) is the additive noise, which is usually assumed to be white Gaussian noise. Note
that p j , k, dx , dy’s are known factors in practical applications.

For convenience, we consider the following simplified form of (4.1):

Y(ω) =
n∑

j=1

a j e
iy�

j ω + W(ω), ω ∈ {0, 1, . . . , �}2 , (4.2)

where W is the noise with |W(ω)| < σ, ω ∈ {0, 1, . . . , �}2 , and σ being the noise
level. We aim to recover stably the number of the signals and the y j ’s, by which
the elevation and azimuth angles are stably resolved. For a better exposition, we still
consider a discrete measure μ = ∑n

j=1 a jδy j and denote the a jδy j ’s as sources. The
measurement (4.2) can be viewed as the noisy Fourier data of the measure μ at some
discrete points. To simplify the notation, here we still denote the measurements and
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noise by respectively Y and W and now they can be viewed as functions who only
take nonzeros values at ω ∈ {0, 1, . . . , �}2. This will not result in any confusion.

In this section and the next one, we shall propose new algorithms for detecting
the model order and recovering the supports of μ from the measurement (4.2). Our
number detection method is based on thresholding on a Hankel matrix assembled by
data from modifications of (4.2). The following subsection shall introduce the details
of the Hankel matrix formulation. We refer to [2, 3, 13, 27, 28, 36, 44, 45, 58, 62, 75,
76] for other model detecting algorithms.

4.2 Hankel Matrix Construction

The Hankel matrix is constructed by the following three steps.
Measurement modification by source translation
Due to the translation invariance, suppose the sources are supported in [−λ, λ]2, we
consider them displacing with a vector v and get that x j = y j + v. Using a simple
measurement modification technique, we obtain the measurement for the new source
μ̃ = ∑n

j=1 a jδx j . Specifically, we consider

X(ω) =eiv
�ωY(ω) =

n∑

j=1

a j e
i(y j+v)�ω + eiv

�ωW(ω)

=
n∑

j=1

a j e
ix�

j ω + W̃(ω), ω ∈ {0, 1, . . . , �}2,
(4.3)

with |W̃(ω)| < σ .

Measurement modification by coordinate-combination The second procedure consists
in modifying the measurement based on coordinate-combination. For s > 0, let r =
�
2 s . From the measurement X, we construct a list of new data given by

D(t) =
∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

)
X(ωr t1,r t2), t = 0, . . . , 2s,

where ωr t1,r t2 = (r t1, r t2)�. Note that

D(t) =
n∑

j=1

a j (e
ix j,1r + eix j,2r )t +

∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

)
W̃(ωr t1,r t2)

=
n∑

j=1

a j (e
ix j,1r + eix j,2r )t + Ŵ(t),

where Ŵ(t) = ∑
t1+t2=t,0≤t1,t2≤t

( t
t1

)
W̃(ωr t1,r t2).
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Hankel matrix construction and singular value decomposition Finally, from these
D(t)’s, we assemble the following Hankel matrix

H(s) =

⎛

⎜⎜⎜⎝

D(0) D(1) · · · D(s)
D(1) D(2) · · · D(s + 1)

· · · · · · . . . · · ·
D(s) D(s + 1) · · · D(2s)

⎞

⎟⎟⎟⎠ . (4.4)

We observe that H(s) has the decomposition

H(s) = BABT + �, (4.5)

where A = diag(a1, . . . , an) and B = (
φs(eix1,1r + eix1,2r ), . . . , φs(eixn,1r + eixn,2r )

)

with φs(ω) being defined as

φs(ω) = (1, ω, . . . , ωs)�, (4.6)

and

� =

⎛

⎜⎜⎜⎝

Ŵ(0) Ŵ(1) · · · Ŵ(s)
Ŵ(1) Ŵ(2) · · · Ŵ(s + 1)

...
...

. . .
...

Ŵ(s) Ŵ(s + 1) · · · Ŵ(2s)

⎞

⎟⎟⎟⎠ . (4.7)

We denote the singular value decomposition of H(s) as

H(s) = Û �̂Û∗,

where �̂ = diag(σ̂1, . . . , σ̂n, σ̂n+1, . . . , σ̂s+1) with the singular values σ̂ j , 1 ≤ j ≤
s + 1, ordered in a decreasing manner. The source number n is then detected by
thresholding on these singular values. In the next subsection we will provide the
theoretical guarantee of the threshold.

4.3 Theoretical Guarantee

Note that when there is no noise, H(s) = BAB�. We have the following estimate for
the singular values of BAB�.

Lemma 4.1 Let n ≥ 2, s ≥ n, y j ∈ [− sπ
6�, sπ

6� ]2, 1 ≤ j ≤ n, and v in (4.3) be
(0, sπ

�
)�. Let

σ1, . . . , σn, 0, . . . , 0
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be the singular values of BABT in (4.5) ordered in a decreasing manner. Then the
following estimate holds

σn ≥ mmin
(
3θmin(�, s)

)2n−2

n(2(1 + √
3)π)2n−2

, (4.8)

where θmin(�, s) = minp �= j
∣∣∣∣yp �

2s − y j
�
2s

∣∣∣∣
1.

Proof Recall that σn is the minimum nonzero singular value of BAB�. Let ker(B�)

be the kernel space of B� and ker⊥(B�) be its orthogonal complement. Then we have

σn = min
||x ||2=1,x∈ker⊥(B�)

||BAB�x ||2 ≥ σmin(BA)σn(B
�)

≥ σmin(B)σmin(A)σmin(B).

On the other hand, since by the condition of the lemma x j = y j + v ∈ [− sπ
6�, sπ

6� ] ×
[ 5 sπ6� , 7 sπ

6� ], we have �x j
2 s ∈ [− π

12 ,
π
12 ] × [ 5π12 , 7π

12 ]. Thus, by Lemma 3.2, for r = �
2s ,

min
p �=q

∣∣∣eixp,1r + eixp,2r − (eixq,1r + eixq,2r )

∣∣∣ ≥ 3

2π
θmin(�, s).

Note also that |eixp,1r + eixp,2r | ≤ √
3. Thus applying Lemma 6.3 and Corollary 6.2,

we have

σmin(B) ≥ 1√
n

(
3
2π θmin(�, s)

)n−1

(1 + √
3)n−1

.

Then, it follows that

σn ≥ σmin(A)

(( 3
2π θmin(�, s)

)n−1

(1 + √
3)n−1

)2

≥ mmin
(
3θmin(�, s)

)2n−2

n(2(1 + √
3)π)2n−2

.


