
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-023-09614-x

High-Order Lohner-Type Algorithm for Rigorous
Computation of Poincaré Maps in Systems of Delay
Differential Equations with Several Delays

Robert Szczelina1 · Piotr Zgliczyński1

Received: 29 June 2022 / Revised: 7 March 2023 / Accepted: 9 March 2023
© The Author(s) 2023

Abstract
We present a Lohner-type algorithm for rigorous integration of systems of delay
differential equations (DDEs) with multiple delays, and its application in compu-
tation of Poincaré maps, to study the dynamics of some bounded, eternal solutions.
The algorithm is based on a piecewise Taylor representation of the solutions in the
phase space, and it exploits the smoothing of solutions occurring in DDEs to produce
enclosures of solutions of a high order. We apply the topological techniques to prove
various kinds of dynamical behaviour, for example, existence of (apparently) unstable
periodic orbits in Mackey–Glass equation (in the regime of parameters where chaos
is numerically observed) and persistence of symbolic dynamics in a delay-perturbed
chaotic ODE (the Rössler system).

Keywords Computer-assisted proofs · Periodic orbits · Symbolic dynamics ·
Covering relations · Fixed-point index · Infinite-dimensional phase space

Mathematics Subject Classification 34K13 · 34K23 · 34K38 · 65G20 · 65Q20

Communicated by Konstantin Mischaikow.

B Robert Szczelina
robert.szczelina@uj.edu.pl

Piotr Zgliczyński
umzglicz@cyf-kr.edu.pl

1 Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348
Kraków, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-023-09614-x&domain=pdf

Foundations of Computational Mathematics

1 Introduction

We consider a system of delay differential equations (DDEs) with constant delays and
the initial condition of the following form:

{
x ′(t) = f (x(t), x(t − τ1), x(t − τ2), . . . , x(t − τm)) , t ≥ 0

x(t) = ψ(t), t ∈ [−τ, 0], (1)

where m ∈ N and τ = τ1 > τ2 > . . . > τm ≥ 0 are the delays, x ′ is understood
as a right derivative and ψ : [−τ, 0] → R

d is of class C0 on [−τ, 0], x(t) ∈ R
d ,

f : R(m+1)d → R
d .

In [34], we have presented amethod of producing rigorous estimates on the function
x(t) for t ≥ 0 for the simplest scalar (d = 1) DDE with a single delay:

x ′(t) = f (x(t), x(t − τ)) (2)

The algorithm presented in [34] is an explicit Taylor method with piecewise Taylor
representation of the solution over a fixed step size grid and with Lohner-type control
of the wrapping effect encountered in interval arithmetic [22]. The method consists of
two algorithms: one computing Taylor coefficients of the solutions at equally spaced
grid points (together with the rigorous estimate on the error size), and the second one
to compute enclosures of the solution segment after an arbitrary step of size ε, smaller
than the grid step size h. The method is suited to construct Poincaré maps in the phase
space of the DDEs and it was successfully applied to prove several (apparently stable)
periodic solutions to scalar DDEs [32, 34] (among them to Mackey–Glass equation).
However, the secondmethod—ε step part—is not optimal in the sense of the local error
order. Essentially, the local error of some of the coefficients in theTaylor representation
of solution is O(h). The reason is that some of the coefficients are computed using
just an explicit Euler method with very rough estimates on the derivative. With this
apparent loss of accuracy, the images of Poincaré maps in [34] are computed with
less than optimal quality and are not well suited to handle more diverse spectrum of
dynamical results.

In this work, we provide an effective way to increase the local order of the full-step
algorithm after each full delay of the integration procedure to significantly reduce the
error size later on, when applying the second ε step procedure. Under some additional
but reasonable assumptions about the integration time being long enough (see Defini-
tion 3 and Sect. 3.4), the modification allows to decrease the local error size of the ε

step method for all coefficients to O(hn+1) where n is the order of representation of
the initial function and h the step size of interpolation grid (compared to O(h) for the
previous version from [34]).

All those enhancements are done without a significant increase in computational
complexity of themost time consuming part of the algorithm: a Lohner-typemethod of
controlling the wrapping effect. What is more, we present an elegant and more general
Lohner-type method of wrapping effect control to handle both systems of equations
and many delays such as Eq. (1). We also employ more elaborate Lohner sets to

123

Foundations of Computational Mathematics

further reduce undesirable effects of interval arithmetic. With all those improvements,
the method produces estimates on solutions of several orders of magnitude better than
the previous one.

As a presentation of effectiveness of the newmethod,we give proofs of the existence
of periodic solutions to Mackey–Glass equation for a wider spectrum of parameters
than in [34]. The proofs are done for parameters in the chaotic regime and the orbits
are apparently unstable. To this end, we need to expand on the theory, so we extend
the concept of covering relations [5] to infinite Banach spaces, and we use Fixed Point
Index in absolute neighbourhood retracts (ANRs) [8] to prove Theorem 25 about the
existence of orbits for compact mappings in infinite-dimensional spaces following
chains of covering relations. We use this technique to show existence of symbolic
dynamics in a perturbed model x ′(t) = f (x(t))+ε · g(x(t− τ)), where f is a chaotic
ODE in three dimensions (Rössler system) and for a couple of g’s which are some
explicitly bounded functions. We hope similar techniques will allow to prove chaos
in Mackey–Glass equation [24].

The paper is organized as follows: in Sect. 2 we present some basic theory for DDEs
with constant delays, and we recall shortly the basic structure of (p, n)-functions sets
to represent objects in the phase space of (1). We also generalize this structure and
we discuss its properties. In Sect. 3, we recall algorithm from [34] within a new, more
general notation and we introduce several modifications that will be crucial for the
complexity and accuracy of the algorithm. This new algorithmwill form a base to some
improvements in the construction of Poincaré maps in the phase space, especially to
enhance the quality of the estimates.Wepresent somebenchmarks to showhow thenew
estimates are in comparison with the old algorithm. In Sect. 4, we present topological
tools to prove existence of a special kind of solutions to DDEs (1). We go beyond
the Schauder fixed-point theorem used in [34]: we use fixed-point index on ANRs
[8] and we adapt the notion of covering relations [5] to the setting of (p, n)-function
sets describing the infinite-dimensional phase space of the DDEs. The compactness
of the solution operator in the phase space for times bigger than delay allows to apply
the Schauder fixed-point index in our case. We establish theorems to prove existence
of symbolic dynamics conjugated to the sequences of covering relations on (p, n)-
functions sets. In Sect. 5, we apply presentedmethods to prove existence of (apparently
unstable) periodic solutions to the Mackey–Glass equation, for the original values of
parameters for which Mackey and Glass observed numerically chaotic attractor [24].
We also prove existence of symbolic dynamics in a delay-perturbed chaotic ODE
(Rössler system).

1.1 Our Results in the Perspective of Current Research in the Field

There are many important works that establish the existence and the shape of the
(global) attractor under some assumptions on (2), for example if it is of the form
x ′ = −μx(t) + f (x(t − 1)) and under the assumption that f is strictly monotonic,
either positive or negative, or if f has a simple explicit formula, usually piecewise
constant or affine. We would like here to point out some results, but the list is for
sure not exhaustive (we refer to the mentioned works and references therein). Mallet-

123

Foundations of Computational Mathematics

Paret and Sell used discrete Lyapunov functionals to prove a Poincaré–Bendixson
type of theorem for special kind of monotone systems [25]. Krisztin, Walther and Wu
have conducted an intensive study on systems having a monotone positive feedback,
including studies on the conditions needed to obtain the shape of a global attractor, see
[17] and references therein. Krisztin and Vas proved that in the case of a monotonic
positive feedback f , under some assumptions on the stationary solutions, there exists
large amplitude slowly oscillatory periodic solutions (LSOPs) which revolve around
more thanone stationary solution [16].Vas continued thiswork and showedamethod to
construct f such that the structure of the global attractormay be arbitrarily complicated
(containing an arbitrary number of unstable LSOPs) [37]. On the other hand, Lani–
Wayda and Walther were able to construct systems of the form x ′ = f (x(t − 1))
for which they proved the existence of a dynamic which is conjugate to a symbol
shift (Smale’s horseshoe) [19]. Srzednicki and Lani-Wayda proved the existence of
multiple periodic orbits and the existence of chaos for some periodic, tooth-shaped
(piecewise linear) f by the use of the generalized Lefshetz fixed point theorem [18]. A
nice review ofworks that deal with the question of existence of chaos inMackey–Glass
and similar systems are compiled in Walther review [38]. Recently, a new approach
have been used to prove the existence of some periodic orbits to the Mackey–Glass
equation in a limiting case when n →∞ [15].

