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Abstract
We present here a novel approach to handling curved meshes in polytopal methods
within the framework of hybrid high-order methods. The hybrid high-order method is
a modern numerical scheme for the approximation of elliptic PDEs. An extension to
curved meshes allows for the strong enforcement of boundary conditions on curved
domains and for the capture of curved geometries that appear internally in the domain
e.g. discontinuities in a diffusion coefficient. Themethodmakes use of non-polynomial
functions on the curved faces and does not require any mappings between reference
elements/faces. Such an approach does not require the faces to be polynomial and has
a strict upper bound on the number of degrees of freedom on a curved face for a given
polynomial degree.Moreover, this approach of enriching the space of unknowns on the
curved faces with non-polynomial functions should extend naturally to other polytopal
methods.We show themethod to be stable and consistent on curvedmeshes and derive
optimal error estimates in L2 and energy norms. We present numerical examples of
the method on a domain with curved boundary and for a diffusion problem such that
the diffusion tensor is discontinuous along a curved arc.
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1 Introduction

In recent years, there has been a trend in the computational literature toward arbitrary
order polytopal methods for the approximation of partial differential equations. Such
methods have a greater flexibility in the mesh requirements and can capture more intri-
cate geometric and physical details in the domain. Being of arbitrary order, they also
benefit from better convergence rates with respect to the global degrees of freedom. A
short list of such methods includes discontinuous Galerkin and hybridisable discon-
tinuous Galerkin methods [13, 18, 24], virtual element methods [1, 6, 9, 15], weak
Galerkin methods [29], and polytopal finite elements [36]. However, it is well known
that any approximation method on a polytopal mesh of a smooth domain (i.e. with a
first-order representation of the boundary) will yield at best an order two convergence
rate [35, 37]. Thus, any high-order method on curved domains requires a high-order
(or exact) representation of the boundary for optimal convergence.

Developed in [23, 25], hybrid high-order (HHO) schemes are modern polytopal
methods for the approximation of elliptic PDEs. A key aspect of HHO is its applica-
bility to genericmesheswith arbitrarily shaped polytopal elements. This article focuses
on the extension ofHHOmethods to allow for curvedmeshes, with unknowns that cap-
ture the geometry exactly, yet still achieve optimal convergence. While the approach
is presented within an HHO framework for a diffusion problem, the key ideas are more
general and can be extended to related polytopal methods and to other models such as
linear elasticity, or the Stokes and Navier–Stokes equations.

There has been much work on the development of discontinuous Galerkin (DG)
methods on curved meshes [12, 14, 28]. We also make note of the article [31] which
analyses several approaches to high-order finite element methods on curved meshes.
However, for the aforementionedmethods the problem ismuch simpler than for hybrid
high-order methods due to the lack of unknowns on the mesh faces. The addition of
unknowns on the mesh faces is one of the key benefits hybrid methods have over
DG and other non-hybrid methods due to the strong enforcement of boundary condi-
tions and the reduction of the global degrees of freedom via static condensation [22,
Appendix B.3.2].

The article [5] proposes a virtual element method (VEM) in two dimensions for
meshes possessing curved edges. For each curved edge, the authors consider the space
of polynomials on a linear reference segment in R and map this space onto the curved
edge via a sufficiently smooth parameterisation. A similar approach is taken in the
articles [4, 21]. A typical approach for hybridisable discontinuous Galerkin (HDG)
methods on curved domains is to map the boundary data onto a polytopal sub-domain
[cf.19, 20]. We make note of the articles [32, 33] which also use this approach to
curved boundaries.

While there has been some work on the development of hybrid high-order methods
on curved meshes [8, 10, 11], the approach we take in this paper is quite different.
Indeed, the article [8] approaches the issue of defining unknowns on curved faces
by considering a polynomial mapping from a planar reference face onto the curved
face. While this naturally requires the mesh faces to be polynomial, it also reduces the
approximation order [7]. Indeed, if the mapping onto the face has effective mapping
order m (see [8, Equation (5) & Remark 1]), then defining face unknowns of degree
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l in the reference frame will yield approximation properties of at best order � l
m �

[8, Equation (8)]. To recover the optimal approximation order observed for straight
meshes, the degree of the face polynomials in the reference frame is increased by a
factor of m, yielding a very large global stencil for high-order mappings. Moreover,
approximation properties in the curved faces are unknown, and the authors assume
them to be true [cf.8, Equation (9)] in order to obtain optimal error estimates. We also
make note of the conference proceedings [34] which follows the same approach using
reference frame polynomials to define unknowns on curved faces for a HDG method.

An alternative approach, first considered in [10, 11], is to increase the polynomial
degree of the element unknowns and weakly enforce the boundary or interface condi-
tions without defining any unknowns on curved faces. This procedure has also been
implemented for a fourth order bi-harmonic problem in a curved domain [26]. Such
an approach ensures stability of the system and that optimal convergence rates are
achieved. However, this method does not capture the geometry exactly and requires a
finely tuned Nitsche parameter to achieve stability and consistency [cf.30]. Moreover,
without unknowns defined on curved faces, it is not clear how to design an enriched
method such as that proposed in [38], whereas the method devised in this paper works
seamlessly with enrichment.

In this paper, we take inspiration from the article [38] and consider unknowns
on the faces to include the Neumann traces of higher-order polynomials. We note
that this approach does not consider reference elements or faces but rather directly
defines non-polynomial spaces on curved faces. Such an approach is therefore more
closely analogous to an enriched or extended method than it is to any of the previously
mentioned methods of defining unknowns on curved faces. Using this approach, we
are not restricted to consider polynomial faces, but can rather take any C1 manifold.
Moreover, the number of degrees of freedom on curved faces is strictly bounded
above and does not grow arbitrarily large for high-order mappings. We are able to
prove consistency of the scheme, and by including the space of constant functions on
the faces, the method is shown to be stable. In Sect. 3, we prove optimal error estimates
in energy and L2-norm, and in Sect. 5 we present a method for the design of quadrature
rules on curved elements. The paper is concluded with some numerical tests in two
dimensions in Sect. 6.

1.1 Model and Assumptions on theMesh

We take a domain � ⊂ R
d , d ≥ 2, and consider the Dirichlet–diffusion problem: find

u ∈ H1
0 (�) such that

a(u, v) = �(v), ∀v ∈ H1
0 (�), (1.1)

where a(u, v):=(K∇u,∇v)� and �(v):=( f , v)� for some source term f ∈ L2(�)

and diffusion tensor K assumed to be a symmetric, piecewise constant matrix-valued
function satisfying, for all x ∈ R

d ,

K x · x ≤ (Kx) · x ≤ K x · x (1.2)
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for two fixed real numbers 0 < K ≤ K . Here and in the following, (·, ·)X is the L2-
inner product of scalar- or vector-valued functions on a set X for its natural measure.
We shall also denote by ‖ · ‖X the L2-norm.