�

Wenow present themain result on the threshold for the singular values of thematrix
H(s).
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Theorem 4.1 Let n ≥ 2, s ≥ n andμ = ∑n
j=1 a jδy j with y j ∈ [− sπ

6�, sπ
6� ]2, 1 ≤ j ≤

n. Let v in (4.3) be equal to (0, sπ
�

)�. Then for the singular values of H(s) in (4.4),
we have

σ̂ j <
4s+1σ

3
, j = n + 1, . . . , s + 1. (4.9)

Moreover, if the following separation condition is satisfied

min
p �= j

∣∣∣∣yp − y j
∣∣∣∣
1 ≥ 4(1 + √

3)πs

3�

(2n4s+1

3

σ

mmin

) 1
2n−2

, (4.10)

then

σ̂n ≥ 4s+1σ

3
. (4.11)

Proof We first estimate ||�||2 for � in (4.7). By the definition of Ŵ(t), we have∣∣∣Ŵ(t)
∣∣∣ < 2tσ . Thus ||�||2 ≤ ||�||F < 4s+1σ

3 . By Weyl’s theorem, we have |σ̂ j −
σ j | ≤ ||�||2, j = 1, . . . , n. Together with σ j = 0, n + 1 ≤ j ≤ s + 1, we get

|σ̂ j | ≤ ||�||2 < 4s+1σ
3 , n + 1 ≤ j ≤ s + 1. This proves (4.9).

Let θmin(�, s) = �
2 s minp �=q

∣∣∣∣yp − yq
∣∣∣∣
1. The separation condition (4.10) implies

that

θmin(�, s) ≥ 2(1 + √
3)π

3

(2n4s+1

3

σ

mmin

) 1
2n−2

.

By Lemma 4.1, we have

σn ≥ mmin
(
3θmin(�, s)

)2n−2

n(2(1 + √
3)π)2n−2

> 2
4s+1σ

3
. (4.12)

Similarly, byWeyl’s theorem, |σ̂n −σn| ≤ ||�||2. Thus, σ̂n ≥ σn −||�||2 > 24s+1σ
3 −

4s+1σ
3 = 4s+1σ

3 . The conclusion (4.11) then follows. 
�
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4.4 Coordinate-Combination-Based Sweeping Singular-Value-Thresholding
Number Detection Algorithm

Based on Theorem 4.1, we can propose a simple thresholding algorithm, Algorithm
1, for the number detection.

Algorithm 1: Coordinate-combination-based singular-value-thresholding
number detection algorithm
Input: Number s; Noise level σ ;
Input: Measurement: Y(ω), ω ∈ {0, 1, . . . , �}2;
Input: Translation vector v in R2;

1: Modify the measurement and get X(ω) = eiv
�ωY(ω);

2: Let r = � mod 2s, formulate D(t) = ∑
t1+t2=t,0≤t1,t2≤t

( t
t1

)
X(ωr t1,r t2 ), t = 0, . . . , 2s;

3: Assemble the (s + 1) × (s + 1) Hankel matrix H(s) like (4.4) from D(t)’s, and compute the
singular value of H(s) as σ̂1, . . . , σ̂s+1 distributed in a decreasing manner;

4: Determine n by σ̂n ≥ 4s+1σ
3 and σ̂ j < 4s+1σ

3 , j = n + 1, . . . , s + 1;
Return: n

Note that if the minimum separation distance dmin in (4.10) increases to cdmin for
some c > 1, then we have

σ̂n > c2n−2 4
s+1σ

3
.

Thus even if we increase a little the separation distance, then we will get a large gap
between σ̂n and σ̂n+1. This indicates that our algorithm is very stable and not sensitive
to the noise level estimate. In practical applications, the noise level is usually not
precisely known, but the robustness of our algorithm means that one can estimate a
noise level although not tight and utilize our algorithm to detect the source number
with high resolution.

On the other hand, if s < n in the applications, by (4.11) we have

σ̂ j ≥ 4s+1σ

3
, j = 1, . . . , s + 1,

when separation condition (4.10) holds, and the source number is deduced to be s + 1
by Algorithm 1. When s ≥ n and (4.10) holds, Algorithm 1 gives the exact n. Thus
in applications, one is suggested to choose a suitable and large enough s. However, a
suitable s is not easy to estimate and large smay lead to a deterioration of the resolution
as indicated by (4.10). To remedy this issue, we propose a sweeping singular-value-
thresholding number detection algorithm (Algorithm 2) below. In short, we detect the
number nrecover by Algorithm 1 for all s from 2 to ��−1

2 �, and choose the greatest one
nmax as the number of point sources. When the detected nrecover becomes smaller than
nmax for a large number of iterations, wewill stop the loop. The details are summarized
in Algorithm 2 below.

123



Foundations of Computational Mathematics

We remark that when s = n and the point sources satisfy

min
p �=q

∣∣∣∣yp − yq
∣∣∣∣
1 ≥ Cn

�

( σ

mmin

) 1
2n−2

, (4.13)

for some constant C , then (4.10) is satisfied. Thus by Theorem 4.1, for a suitable
choice of v, Algorithm 1 can exactly detect the number n when s = n. As s increases
to values greater than n, (4.9) implies that the number detected by Algorithm 1 will
not exceed n. Therefore, the sweeping singular-value-thresholding algorithm (Algo-
rithm 2) can detect the exact number n when � is greater than 2n + 1 and the point
sources are separated by the minimal separation distance we derived in Theorem 2.1.
This demonstrates the optimal performance of Algorithm 2. We also remark that the
theoretical threshold derived in Theorem 4.1 seems to be larger than the one that is
needed. One can improve the algorithm by choosing smaller threshold. Deriving new
estimates for the thresholds in different cases is another interesting problem.

Algorithm 2: Coordinate-combination-based sweeping singular-value-
thresholding number detection algorithm
Input: Noise level σ ; Measurement: Y; Translation vector v;
Input: nmax = 0, smaxindex = 2
for s = 2 : ��−1

2 � do
Input s, σ,Y, v to Algorithm 1, save the output of Algorithm 1 as nrecover ;
if nrecover > nmax then

nmax = nrecover ;
smaxindex = s;

if s ≥ smaxindex + 2 then
break;

Return nmax .

4.5 Phase Transition and Performance of Algorithm 2

In this subsection, we conduct numerical experiments to demonstrate the phase tran-
sition phenomenon regarding the super-resolution factor (SRF) and the SNR using
Algorithm 2. We consider recovering the number of three and four sources. We fix
� = 10 and detect the source number from their noisy Fourier data at {0, 1, . . . , �}2.
Weconsider sources in [0, π

2 ]2 and the translationvector inAlgorithm 1 isv = (0, π
2 )�.

The noise level is σ and the minimum separation distance between sources is Dmin.
We perform 10,000 random experiments (the randomness is in the choice of (Dmin, σ ,
y j , a j )) and detect the source number by Algorithm 2. We record the number of each
successful detection (source number is detected exactly) and failed detection. Figure2
shows the result for the successful and unsuccessfully recovery in the parameter space
log(SNR) versus log(SRF). It is observed that there is a line with slope (2n−2) in the
parameter space of log(SRF)-log(SNR) above which the number detection is always
successful. This phase transition phenomenon is exactly the one predicted by our the-
oretical results in Theorems 2.1 and 4.1. It also illustrates the efficiency of Algorithm 2
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Fig. 2 Plots of the successful and the unsuccessful number detection by Algorithm 2 depending on the
relation between log(SRF) and log( 1σ ). a illustrates that three sources can be exactly detected if log( 1σ )

is above a line of slope 4 in the parameter space. b illustrates that four sources can be exactly detected if
log( 1σ ) is above a line of slope 6 in the parameter space

as it can resolve the source number correctly in the regime where the source separation
distance is of the order of the computational resolution limit.