While impressive, all mentioned analytical/theoretical results are usually hard to
apply in the context of general functions f , so we might look for other means of
obtaining rigorous results in such cases, for example, by employing computers for this
task. In recent years, there were many computer-assisted proofs of various dynamical
properties formaps, ODEs and (dissipative) partial differential equations ((d)PDEs) by
application of the theory of dynamical systems with estimates obtained from rigorous
numericalmethods and interval arithmetic, see for example [12] and references therein.
Abig achievement of the rigorous computations are proofs of the existenceof chaos and
strange attractors, for example the paper by Tucker [35], and recently to prove chaos
in Kuramoto–Shivasinski PDE [39]. The application of rigorous numerical methods
to DDEs started to appear a few years ago and are steadily getting more attention.
Probably the first method used to prove existence of periodic orbits by the expansion
in Fourier modes was given in [41], and then in a more general framework and by a
different theoretical approach in [14, 20]. Other methods, strongly using the form of
r.h.s. f in (2), were used in [16] to prove the structure of the global attractor; then in
[36] to close a gap in the proof of the Wright conjecture; and finally recently in [1]
to show the existence of many stable periodic orbits for a DDE equation that is the
limiting case of Mackey–Glass equation when n → ∞. To the author’s knowledge,
the results from our work [34] are the first application of rigorous integration (forward
in time) of DDEs in the full phase space for a general class of problems to prove
the existence of some dynamics, namely the existence of apparently stable periodic
orbits in Mackey–Glass equation. A different approach to one presented in our work
[34] was recently published which uses Chebyshev polynomials to describe solutions
in the phase space and a rigorous fixed-point finding argument to produce estimates
on the solutions to DDEs forward in time, together with estimates on the Frechét
derivative of the time-shift operator ϕ(τ, ·) [21]; however, the presented approach
has one disadvantage: it can find solutions only on full-delay intervals and therefore

123

Foundations of Computational Mathematics

cannot be used directly to construct Poincaré maps. Recently, the extension of those
methods was used to prove persistence of periodic solutions under small perturbations
of ODEs [7], and a similar approach was used in a rigorous method of numerically
solving initial value problems to state-dependent DDEs [3]. This last work uses similar
technique as our work to subdivide the basic interval into smaller pieces and piecewise
polynomial interpolation of the functions in the phase space, but instead of Taylor it
usesChebyshev polynomials and a fixed-point finding argument to prove existence of a
true solution nearby. On the other hand, the parametrization method was used to prove
the persistence of periodic orbits in delay-perturbed differential equations, including
the state-dependent delays [40]; however, it assumes that τ is relatively small. Our
method has an advantage over those methods, as it allows for a larger amplitude of
the perturbation and to prove theorems beyond the existence of periodic orbits, as we
are showing persistence of symbolic dynamics in a perturbed ODE. Finally, there are
also some methods to obtain rigorous bounds on the solutions, e.g. [28]; however, as
authors say, they do not produce estimates of quality good enough to prove theorems.

1.2 Notation

For reader’s convenience, we include here all the basic notions used in this paper. We
will also remind them the first time they are used in the text, if necessary.

We will denote by Ck([−τ, 0],Rd) the set of functions which are Ck on (−τ, 0)
and right and left derivatives up to k exist at t = −τ and t = 0, respectively. For short,
we will usually write Ck to denote Ck([−τ, 0],Rd) when d and τ is known from the
context.

We use standard convention in DDEs to denote the segment of x : (a−τ, b) → R
d

at t ∈ (a, b) by xt , where xt (s) = x(t+s) for all s ∈ [−τ, 0]. Then, we will denote by
ϕ the semiflow generated by DDE (1) on the space C0, ϕ(t, x0) := xt for a solution
x of Eq. (1) with initial data x0.

The algorithms presented in this paper produce estimates on various quantities;
particularly, we often work with sets of values that only enclose some quantity.
Therefore, for convenience, by I we will denote the set of all closed intervals
[a, b] : a ≤ b, a, b ∈ R and we will denote sets by capital letters like X ,Y , Z ,

etc., and values by lower case letters x, y, z, etc. Usually, the value x ∈ X for easier
reading, but it will be always stated explicitly in the text for clarity.

Sometimes, instead of using subscripts xi , we will write projections to coordinates
as πi x or πX x (projection on some subspace X of some bigger space. This will be
applied to increase readability of formulas.

Let Z ⊂ R
M . By hull(Z) we denote the interval hull of Z , that is, the smallest

set [Z] ∈ I
M such that Z ⊂ [Z]. By Z we denote the closure of set Z , by int Z we

denote the interior of Z and by δZ we denote boundary of Z . If Y is some normed
vector space and Z ⊂ Y , then we will write δY Z , intY Z , clY Z to denote boundary,
interior and closure of Z in space Y . By Dom f we denote the domain of f .

For multi-index vectors η, ζ ∈ N
p we will write η ≥ ζ iff ηi ≥ ζi for all i ∈

{1, . . . , p}.

123

Foundations of Computational Mathematics

ByM(k, l), we denote the set of matrices of dimensions k × l (rows × columns),
while by I dd×d the identity matrix and by 0d×d the zero matrix inM(d, d). When d
is known from the context we will drop the subscript in I d.

By B‖·‖D (p, r) we denote the (open) ball in R
D in the given norm ‖ · ‖ at a point

p ∈ RD with radius r . In the case when the norm is known from the context, we
simply use BD(p, r), and eventually BD(r) for 0-centered balls.

2 Finite-Dimensional Description of the Phase Space

In the beginning, we will work with Eq. 2 (single delay) for simplicity of presentation,
but all the facts can be applied to a more general Eq. (1).

As we are interested in computer-assisted proofs of dynamical phenomena for (2),
we assume that f is a simple/elementary function, so that it and its derivatives can
be given/obtained automatically as computer programs (subroutines). Many equations
encountered in theory and applications are of this form, twowell-known examples that
fit into this category are Wright and Mackey–Glass equations. We will also assume
that f is sufficiently smooth, usually C∞ in both variables. Under this assumptions,
the solution x(t) of (2) with x0 = ψ ∈ C0 exists forward in time (for some maximal
time Tmax (ψ) ∈ [0,+∞]) and is unique, see e.g. [4].

The crucial property of DDEswith f smooth (for simplicity we assume f ∈ C∞) is
the smoothing of solutions [4]. If the solution exists for a long enough time, then it is of
class at leastCk on the interval (−τ+τ ·k, τ ·k) and it is of class at leastCk at t = τ ·k.
Ifψ is of classCm then x is of classCm+k on any interval (−τ+τ ·k, τ ·k). Moreover,
the solutions on the global attractor of (2) must be of class C∞ (for f ∈ C∞). From
the topological methods point of view, the smoothing of solutions implies the semiflow
ϕ(t, ·) : C0 → C0 is a compact operator for t ≥ τ , essentially by the Arzela–Ascoli
theorem, see e.g. [34] (in general, ϕ(t, ·) : Ck → Ck is well defined and compact in
Ck if t ≥ (k + 1) · τ).

On the other hand, the solution can still be of a lower class, in some cases—even
only of class C0 (at t = 0). It happens due to the very nature of the DDE (2), as the
right derivative at t = 0 is given by (2) whereas the left derivative of the initial data
ψ at 0 can be arbitrary. This discontinuity propagates in time so the solution x , in
general, is only of class Ck at t = k · τ . In other words, a solution to DDE with an
initial segment of higher regularity can sometimes “visit” the lower regularity subset
of the phase space. This behaviour introduces some difficulties in the treatment of the
solutions of DDEs and the phase space, especially when one is interested in finding
ϕ(t, x) for t
= m · τ , m ∈ N.

In the rest of this section, we will recall the notion of (p, n)-functions sets from [34]
used in our method to represent functions in the phase space of DDE (2). However,
we use a slightly different notation and we introduce some generalizations that will
be suitable for the new integration algorithm in Sect. 3.

123

Foundations of Computational Mathematics

2.1 Basic Definitions

The algorithm we are going to discuss in Sect. 3 is a modified version of the (explicit)
Taylor rigorous method for ODEs, that is, we will be able to produce the Taylor
coefficients of the solution at given times using only the well-known recurrent relation
resulting from the successively differentiating formula (2) w.r.t. t . For this recurrent
formula [presented later in the text, in Eq. (11)], it is convenient to use the language
of jets.

Let m ∈ N and let g : Rm → R be of class Cn and z ∈ R
d . We denote by α the

m-dimensional multi-index α = (α1, . . . , αm) ∈ N
m and we denote zα = �m

i=1z
αi
i ,

|α| =∑m
i=1 αi , α! = �n

i=1αi !, and

g(α) = ∂ |α|g
∂zα11 . . . ∂zαmm

.

By J [n]z g we denote the d-dimensional jet of order n of g at z, i.e.:

(
J [n]z g

)
(y) =

∑
|α|≤n

g(α)(z)

α! · (y − z)α. (3)

We will identify J [n]z g with the collection of the Taylor coefficients J [n]z g =(
g[α](z)

)
|α|≤n , where

g[α](z) := g(α)(z)

α! .

We will use J [n]z g either as a function defined by (3) or a collection of num-
bers depending on the context. For a function g : Rm → R

d the jet J [n]z (g) =(
J [n]z g1, . . . , J

[n]
z gd

)
is a collection of jets of components of g.

In the sequel we will use extensively the following properties of jets:

Proposition 1 The following are true:

1. if g : R→ R then J [k]z

(
J [n]z g

)
= J [k]z g for k ≤ n;

2. if f = g ◦ h : R→ R for g : Rd → R and h : R→ R
d , then

J [n]t0 f = J [n]t0

((
J [n]h(t0)

g
)
◦
(
J [n]t0 h1, . . . , J

[n]
t0 hd

))
. (4)

In otherwords, Eq. (4) tells us that, in order to computenth-order jet of the composition,
we only need to compose jets (polynomials) of two functions and ignore terms of order
higher than n. For a shorter formulas, we will denote by ◦J the composition of jets in
(4), i.e. if a = J [n]h(t0)

g and bi = J [n]t0 hi , for i ∈ {1, . . . , d} then:

a ◦J b := J [n]t0 (a ◦ b)

123

Foundations of Computational Mathematics

= J [n]t0

((
J [n]b[0]g

)
◦
(
J [n]t0 h1, . . . , J

[n]
t0 hd

))
. (5)

Remark 2 Operation from Eq. (4) can be effectively implemented in an algorithmic
and effective way by means of Automatic Differentiation [26, 27].