Let H ⊂ (0,∞) be a countable set of mesh sizes with a unique cluster point at 0.
For each h ∈ H, we partition the domain � into a mesh Mh = (Th,Fh), where Th
denotes the mesh elements and Fh the mesh faces.

We suppose that the mesh elements Th are a disjoint set of bounded simply con-
nected domains in R

d with piece-wise C1 boundary ∂T . We further suppose that
� = ⋃

T∈Th T .
We suppose that the mesh faces Fh are a disjoint set of non-intersecting, finite,

(d − 1)-dimensional C1 manifolds which partition the mesh skeleton:
⋃

T∈Th ∂T =
⋃

F∈Fh
F and that for each F ∈ Fh there either exists two distinct elements T1, T2 ∈

Th such that F ⊂ ∂T1∩∂T2 and F is called an internal face, or there exists one element
T ∈ Th such that F ⊂ ∂T ∩ ∂� and F is called a boundary face. Interior faces are
collected in the set Fi

h and boundary faces in the set Fb
h .

The parameter h is given by h:=maxT∈Th hT where, for X = T ∈ Th or X =
F ∈ Fh , hX denotes the diameter of X . We shall also collect the faces attached to an
element T ∈ Th in the set FT := {F ∈ Fh : F ⊂ T }. The unit normal to F ∈ FT

pointing outside T is denoted by nT F , and nT : ∂T → R
d is the unit normal defined

by (nT )|F = nT F for all F ∈ FT . We note that as each F is C1, the normal nT F is
well defined. It is also worth noting that the normal vector nT F will not be constant
on curved faces.

We consider the following regularity assumption on the mesh elements.

Assumption 1 (Regular mesh sequence) There exists a constant � > 0 such that, for
each h ∈ H, every T ∈ Th is connected by star-shaped sets with parameter � (see [22,
Definition 1.41]).

Remark 1 (Assumptions on the mesh) Assumption 1 is taken from [27, Assumption 1]
however we have removed the assumption that the faces are connected by star shaped
sets.We shall also note that there is no requirement that themesh elements be polytopal
or for the mesh faces to be planar.

We further require that the elements of themesh align with the discontinuities of the
diffusion tensor i.e. for each T ∈ Th , K|T :=KT is a constant matrix. In an analogous
manner to (1.2) we define quantities 0 < KT ≤ KT to satisfy

KT x · x ≤ (KT x) · x ≤ KT x · x ∀x ∈ R
d , (1.3)

and we define the local diffusion anisotropy ratio αT := KT
KT

.
From hereon we shall write f � g if there exists some constant C which is inde-

pendent of the quantities f and g, the mesh diameter h, and of the diffusion tensorK,
such that f ≤ Cg.

Under Assumption 1, the following continuous trace inequality holds: for all v ∈
H1(T ),

hT ‖v‖2∂T � ‖v‖2T + h2T ‖∇v‖2T . (1.4)
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A proof of (1.4) is provided in [27]. We note that no assumption on T being polytopal
is required. We also note the following inverse Sobolev inequality, a proof of which
is provided for highly generic and potentially curved elements in [12, Lemma 4.23]:

‖∇v‖2T � h−2
T ‖v‖2T ∀v ∈ P

�(T ), (1.5)

where we denote by P
�(T ) the space of polynomials on T of degree ≤ �, � ∈ N.

Combining (1.4) and (1.5) yields the following discrete trace inequality:

hT ‖v‖2∂T � ‖v‖2T ∀v ∈ P
�(T ). (1.6)

2 Discrete Model

A standard hybrid high-order method on polytopal meshes defines the local discrete
space as

Uk
T = P

k(T ) ×
F∈FT

P
k(F).

This makes sense on polytopal meshes where F is a (d − 1)-dimensional hyperplane
as there is no ambiguity in what is meant by P

k(F). Indeed, on such meshes it holds
that Pk(F) = P

k(�)|F = P
k(�)d · nF . On curved meshes, it is not so obvious what

the discrete space should be.
We find that the appropriate local discrete space is that of

Uk
T = P

k(T ) ×
F∈FT

Pk(F), (2.1)

where we define
Pk(F):=P

0(F) + P
k(�)d · nF , (2.2)

and nF is an arbitrary unit normal to the face F . The choice of unit normal nF does
not affect the definition of Pk(F). We note that, even for a curved face, there is no
ambiguity in the term P

0(F) as it represents the space of functions which are constant
on the face F . We emphasise that as the unit normal nF is not constant, the space
Pk(F) will be non-polynomial on curved faces.

Remark 2 If F is planar (that is, a (d − 1)-dimensional hyperplane) then it holds that
Pk(F) = P

k(F) and thus the discrete space in (2.1) coincides with the usual HHO
space.

Remark 3 It suffices to take the space of unknowns on the faces as P
0(F) +

(KT1∇P
k+1(�)) · nF + (KT2∇P

k+1(�)) · nF with {T1, T2} = TF for stability and
consistency to hold. However, we define the space as Pk(F) = P

0(F) + P
k(�)d · nF

for simpler implementation and robustness of more general models.
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We shall denote by Pk(FT ) the space

Pk(FT ):={v ∈ L1(∂T ) : v|F ∈ Pk(F) ∀F ∈ FT },

and for a given vT ∈ Uk
T we shall write vT = (vT , vFT ) with vT ∈ P

k(T ) and
vFT ∈ Pk(FT ). The potential reconstruction pk+1

K,T : Uk
T → P

k+1(T ) is defined as the
unique solution to

(∇pk+1
K,T vT ,∇w)T= −(vT ,∇ · (KT∇w))T+(vFT , (KT∇w) · nT )∂T∀w ∈ P

k+1(T ),

(2.3a)
∫

T
(pk+1

K,T vT − vT ) = 0. (2.3b)

We denote by π
0,k
T : L1(T ) → P

k(T ) and π
0,k
F : L1(F) → Pk(F) the L2-orthogonal

projectors onto the spaces P
k(T ) and Pk(F), respectively. We denote by π

1,k+1
K,T :

L1(T ) → P
k+1(T ) the oblique elliptic projector onto the space Pk+1(T ) satisfying

(KT∇(v − π
1,k+1
K,T v),∇w)T = 0 ∀w ∈ P

k+1(T ), (2.4a)
∫

T
(π

1,k+1
K,T v − v) = 0. (2.4b)

The following weighted inner-products and norms are taken from [27]. The
weighted inner-product (·, ·)K,∂T : L2(∂T ) × L2(∂T ) → R is defined for all
v,w ∈ L2(∂T ) via