5 An Algorithm for the Source Reconstruction in Two-Dimensional
DOA Problems

In this section, based on the idea of coordinate-combination, we propose a newMUSIC
algorithm for resolving the sources in the two-dimensional DOA estimation. Our algo-
rithm is named as coordinate-combination-based MUSIC algorithm; see Algorithm 4.

5.1 Hankel Matrix Construction

Similarly to the number detection algorithm in the above section, theMUSICalgorithm
also relies on a singular value decomposition of certain Hankel matrix. Compared to
conventional MUSIC-based DOA algorithms, the main novelty of our algorithm lies
in a different way of assembling Hankel matrices. Similarly to Sect. 4.2, the Hankel
matrix construction here is also based on observations in Sect. 3.1 and the details are
presented below.

Measurement modification by source translationWe consider the same model setting
as (4.2) for the available measurement. We also perform the source translation and
modify the measurement to get

X(ω) = eiv
�ωY(ω) =

n∑

j=1

a j e
i(y j+v)�ω + eiv

�ωW(ω)

=
n∑

j=1

a j e
ix�

j ω + W̃(ω), ω ∈ {0, 1, . . . , �}2,
(5.1)
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where x j = y j + v for a suitable v ∈ R
2 and |W̃(ω)| < σ .

Measurement modification by the coordinate-combination technique
Let s = ��

2 �. From the modified measurement X(ω), we construct the following two
lists of data:

D(t) =
∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

)
X(ωt1,t2), t = 0, . . . , 2s,

G(t) =
∑

t1+t2=t,0≤t1,t2≤t

(−1)t2
(
t

t1

)
X(ωt1,t2), t = 0, . . . , 2s,

where ωt1,t2 = (t1, t2)�. Note that

D(t) =
n∑

j=1

a j (e
ix j,1 + eix j,2)t +

∑

t1+t2=t,0≤t1,t2≤t

(
t

t1

)
W̃(ωt1,t2)

=
n∑

j=1

a j (e
ix j,1 + eix j,2)t + Ŵd(t),

G(t) =
n∑

j=1

a j (e
ix j,1 − eix j,2)t +

∑

t1+t2=t,0≤t1,t2≤t

(−1)t2
(
t

t1

)
W̃(ωt1,t2)

=
n∑

j=1

a j (e
ix j,1 − eix j,2)t + Ŵg(t),

where Ŵd(t) = ∑
t1+t2=t,0≤t1,t2≤t

( t
t1

)
W̃(ωt1,t2) and Ŵg(t) = ∑

t1+t2=t,0≤t1,t2≤t

(−1)t2
( t
t1

)
W̃(ωt1,t2).

Hankel matrix construction
Finally, from these D(t),G(t)’s, we assemble the following Hankel matrices:

Hd(s) =

⎛

⎜⎜⎜⎝

D(0) D(1) · · · D(s)
D(1) D(2) · · · D(s + 1)

· · · · · · . . . · · ·
D(s) D(s + 1) · · · D(2s)

⎞

⎟⎟⎟⎠ ,

Hg(s) =

⎛

⎜⎜⎜⎝

G(0) G(1) · · · G(s)
G(1) G(2) · · · G(s + 1)

· · · · · · . . . · · ·
G(s) G(s + 1) · · · G(2s)

⎞

⎟⎟⎟⎠ . (5.2)

5.2 StandardMUSIC Algorithm

In this subsection, we perform the standard MUSIC algorithm [40, 47, 60, 67] for the
Hankel matrix Hd(s),Hg(s) in (5.2). For ease of presentation, we only introduce the
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MUSIC algorithm forHd(s). The one forHg(s) can be developed in the samemanner.
Our algorithm first performs the singular value decomposition of Hd(s),

Hd(s) = Û �̂Û∗ = [Û1 Û2]diag(σ̂1, σ̂2, . . . , σ̂n, σ̂n+1, . . . , σ̂s+1)[Û1 Û2]∗,

where Û1 = (Û (1), . . . , Û (n)), Û2 = (Û (n + 1), . . . , Û (s + 1)) with n being the
estimated source number (model order). The source number n can be detected by
Algorithm 2 and many other algorithms such as those in [2, 13, 27, 28, 44, 45, 62, 75,
76]. Denote the orthogonal projection onto the space Û2 by P̂2x = Û2(Û∗

2 x). For a
test vector �(d) = (1, d, . . . , ds)�, one defines the MUSIC imaging functional

Ĵ (d) = ||�(d)||2
||P̂2�(d)||2

= ||�(d)||2
||Û∗

2�(d)||2
.

The local maximizer of Ĵ (d) indicates the supports of the sources. In practice, one can
test evenly spaced points in a specified region and plot the discrete imaging functional
and then determine the sources by detecting the peaks. In our case, we only need to
test some discrete points d ∈ Cwith |d| ≤ 2 and select the peak by certain algorithms
(such as the one in [47] or its two-dimensional analog). Finally, we summarize the
standard MUSIC algorithm in Algorithm 3 below.

Algorithm 3: Standard MUSIC algorithm
Input: Source number n;
Input: Modified measurements: D(t) (or G(t)), t = 0, · · · , s with s ≥ n;
Input: Test points d’s;
1: Formulate the (s + 1) × (s + 1) Hankel matrix Hd (s) from D(t)’s as (5.2);

2: Compute the singular vectors of Hd (s) as Û (1), Û (2), · · · , Û (s + 1) and form the noise space
Û2 = (Û (n + 1), · · · , Û (s + 1));

3: For test points d’s, construct the test vector �(d) = (1, d, · · · , ds )�;

4: Plot the MUSIC imaging functional Ĵ (d) = ||�(d)||2
||Û∗

2 �(d)||2
;

5: Select the peak locations d̂ j ’s in the plot of Ĵ (d).

5.3 Coordinate-Combination-BasedMUSIC Algorithm

After applying theMUSIC algorithm to bothHd(s),Hg(s), we expect to reconstruct n
d̂ j ’swhich is close tod j = eix j,1+eix j,2 , andn ĝ j ’swhich is close to g j = eix j,1−eix j,2 .
The next question is how to link the pair d̂ j , ĝ j that correspond to the same source. This
is an inevitable pair matching issue in most of the two-dimensional DOA algorithms
[44], where ad hoc schemes [14, 34, 79, 81] were derived to associate the estimated
azimuth and elevation angles. Here, in contrast with conventional DOA algorithms,
we do not need to link the azimuth and elevation angles but to link d̂ j and ĝ j .
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Observe that |d j + g j | = |2eix j,1 | = 2 and |d j − g j | = |2eix j,2 | = 2. We can use
this criterion to match the pair d̂ j , ĝ j that they should satisfy

|d̂ j + ĝ j | ≈ 2, |d̂ j − ĝ j | ≈ 2. (5.3)

For example, we could consider the following minimization problem:

min
π∈ζ(n)

n∑

j=1

∣∣∣|d̂ j + ĝπ j | − 2
∣∣∣ +

∣∣∣|d̂ j − ĝπ j | − 2
∣∣∣ , (5.4)

where ζ(n) is the set of all permutations of {1, . . . , n}. This can be viewed as a balanced
assignment problem [54], which can be solved efficiently by many algorithms such as
the Hungarian algorithm.