From the Taylor’s Theorem with integral form of the remainder it follows:

x(t) =
(
J [n]a x

)
(t)+ (n + 1) ·

∫ t

a
x [n+1](s) · (t − s)nds. (6)

Equation (6) motivates the following:

Definition 1 We say that a function x : R→ R has a forward Taylor representation
of order n on interval I = [a, a + δ), δ > 0 iff formula (6) is valid for x |I .

We say that x : R → R
d has a forward Taylor representation on I , iff each

component x j : R→ R has the representation on I .

Mostly, we will be using jets to describe (parts of) functions g : I → R
d with forward

Taylor representations; therefore, in such cases we understand that in

(
J [n]z g

)
(y) =

n∑
k=0

g(k)(z)

k! · (y − z)k

the g(k) is computed as a right-side derivative.
It is easy to see and it will be often used in the algorithms:

Proposition 3 Assume x : R→ R has a forward Taylor representation over [t, t + δ)

of order n. Then, for k ∈ {0, . . . , n} the function x [k] = x (k)

k! has a forward Taylor
representation over [t, t + δ) of order m = n − k and

J [m]t (x [k]) =
(
c0, . . . , cn−k

)
(x [k])[m+1](s) =

(
n + 1

k

)
· x [n+1](s) s ∈ [t, t + δ)

where

cl =
(
l + k

k

)
· x [l+k](t), l ∈ 0, . . . , n − k.

Proposition 4 Assume x : R → R has a forward Taylor representation over I =
[t, t + δ) of order n. Then, for k = 0, . . . , n

x [k](t + ε) =
n−k∑
l=0

(
l + k

k

)
·
(
J [n]t x

)
[l+k] · ε

l

+ (n + 1− k) ·
∫ ε

0

(
n + 1

k

)
· x [n+1](t + s) · (ε − s)n−kds (7)

for ε ∈ [0, δ).

123

Foundations of Computational Mathematics

Remark 5 (On treating jets as vectors and vice versa) As mentioned earlier, for g :
R → R the Taylor series J [n]t0 g (which is formally also a function R → R) can be
uniquely identified with the collection of the Taylor coefficients

(
g[k](t0)

)
0≤k≤n , and

this collection might be identified with a vector in R
n+1. One have a freedom how

to organize the sequence into the vector (up to a permutation of coefficients), but in
computer programswewill use the standard ordering from k = 0 at the first coordinate
of the vector and k = n at the last coordinate. Conversely, for any vector j ∈ R

n :

j = (
j[0], j[1], . . . , j[n]

)
, (8)

we can build a jet (at some point t0) given by

(
J [n]t0 g

)
(t) =

n∑
k=0

j[k](t − t0)
k . (9)

This notion will be convenient when we would have some estimates on the jet, in
particular, we can write that a jet J [n]t0 g ∈ X ⊂ R

n+1, meaning, that there exists a
vector j ∈ X such that (9) is true for j interpreted as a jet at a given t0. Also, we can use
the convention to do algebraic operations on jets, such as vector–matrix multiplication
to describe jets in suitable coordinates, etc.

We will use convention with square brackets j[k] to denote the relevant coefficient
from the sequence j = J [n]z g, and to underline the fact that we are using the vector j
as its jet interpretation.

For g : R→ R
d , the jet J [n]t0 g can be represented as a vector in a high-dimensional

space R
M , where M = d · (n + 1). We organize such jets into vectors in the same

manner as in Eq. (8), but each j[k] represents d consecutive values.

2.2 Outline of theMethod and theMotivation for Phase Space Description

In a numerical Taylor method for ODEs, one produces the jet of solution at the current
time t0 by differentiating the equation x ′(t) = f (x(t)) w.r.t. t on both sides at t0,
as long as the differentiation makes sense. For f ∈ C∞ we can get any order of
the jet at t0 and the situation is similar in the case of DDE (2). If f has a jet at
z = (x(t0), x(t0 − τ)) and x has a jet at (t0− τ), both of order n, then we can proceed
as in the case of ODEs to obtain jet at t0. In the following Lemma we underline the
fact that this jet can be computed from x(t0) and J [n]t0−τ x :

Lemma 6 Let t0 be fixed and z be a solution to (2)with f of class at least Cn. Assume z
exists on [t0−τ, t0+δ], and z is of class Cn on some past interval I = [t0−τ, t0−τ+δ)

for some δ > 0. Then z is of class Cn+1 on I = [t0, t0 + δ), J [n+1]t0 z exists and it is

given explicitly in terms of z(t0), J
[n]
t0−τ z and r.h.s. f of Eq. (2).

Proof The continuityCn+1 on [t0, t0+δ) follows directly from (2), since x ′ is of class
Cn on [t0, t0 + δ). Let F(t) := f (z(t − τ), z(t)) and denote the coefficients of jets

123

Foundations of Computational Mathematics

J [n]t0 F , J [n+1]t0 z and J [n]t0−τ z by F[0], . . . , F[n], x[0], . . . , x[n], x[n+1] and y[0], . . . , y[n],
respectively, that is(

J [n]t0 F
)

(t) = F[0] + F[1] · (t − t0)+ · · · + F[n] · (t − t0)
n,(

J [n+1]t0 z
)

(t) = x[0] + x[1] · (t − t0)+ · · · + x[n] · (t − t0)
n + x[n+1] · (t − t0)

n+1
(
J [n]t0−τ z

)
(t) = y[0] + y[1] · (t − t0)+ · · · + y[n] · (t − t0)

n

Now Eq. (2) implies that

(
J [n+1]t0 z

)′ = J [n]t0 F,

or more explicitly:

(
x[0] + x[1](t − t0)+ · · · + x[n+1](t − t0)

n+1)′
= F[0] + F[1](t − t0)+ · · · + F[n](t − t0)

n .

Using the obvious fact that (z(k))′ = z(k+1), we have (z[k])′ = (k + 1)z[k+1] and
matching coefficients of the same powers we end up with:

x[k] = 1

k
F[k−1]. (10)

Finally, using Proposition 1 on J [n]t0 F we get:

J [n]t0 F =
(
J [n](z(t0),z(t0−τ)) f

)
◦J

(
J [n]t0 z, J [n]t0−τ z

)
=

(
J [n](x[0],y[0]) f

)
◦J (x, y) .

Now, we get the following recurrent formula:

F [0](x[0], y) := f (x[0], y[0]),

F [k](x[0], y) :=
((

J [k](x[0],y[0]) f
)
◦J

((
x[0], wk ∗ F [k−1](x[0], y)

)
,
(
y[0], . . . , y[k]

)))
,

(11)

for 1 ≤ k ≤ n with operation wn ∗ j defined for a jet j as:

wn ∗ j :=
(
1

1
j[0],

1

2
j[1], . . . ,

1

n
j[n−1]

)
.

Obviously F [k](x[0], y) = (F[0], . . . , F[k]) = J [k]t0 F , and together with (10) we get:

(
x[0], . . . , x[n], x[n+1]

) = (
x[0], wn+1 · F [n](x[0], y)

)
, (12)

123

Foundations of Computational Mathematics

that depends only on the formula for f , x[0] = z(t0) and the jet y = J [n]t0−τ z. �
We note two important facts. Firstly, the a priori existence of the solution z over

[t0, t0 + δ) is assumed in Lemma 6 and, when doing the integration step, it needs to
be achieved by some other means—we will later show one way to do that. Secondly,
Eq. (12) gives recipe to produce J [n+1]t0 —a jet of order one higher than the order of the

input jet y = J [n]t0−τ x . This simple observation will lead to a significant improvement
in the rigorous integration algorithm in comparison with the first version presented
in [34]. To have a complete rigorous method, we will need also formulas to estimate
Taylor remainder in (6)—we will do this later in Sect. 3.

As the jet at t0 − τ and the value at t0 allows to compute the jet of the solution x
at t0, the reasonable choice for the description of functions in the phase space is to
use piecewise Taylor representation of the solutions at grid points that match the step
size of the method. Uniform step size over the integration time will assure that the
required jets of the solution in the formula (12) are always present in the description
of the solution. This approach have been proposed in [34] with the uniform order of
the jets at each grid point. Now, we are going to elaborate how to implement and use
the extra derivative we get in Eq. (12) to improve the method. For this, we will need
a representation of solutions with non-uniform order of jets.

2.3 Representation of the Phase Space

Previously, in [34], we have proposed to describe sets in the phase space by piecewise
Taylor forward representation of a fixed order n on a uniform grid of points over
basic interval [−τ, 0]. Our definition was stated for d = 1 (scalar equations), but the
notion can be extended to any number of dimensions—just by assuming each of the
Taylor coefficients in equations are in fact d-dimensional vectors. No formula will be
different in that case. In the rest of the paper we will assume that d is known from the
general context, so we will omit it from the definitions.

We start with a key definition from [34] and then we will propose some general-
ization that will be relevant to many important improvements proposed later in this
paper.