(v,w)K,∂T :=(K
1
2
T nT v,K

1
2
T nT w)∂T = ([KT nT · nT ]v,w)∂T . (2.5)

For all r ≥ 1 and v ∈ Hr (T ) the weighted Hr -seminorm |·|K,Hr (T ) is defined as

|v|K,Hr (T ):=|K
1
2
T∇v|Hr−1(T )d . (2.6)

Lemma 1 (Approximation properties of π
1,k+1
K,T ) For all s = 1, . . . , k + 1 and v ∈

Hk+2(T ),
|v − π

1,k+1
K,T v|K,Hs (T ) � hk+2−s

T |v|K,Hk+2(T ). (2.7)

Proof A proof is provided by [27, Lemma 9]. While that particular proof assumes the
elements are polytopal, the proof only relies on [22, Theorem 1.50] which is provided
for generic elements connected by star-shaped sets. ��

The interpolant I kT : H1(T ) → Uk
T is defined by

I kT v = (π
0,k
T v, π

0,k
FT

v), (2.8)

where π
0,k
FT

: L1(T ) → Pk(FT ) is defined such that π0,k
FT

|F = π
0,k
F for all F ∈ FT .
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Lemma 2 The following commutation property holds:

pk+1
K,T ◦ I kT = π

1,k+1
K,T . (2.9)

Proof It follows from the definitions of pk+1
K,T and I kT that

(∇pk+1
K,T I

k
T v,∇w)T = −(π

0,k
T v,∇ · (KT∇w))T

+(π
0,k
FT

v, (KT∇w) · nT )∂T ∀w ∈ P
k+1(T ).

However, as∇·(KT∇w) ∈ P
k(T ) and (KT∇w)·nT ∈ (KT∇P

k+1(T ))·nT ⊂ Pk(FT )

each of the projectors π
0,k
T and π

0,k
FT

can be removed to yield

(∇pk+1
K,T I

k
T v,∇w)T = −(v,∇ · (KT∇w))T + (v, (KT∇w) · nT )∂T

= (∇v,∇w)T = (∇π
1,k+1
K,T v,∇w)T ,

where in the last two equalities we have integrated by parts and introduced the oblique
elliptic projector using Eq. (2.4a). Taking w = pk+1

K,T I
k
T v − π

1,k+1
K,T v we observe that

‖∇(pk+1
K,T I

k
T v − π

1,k+1
K,T v)‖2T = 0.

Combining with
∫
T (pk+1

K,T I
k
T v − π

1,k+1
K,T v) = 0 (due to Eqs. (2.3b) and (2.4b)) we

conclude that

pk+1
K,T I

k
T v − π

1,k+1
K,T v = 0.

��
Remark 4 We note that the commutation property (2.9) is the key result required to
prove consistency of the scheme and relies on the fact that (KT∇P

k+1(T )) · nT F ⊂
Pk(F) for each F . The additional condition that P0(F) ⊂ Pk(F) is required for
coercivity to hold.

We endow the discrete space Uk
T with the seminorm

‖vT ‖21,K,T = |vT |2K,H1(T )
+ h−1

T ‖vFT − vT ‖2K,∂T . (2.10)

The local bilinear form aK,T : Uk
T ×Uk

T → R is defined as

aK,T (uT , vT ):=(KT∇pk+1
K,T uT ,∇pk+1

K,T vT )T + sK,T (uT , vT ), (2.11)

where sK,T : Uk
T × Uk

T → R is a local stabilisation term such that the following
assumptions hold.
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Assumption 2 (Local stabilisation term) The stabilisation term sK,T is a symmetric,
positive semi-definite bilinear form that satisfies:

1. Stability and boundedness. For all vT ∈ Uk
T ,

α−1
T ‖vT ‖21,K,T � aK,T (vT , vT ) � αT ‖vT ‖21,K,T . (2.12)

2. Polynomial consistency. For all vT ∈ Uk
T and w ∈ P

k+1(T ),

sK,T (vT , I kTw) = 0. (2.13)

An example of a stabilisation bilinear form satisfying Assumption 2 is provided in
Sect. 4.

Lemma 3 (Consistency of sK,T ) Suppose sK,T : Uk
T ×Uk

T → R satisfies Assumption
2. Then it holds for all w ∈ Hk+2(T ) that

sK,T (I kTw, I kTw) �
[
αT h

k+1
T |w|K,Hk+2(T )

]2
. (2.14)

Proof It follows from Eq. (2.13) that

sK,T (I kTw, I kTw) = sK,T (I kT (w − π
1,k+1
K,T w), I kT (w − π

1,k+1
K,T w)). (2.15)

Therefore, applying the upper bound in (2.12) and the definition (2.10) of ‖ · ‖1,K,T

yields

sK,T (I kTw, I kTw) �

αT

(
|π0,k

T (w − π
1,k+1
K,T w)|2K,H1(T )

+ h−1
T ‖π0,k

FT
(w − π

1,k+1
K,T w)

−π
0,k
T (w − π

1,k+1
K,T w)‖2K,∂T

)
.

Thus, we infer from Lemma 7 below that

sK,T (I kTw, I kTw) � α2
T |w − π

1,k+1
K,T w|2K,H1(T )

.

The proof follows from the approximation properties (2.7) of π
1,k+1
K,T . ��

2.1 Global Space and HHO Scheme

The global space of unknowns is defined as

Uk
h := ×

T∈Th
P
k(T ) × ×

F∈Fh

Pk(F). (2.16)
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To account for the homogeneous boundary conditions, the following subspace is also
introduced,

Uk
h,0:={vh ∈ Uk

h : vF = 0 ∀F ∈ Fb
h}. (2.17)

For any vh ∈ Uk
h we denote its restriction to an element T by vT = (vT , vFT ) ∈ Uk

T
(where, naturally, vFT is defined form (vF )F∈FT ). We also denote by vh the piecewise
polynomial function satisfying vh |T = vT for all T ∈ Th . The global bilinear forms
aK,h : Uk

h ×Uk
h → R and sK,h : Uk

h ×Uk
h → R are defined as

aK,h(uh, vh):=
∑

T∈Th
aK,T (uT , vT ) and sK,h(uh, vh):=

∑

T∈Th
sK,T (uT , vT ).

The HHO scheme reads: find uh ∈ Uk
h,0 such that

aK,h(uh, vh) = �h(vh) ∀vh ∈ Uk
h,0, (2.18)

where �h : Uk
h,0 → R is a linear form defined as

�h(vh):=
∑

T∈Th
( f , vT )T . (2.19)

We define the discrete energy norm ‖·‖a,K,h on Uk
h,0 as

‖vh‖a,K,h :=aK,h(vh, vh)
1
2 ∀vh ∈ Uk

h . (2.20)

Lemma 4 The mapping ‖·‖a,K,h : Uk
h,0 → R defines a norm on Uk

h,0.