We remark that our pair matching algorithm is not the one usually required in other
one-dimensional based DOA algorithms. Unlike our case, the other pair matching
problem is not an assignment problem, wherefore the pair matching is usually time
consuming or complex processing is conducted to reduce the computational cost.

Algorithm 4: Coordinate-combination-based MUSIC algorithm for two-
dimensional DOA
Input: Source number n; noise level σ ;
Input: Measurement: Y(ω), ω ∈ {0, 1, · · · , �}2;
Input: Translation vector v in R2;
Input: Evenly spaced test points d ∈ C with |d| ≤ 2;

1: Modify the measurement and get X(ω) = eiv
�ωY(ω);

2: Let s = ��
2 �, formulate D(t) = ∑

t1+t2=t,0≤t1,t2≤t
( t
t1

)
X(ωt1,t2 ), G(t) =

∑
t1+t2=t,0≤t1,t2≤t (−1)t2

( t
t1

)
X(ωt1,t2 ), t = 0, · · · , 2s;

3: Input D, n and test points d’s into Algorithm 3 and get the output d̂1, · · · , d̂n ;
4: Input G, n and test points d’s into Algorithm 3 and get the output ĝ1, · · · , ĝn ;

5: Matching the d̂ j , ĝ j ’s by applying an assignment algorithm (match pairs in matlab) to solve (5.4)

and get the pair list {(d̂ j , ĝ j )}nj=1;

6: Get
d̂ j+ĝ j

2 and
d̂ j−ĝ j

2 , j = 1, · · · , n. Get ei x̂ j,1r by considering the closest point to
d̂ j+ĝ j

2 on

the unit circle. Get ei x̂ j,2 by considering the closest point to
d̂ j−ĝ j

2 on the unit circle;

7: The recovered x̂ j = (x̂ j ,1, x̂ j ,2)�. Reconstruct ŷ j = x̂ j − v, j = 1, · · · , n;
Return: ŷ1, · · · , ŷn .
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5.4 Superiority of the Algorithm

5.4.1 Overcome the Issue of Separation Distance Loss in Conventional
Two-Dimensional DOA Algorithms

Despite the fact that different recovering methods are proposed for DOA estimation in
two dimensions, the conventional way for tackling the problem has hardly exceeded
the scope of recovering the two direction (x- and y-direction) components of sources
individually. Thus, as illustrated in Fig. 3a, severe loss of the source separation distance
in one dimension is always an inevitable issue that causes unstable recovery of the
direction components. Most of the researches ignored this issue and some papers [73,
74] proposed ad hoc schemes to enhance the reconstruction but in a complex manner.
We also present an example in Fig. 3b to compare the recoveries of ourAlgorithm 4 and
a projection-based MUSIC algorithm (similar to the one in [44]). It clearly illustrates
the recovery instability that is due to the projection.

Our method is a new one-dimensional-based algorithm where the issue of severe
source separation distance loss is avoided in a simple way. In our algorithm, the
separation distance between direction components of sources are still preserved. This
has been demonstrated by Lemma 3.2 for θ j ∈ [0, 2

3π ]2, j = 1, 2, with π
3 ≤ θ j,2 −

θ j,1 ≤ 2
3π, j = 1, 2. Furthermore, Theorem 5.1 shows that, for y j ∈ [0, π

2 ]2 and
v = (0, π

2 )�, the separation distance between x j = y j +v’s can be preserved after the
coordinate-combination. By Theorem 5.1, if the distance between the x j ’s is a certain
constantC , then the distance between eix j,1 +eix j,2 is larger than 2C

π2 times the original
distance. For better results of preservation of the distance, as indicated byTheorems 2.1
and2.2,we could consider sources in a smaller regionwith a specified translation. In the
numerical experiments presented in this paper, for ease of discussion and presentation,
we will consider sources in [0, π

2 ]2 and the translation vector v = (0, π
2 )�. We leave

Fig. 3 a shows the severe loss of distance when considering the direction components of the sources.
b illustrates an example of location recovery. The black points are the underlying sources and the red
points are locations recovered by coordinate-combination-based MUSIC algorithm. The green points are
locations recovered by one projection-based MUSIC algorithm. Although three sources are presented, the
projection-based MUSIC can only recover two sources (Color figure online)
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the recovering strategies of thewhole region [0, 2π ]2 and other enhancement for future
work.

Theorem 5.1 For two different vectors x j ∈ [0, π
2 ]×[π

2 , π ], j = 1, 2, if ||x1−x2||1 ≥
C for a constant C, then

∣∣∣eix1,1 + eix1,2 − (eix2,1 + eix2,2)
∣∣∣ ≥ 2C

π2 C .

Proof We prove the lemma by considering the following two cases.
Case 1 0 ≤ x1,1 ≤ x2,1 ≤ x2,2 ≤ x1,2 ≤ π .
In this case,

∣∣∣eix1,1 + eix1,2 − (eix2,1 + eix2,2)
∣∣∣ ≥

∣∣∣eix2,1 + eix2,2
∣∣∣ −

∣∣∣eix1,1 + eix1,2
∣∣∣

≥ 2

(
cos

(
φ2

2

)
− cos

(
φ1

2

))
,

where φ j = x j,2 − x j,1, j = 1, 2. By the assumption of the theorem, we have
C ≤ φ1 − φ2 ≤ π and C ≤ φ1 + φ2 ≤ 2π . Thus

2

(
cos

(
φ2

2

)
− cos

(
φ1

2

))
= 4 sin

(
φ1 + φ2

4

)
sin

(
φ1 − φ2

4

)

≥ 4 sin

(
C

4

)
sin

(
C

4

)
≥ 2C2

π2 .

where the last inequality uses sin(C4 ) ≥ 2
√
2

π
C
4 for 0 ≤ C

4 ≤ π
4 .

Case 2 0 ≤ x1,1 ≤ x2,1 ≤ x1,2 ≤ x2,2 ≤ π .
Again, the idea is to calculate the angle between eix1,1 + eix1,2 and eix2,1 + eix2,2 . By
a simple analysis of the angle relations between eix1,1 , eix1,2 , eix2,1 , eix2,2 , we obtain
that the angle between eix1,1 + eix1,2 and eix2,1 + eix2,2 is x2,1−x1,1+x2,2−x1,2

2 which is
larger than C

2 . Thus

∣∣∣eix1,1 + eix1,2 − (eix2,1 + eix2,2)
∣∣∣

≥ max
( ∣∣∣eix1,1 + eix1,2

∣∣∣ ,
∣∣∣eix2,1 + eix2,2

∣∣∣
)
sin

(
C

2

)
. (5.5)

We next claim that

max
( ∣∣∣eix1,1 + eix1,2

∣∣∣ ,
∣∣∣eix2,1 + eix2,2

∣∣∣
)

≥ 2 cos
(π − C/2

2

)
.