Definition 2 Let p ≥ 1, n ≥ 0 be given natural numbers. Let h = τ
p be a grid step,

ti = −i · h be grid points for i ∈ {0, . . . , p} and let intervals Ii = [ti , ti−1) for
i ∈ {1, . . . , p}.

We defineCn
p([−τ, 0],Rd) to be a set of functions x : [−τ, 0] → R

d such that x has

a forward Taylor representation of order n on all Ii and such that x (n+1) (understood
as a right derivative) is bounded over whole [−τ, 0].
From now on, we will assume that τ is fixed and we will write Cn

p and Ck to denote
Cn

p([−τ, 0],Rd) andCk([−τ, 0],Rd), respectively.Moreover, wheneverwe use p and
h without an additional assumption, we assume that h is given by h = h(p, τ) = τ

p
as in Definition 2.

Note that x ∈ Cn
p might be discontinuous at t = ti , i ∈ {−p, . . . , 0}. However,

Cn
p∩Ck is a linear subspace ofCk for any k ∈ N and if k > n then obviouslyCk

p ⊂ Cn
p

123

Foundations of Computational Mathematics

(see [34]). Therefore, X = Cn
p ∩ C0 can be used as a suitable subspace of the phase

space C0 for solutions of Eq. (2). In fact, following two lemmas, proved in [34], state
that ϕ(h, ·) and ϕ(t, ·) for t large enough are well defined maps X → X :

Lemma 7 Assume f in (2) is C∞ (or smooth enough). Let ψ ∈ Cn
p be an initial

function to (2). If ϕ(h, ψ) exists then ϕ(h, ψ) ∈ Cn
p. Moreover, if ψ ∈ Cn

p ∩ C0 and

i = k · p for some k ∈ N then ϕ(i · h, ψ) ∈ Cn+k
p ∩ Ck.

Lemma 8 Assume f in (2) is C∞ (or smooth enough). Let ψ ∈ Cn
p ∩ C0 be initial

function so that the solution to (2) exists up to some t ≥ T , where T = T (n, τ) =
(n + 1) · τ . Then ϕ(t, ψ) ∈ Cn

p ∩ C0.

Time T (n, τ) will be important when constructing Poincaré maps later in the paper,
so to underline its importance, we state the following:

Definition 3 We call T (n) in Lemma 8 a long enough integration time.

In the current work, we generalize the notion of the space Cn
p to allow different

order of the jets at different points of the grid. This will be beneficial to the final
estimates later, as the representation of functions will take advantage of the smoothing
of solutions:

Definition 4 Let p be fixed, η = (n1, . . . , n p) ∈ N
p and let ti , Ii , h be as in Defini-

tion 2. We define space of functions Cη
p so that x ∈ Cη

p iff x has a forward Taylor
representation of order ni on Ii and x (ni+1)(Ii) is bounded for i ∈ {1, . . . , p}.
The discussion from Sect. 2.2 about the smoothing of solutions of DDEs shows that if
we have nth-order Taylor representation at t = −τ then we can obtain (n+1)th-order
representation of x at t = 0. Therefore, the order of the representation of solution
will not decrease during the integration, and it can increase, in general, only by one
at a time (after integration over a full delay). Therefore, we introduce the following
special class of Cη

p spaces. Let q ∈ {0, . . . , p} by Cn
p,q we will denote the space Cη

p
with

ηi =
{
n + 1 i ≤ q

n i > q
,

that is, the Taylor representation would be of order n on grid points −τ =
tp, tp−1, . . . , tq−1 and of order n + 1 on tq , tq+1, . . . , t1 = h. Among all Cη

p spaces,
spaces Cn

p,q will be used most extensively in the context of rigorous integration of
DDEs, but we keep the general notation of Definition 4 for simplicity of formulas
later.

Now, it is easy to see that Cn
p,p = Cn+1

p,0 and so that Cn
p = Cn

p,0. Analogously we

can write for q > p that Cn
p,q = Cn+q

p,q with q =
⌊
q
p

⌋
and q = q mod p. With that in

mind the analogue of Lemma 7 can be stated as:

Lemma 9 Let ψ ∈ Cn
p,q be an initial function to (2) and let h be as in Definition 2. If

ϕ(h, ψ) exists then ϕ(h, ψ) ∈ Cn
p,q+1. Moreover, if ψ ∈ Cn

p,q ∩C0 and m = k · p for

some k ∈ N then ϕ(m · h, ψ) ∈ Cn+k
p,q ∩ Ck.

123

Foundations of Computational Mathematics

Proof It follows from the smoothing of solutions, the definition of Cn
p,q , equality of

spaces Cn
p,p = Cn+1

p,0 and by applying method of steps (see e.g. [4]) to solve (2). �
In the rigorous method we will use Lemma 9 as follows: we will start with some

set X0 ⊂ Cn
p = Cn

p,0 defined with a finite number of constraints. Then we will in

sequence produce representations of sets Xi = ϕ(h, Xi−1) ∈ Cn
p,i = Cn+i

p,i . Finally,

to compare sets defined in different Cη
p spaces we would need the following simple

fact:

Proposition 10 Cη
p ⊂ Cζ

p iff ηi ≥ ζi for all i ∈ {1, . . . , p}.
Now we show how to describe sets in Cη

p. Obviously, by the Taylor’s theorem, we
have that x ∈ Cη

p is uniquely described by a tuple x̄ = (z(x), j(x), ξ(x)), where

• z(x) := x(0) ∈ R
d ,

• j(x) := (j1(x), . . . , jp(x)) with ji (x) := J [ni]ti (x) ∈ R
d·(ni+1),

• ξ(x) := (ξ1(x), . . . , ξp(x)) and ξi (x) := x [ni+1]|Ii ∈ C0(Ii ,Rd) are bounded.

Please note that the subscript i denotes the grid point here, not the component of the x
inRd . We will usually use subscript j for this purpose and we will write z(x) j , ji (x) j ,
etc., but for now, all formulas can be interpreted simply for d = 1, generalization
to many dimensions being straightforward. We will use notation of z(x), j(x), ξ(x)
etc. for a shorthand notation in formulas, sometimes dropping the argument x if it is
known from the context. For example, we will say that we have a solution described
by a tuple (z, j, ξ) ∈ R

M × (C0)p·d , then we will know how to interpret them to get
the function x . Here M = M(p, η, d) = d ·(1+∑p

i=1(ηi+1)). A direct consequence
is that:

Proposition 11 The space Cη
p is a Banach space isomorphic to R

M × (C0)p·d by
x �→ (z(x), j(x), ξ(x)), and with a natural norm on x given by

‖x‖Cη
p
:= ‖(z(x), j(x))‖ +

p∑
i=1

d∑
j=1

sup
t∈Ii
|ξ(x) j (t)|,

where ‖ · ‖ denotes any norm in RM (all equivalent). We will use max norm in RM.

Let now I be a set of all closed intervals over R. We define:

[ξ]i (x) j :=
[
min

ε∈[0,h] ξi (x) j (ε), max
ε∈[0,h] ξi (x) j (ε)

]
∈ I,

[ξ]i (x) := [ξ]i (x)1 × · · · × [ξ]i (x)d ∈ I
d (13)

and [ξ](x) = ([ξ]1(x), . . . , [ξ]p(x)) ∈ I
d·p. That is a very complicated way to say

[ξ](x) is the collection of bounds on the remainder terms in the Taylor representation
of x . The interval [ξ]i (x) j is well defined, since we assumed each x (ni+1) bounded in
Definition 4. Now, we can describe x ∈ Cη

p by the following finite set of numbers:

123

Foundations of Computational Mathematics

Definition 5 Let M = M(p, η, d) = d · (1+∑p
i=1(ηi + 1)

)
.

We say that x̄ = (z(x), j(x), [ξ](x)) ∈ R
M × I

d·p is a (p,η)-representation of
x ∈ Cη

p.
Given x̄ ∈ R

M × I
d·p by X(x̄) ⊂ Cη

p we denote the set of all functions whose x̄ is
their (p,η)-representation.

The number M is called the size of the representation and we will omit parameters if
they are known from the context. We will use shorthand notation of Rn

p, R
η
p or Rn

p,q

to denote appropriateRM in context of spaces Cn
p, C

η
p and Cn

p,q , respectively. We will
write Ip to denote Ip·d . Note that we are dropping d because it is always well known
from the context.

Observe that, in general, X(x̄) contains infinitely many functions. We will identify
x̄ and X(x̄), so that we could use notion of z(x̄), j(x̄), etc. Moreover, we will further
generalize the notion of X(x̄):

Definition 6 Let A ⊂ R
η
p, R ∈ Ip be a product of closed intervals. We define set

X(A, R) as

X(A, R) =
{
x ∈ Cη

p : (z(x), j(x)) ∈ A, [ξ](x) ⊂ R
}

We call X(A, R) a (p,η)-functions set (or (p,η)-fset for short) and (A, R) its (p,η)-
representation.

If A is convex then X(A, R) is also a convex subset of Cη
p, so X(A, R) ∩ Ck is also

convex for any k ∈ N, see [34]. For a space Cn
p,q we will use the term (p, q, n)-

representation and (p, q, n)-fsets when needed, but usually we will use just names
like “fset” and “representation”.