Proof As ‖·‖a,K,h is clearly a seminorm we only need to prove that if ‖vh‖a,K,h = 0
then vh = 0. It follows from the boundedness (4.4) that

∑

T∈Th

[
|vT |2K,H1(T )

+ h−1
T ‖vFT − vT ‖2K,∂T

]
� ‖vh‖2a,K,h .

Thus, if ‖vh‖a,K,h = 0 then it must hold that vT = vF = const for every T ∈ Th ,
F ∈ Th . However, we infer from the homogeneous boundary conditions that those
constants must all be zero. ��

3 Error Estimates

Theorem 5 (Consistency error) The consistency error Eh(w; ·) : Uk
h,0 → R is the

linear form defined for all vh ∈ Uk
h,0 as

Eh(w; vh):= − (∇ · (KT∇w), vh)� − aK,h(I
k
hw, vh),
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for any w ∈ H1
0 (�) such that ∇ · (KT∇w) ∈ L2(�). If such a w additionally satisfies

w|T ∈ Hk+2(T ) for all T ∈ Th, the consistency error satisfies

|Eh(w; vh)| �

⎛

⎝
∑

T∈Th

[
αT h

k+1
T |w|K,Hk+2(T )

]2
⎞

⎠

1
2

‖vh‖a,K,h . (3.1)

The global operators pk+1
K,h : Uk

h → P
k+1(Th) and π

1,k+1
K,h : H1(Th) → P

k+1(Th)
are defined such that their actions restricted to an element T ∈ Th are that of
pk+1
K,T and π

1,k+1
K,T . The global interpolator I kh : H1(�) → Uk

h is defined as

I khv:=((π
0,k
T v)T∈Th , (π

0,k
F v)F∈Fh ).

Theorem 6 (Energy and L2 error estimates) Let u ∈ H1
0 (�) be the exact solution to

Eq. (1.1) and suppose the additional regularity u ∈ Hk+2(Th). Let uh be the exact
solution to the discrete problem (2.18). Then the following error estimates hold:

• Energy estimate.

‖uh − I khu‖a,K,h + |pk+1
K,h uh − u|H1(Th) �

⎛

⎝
∑

T∈Th

[
αT h

k+1
T |u|K,Hk+2(T )

]2
⎞

⎠

1
2

.

(3.2)
• L2 estimate. Suppose additionally that the domain � is convex and K = I is the
identity matrix, then optimal convergence in L2-norm holds:

‖pk+1
K,h uh − u‖� � hk+2|u|Hk+2(Th), (3.3)

where the seminorm | · |Hs (Th) is defined as the square-root of the sum of squares
of | · |Hs (T ) for any s ∈ N.

Remark 5 The L2-error estimate is stated with identity diffusion, corresponding to a
Poisson problem. However, the result follows trivially (with a hidden constant depend-
ing additionally on the anisotropy of K) for any constant diffusion tensor K (cf. [22],
Remark3.21).

Proof of Theorems 5 and 6 The estimates (3.1) and (3.2) are provided in [27] and rely
only on the design conditions stated in Assumption 2, the commutation property (2.9),
the approximation properties of the elliptic projector (2.7), the consistency of sK,T

(2.14), Lemma 4, as well as standard trace and inverse estimates provided in Sect. 1.1.
To prove (3.3) we require a slightly different approach to that of [22, Theorem

2.32]. In particular, as π
0,k
F is not a polynomial projector [22, Equation (2.78)] does

not hold in our case. However, the remainder of the proof is the same so we only have
to show that

sup
g∈L2(�):‖g‖�≤1

|Eh(u; I khzg)| � hk+2|u|Hk+2(Th), (3.4)
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where zg is the solution to the dual problem

a(v, zg) = (g, v)� ∀v ∈ H1
0 (�).

As we have assumed � to be convex, the following elliptic regularity holds:

‖zg‖H2(�) � ‖g‖�. (3.5)

Moreover, as K = I, the following equality established in the proof of [22, Lemma
2.18] holds true:

Eh(u; I khzg) =
∑

T∈Th

(
(∇(u−π

1,k+1
K,T u) ·nT , π

0,k
FT

zg−π
0,k
T zg)∂T −sK,T (I kT u, I kT zg)

)
.

(3.6)
The sum over the boundary term in (3.6) can be written as follows,

∑

T∈Th
(∇(u − π

1,k+1
K,T u) · nT , π

0,k
FT

zg)∂T

=
∑

T∈Th

∑

F∈FT

(∇u · nT F , π
0,k
F zg)F +

∑

T∈Th

∑

F∈FT

(∇π
1,k+1
K,T u · nT F , π

0,k
F zg)F .

As ∇π
1,k+1
K,T u · nT F ∈ Pk(F) we may drop the projector π

0,k
F to write

∑

T∈Th

∑

F∈FT

(∇π
1,k+1
K,T u · nT F , π

0,k
F zg)F =

∑

T∈Th

∑

F∈FT

(∇π
1,k+1
K,T u · nT F , zg)F

As∇u ∈ H(div;�), the fluxes of u are continuous across every internal face F ∈ Fi
h .

Therefore, as π
0,k
F zg = 0 for all F ∈ Fb

h (due to zg = 0 on ∂�), it holds that

∑

T∈Th

∑

F∈FT

(∇u · nT F , π
0,k
F zg)F = 0 =

∑

T∈Th

∑

F∈FT

(∇u · nT F , zg)F .

Substituting back into (3.6) yields

Eh(u; I khzg) =
∑

T∈Th

(
(∇(u − π

1,k+1
K,T u) · nT , zg − π

0,k
T zg)∂T − sK,T (I kT u, I kT zg)

)
.

It follows from a Cauchy–Schwarz inequality and the consistency (2.14) that

sK,T (I kT u, I kT zg) ≤sK,T (I kT u, I kT u)
1
2 sK,T (I kT zg, I

k
T zg)

1
2

� hk+1
T |u|K,Hk+2(T )hT |zg|K,H2(T ).
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It also follows from a Cauchy–Schwarz inequality, the continuous trace inequality
(1.4) and the approximation properties (2.7) that

(∇(u−π
1,k+1
K,T u) · nT , zg−π

0,k
T zg)∂T≤‖∇(u−π

1,k+1
K,T u) · nT ‖∂T ‖zg−π

0,k
T zg‖∂T

� hk+1
T |u|Hk+2(T )h

− 1
2

T ‖zg − π
0,k
T zg‖∂T .