Otherwise, π − C
2 < x1,2 − x1,1 ≤ π and π − C

2 < x2,2 − x2,1 ≤ π , which is
impossible when ||x1 − x2||1 ≥ C . Thus the claim is proved. Together with (5.5), we
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arrive at

∣∣∣eix1,1 + eix1,2 − (eix2,1 + eix2,2)
∣∣∣ ≥ 2 sin

(
C

4

)
sin

(
C

2

)
≥ 2C2

π2 .

This completes the proof. 
�

5.4.2 Phase Transition and Performance of Algorithm 4

Most of the conventional two-dimensional DOA algorithms consider multiple snap-
shots of measurements from coherent or incoherent signals. Also, the noise is usually
assumed to be white Gaussian noise such that the expectation of the covariance matrix
of the measurement vector is a sum of two terms, where the first term is from the cor-
relation of the signals and the second one is the noise correlation matrix. Based on this
crucial observation, many algorithms were derived to tackle the problem. Differently
to the abovemodel, we consider recovering the source from a singlemeasurement with
deterministic noise. Thus we do not compare the performance of our algorithm with
those algorithms with statistical model. We demonstrate the super-resolution capac-
ity of our algorithm for the single snapshot case by showing the phase transition of
the algorithm. We will derive a coordinate-combination-based MUSIC algorithm for
multiple snapshots case in a forthcoming work.

We now describe the numerical experiments for demonstrating the phase transition
phenomenon of our algorithm in terms of the SNR versus the super-resolution fac-
tor. We fix � = 10 and consider three and four sources separated by the minimum
separation distance Dmin, i.e., minp �=q ||yp − yq ||1 ≥ Dmin. We perform 10,000 ran-
dom experiments (the randomness is in the choice of (Dmin, σ, y j , a j ) to recover the
sources using Algorithm 4. The reconstruction is viewed and recorded as successful if

Fig. 4 Plots of the successful and the unsuccessful location recoveries by Algorithm 4 in terms of log( 1σ )

versus log(SRF). a illustrates that locations of three point sources can be stably recovered if log( 1σ ) is above
a line of slope 5 in the parameter space. Conversely, for the same case, b shows that locations of four point
sources can be stably recovered if log( 1σ ) is above a line of slope 7 in the parameter space
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the recovered source is in a Dmin
3 -neighborhood of the underlying source, otherwise it

is unsuccessful; See Algorithm 5 for the details of a single experiment. The results of
the experiments are summarized in Fig. 4 which shows each successful and unsuccess-
fully recovery with respective to the log(SRF) and log(SNR). It is observed that there
is a line with slope (2n − 1) in the parameter space log(SRF) versus log(SNR) above
which the source is stably reconstructed for every realization. This phase transition
phenomenon is exactly the one predicted by our theoretical result in Theorem 2.2. It
also manifests the efficiency of Algorithm 4 as it can resolve the source in the regime
where the source separation distance is of the order of the computational resolution
limit.

Algorithm 5: A single experiment
Input: Sources μ = ∑n

j=1 a j δy j ; Noise level σ ;

Input: Measurements: Y(ω), ω = {0, 1, · · · ,�}2;
1: Successnumber = 0;
2: Input source number n and measurement Y to Algorithm 4 and save the output as y1, · · · , yn ;
for each 1 ≤ j ≤ n do

Compute the error for the source location y j : e j := minŷl ,l=1,··· ,n ||ŷl − y j ||2;
The source location y j is recovered successfully if

e j <
minp �= j ||yp − y j ||2

3
;

and
Successnumber = Successnumber + 1;

if Successnumber == n then
Return Success

else
Return Fail

.

6 A Nonlinear Approximation Theory in Vandermonde Space

Recall that in the proofs of Theorems 2.1 and 2.2, the three observations in Sect. 3.1 are
used to transform the two-dimensional super-resolution problems into the following
approximation

∣∣∣∣∣∣

q∑

j=1

â j d̂
t
j −

n∑

j=1

a jd
t
j

∣∣∣∣∣∣
< Cσ, t = 0, 1, . . . , s(n), (6.1)

where â j ∈ C, d̂ j ∈ C, a j ∈ C, d j ’s are complex numberswith aminimum separation,
q ≤ n, and s(n) = 2n − 2 or 2n − 1. We are interested in the stability of recovering
d j ’s by d̂ j ’s from above approximation and call these problems the approximation
problems in Vandermonde space. Note that, as already shown in the proofs, they play
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a crucial role in proving Theorems 2.1 and 2.2. The main motivation for transform-
ing the two-dimensional super-resolution into the above problems is that we already
have enough tools to analyze them. To be specific, in [45, 46], we have introduced a
nonlinear approximation theory in Vandermonde space for certain cases to deal with
one-dimensional super-resolution problems. In [46], we have derived the theory for
real numbers and in [45] for complex numbers on the unit circle. Here, we derive a
different theory for arbitrary bounded complex numbers (d j ∈ C, 1 ≤ j ≤ n), which
is used to prove Theorems 2.1 and 2.2.

Especially, for a given positive integer s and ω ∈ C, we denote by

φs(ω) = (1, ω, . . . , ωs)� (6.2)

and call φs a Vandermonde vector. We first study the following nonlinear approxima-
tion problem in the Vandermonde space,

min
â j ,d̂ j∈R,|d̂ j |≤d, j=1,...,k

∣∣∣
∣∣∣

k∑

j=1

â jφ2k(d̂ j ) −
k+1∑

j=1

a jφ2k(d j )

∣∣∣
∣∣∣
2
, (6.3)

where d j ’s are bounded complex numbers with a minimum separation distance. We
derive a sharp lower bound on the above approximation in Theorem 6.2. In addition,
we also investigate the stability of recovering d j ’s by d̂ j ’s from the condition

∣∣∣
∣∣∣

k∑

j=1

â jφ2k−1(d̂ j ) −
k∑

j=1

a jφ2k−1(d j )

∣∣∣
∣∣∣
2

< σ, (6.4)

and establish Theorem 6.3. These results are closely related to problem (6.1) and hence
are also closely related to the proofs of the main results of this paper.

6.1 Notation and Preliminaries

We introduce some notation and preliminaries. We denote the Vandermonde matrix
by

Vs(k) =

⎛

⎜⎜⎜⎝

1 · · · 1
d1 · · · dk
...

. . .
...

ds1 · · · dsk

⎞

⎟⎟⎟⎠ =
(
φs(d1) φs(d2) · · · φs(dk)

)
. (6.5)

For a real matrix or a vector A, we denote by A� its transpose and by A∗ its conjugate
transpose.

We first present some basic properties of Vandermonde matrices.
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Lemma 6.1 For k distinct complex numbers d j ’s, we have

||Vk−1(k)
−1||∞ ≤ max

1≤i≤k
�1≤p≤k,p �=i

1 + |dp|
|di − dp| ,

where Vk−1(k) is the Vandermonde matrix Vk−1(k) defined as in (6.5).