Finally, we introduce the following shorthand symbols used for evaluation of terms:

Tn(j; ε) :=
n∑

k=0
j[k] · εk (14)

Sn(ξ ; ε) := (n + 1) ·
∫ ε

0
ξi (s) · (ε − s)nds, (15)

En(j, ξ ; ε) := Tn(j; ε)+ Sn(ξ ; ε), (16)

for any function ξ ∈ C0([0, h),Rd) and any jet j ∈ R
N ·d of order N ≥ n. The letters

should be coined to the terms T—(T)aylor sum, S—(S)umma, formal name for the
integral symbol, E—(E)valuation of the function. We use superscript n to underline
order to which the operation applies, but in general, it can be simply inferred from
the arguments (for example—maximal order of the jet j in T). Also, the superscript
argument might be used to truncate computation for higher-order jets, e.g. let j =
J [2n]t x and consider applying Tn(j) to Taylor-sum only part of the jet. This will be
used in algorithms later. If we omit the parameter n then it is assumed that we use the
biggest possible n (for that argument, inferred from the representation itself).

123

Foundations of Computational Mathematics

Then we will write formally for any x ∈ Cη
p:

Tn(x; t) := Tn(ji (x); ε),
Sn(x; t) := Sn(ξi (x); ε),
En(x; t) := Tn(ji (x); ε)+ Sn(ξi (x)(· − ti); ε),

where t = ti + ε, ε ∈ [0, h). For X = X(A, R) we will write a(X) = A and
[ξ](X) = R and for x ∈ X(A, R) we will write a(x) = (z(x), j(x)) ∈ A. We will
also extend the notion of operators T, S and E to (p, η)-fsets:

T(X; t) := Tηi (ji (X); ε),
S(X; t) := [ξ]i (X) · εηi+1,
E(X; t) := Tηi (ji (X); ε)+ Sηi ([ξ]i (X); ε).

where t = ti + ε, ε ∈ [0, h). Note that T(x; t) = T(x̄; t), S(x; t) ∈ S(x̄; t) and of
course E(x; t) ∈ E(x̄; t). In the rigorous computation we as well might use intervals
or whole sets in the computation (e.g. t = [t] = ti + [0, ε])—in such circumstances
we will get sets representing all possible results and in that way an estimate for the
true value. From now on, we will also drop bar in x̄ wherever we treat x as an element
of Cη

p with a known bounds in form of some X(A, R).
Finally, we make an observation that for x—a solution to DDE (2) such that

xt0 ∈ Cη
p—the kth derivative x [k]t0 must also by representable by piecewise Taylor

representation. In fact, since we know x(0) and all jets of the representation of xt0 we
can obtain x [k]t0 (0) by applying Lemma 6, namely Eq. (12). Then, the value of all other
jets and remainders follows from Proposition 3:

Proposition 12 Let x ∈ Cη
p be a segment of a solution to DDE (2) and for k ∈ N

define η− k := (η1− k, . . . , ηp − k). Then for 1 ≤ k ≤ mini ηi the derivative x [k](t)
(interpreted as a right derivative) exists for t ∈ [−τ, 0] and x [k] ∈ Cη−k

p , with a
(p,η − k)-representation given in terms of the (p,η)-representation of x:

ji (x
[k]) =

(
c0i , . . . , c

ηi−k
i

)
ξi (x

[k]) =
(

ηi + 1

k

)
· Sηi−k(ξi (x); ·)

[ξ]i (x [k]) ⊂
(

ηi + 1

k

)
· [ξ]i (x),

z(x [k]) = 1

k
· (Fk−1 (jp(x), z(x)))[k−1] , (17)

for i ∈ {1, . . . , p}, where

cli =
(
l + k

k

)
· ji (x)[l+k], l ∈ 0, . . . , ηi − k.

123

Foundations of Computational Mathematics

3 Rigorous Integrator: Basic Algorithms and Some Improvements

Now we are ready to show how to obtain estimates on the representation Y of ϕ(h, X)

for a given set of initial functions X ∈ Cη
p. Due to the finite nature of the description

of the set Y we will only have the relation ϕ(h, X) ⊂ Y , in general.
First, we want to recall in short the details of the integrator from [34] as those are

crucial in the improvements presented later. Then, we will show how to incorporate
new elements: the extension of the representation from (12) and the spaces Cη

p, the
generalization to systems of equations (i.e. d > 1), and to multiple delays (under the
assumption that they match the grid points). Then, we will discuss the Lohner-type
method for the generalized algorithm.

3.1 ODE Tools

We start with describing some ODE tools to be used in rigorously solving (18) using
the computer. For this wewill need amethod to find rigorous enclosures of the solution
x (and its derivatives w.r.t. t) over compact intervals [0, h]. A straightforward method
here is to consider Eq. (2) on [t0, t0 + h], h ≤ τ as a non-autonomous ODE, just as in
the case of method of steps [4]. If we plug-in a known initial function xt0 into (2) and
we denote f̂ (z, t) := f (z, xt0(t − τ)) for t ∈ [0, h] we end up with non-autonomous
ODE:

{
z′(t) = f̂ (z, t), t ∈ [0, h],
z(0) = xt0(0).

(18)

Please note that t − τ ∈ Dom
(
xt0

) = [−τ, 0] so f̂ is well defined, and f̂ is of class
Ck as long as the solution segment xt0 is of class Ck (for f sufficiently smooth).
Therefore, in view of (10) and (11), to find estimates on the Taylor coefficients of x
over It0 = [t0, t0+h) it suffices only to ascertain the existence of z over It0 and to have
some finite a priori bounds Z on it, as the estimates on the higher-order coefficients
will follow from recurrent formulas (10) and (11). Luckily, the existence of the solution
to Eq. (18) and a good a priori bounds over It0 can be obtained using existing tools
for ODEs [22, 43] as was shown in [34] and efficient implementations are already
available [11, 12]. We have the following:

Lemma 13 (see Theorem 1 in [22]) We consider f̂ as in non-autonomous ODE (18).
Let B ⊂ R

d be a compact set. If a set W ⊂ R
d is such that

B + [0, ε] · f̂ (W , [t0, t0 + ε]) =: Z ⊂ W ,

then, any solution z of (18) such that z(t0) ∈ B has z(t0 + δ) ∈ Z for all δ ∈ [0, ε].
By roughEncl we denote a procedure (heuristic) to find the set Z :

roughEncl(f , B, t0, ε) := Z , as in Lemma 13.

123

Foundations of Computational Mathematics

We do not go into the details of this algorithm nor the proof of Lemma 13, but we
refer to [11, 22, 43] and references therein.

Remark 14 Please note that finding a rough enclosure is a heuristic procedure, and
therefore it is the point where the algorithm can fail (in fact the only one). If that
happens, wemust abort computations or apply some strategy to overcome the problem.
In the ODE context, it is possible to shorten the step or to subdivide the set of initial
conditions. Those strategies can be difficult to adopt in the DDE context: we cannot
shorten step because of the definition ofCη

p spaces and the loss of continuity problems
discussed earlier; and we could not afford extensive subdivision as we work with very
high-dimensional representations (projections) of functions. This makes obtaining the
higher-order methods even more useful.

Consider now xt0 ∈ Cn
p, so that f̂ ∈ Cn+1. Applying Eqs. (10) and (11) allows to

obtain J [n+1]t0 x , where rough enclosure procedure gives Z such that x(It0) ⊂ Z . In
what follows, we will sum up all the formulas needed to obtain (guaranteed enclosures
on) the forward Taylor representation of x on the interval It0 of order n + 1.

3.2 The Rigorous Integrator in Cnp,q

Assume now thatwe are given some x0 ∈ Cn
p,q .Wewill showhow to compute rigorous

estimates on a set X(Ah, Rh) ⊂ Cn
p,q+1, with an explicitly given Ah ⊂ R

n
p,q+1 and

Rh ∈ I
p·d , representing ϕ(h, x0), i.e. ϕ(h, x0) ∈ X(Ah, Rh). The sets Ah and Rh will

be computed using only data available in (z(x), j(x), ξ(x)). The subscript h in Ah ,
Rh is used to underline that we are making a full step h = 1

p . In what follows, we will
use the convention that Xh = X(Ah, Rh).

This is an analogue to the algorithmdescribed in Sect. 2.2 in [34], butwe account for
the effect of smoothing of the solutions inDDEs (Lemma 9), so thatϕ(h, x0) ∈ Cn

p,q+1
(and we remind that Cn

p,p = Cn+1
p,0 = Cn+1

p):

Theorem 15 Let x ∈ Cn
p,q ,with0 ≤ q < p and the representation (z(x), j(x), [ξ](x)) ∈

R
n
p,q × I

d·p.

We define the following quantities:

f̂ := as in Eq. (18)

[c][k] := E
(
x [k]; [−τ,−τ + h]

)
= E

(
x [k], [tp, tp + h]

)
∈ I

d , 0 ≤ k ≤ n

[c][n+1] := [ξ]p(x) ∈ I
d

[Z] := roughEncl(f̂ , z(x), t0, h) ∈ I
d (19)

[F] := F [n+1] ([Z], [c]) (20)

Then, we have for y = ϕ(x, h) the following:

ji (y) = ji−1(x) =: ji (Xh) i ∈ {2, . . . , p} (21)

123

Foundations of Computational Mathematics

[ξ]i (y) = [ξ]i−1(x) =: [ξ]i (Xh) i ∈ {2, . . . , p} (22)

j1(y) =
(
z(x), wn+1 ∗ F [n]

(
z(x), jp(x)

)) =: j1(Xh) (23)

[ξ]1(y) ⊂ 1

n + 2
· [F][n+1] =: [ξ]1(Xh), (24)

z(y) ∈ T(j1(y); h)+ ([F][n+1] · [0, h]) · hn+1 =: z(Xh) (25)

or, in other words, y ∈ Xh ⊂ Cn
p,q+1.