Thus, we need to prove that

h
− 1

2
T ‖zg − π

0,k
T zg‖∂T � hT |zg|H2(T )

and the proof follows from the elliptic regularity (3.5) and the bound ‖g‖� ≤ 1. By a
continuous trace inequality and a Poincaré–Wirtinger inequality

h
− 1

2
T ‖zg − π

0,k
T zg‖∂T � ‖∇(zg − π

0,k
T zg)‖T .

The result holds due to the H1-approximation properties of the L2-projector [22,
Lemma 1.43] which remain valid in curved domains.

4 Analysis of the Stabilisation

We consider here the stabilisation bilinear form defined by

sK,T (vT , wT ) = (KT∇(vT − π
0,k
T pk+1

K,T vT ),∇(wT − π
0,k
T pk+1

K,TwT ))T

+h−1
T (vFT − π

0,k
FT

pk+1
K,T vT , wFT − π

0,k
FT

pk+1
K,TwT )K,∂T ,

(4.1)

however, the argumentsweuse to show robustness on curvedmeshes extend seamlessly
to more general choices of stability such as those considered in [27, Section 4]. It is
clear that sK,T satisfies (2.13) so it remains to prove that (2.12) holds.

Lemma 7 It holds for all v ∈ H1(T ) that

|π0,k
T v|2K,H1(T )

+ h−1
T ‖π0,k

FT
v − π

0,k
T v‖2K,∂T � αT |v|2K,H1(T )

. (4.2)

Proof We first note the bound

|π0,k
T v|2K,H1(T )

+ h−1
T ‖π0,k

FT
v − π

0,k
T v‖2K,∂T ≤ KT

(
|π0,k

T v|2H1(T )

+h−1
T ‖π0,k

FT
v − π

0,k
T v‖2∂T

)

which follows from the ellipticity (1.3) of KT . Consider, by a triangle inequality

h−1
T ‖π0,k

FT
v − π

0,k
T v‖2∂T � h−1

T ‖v − π
0,k
FT

v‖2∂T + h−1
T ‖v − π

0,k
T v‖2∂T .
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First, wewish to bound the term ‖v−π
0,k
FT

v‖∂T . Asπ
0,k
FT

is the L2-orthogonal projector

on Pk(FT ), it minimises its respective norm. Therefore, we may replace π
0,k
FT

v with

any element of Pk(FT ). In particular, as P0(T )|∂T ⊂ Pk(FT ) it holds that

h−1
T ‖v − π

0,k
FT

v‖2∂T ≤ h−1
T ‖v − π

0,0
T v‖2∂T .

It follows from the continuous trace inequality (1.4) and a Poincaré–Wirtinger inequal-
ity that

h−1
T ‖v − π

0,0
T v‖2∂T � ‖∇v‖2T .

Similarly, we apply the continuous trace inequality and a Poincaré–Wirtinger inequal-
ity on the term h−1

T ‖v − π
0,k
T v‖2∂T to yield

h−1
T ‖v − π

0,k
T v‖2∂T � ‖∇(v − π

0,k
T v)‖2T � ‖∇v‖2T + ‖∇π

0,k
T v‖2T ,

where we have applied a triangle inequality to reach the conclusion. It follows from
[22, Equation (1.77)] (which invokes [22, Equation (1.74)] which does not rely on the
elements being polytopal) that

‖∇π
0,k
T v‖2T � ‖∇v‖2T .

Thus, we can conclude that

|π0,k
T v|2K,H1(T )

+ h−1
T ‖π0,k

FT
v − π

0,k
T v‖2K,∂T ≤ KT ‖∇v‖2T .

The proof follows by applying the ellipticity (1.3) of KT to yield

‖∇v‖2T � K−1
T |v|2K,H1(T )

.

��
Remark 6 We note that the inclusion P

0(F) ⊂ Pk(F) is crucial for the bound

h−1
T ‖π0,k

FT
v − π

0,k
T v‖2K,∂T � αT |v|2K,H1(T )

to hold, and without this inclusion, coercivity cannot hold.

Lemma 8 (Coercivity) It holds for all vT ∈ Uk
T that

‖vT ‖21,K,T � aK,T (vT , vT ). (4.3)

Proof It follows from the definition (2.10) of ‖ · ‖1,K,T that

‖vT ‖21,K,T=|vT |2K,H1(T )T+h−1
T ‖vFT −vT ‖2K,∂T
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�|vT−π
0,k
T pk+1

K,T vT |2K,H1(T )T+|π0,k
T pk+1

K,T vT |2K,H1(T )T

+h−1
T ‖vFT −π

0,k
FT

pk+1
K,T vT ‖2K,∂T

+h−1
T ‖π0,k

FT
pk+1
K,T vT−π

0,k
T pk+1

K,T vT ‖2K,∂T+h−1
T ‖π0,k

T pk+1
K,T vT−vT ‖2K,∂T ,

where we have added and subtracted π
0,k
T pk+1

K,T vT to the volumetric term, and

π
0,k
T pk+1

K,T vT and π
0,k
FT

pk+1
K,T vT to the boundary term, and invoked triangle inequali-

ties to reach the conclusion. Similar to the proof of Lemma 7, we apply the continuous
trace inequality (1.4), a Poincaré–Wirtinger inequality (due to the zero mean value of
π
0,k
T pk+1

K,T vT − vT ) and the ellipticity (1.3) of KT to yield

h−1
T ‖π0,k

T pk+1
K,T vT − vT ‖2K,∂T � |vT − π

0,k
T pk+1

K,T vT |2K,H1(T )
.

Therefore,

‖vT ‖21,K,T � αT |vT − π
0,k
T pk+1

K,T vT |2K,H1(T )
+ |π0,k

T pk+1
K,T vT |2K,H1(T )

+ h−1
T ‖vFT − π

0,k
FT

pk+1
K,T vT ‖2K,∂T

+ h−1
T ‖π0,k

FT
pk+1
K,T vT − π

0,k
T pk+1

K,T vT ‖2K,∂T

≤ αT sK,T (vT , vT ) + |π0,k
T pk+1

K,T vT |2K,H1(T )

+ h−1
T ‖π0,k

FT
pk+1
K,T vT − π

0,k
T pk+1

K,T vT ‖2K,∂T .