Proof See Theorem 1 in [26]. 
�
As a consequence, we directly have the following corollary.

Corollary 6.2 Let dmin = mini �= j |di −d j | and assume thatmaxi=1,...,k |di | ≤ d. Then

||Vk−1(k)
−1||∞ ≤ (1 + d)k−1

(dmin)k−1 .

Lemma 6.3 For distinct d1, . . . , dk ∈ C, define the Vandermonde matrices Vk−1(k),
Vs(k) as in (6.5) with s ≥ k − 1. Then the following estimate on their singular values
holds:

1√
k

1

||Vk−1(k)−1||∞ ≤ 1

||Vk−1(k)−1||2 ≤ σmin(Vk−1(k)) ≤ σmin(Vs(k)).

Proof The result holds by using properties of matrix norms. 
�
Denote by

S j
1k :=

{
{τ1, . . . , τ j } : τp ∈ {1, . . . , k}, p = 1, . . . , j and τp �= τq , for p �= q

}
.

Note that there is no order in {τ1, . . . , τ j }, i.e., {1, 2} and {2, 1} are the same sets. We
then have the following decomposition of the Vandermonde matrix.

Proposition 6.4 The Vandermonde matrix Vk(k) defined as in (6.5) can be reduced to
the following form by using elementary column-addition operations, i.e.,

Vk(k)G(1) · · ·G(k − 1)DQ(1) · · · Q(k − 1) =

⎛

⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
v(k+1)1 v(k+1)2 · · · v(k+1)k

⎞

⎟⎟⎟⎟⎟⎠
,

(6.6)

where G(1), . . . ,G(k − 1), Q(1), . . . , Q(k − 1) are elementary column-addition
matrices,

D = diag

(
1,

1

(d2 − d1)
, . . . ,

1

�k−1
p=1(dk − dp)

)
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and

v(k+1) j = (−1)k− j
∑

{τ1,...,τk+1− j }∈Sk+1− j
1k

dτ1 · · · dτk+1− j . (6.7)

Proof See “Appendix B” in [46]. 
�

Lemma 6.5 For an s × k complex matrix A of rank k with s > k, let V be the space
spanned by columns of A and V⊥ be the orthogonal complement of V . Denote by PV⊥
the orthogonal projection to V⊥, and set D = (A, v). We have

min
a∈Ck

||Aa − v||2 = ||PV⊥(v)||2 =
√
det(D∗D)

det(A∗A)
.

Proof See Lemma 1 in [45]. 
�

Lemma 6.6 We have

√
det(Vk(k)∗Vk(k))

det(Vk−1(k)∗Vk−1(k))
=

√√√√
k∑

j=0

|v j |2, (6.8)

where Vs(k) is defined as in (6.5) and v j = ∑
{τ1,...,τ j }∈S j

1k
dτ1 · · · dτ j . Especially, if

|d j | < d, j = 1, . . . , k, then

√
det(Vk(k)∗Vk(k))

det(Vk−1(k)∗Vk−1(k))
≤ (1 + d)k . (6.9)

Proof Note that in Proposition 6.4, all the elementary column-addition matrices
have unit determinant. As a result, det(Vk(k)∗Vk(k)) = det(F∗F)

det(D∗D)
, where F is the

matrix in the right-hand side of (6.6), and D is the diagonal matrix in Proposi-
tion 6.4. A direct calculation shows that det(F∗F) = ∑k

j=0 |v j |2, where we use
(6.7). On the other hand, Vk−1(k) is a standard Vandermonde matrix and we have
det(Vk−1(k)∗Vk−1(k)) = 1

det(D∗D)
. Combining these results, (6.8) follows. The last

statement can be derived from (6.8) and the estimate that

√√√√
k∑

j=0

|v j |2 ≤
k∑

j=0

|v j | ≤
k∑

j=0

(
k
j

)
d j = (1 + d)k .


�
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For reader’s convenience, we finally present two auxiliary lemmas. For positive
integers p, q and complex numbers z1, . . . , z p, ẑ1, . . . , ẑq , we define the vector

ηp,q(z1, . . . , z p, ẑ1, . . . , ẑq) =

⎛

⎜⎜⎜⎝

|z1 − ẑ1| · · · |z1 − ẑq |
|z2 − ẑ1| · · · |z2 − ẑq |

...

|z p − ẑ1| · · · |z p − ẑq |

⎞

⎟⎟⎟⎠ . (6.10)

The following two properties of ηp,q hold.

Lemma 6.7 For complex numbers d j , d̂ j ’s, we have the following estimate

∣∣∣
∣∣∣ηk+1,k(d1, . . . , dk+1, d̂1, . . . , d̂k)

∣∣∣
∣∣∣∞ ≥

(
dmin

2

)k

,

where dmin = min j �=p |d j − dp| and ηk+1,k(d1, . . . , dk+1, d̂1, . . . , d̂k) is defined as in
(6.10).

Proof Because we have k + 1 d j ’s and only k d̂ j ’s, there must exist one d j0 so that

|d j0 − d̂ j | ≥ dmin

2
, j = 1, . . . , k.

Then the estimate in the lemma follows. 
�
Lemma 6.8 Let d j , d̂ j ∈ C, j = 1, . . . , k satisfy |d j |, |d̂ j | ≤ d. Assume that

||ηk,k(d1, . . . , dk, d̂1, . . . , d̂k)||∞ < ε, (6.11)

where ηk,k(· · · ) is defined as in (6.10), and that

dmin = min
p �=q

|dp − d j | ≥ 2ε
1
k . (6.12)

Then after reordering d j ’s, we have

∣∣∣d̂ j − d j

∣∣∣ <
dmin

2
, j = 1, . . . , k, (6.13)

and moreover

∣∣∣d̂ j − d j

∣∣∣ ≤
( 2

dmin

)k−1
ε, j = 1, . . . , k. (6.14)

Proof See “Appendix A”. 
�
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6.2 Lower-Bound for the Approximation Problem (6.3)

In this section, we derive a lower-bound for the nonlinear approximation problem
(6.3). We first consider a special case.

Theorem 6.1 Let k ≥ 1 and d̂1, . . . , d̂k be k distinct complex numbers with |d̂ j | ≤
d̂, 1 ≤ j ≤ k. Define A := (

φk(d̂1), . . . , φk(d̂k)
)
, where φk(d̂ j )’s are defined as in

(6.2). Let V be the k-dimensional space spanned by the column vectors of A, and let
V⊥ be the one-dimensional orthogonal complement of V in C

k+1. Let PV⊥ be the
orthogonal projection onto V⊥ in Ck+1. Then we have

min
a∈Ck

||Aa − φk(x)||2 = ∣∣∣∣PV⊥(φk(x))
∣∣∣∣
2 = ∣∣v∗φk(x)

∣∣ ≥ 1

(1 + d̂)k

∣∣∣�k
j=1(x − d̂ j )

∣∣∣ ,

where v is a unit vector in V⊥ and v∗ is its conjugate transpose.