Proof Equations (21) and (22) are representing the shift in time by h (one full grid
point): from segment x0 to segment xh (of the solution x), therefore,we simply reassign
appropriate jets ji and remainders [ξ]i , as the appropriate grid points in both represen-
tations overlap. The rest of formulas are an easy consequence of Lemmas 9 and 13,
the recurrence relation (10) for F [n] and Proposition 12 to obtain estimates on x [k]
over intervals [−τ,−τ + h) in (19). Note that the second term in (25) is formally
given by the integral remainder in Taylor formula (6), namely for s ∈ [0, h) we have
ξ1(y)(s) ∈ [ξ]1(y) = 1

n+2 · [F][n+2] (by the recurrence formula 10) and

S (ξ1(y), s) ∈ S ([ξ]1(y), [0, h]) = (n + 2) · ([ξ]1(y) · [0, h]) · hn+1
= ([F][n+2] · [0, h]) · hn+1.

�We denote the procedure of computing X(Ah, Rh) for a given initial data x ∈ Cn
p,q by

I, i.e. I(x) = X(Ah, Rh). Clearly, it is a multivalued function I : Cn
p,q ⇒ Cn

p,q+1.
We are abusing the notation here, as I is a family of maps (one for each domain space
Cn

p,q), but it is always known from the context (inferred from the input parameters).
Wewould like to stress again that the increase in the order of representation at t = h

in the solution x will be very important for obtaining better estimates later. It happens
in Eq. (23), as the resulting jet is of order n + 1 instead of order n as it was in [34].
Please remember that F [n] is a recurrent formula for computing whole jet of order n
of function F = f ◦ (x(·), x(· − τ)) at the current time t , so it produces a sequence
of coefficients, when evaluating (20) and (23). Obviously, each of those coefficients
belongs to Rd .

The nice property of the method is that the Taylor coefficients at t = 0, i.e. j1(y)
are computed exactly, just like in the corresponding Taylor method for ODEs (or in
other words, if x is a true solution to (2) and Xh = I(x) then J (n+1)

h (x) = j1(Xh)).
It is easy to see, as formulas (21) and (23) does not involve a priori any interval
sets (bracketed notation, e.g. [ξ],[Z], etc.). Therefore, to assess local error made by
the method we only need to investigate Eq. (25), which is essentially the same as
in the Taylor method for ODEs. As the interval bounds are only involved in the
remainder part

([F][n+1] · [0, h]) · hn+1, the local error of the method is O(hn+2).
Since J (n+1)

h (x) = j1(Xh) for a true solution x , this error estimation also applies to
all the coefficients in the j1(y) computed in Eq. (23) in the next integration step, when
computing X2h = I(Xh), as they depend on z(Xh) that already contains the error. It
will be also easily shown in numerical experiments (benchmarks) presented at the end
of this section.

123

Foundations of Computational Mathematics

3.3 Extension to Many Delays

Now, we are in a position to show how our algorithm can be generalized to include
the dependence on any number of delays τi as in Eq. (1), as long as they match with
the grid points: τi = i · h. Therefore, we consider the following:

x ′(t) = f (x(t), x(t − p1h), x(t − p2h), . . . , x(t − pmh)) , (26)

where 1 ≤ m ≤ p and p = p1 > p2 > . . . > pm ≥ 1. We will denote by
u(xt) = u f (xt) := (x(t), x(t− p1h), x(t− p2h), . . . , x(t− pmh)) the set of variables
that are actually used in the evaluation of the r.h.s. f inEq. (26) [as opposed to “unused”
variables, those at grid points not corresponding to any delays τi = pi ·h in (26)]. This
distinction will be important to obtain good computational complexity later on. In case
of Eq. (2), we have u(xt) = (x(t), x(t − τ)). Please note that since u(xt) contains
variables at grid points, it is easy to obtain J (n)

t u of appropriate order n. If u = u(xt),
we will use subscripts u0, u p1 , etc. to denote respective projections onto given delayed
arguments, and we will use u pi ,[k] to denote their appropriate coefficients of the jet

J (n)
−τi

xt .
In order to present the method for many delays we need to redefine F(t) = (f ◦

u ◦ x)(t) and investigate Eqs. (19)–(25). It is easy to see, that the only thing which is
different is F and computation of its jets. Thus, we rewrite the algorithm F [n] from
Eq. (11) in terms of u = u(x):

F [0](u) := f (u),

F [k](u) :=
(
J [k](u) f

)
◦J((

u0, wk ∗ F [k−1](u)
)

,
(
u p1,[l]

)
0≤l≤k , . . . ,

(
u pm ,[l]

)
0≤l≤k

)
. (27)

Now, the algorithm from (19)–(25) for an x ∈ Cη
p consists of two parts. First, the

enclosure of the solution and all used variables over the basic interval [0, h]:

f̂ (t, z) := f (z, x(t − p1h), x(t − p2h), . . . , x(t − pmh))

n := min
1≤i≤m ηpi =: n(η, f)

[U]pi ,[k] := E
(
x [k], [tpi , tpi + h]

)
∈ I

d , 1 ≤ i ≤ m, 0 ≤ k ≤ n

[U]pi ,[n+1] := [ξ]pi (x) ∈ I
d 1 ≤ i ≤ m (28)

[U]0 := roughEncl(f̂ , z(x), t0, h) ∈ I
d (29)

[F] := F [n+1] ([U]) , (30)

then, building the representation after the step h:

ji (y) = ji−1(x) =: ji (Xh) i ∈ {2, . . . , p}
[ξ]i (y) = [ξ]i−1(x) =: [ξ]i (Xh) i ∈ {2, . . . , p}

123

Foundations of Computational Mathematics

j1(y) =
(
z(x), wn+1 ∗ F [n] (u(x))

)
=: j1(Xh)

[ξ]1(y) ⊂ 1

n + 2
· [F][n+1] =: [ξ]1(Xh),

z(y) ∈ T(j1(y); h)+ ([F][n+1] · [0, h]) · hn+1 =: z(Xh)

Please note that we used in (29) symbol [U]0 to denote enclosure of x over [0, h]
(computed by theroughEncl procedure). All other components of [U] are computed
estimates on jets jpi (x) over the same interval [0, h] using Proposition 3. That way,
we can think of [U] as the enclosure of u over interval [0, h]. We have also generalized
the algorithm to be valid for any Cη

p by introducing the notion of n(η, f) in Eq. (28).
The n(η, f) depends on f in the sense, the minimum is computed only for ni that are
actually used in computations.

3.4 Steps Smaller than h

In this section,we consider computation of the (p, n)-representations ofϕ(t, x0)where
t is not necessary the multiple of the basic step size h = τ

p , and for the initial x0 ∈ Cη
p,

where the apparent connection between η, n and t will be discussed soon. This problem
arises naturally in the construction of Poincaré maps. Roughly speaking, the Poincaré
map P for a (semi)flow in the phase spaceX is defined as P(x) = ϕ(tP (x), x), where
x ∈ S ⊂ X and tP : S → (0,∞)—the return time to the section S - is a continuous
function such that ϕ(tP (x), x) ∈ S (we skip the detailed definition and refer to [34]).
We see that the algorithm presented so far is insufficient for this task, as it can produce
estimates only for discrete times t = i ·h, i ∈ N, not for a possible continuum of values
of tP (S). It is obvious that we can express t = m · h + ε with m ∈ N and 0 < ε < h
and the computation of ϕ(t, x0) can be realized as a composition ϕ(ε, ϕ(m · h, x0)).
Therefore, we assume that the initial function is given as xm = ϕ(m · h, x) and we
focus on the algorithm to compute (estimates on) xε = ϕ(ε, xm).

First, we observe that, for a general xm in some (p, η)-fset, we cannot expect that
xε ∈ Cζ

p for any ζ . The reason is that the solution x of DDE (2) with initial data in
Cη

p can be of class as low as C0 at t = 0, even when the r.h.s. and the initial data is
smooth (as we have discussed in the beginning of Sect. 2). The discontinuity appears
at t = 0 due to the very nature of Eq. (2). This discontinuity is located at s = −ε in
the segment xε of the solution and, of course, we have −ε ∈ [−h, 0]. Therefore, the
function xε does not have any Taylor representation (in the sense of Definition 1) on
the interval I1 = [−h, 0], as the first derivative of x is discontinuous there.

On the other hand, we are not working with a general initial function, but with
xm = ϕ(m · h, x0), with x0 ∈ Cη

p. From Lemma 9 we get that xm ∈ Cη+n+1
p ∩ Cn+1,

where n ∈ N be the largest value such that m ≥ (n + 1) · p. Moreover, the same
is true for xm+1 = ϕ(h, xm). Therefore, xε = ϕ(ε, xm) ∈ Cn+1, so that it has a Cn

p
representation.

Now, the question is: can we estimate this (p, n)-representation in terms of the
coefficients of representations of xm (and maybe xm+1)? The answer is positive, and
we have:

123

Foundations of Computational Mathematics

Lemma 16 Assume x is a solution to (2) with a segment x0 ∈ Cη
p ∩ C0. Let t ∈ R be

given with t = m · h+ ε, m ∈ N, 0 < ε < h. Let n = �mp �− 1 and assume n ≥ 0, i.e.
m ≥ p and t ≥ τ .