We can conclude from Lemma 7 that

|π0,k
T pk+1

K,T vT |2K,H1(T )
+h−1

T ‖π0,k
FT

pk+1
K,T vT−π

0,k
T pk+1

K,T vT ‖2K,∂T � αT |pk+1
K,T vT |2K,H1(T )

,

which combined with the definition of aK,T yields the result. ��
Lemma 9 (Boundedness) It holds for all vT ∈ Uk

T that

aK,T (vT , vT ) � αT ‖vT ‖21,K,T . (4.4)

Proof Consider by a triangle inequality and Lemma 7

h−1
T ‖vFT −π

0,k
FT

pk+1
K,T vT ‖2K,∂T

� h−1
T ‖vFT −vT ‖K,∂T+h−1

T ‖vT−pk+1
K,T vT ‖2K,∂T+h−1

T ‖pk+1
K,T vT−π

0,k
FT

pk+1
K,T vT ‖2K,∂T

� h−1
T ‖vFT − vT ‖K,∂T + αT |vT − pk+1

K,T vT |2K,H1(T )
+ |pk+1

K,T vT |2K,H1(T )

� αT ‖vT ‖21,K,T + αT |pk+1
K,T vT |2K,H1(T )

Similarly, by a triangle inequality and Lemma 7,
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|vT − π
0,k
T pk+1

K,T vT |2K,H1(T )
� |vT |2K,H1(T )

+|π0,k
T pk+1

K,T vT |2K,H1(T )
� ‖vT ‖21,K,T + αT |pk+1

K,T vT |2K,H1(T )
.

Thus, we need to prove that

|pk+1
K,T vT |2K,H1(T )

� ‖vT ‖21,K,T .

It follows from the definition (2.3) of pk+1
K,T and an integration by parts that

|pk+1
K,T vT |2K,H1(T )

= (∇vT ,KT∇pk+1
K,T vT )T+(vFT −vT ,KT∇pk+1

K,T vT · nT )∂T

= (K
1
2
T∇vT ,K

1
2
T∇pk+1

K,T vT )T+(K
1
2
T nT (vFT −vT ),K

1
2
T∇pk+1

K,T vT )∂T

� |pk+1
K,T vT |K,H1(T )

(
|vT |K,H1(T )+h

− 1
2

T ‖vFT −vT ‖K,∂T

)
. (4.5)

where we have applied Cauchy–Schwarz inequalities on both inner-products and
the discrete trace inequality (1.6). The proof follows by simplifying (4.5) by
|pk+1

K,T vT |K,H1(T ) and squaring. ��

5 Integration on Curved Domains

The design of integration methods on curved domains is an active area of research.
In the recent article [2], a quadrature rule for curved domains is developed by con-
sidering a decomposition into triangular or rectangular pyramids T and a mapping
T : [0, 1]d → T for each decomposition. With knowledge of the Jacobian of such
a mapping, integration can be performed on the pre-image of each T. The article
[17] develops an extension of the homogeneous integration rule developed in [16] by
considering a curved triangulation of the domain and constructing a scaled boundary
parameterisation on each curved triangle. Here, we also consider an extension of the
homogeneous integration rule, but the approach we take is quite different. We avoid
the need to split the curved domain into sub-regions and directly map the integral onto
the boundary by constructing a Poincaré-type operator which inverts the divergence
operator. Indeed, this operator was brieflymentioned in the appendix of [17]; however,
we develop the ideas here without a sub-triangulation, and independent of dimension.

We begin with the formula developed in [16] to rewrite the integral onto the bound-
ary of the element. This rule works by identifying a vector field

F = xv

q + d
(5.1)

such that ∇ · F = v for homogeneous functions v of degree q. Therefore,

∫

T
v(x) dx =

∫

∂T
x · nT v(x)

q + d
dS. (5.2)
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We would like to extend this rule to non-homogeneous functions. We begin by
searching for a vector field of the form

F = g r̂,

such that ∇ · F = v where r̂ denotes the unit vector in the radial direction. We find
that the unknown function g must satisfy

1

rd−1

∂

∂r
(rd−1g) = v,

where we denote by r = |x|. A solution is given by

g = 1

rd−1

∫ r

0
sd−1v

( s

r
x
)
ds = r

∫ 1

0
td−1v(tx) dt .

Thus, we have found an inverse divergence

F = r r̂
∫ 1

0
td−1v(tx) dt = x

∫ 1

0
td−1v(tx) dt . (5.3)

Therefore, an integral over the element T can be rewritten to its boundary as follows:

∫

T
v(x) dx =

∫

∂T
x · nT

∫ 1

0
td−1v(tx) dt dS. (5.4)

We note that if v is a homogeneous function of degree q (that is, v(tx) = tqv(x)), then
the inverse divergence formulae (5.1) and (5.3) coincide and thus so do the rules (5.2)
and (5.4). In this sense, themethod can be considered an extension of the homogeneous
integration rule developed in [16].

If we instead consider a vector field of the form F = g r̂0 where r̂0 is the unit radial
direction from a shifted origin x0, we arrive at the more general formula

F = (x − x0)
∫ 1

0
td−1v(tx + (1 − t)x0) dt . (5.5)

Therefore, we may write

∫

T
v(x) dx =

∫

∂T
(x − x0) · nT

∫ 1

0
td−1v(tx + (1 − t)x0) dt dS. (5.6)

This is very useful if the element contains one or more planar faces. For a vertex
with coordinates ν, we can set x0 = ν and it holds that (x − ν) · nT = 0 on any planar
faces connected to the vertex ν. We note that if T is not star-shaped with respect to x0,
then the integral

∫ 1
0 td−1v(tx + (1 − t)x0) dt will pass through points outside of T .

Thus, one would require a sufficiently smooth extension of v outside of T . However,
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for polynomials or functions analytic over � (such as an analytic source term), such
an extension is trivial.

5.1 A Quadrature Rule for Curved Edges in Two Dimensions

For a given edge E , consider a parameterisation γE : [t0, t1] → E , t0 < t1. Therefore,
integration on curved edges is trivial:

∫

E
v(x) dE =

∫ t1

t0
v(γE (t))|γ ′

E (t)| dt .

The above integral can easily be approximated with a one-dimensional Gaussian
quadrature rule. In particular, let wi , xi , i = 1, . . . , N be the weights and abscis-
sae associated with a quadrature rule on [0, 1]. Then we can generate weights wE

i and
abscissae xE

i on the edge E as follows:

wE
i = (t1 − t0)wi |γ ′

E (t0 + (t1 − t0)xi )| ; xE
i = γE (t0 + (t1 − t0)xi ). (5.7)

In practise, we generally store an arc length parameterisation for each edge and thus
the term |γ ′

E | is not required.

5.2 A Quadrature Rule for Elements in Two Dimensions

In two dimensions the faces are edges and thus the boundary integral in (5.6) can be
evaluated on each edge F ∈ FT using the rule described in (5.7). We let wF

i and
xF
i , i = 1, . . . , N be the quadrature weights and abscissae associated with an edge
F ∈ FT and w j , x j , j = 1, . . . , M be the weights and abscissae associated with a
quadrature rule on [0, 1]. We set ν to be the coordinate of a vertex of T connected to
the highest number of straight edges in T . We then consider the quadrature rule

∫

T
v(x) dx ≈

∑

F∈FT

N∑

i=1

M∑

j=1

wF
i (xF

i − ν) · nT (xF
i )w j x jv(x j xF

i + (1 − x j )ν).