Proof By Lemma 6.5, it follows that

min
a∈Ck

||Aa − φk(x)||2 =
√
det(D∗D)

det(A∗A)
,

where D = (
φk(d̂1), . . . , φk(d̂k), φk(x)

)
. Denote Ã = (

φk−1(d̂1), . . . , φk−1(d̂k)
)
. By

(6.9), we have

√
det(A∗A)

det( Ã∗ Ã)
≤ (1 + d̂)k .

Therefore,

min
a∈Ck

||Aa − φk(x)||2 ≥ 1

(1 + d̂)k

√
det(D∗D)

det( Ã∗ Ã)
.

Note that D and Ã are square Vandermonde matrices. We can use the determinant
formula to derive that

min
a∈Ck

||Aa − φk(x)||2 ≥ 1

(1 + d̂)k

|�1≤t<p≤k(d̂t − d̂p)�k
q=1(x − d̂q)|

|�1≤t<p≤k(d̂t − d̂p)|
= 1

(1 + d̂)k
|�k

j=1(x − d̂ j )|.

This completes the proof of the theorem. 
�
We now consider the approximation problem (6.3).
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Theorem 6.2 Let k ≥ 1. Assume (k + 1) different complex numbers d j ∈ C, j =
1, . . . , k + 1 with |d j | ≤ d and (k + 1) a j ∈ C with |a j | ≥ mmin. Let dmin :=
min j �=p |d j −dp|. For q ≤ k, let â(q) = (â1, â2, . . . , âq)�, a = (a1, a2, . . . , ak+1)

�,
and

Â(q) = (
φ2k(d̂1), . . . , φ2k(d̂q)

)
, A = (

φ2k(d1), . . . , φ2k(dk+1)
)
,

where φ2k(z) is defined as in (6.2). Then

min
âp,d̂p∈C,|d̂p |≤d̂,p=1,...,q

|| Â(q)â(q) − Aa||2 ≥ mmin(dmin)
2k

2k(1 + d)k(1 + d̂)k
.

Proof Step 1 Note that for q < k, we have

min
âp,d̂p∈C,|d̂p |≤d,p=1,...,q

|| Â(q)â(q) − Aa||2

≥ min
âp,d̂p∈C,|d̂p |≤d,p=1,...,k

|| Â(k)â(k) − Aa||2.

Hence we need only to consider the case when q = k. It then suffices to show that for
any given d̂ j ∈ C, |d̂ j | ≤ d̂, j = 1, . . . , k, the following holds

min
âp∈C,p=1,...,k

|| Â(k)â(k) − Aa||2 ≥ mmin(dmin)
2k

2k(1 + d)k(1 + d̂)k
. (6.15)

So we fix d̂1, . . . , d̂k in our subsequent argument.
Step 2 For l = 0, . . . , k, we define the following partial matrices

Âl =

⎛

⎜⎜⎜⎝

d̂l1 · · · d̂lk
d̂l+1
1 · · · d̂l+1

k
...

...
...

d̂l+k
1 · · · d̂l+k

k

⎞

⎟⎟⎟⎠ , Al =

⎛

⎜⎜⎜⎝

(d1)l · · · (dk+1)
l

(d1)l+1 · · · (dk+1)
l+1

...
...

...

(d1)l+k · · · (dk+1)
l+k

⎞

⎟⎟⎟⎠ .

It is clear that for all l,

min
â(k)∈Ck

|| Â(k)â(k) − Aa||2 ≥ min
â∈Ck

|| Âl â − Ala||2. (6.16)

Step3For each l, observe that Âl = Â0diag(d̂l1, . . . , d̂lk), Al = A0diag(dl1, . . . , d
l
k+1),

and thus

min
â∈Ck

|| Âl â − Ala||2 ≥ min
α̂l∈Ck

||A0α̂l − A0αl ||2, (6.17)
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where αl = (
a1(d1)l , . . . , ak+1(dk+1)

l
)�

. Let V be the space spanned by the column
vectors of A0. Then the dimension of V is k, and the dimension of V⊥, the orthogonal
complement of V in C

k+1, is one. Let PV⊥ be the orthogonal projection onto V⊥.
Note that ||PV⊥u||2 = |v∗u| for u ∈ C

k+1, where v is a unit vector in V⊥ and v∗ is
its conjugate transpose. We have

min
α̂l∈Ck

|| Â0α̂l − A0αl ||2 = ||PV⊥(A0αl)||2 = |v∗A0αl |

=
∣∣∣
k+1∑

j=1

a j (d j )
lv∗φk(d j )

∣∣∣ = |βl |, (6.18)

where

βl =
k+1∑

j=1

a j (d j )
lv∗φk(d j ), for l = 0, 1, . . . , k.

Step 4 Denote β = (β0, . . . , βk)
�. We have Bη̂ = β, where

B =

⎛

⎜⎜⎜⎝

a1 a2 · · · ak+1
a1d1 a2d2 · · · ak+1dk+1

...
...

...
...

a1(d1)k a2(d2)k · · · ak+1(dk+1)
k

⎞

⎟⎟⎟⎠ , η̂ =

⎛

⎜⎜⎜⎝

v∗φk(d1)
v∗φk(d2)

...

v∗φk(dk+1)

⎞

⎟⎟⎟⎠ .

Corollary 6.2 yields

||η̂||∞ = ||B−1β||∞ ≤ ||B−1||∞||β||∞ ≤ (1 + d)k

mmin(dmin)k
||β||∞.

On the other hand, applying Theorem 6.1 to each term |v∗φk(d j )|, j = 1, 2, . . . k+1,
we have

||η̂||∞ ≥ 1

(1 + d̂)k
||ηk+1,k(d1, . . . , dk+1, d̂1, . . . , d̂k)||∞,

where ηk+1,k(· · · ) is defined as in (6.10). Combining this inequality with Lemma 6.7,
we get

||η̂||∞ ≥ (dmin)
k

2k(1 + d̂)k
.

Then it follows that

||β||∞ ≥ mmin(dmin)
2k

2k(1 + d)k(1 + d̂)k
.
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Therefore, recalling (6.16)–(6.18), we arrive at

min
â(k)∈Ck

|| Â(k)â(k) − Aa||2 ≥ max
0≤l≤k

min
â∈Ck

|| Âl â − Ala||2

= max
0≤l≤k

|βl | = ||β||∞ ≥ mmin(dmin)
2k

2k(1 + d)k(1 + d̂)k
.

This proves (6.15) and hence the theorem. 
�

6.3 Stability of the Approximation Problem (6.4)

In the section, we present a stability result for the approximation problem (6.4).

Theorem 6.3 Let k ≥ 1. Assume k different complex numbers d j ∈ C, j = 1, . . . , k
with |d j | ≤ d and k a j ∈ C with |a j | ≥ mmin. Let dmin := minp �=q |dp − dq |. Assume
that d̂ j ∈ C, j = 1, . . . , k with |d̂ j | ≤ d satisfy

|| Ââ − Aa||2 < σ,

where â = (â1, . . . , âk)�, a = (a1, . . . , ak)�, and

Â = (
φ2k−1(d̂1), . . . , φ2k−1(d̂k)

)
, A = (

φ2k−1(d1), . . . , φ2k−1(dk)
)
.