Let denote xm = ϕ(m · h, x0) and xm+1 = ϕ(m · h + h, x0) and for i ∈ {1, . . . , p}
let

[L]i = E
(
ji (x

[n+1]
m), [ξ]i (x [n+1]m), [0, h]

)
, (31)

[R]i = E
(
ji (x

[n+1]
m+1), [ξ]i (x [n+1]m+1), [0, ε]

)
. (32)

Then we have xt ∈ Xε ⊂ Cn
p ∩ Cn+1 for Xε given by:

z (Xε) := T (j1(xm+1); ε)+ S ([ξ]1(xm+1); ε) , (33)

ji,[k] (Xε) := T
(
ji (x

[k]
m); ε

)
+ S

(
[ξ]i (x [k]m); ε

)
, i ∈ {1, . . . , p}, k ∈ {0, . . . , n},

(34)

[ξ]i (Xε) := hull ([L]i , [R]i) , i ∈ {1, . . . , p}.
(35)

Before the proof, we would like to make a small comment. The representation of xm+1
is used for optimization and simplification purposes, as usually we have it computed
nevertheless (when finding the crossing time of the Poincaré map). It contains the
representation of x over [mh,mh + h) in j1. Otherwise we would need to expand the
jet of solution x at t = 0 to compute [R]1 and z in (33). Also, the formula (32) would
be less compact.

Proof of Lemma 16 It is a matter of simple calculation. To focus the attention on the ε

step, let us abuse notation and denote xt = xε = ϕ(ε, xm). We have

x [k]ε (−i · h) = x [k]m (−i · h + ε), i ∈ {1, . . . , p}

so we get a straightforward formula:

ji (xε)[k] = E
(
x [k]m ;−i · h + ε

)
= Tηi+n+1−k

(
ji (x

[k]
m); ε

)
+ Sηi+n+1−k

(
ξi (x

[k]
m); ε

)
(36)

where representations of x [k]m are obtained by applying Proposition 12. Similarly, one
can find that

z(xε) = xε(0) = xm+1(−h + ε) = T(j1(xm+1); ε)+ S([ξ]1(xm+1); ε), (37)

and for s ∈ [0, h), i ∈ {1, . . . , p}:

ξi (xε)(s) = x [n+1]ε (−i · h + s)

123

Foundations of Computational Mathematics

=
⎧⎨
⎩
x [n+1]m (−i · h + ε + s) = E

(
x [n+1]m ; ε + s

)
ε + s < h

x [n+1]m+1 (−i · h + (ε + s − h)) = E
(
x [n+1]m+1 ; (ε + s − h)

)
ε + s ≥ h

.

(38)

Note, in the second case of Eq. (38), we have 0 ≤ (ε+ s−h) < h. Now, we exchange
each ξ with [ξ] in Eqs. (36)–(38) to get the corresponding estimates in Eqs. (33)–(35).

�
This algorithm is valid for any number of dimensions and for any number of delays

(i.e. for any definition of used variables u(n, f))—in fact, there is no explicit depen-
dence on the r.h.s of (2) in the formulas—the dynamics is “hidden” implicitly in the
already computed jets ji (xm) and j1(xm+1). This form of the algorithm will allow in
the future to make general improvements to the method, without depending on the
actual formula for the projection of used variables u(n, f) in the r.h.s. of DDE (1), or
even when constructing methods for other forms of functional differential equations.
We will denote the ε step algorithm given by (33)–(35) by Iε.

As a last remark, similarly to the discussion in the last paragraph of Sect. 3.2, let
us consider the order of the local error in the method Iε. This local error will have a
tremendous impact on the computation of Poincaré maps, and thus on the quality of
estimates in computer-assisted proofs. To see why, set the order n and let us consider
two maps: T = ϕ(mh, ·) and Tε = ϕ(mh + ε, ·), where, without loss of generality,
we choose m = p · (n + 1) (in applications, return time in Poincaré maps will be
required to be greater than this) and we fix some 0 < ε < h. It is of course sufficient
to use full-step method I to rigorously compute map T , while Tε is a good model of
computing estimates on a real Poincaré Map and will require usage of Iε in the last
step. Let us denote xm = T (x0), xm+1 = ϕ(h, T (x0)) and xε = Tε(x0). Obviously,
we have xm+1 = ϕ(h, xm) ∈ I(xm) and xε = ϕ(ε, xm) ∈ Iε(xm) Assume x0 ∈ Cη

p
with uniform order on all grid points, η = n. From Lemma 9 for both maps, we end

up with xm ∈ C2n+1
p ∩ Cn+1, xm+1 ∈ C2n+2

p,1 ∩ Cn+1 and xε ∈ Cn+1
p ∩ Cn+1. From

discussion in the last paragraph of Sect. 3.2,we can infer that the local error introduced
in I(xm) is of order O(h2n+2), as the only term with nonzero Taylor remainder is
z(Iε(xm)). Therefore, we can expect that the accumulated error of estimating map T
with Im (m steps of the full-step integrator I) is of order O(hn) [9], as this is the
accumulated error of covering the first delay interval [0, τ) in the beginning of the
integration process. Later, thanks to smoothing of solutions and expanded space, the
subsequent errors would be of higher order. This in general should apply even if we do
not expand the representation, as in such case the local error in each step (even after
[0, τ]) in I is still just O(hn+1).

In comparison, algorithm Iε evaluates Taylor expansion with nonzero remainder
not only at z(·) in (33), but also at every grid point and every coefficient order of
the representation in (34). What is more, the impact of the remainder term [ξ] is of
different order at different Taylor coefficients. Here, we use Proposition 12 to get
that kth Taylor coefficient x [k]m has a (p,l)-representation with l = 2n + 1− k, so the
local error of ji,[k](Xε) is of order O(h2n+1−k). Since k ∈ {0, . . . , n}, then in the
worst case of k = n, the local error size is O(hn+1). This is of course worse than

123

Foundations of Computational Mathematics

O(h2n+2) of the full-step method, but it is a significant improvement over the first
version of the algorithm presented in [34], where the local error of the last ε step
was O(h) (basically, because x [n]ε was computed by explicit Euler method in the non-
expanded representation of xm ∈ Cn

p). Current error is of the order comparable to the
accumulated error over the course of a long-time integration Im and therefore has a
lot less impact on the resulting estimates.

Exemplary computations, supporting the above discussion, are presented in
Sect. 3.7.

3.5 Computation of Poincare Maps

In this section, we would like to discuss shortly some minor changes to the algorithm
of computing images of Poincaré map using algorithms I (full step h) and Iε (ε < h),
particularly, we discuss the case when the estimate on tP (S) has diameter bigger than
h—this will be important in one of the application discussed in this paper.

In the context of using rigorously computed images of Poincaré maps in computer-
assisted proofs in DDEs, we will usually do the following (for details, see [34]):

1. We choose subspace of the phase space of the semiflow ϕ as Cn
p ∩ C0 with p, n

fixed.
2. We choose sections S1, S2 ⊂ Cn

p, usually as some hyperplanes Si = {x ∈ Cn
p :

Si (x) := (si .a(x)) − ci = 0}, with si ∈ R
M(d,p,n), c ∈ R and (.) denoting the

standard scalar product inRM(d,p,n) (we remind a(x) = (z(x), j(x)) ∈ R
M(d,p,n),

M(d, p, n) = d · (1+ (n + 1) · p)). Of course, in the simplest case, we can work
only with a single section, S1 = S2.

3. We choose some initial, closed and convex set X0 ⊂ S1 ⊂ Cn
p on the section S1.

4. We construct [t] ∈ I such that tP (X0) ⊂ [t], where tP : X0 → R+ is the return
time function from X0 to S2, so that ϕ(tP (x0), x0) ∈ S2 ⊂ Cn

p for all x0 ∈ X0.
This is done usually alongside the computation of the image P(X0), by successive
iterating X j+1 = I(X j) until Xm is before and Xm+1 is after the section S2 (i.e.
S2(Xm) < 0 and S2(Xm+1) > 0 or S2(Xm) > 0 and S2(Xm+1) < 0). In such a
case, [t] = m · h + [ε], where [ε] ⊂ [0, h).
In view of Lemma 16, we require tP (X0) ≥ (n + 1) · τ—the return time to the
section is long enough. Moreover, Xm and Xm+1 are already computed to be used
in the formulas (33)–(35). The tight estimates on [t] can be obtained for example
with the binary search algorithm, in the same manner as it was done in [34].
Finally, using formulas from Lemma 16 we get Xε ⊂ Cn

p such that ϕ([ε], Xm) ⊂
Xε.

5. We use sets X0 and Xε together with the estimates on P(X0) ⊂ ϕ([t], X0) to draw
conclusion on existence of some interesting dynamics. For example, if S1 = S2
and P(X0) ⊂ X0 we can use Schauder fixed-point theorem to show existence of a
periodic point of P (the compactness of the operator P plays here a crucial role).