(5.8)

That is, we store weights

wF
i (xF

i − ν) · nT (xF
i )w j x j ,

and abscissae

x j xF
i + (1 − x j )ν,

for each i = 1, . . . , N , j = 1, . . . , M and on each edge F ∈ FT that is not a straight
edge connected to the vertex ν.
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If T is polygonal, then there always exists two straight edges connected to a vertex
ν. Thus, the rule described by (5.8) consists of (|FT |−2)NM quadrature points. If we
consider a Gauss-Legendre rule on each edge which is exact for polynomials of degree
k, then we require to take N = � k+1

2 �. However, for the inverse divergence formula
(5.5) to reproduce polynomials of degree k exactly, we require to take M = � k+2

2 � due
to the presence of the multiplier t . As (xF

i − ν) · nT (xF
i ) is constant on polygonal T ,

Eq. (5.8) is exact for polynomials of degree k and consists of (|FT | − 2)� k+1
2 �� k+2

2 �
quadrature points. We note this is a slightly larger number of quadrature points than
the usual (|FT | − 2)� k+1

2 �2 required by splitting the polygon T into (|FT | − 2)
sub-triangles (an optimal sub-triangulation) and considering a Gauss-Legendre rule
on each sub-triangle. However, (5.8) avoids the complex process of generating such
a sub-triangulation. To avoid these additional quadrature points, one would need to
consider a Gauss-Legendre rule on each edge, but a weighted Gaussian rule with the
weight function w(t) = t for the integral (5.5). This is not explored further here.

5.3 A Quadrature Rule for Elements in Three Dimensions

In three dimensions, a volumetric integral can be mapped onto the faces as follows,

∫

T
v(x) dx =

∑

F∈FT

∫

F
(x − x0) · nT F

∫ 1

0
t2v(tx + (1 − t)x0) dt dF . (5.9)

Thus, given a quadrature rule for each face F ∈ FT , a quadrature rule for the element
T can be developed analogously to the two-dimensional case. On each face F ∈ FT

let us define vF (x) = (x− x0) ·nT F
∫ 1
0 t2v(tx+ (1− t)x0) dt . Take the planar region

F̂ ⊂ R
2 with (potentially curved) edges ÊF̂ and a parameterisation γ F : F̂ → F . It

holds that
∫

T
v(x) dx =

∑

F∈FT

∫

F
vF (x) dF =

∑

F̂∈F̂T

∫

F̂
vF (γ F (x̂))J (x̂) dx̂,

where J (x̂) = √
det J t (x̂)J(x̂) and J is the Jacobian matrix of the map γ F . It then

follows from (5.6) that

∫

F
vF (x) dx =

∫

F̂
vF (γ F (x̂))J (x̂) dx̂

=
∑

Ê∈ÊF̂

∫

Ê
(x̂ − x̂0) · nF̂ Ê

∫ 1

0
svF (γ F (s x̂ + (1 − s)x̂0))J (s x̂ + (1 − s)x̂0) ds dÊ,

(5.10)

where nF̂ Ê denotes the unit normal directed out of F̂ and toward Ê . Therefore, given

the parameterisation γ F and a parameterisation of each mapped edge Ê ∈ ÊF̂ , the
integral (5.10) can be evaluated analogously to the 2D case (5.8).
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5.3.1 A Note on Planar Faces

If the face F is planar, one can follow a procedure similar to that in [3] to rewrite the
integrals on each face onto the edges E ∈ EF . We take γ F (x̂) = xF + Ex̂ where xF
is a point in the face F and E is an orthonormal matrix. Then it holds that J (x̂) ≡ 1
and

γ F (s x̂ + (1 − s)x̂0) = sγ F (x̂) + (1 − s)γ F (x̂0).

Thus, we can map the integral (5.10) back to the edges of the face F as follows,

∫

F
vF (x) =

∑

E∈EF

∫

E
(γ −1

F (x) − x̂0) · nF̂ Ê

∫ 1

0
svF (sx + (1 − s)γ F (x̂0)) ds dE .

However, as E is orthonormal it preserves distance and therefore it holds that
(γ −1

F (x) − x̂0) · nF̂ Ê = (x − γ F (x̂0)) · nFE , where nFE denotes the unit normal
directed out of F and toward E . Moreover, the mapping γ F is onto, so we can choose
x̂0 such that γ F (x̂0) = xF,0 for an arbitrary point xF,0 ∈ F . Therefore

∫

F
vF (x) =

∑

E∈EF

∫

E
(x − xF,0) · nFE

∫ 1

0
svF (sx + (1 − s)xF,0) ds dE . (5.11)

Again, we may choose xF,0 to be the vertex of the face F connected to the largest
number of straight edges. The integral (5.11) is then evaluated in an identical manner
as two-dimensional elements.

6 Implementation

The HHOmethod for curved edges is implemented using the open source C++ library
PolyMesh [39]. We generate curved meshes by first considering uniform Cartesian
meshes and ‘cutting’ along a curve. The integrals are computed using the quadrature
rule described by (5.8) where we take the one-dimensional integration rules to be
Gauss-Legendre rules of degree 30.

A basis is formed for the space Pk(F) by first generating a spanning set by con-
sidering a canonical basis of Pk(�)d and taking P

0(F) + P
k(�)d · nF . The linearly

dependent basis functions are removed algebraically using the FullPivLU class found
in theEigen library,with documentation available at https://eigen.tuxfamily.org/dox/
classEigen_1_1FullPivLU.html. This requires a threshold to be set which determines
the point at which pivots are considered to be numerically zero. We set this value to
10−15.We note that for sufficiently small h and large k this can result in certain linearly
independent functions being removed from Pk(F). However, as these functions are
‘close’ to being linearly dependent, the method seems unaffected by their removal.
The bases of bothPk(F) and Pk(T ) are orthonormalised via a Gram-Schmidt process.
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6.1 Curved Doundary

We consider here the domain given by the rotated ellipse

� = {(x, y) ∈ R
2 : L(x, y) > 0}, (6.1)

where the level set L : R2 → R is defined by

L(x, y) = α2 − (x2 + xy + y2),

with α = 4
5 . We note the following parameterisation of ∂�: γ : [0, 2π) → ∂�,

γ (t) = α
( 1√

3
cos(t) − sin(t),

1√
3
cos(t) + sin(t)

)
.

The exact solution to problem (1.1) is taken to be

u = sin
(
L(x, y)

)
,

with corresponding source term given by

f = (−	L) cos
(
L(x, y)

) + |∇L|2 sin (
L(x, y)

)

= 4 cos
(
L(x, y)

) + (
5x2 + 8xy + 5y2

)
sin

(
L(x, y)

)
.