Then

∣∣∣
∣∣∣ηk,k(d1, . . . , dk, d̂1, . . . , d̂k)

∣∣∣
∣∣∣∞ <

(1 + d)2k−1

dk−1
min

σ

mmin
.

Proof Since || Ââ − Aa||2 < σ , we have

min
α̂∈Ck

|| Âα̂ − Aa||2 < σ,

and hence

max
0≤l≤k−1

min
α̂∈Ck

|| Âl α̂ − Ala||2 ≤ min
α̂∈Ck

|| Âα̂ − Aa||2 < σ, (6.19)

where

Âl =

⎛

⎜⎜⎜⎝

d̂l1 · · · d̂lk
d̂l+1
1 · · · d̂l+1

k
...

...
...

d̂l+k
1 · · · d̂l+k

k

⎞

⎟⎟⎟⎠ , Al =

⎛

⎜⎜⎜⎝

dl1 · · · dlk
dl+1
1 · · · dl+1

k
...

...
...

dl+k
1 · · · dl+k

k

⎞

⎟⎟⎟⎠ .
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For each l, from thedecomposition Âl = Â0diag(d̂l1, . . . , d̂lk), Al = A0diag((d1)l , . . . ,
(dk)l), we get

min
α̂∈Ck

|| Âl α̂ − Ala||2 ≥ min
α̂l∈Ck

|| Â0α̂l − A0αl ||2, (6.20)

where αl = (a1(d1)l , . . . , ak(dk)l)�. Let V be the space spanned by the column
vectors of Â0. Then the dimension of V is k, and V⊥, the orthogonal complement of
V in C

k+1 is of dimension one. We let v be a unit vector in V⊥ and let PV⊥ be the
orthogonal projection onto V⊥. Similarly to (6.18), we have

min
α̂l∈Ck

|| Â0α̂l − A0αl ||2 = ||PV⊥(A0αl)||2 = |v∗A0αl | =
∣∣∣

k∑

j=1

a j (d j )
lv∗φk(d j )

∣∣∣ = |βl |,

(6.21)

where βl = ∑k
j=1 a j (d j )

lv∗φk(d j ). Let β = (β0, . . . , βk−1)
�. Moreover, similarly

to Step 4 in the proof of Theorem 6.2, we have

∣∣∣
∣∣∣ηk,k(d1, . . . , dk, d̂1, . . . , d̂k)

∣∣∣
∣∣∣∞ ≤ (1 + d)2k−1

mmin(dmin)k−1 ||β||∞.

On the other hand, (6.19)–(6.21) indicate that ||β||∞ < σ . Hence, we obtain that

∣∣∣
∣∣∣ηk,k(d1, . . . , dk, d̂1, . . . , d̂k)

∣∣∣
∣∣∣∞ ≤ (1 + d)2k−1

(dmin)k−1

σ

mmin
.

This completes the proof. 
�

7 Conclusions and FutureWork

In this paper, we have improved the estimates of resolution limits in two-dimensional
super-resolution problems. We also theoretically demonstrate the optimal perfor-
mance of a sparsity-promoting algorithm. Leveraging the new techniques in the proof,
we have proposed a coordinate-combination-based model order detection algorithm
and a coordinate-combination-based MUSIC algorithm for DOA estimation in two
dimensions. The superiority of the introduced algorithms was demonstrated both the-
oretically or numerically.

Our work is also a start of many new topics. Firstly, one could extend the techniques
to three- and k-dimensional spaces to improve the resolution estimates in higher dimen-
sional super-resolution problems. Secondly, the idea of coordinate-combination could
inspire new algorithms for two-dimensional DOA estimations in the case of multiple
snapshots. These works will be presented in a near future.
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Appendix A: Proof of Lemma 6.8

Proof Step 1 We claim that for each d̂p, 1 ≤ p ≤ k, there exists one d j such that
|d̂p −d j | < dmin

2 . By contradiction, suppose that there exists p0 such that |d j − d̂p0 | ≥
dmin
2 for all 1 ≤ j ≤ k. Observe that

ηk,k(d1, . . . , dk, d̂1, . . . , d̂k)

= diag
(
|d1 − d̂p0 |, . . . , |dk − d̂p0 |

)

ηk,k−1(d1, . . . , dk, d̂1, . . . , d̂p0−1, d̂p0+1, . . . , d̂k).

We write

ηk,k = ηk,k(d1, . . . , dk, d̂1, . . . , d̂k) and

ηk,k−1 = ηk,k−1(d1, . . . , dk, d̂1, . . . , d̂p0−1, d̂p0+1, . . . , d̂k).

Using Lemma 6.7, we have

||ηk,k ||∞ ≥ dmin

2
||ηk,k−1||∞ ≥

(dmin

2

)k ≥ ε,

where we have used (6.12) in the last inequality above. This contradicts (6.11) and
hence proves our claim.
Step 2 We claim that for each d j , 1 ≤ j ≤ k, there exists one and only one d̂p such
that

|d j − d̂p| <
dmin

2
.

It suffices to show that for each d j , 1 ≤ j ≤ k, there is only one d̂p such that
|d j − d̂p| < dmin

2 . By contradiction, suppose that there exist p1, p2, and j0 such that

|d j0 − d̂p1 | < dmin
2 , |d j0 − d̂p2 | < dmin

2 . Then for all j �= j0, we have

∣∣∣(d j − d̂p1)(d j − d̂p2)
∣∣∣ ≥ (dmin)

2

4
. (A.1)
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Similarly to the argument in Step 1, we separate the factors involving d̂p1 , d̂p2 , d j0
from ηk,k and consider

ηk−1,k−2 = ηk−1,k−2(d1, . . . , d j0−1, d j0+1, . . . , dk, d̂1, . . . , d̂p1−1, d̂p1+1, . . . ,

d̂p2−1, d̂p2+1, . . . , d̂k).

Note that the components of ηk−1,k−2 differ from those of ηk,k only by the factors
|(d j − d̂p1)(d j − d̂p2)| for j = 1, . . . , j0 − 1, j0 + 1, . . . , k. We can show that

||ηk,k ||∞ ≥ (dmin)
2

4
||ηk−1,k−2||∞ ≥ ε,

where we have used Lemma 6.7 and (6.12) for establishing the last inequality above.
This contradicts (6.11) and hence proves our claim.
Step 3 By the result in Step 2, we can reorder d̂ j ’s to get

|d̂ j − d j | <
dmin

2
, j = 1, . . . , k.

We now prove (6.14). It is clear that |d̂p − d j | > dmin
2 , p �= j . Thus

|(d j − d̂1) · · · (d j − d̂k)| > |d j − d j |
(
dmin

2

)k−1

, j = 1, 2, . . . , k. (A.2)

Further, we get

|d j − d̂ j | <
( 2

dmin

)k−1||ηk,k ||∞ ≤
( 2

dmin

)k−1
ε, j = 1, 2, . . . , k.

This completes the proof of the lemma. 
�
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