The relative error of the scheme is measured through the following three quantities:

E0,h :=
‖u − pk+1

K,h uh‖L2(Th)
‖u‖L2(Th)

; E1,h :=
|u − pk+1

K,h uh |H1(Th)
|u|H1(Th)

;

Ea,h :=‖uh − I khu‖a,K,h

‖I khu‖a,K,h
,

where the norm ‖ · ‖L2(Th) is defined as the square-root of the sum of squares of
‖ · ‖L2(T ). We note that if the mesh conforms to the domain � then ‖v‖L2(Th) = ‖v‖�

for all v ∈ L2(�).
We consider here two sequence of meshes of the domain �. The curved meshes

use an exact representation of the boundary, whereas the straight meshes take a piece-
wise linear approximation of the boundary. The parameters of the mesh sequences are
displayed in Table 1. Both sequences of meshes have the same parameters. Example
curved meshes are plotted in Fig. 1 and straight meshes are plotted in Fig. 2.

In Fig. 3, we test both a curved HHO scheme and a classical HHO scheme (on
straight meshes) with polynomial degrees given by k = 1 and k = 3. In both cases the
curved HHO scheme on the fitted mesh observes significantly better convergence rates
than the classical scheme on the straight mesh. While the scheme appears to converge
optimally on curved meshes, it converges at most order 2 on straight meshes.
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Table 1 Parameters of the mesh
sequences used for the curved
boundary test

Mesh # h Nb. Elements Nb. Internal Edges

1 1.0587 10 16

2 0.3536 48 84

3 0.1890 174 324

4 0.1044 630 1,212

5 0.0534 2,450 4,796

6 0.0268 9,668 19,136

Fig. 1 Example curved meshes used for the curved boundary test

Fig. 2 Example straight meshes used for the curved boundary test

In Fig. 4, we test the performance of both methods as k increases on Mesh 2. While
the scheme enjoys exponential convergence on the curved mesh, the classical method
on the straight mesh does not converge. This is to be expected, as the straight mesh
does not fit � exactly and so by increasing k the scheme is converging to the solution
of a different problem.

6.2 Heterogeneous Diffusion

We conclude the numerical section with a test of a diffusion problem with a piece-
wise constant diffusion tensor. The HHOmethod requires the mesh to conform to any
discontinuities in the diffusion. Thus, if the diffusion has a discontinuity along a curve,
the mesh has to be curved to fit the discontinuity in the diffusion. Any polytopal mesh
will require an approximation of the diffusion tensor.
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Fig. 3 h-version curved boundary test

Straight mesh Curved mesh

0 2 4 6

10−10

10−8

10−6

10−4

10−2

100

(a) E0,h vs k

0 2 4 6
10−9

10−7

10−5

10−3

10−1

(b) E1,h vs k

0 2 4 6
10−9

10−7

10−5

10−3

10−1

(c) Ea,h vs k

Fig. 4 k-version curved boundary test on Mesh 2 (h ≈ 0.3536)

We consider � = {(x, y) : x2 + y2 < 1} to be the unit disc and K a piece-wise
constant diffusion tensor given by

K =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1 1 − β1

1 − β1 1

)

if r < R

(
1 1 − β2

1 − β2 1

)

if r > R

.
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Table 2 Parameters of the mesh
sequences used for the
heterogeneous diffusion test

Mesh # h Nb. Elements Nb. Internal Edges

1 0.7654 20 36

2 0.4595 48 88

3 0.2086 232 504

4 0.1029 884 1,856

5 0.0519 3,388 6,952

Fig. 5 Example meshes used for the heterogeneous diffusion test

Straight mesh Curved mesh
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0 2 4 6
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10−5

10−2

101

104

(b) E2 vs k

Fig. 6 k-version heterogeneous diffusion test on Mesh 1 (h ≈ 0.7654)

We take R = 0.8, β1 = 10−6 and β2 = 1 which corresponds to anisotropic diffusion
in the region r < R, and a Poisson problem in r > R. We take the source term to be
f ≡ 1.
Again, we consider two sequences of meshes of the domain �. We take both

sequences to fit the domain � exactly, however, the curved mesh we take to fit the dis-
continuity in K exactly and the straight mesh takes a piece-wise linear approximation
of K . The mesh data is presented in Table 2. We note that both sequences of meshes
have the same parameters.

An example curved mesh and an example straight mesh is plotted in Fig. 5.
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Straight mesh Curved mesh
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Fig. 7 h-version heterogeneous diffusion test

Aswedonot know the exact solution to this problem,we run the schemeon thefinest
curved mesh with k = 7. We denote by the discrete solution to this problem pk+1

K,h uh =
u∗
h , which will play the role of the ‘exact’ solution. We measure the quantities

∫

�

u∗
h ≈ 0.46006947 ; |u∗

h |H1(Th) ≈ 0.80699766.

We would then like to test the performance of the scheme on coarser meshes (both
curved and straight) with smaller k by investigating the behaviour of

E1 =
∣
∣
∣
∣

∫

�

(pk+1
K,h uh − u∗

h)

∣
∣
∣
∣ and E2 =

∣
∣
∣|pk+1

K,h uh |H1(Th) − |u∗
h |H1(Th)

∣
∣
∣ .

We are less interested in the rate of convergence of these measures, but rather want to
observe steady convergence, and investigate the difference between the two schemes.
In Fig. 6, we plot the quantities E1 and E2 against increasing polynomial degree
k where we fix the mesh to be Mesh 1. It is clear that the scheme on the straight
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Fig. 8 Contour plots of the heterogeneous diffusion test on Mesh 1 with k = 7

mesh, where we consider an approximate diffusion tensor, stops converging for k >

1 whereas the scheme on the curved mesh converges smoothly. In Fig. 7, we test
convergence against decreasing mesh size h for polynomial degrees k. While for
k = 1 the order of E1 and E2 are similar for both schemes (and at times smaller on the
straight mesh), the convergence is much smoother on the curved mesh. For k = 3, the
values are significantly smaller for the curved mesh, and the behaviour for the straight
mesh does not differ much from the k = 1 case. This coincides with the previous
observations that increasing k past 1 has little effect on the scheme when considering
a piece-wise linear approximation of the discontinuity in the diffusion.
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Finally, in Fig. 8 we show contour plots of the potential reconstructions of the
discrete solutions on Mesh 1 with k = 7. We observe that the plot on the straight
mesh seems to be distorted along the eigen vectors of K (that is, (1, 1)t and (1,−1)t )
when compared to the plot on the curved mesh. We also plot the absolute value of the
difference between the two schemes and observe that this value seems to be of greatest
magnitude around the discontinuity in the diffusion tensor.
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