Now, we have already mentioned that the computation of the Poincaré map P(x0) =
ϕ(tP (x0), x0) can be done by splitting the return time tP (x0) = m(x0) ·h+ε(x0)with
m(x0) ∈ N and ε(x0) ∈ (0, h). This leads to a rough idea of rigorous algorithm to

123

Foundations of Computational Mathematics

compute estimates on P(x0) in the following form:

P(x0) ∈ Iε(x0) ◦ Im(x0) (x0) . (39)

However, in the case of computing (estimates on) P(X0) for a whole set X0 ⊂ Cn
p, we

can face the following problem: for x, y ∈ X0 we can have m(x)
= m(y), especially
when X0 is large. In [34], we have simply chosen X0 so small, such that m(x) is
constant in X0. Then, we have [t] = m ·h+[ε], with [ε] = [ε1, ε2], 0 < ε1 ≤ ε2 < h.
In such a situation, formula (39) could be applied with m(x) = m and ε = [ε]. In the
current work, we propose to take the advantage of all the data already stored in the
(p, η)-fsets and to extend the algorithm in Lemma 16 to produce rigorous estimates
on ϕ([ε], x0) for [ε] = [ε] = [ε1, m̄ · h + ε2], 0 < εi < h m̄ ∈ N. It is not difficult to
see that we have the following:

Proposition 17 Let [t] = m · h+ [ε1, m̄ · h+ ε2] with 0 < ε1, ε2 < h, m, m̄ ∈ N with
m̄ > 0. Let assume X j are such that ϕ(j · h, X0) ⊂ XM for j = m,m + 1, . . . ,m +
m̄ + 1. Finally, let n be as in Lemma 16.

We define (k ∈ {0, . . . , n + 1}, j ∈ {0, . . . , m̄ + 1}, i ∈ {1, . . . , p}):

[L][k]i, j = E
(
ji (x

[k]
m+ j), [ξ]i (x [k]m+ j), [ε1, h]

)
,

[C][k]j,i = E
(
ji (x

[k]
m+ j), [ξ]i (x [k]m+ j), [0, h]

)
,

[R][k]i, j = E
(
ji (x

[k]
m+ j), [ξ]i (x [k]m+ j), [0, ε2]

)
,

and a set Xε given by:

z(Xε) := hull
(
[L][0]1,1, [C][0]1,2, . . . , [C][0]1,m̄, [R][0]1,m̄+1

)
, (40)

ji,[k](Xε) := hull
(
[L][k]i,0, [C][k]i,1, . . . , [C][k]i,m̄−1, [R][k]i,m̄

)
,

i ∈ {1, . . . , p}, k ∈ {0, . . . , n}, (41)

[ξ]i (Xε) := hull
(
[L][n+1]i,0 , [C][n+1]i,1 , . . . , [C][n+1]i,m̄ , [R][n+1]i,m̄+1

)
,

i ∈ {1, . . . , p}. (42)

Then for all t ∈ [t] we have xt ∈ Xε ⊂ Cn
p ∩ Cn+1.

Of course, in the case m(X0) = const we use algorithm from Lemma 16.

3.6 The Lohner-Type Control of theWrapping Effect

An important aspect of the rigorous methods using interval arithmetic is an effective
control of the wrapping effect. The wrapping effect occur in interval numerics, when
the result of some nonlinear operation or map needs to be enclosed in an interval box.
When this box is chosen naively, then a huge overestimates may occur, see Fig. 6 in
“Appendix A”.

123

Foundations of Computational Mathematics

To control wrapping effect in our computations, we employ the Lohner algorithm
[22] by representing sets in a good local coordinate frame: X = x0+C · r + E , where
x0 is a vector in R

M , C ∈ M(M, N), r0 ∈ I
N—an interval box centred at 0, and

E some representation of local error terms. As it was shown in [34], taking E ∈ I
M

(an interval form of the error term) was enough to prove existence of periodic orbits.
Moreover, taking into account the form of the algorithm given by (21)–(25) (especially
the shift part (21)–(22)) to properly reorganize computations was shown to be crucial
to obtain an algorithm of optimal computational complexity.

In this work, we not only adopt this optimized Lohner algorithm to the systems of
equations and to many delays, but we also propose another form of the error term E
to get better estimates on the solutions in case of systems of equations, d > 1, much
in the same way it is done for systems of ODEs [12, 22]. The proposed algorithm
does not sacrifice the computational complexity to obtain better estimates. We use
this modified algorithm in our proof of the symbolic dynamics in a delay-perturbed
Rössler system.

The details of the algorithm are highly technical, so we decided to put them in
“Appendix A”, to not overshadow the presentation of the theoretical aspects, but on
the other hand to be accessible for people interested in actual implementation details
and/or in re-implementing presented methods on their own.

3.7 Benchmarks

As the last remark in this section, we present the numerical experiment showing the
effect of using the new algorithm with expanding representation in comparison with
the old algorithm in [34]. As a test, we use a constant initial function x0(t) = 1.1 for
t ∈ [−τ, 0] and the Mackey–Glass equation with parameter values β = 2, γ = 1,
n = 8 and τ = 2. The configuration of (d, p, n)-fset X0 has n = 4 (order 4 method),
p = 128, d = 1 (scalar equation). The initial diameter of the set X0 is 0. The test does
integration over the 3n full delays (so that the final solution is smoothed enough).
Then, an ε-step is made, with the step ε = h

2 , where h = τ
p is the grid size (full

step). In Table 1, we present the maxima over all diameters of the coefficients of the
sets: X3n = I3n(X0) that contains the segment x3n of the solution, and X3n+ε =
Iε

(I3n(X0)
)
. We remind that I denotes the full-step integrator method that does one

step of size h, while Iε is the ε-step method. Each maximum diameter is computed
over all Taylor coefficients of a given order 0 ≤ k ≤ 4. We also show the maximum
diameter of the � part (order k = 5).

We test several maximal orders of the expanded representations: 2n, 2n + 1 and
3n. The last one is the maximal order obtainable with the 3n full-delay integration
steps, while the first one is the minimal reasonable one—taking into account the long
enough integration time, see Definition 3 and Lemma 8.

Remark 18 Using the diameter 0 of the set X0 in the test will show how the local errors
of the method at each step affect the final outcome.

FromTable 1, we see that the diameters of the sets integratedwith the new algorithm
are far superior to the old one. One can observe in (a) that for the fixed number of

123

Foundations of Computational Mathematics

Table 1 Effectiveness of the method in computing rigorous enclosures of solutions in Mackey–Glass
equation for parameters n = [8, 8], τ = [2, 2], γ = [1, 1], β = [2, 2]
Order k hk No expand Expand n Expand n + 1 Expand 2n

(a) The set X3n after a fixed number of full steps—12 full delays

0� 1 8.0928124e−07 1.3894812e−09 1.3890612e−09 1.3890594e−09
1� 0.015625 2.0313339e−06 3.4887294e−09 3.4876694e−09 3.487666e−09
2� 0.00024414062 2.2627332e−06 3.9124373e−09 3.9113023e−09 3.9113028e−09
3� 3.8146973e−06 2.096601e−06 3.6231229e−09 3.6220176e−09 3.6220075e−09
4� 5.9604645e−08 3.1646014e−06 5.5100828e−09 5.508467e−09 5.5084535e−09
5† 9.3132257e−10 0.14380491 0.044424773 0.044424773 0.044424773

(b) The final set X3n+ε after applying ε-step to X3n

0� 1 8.254823e−07 1.4173127e−09 1.4168844e−09 1.4168826e−09
1� 0.015625 2.0673499e−06 3.5503207e−09 3.5492428e−09 3.5492394e−09
2� 0.00024414062 2.4780643e−06 3.9715719e−09 3.9703922e−09 3.970392e−09
3� 3.8146973e−06 8.9902593e−05 3.9834122e−09 3.7954002e−09 3.7904426e−09
4� 5.9604645e−08 0.0056199777 4.8690342e−08 7.2956736e−09 5.8822278e−09
5† 9.3132257e−10 0.17276611 0.066240464 0.066240464 0.066240464

Table shows statistics of coefficients of a given order computed over all grid points of the solution at a given
time. Test set-up was ε = [0.0078125, 0.0078125] (full step h = τ

p = [0.015625,0.015625]), T = 24 (1536
full steps or 12 full delays). Superscript � means that diameter of coefficients at a grid point are presented
(i.e. j part of the f-set), where † means enclosures over intervals of length h are presented (� part used).
“No expand” column contains data for the old algorithm, without representation expansion. “Expand n”
contains data for maximal order of the representation 2n, “Expand n + 1” contains data for maximal order
of the representation 2n + 1, etc

full steps both methods produce results with coefficients of all orders of a comparable
diameter. This indicates that both methods are of order h4. However, new algorithm
produces estimates of three orders of magnitude better. This is because internally, the
algorithm becomes of higher order after each full delay. After k full delays, the actual
order of the method is n+ k. The second big advantage is shown in the (b) part, where
we have diameters of coefficients after a small ε step. This simulates for example
computation of a Poincaré map. The old algorithm produces estimates that depend on
the order of coefficient: the coefficient 0 has a diameter proportional to hn ; however,
other coefficients are computed with worse accuracy. The fourth-order coefficient is
computedwith the lowest accuracy of order h1. On the contrary, the new algorithm still
retains the accuracy of the full-step size algorithm and produce far superior estimates
(several orders of magnitude better).

The data and programs used in those computations are described more in detail in
“Appendix B”.

123

Foundations of Computational Mathematics

4 Topological Tools

In [34], we have proven the existence of periodic orbits (apparently stable) using the
Schauder fixed-point theorem. Here, we are interested in a more general way to prove
existence of particular solutions to DDEs with the use of Poincaré maps generated
with semiflow ϕ of (2). For this, we will recall the concept of covering relations from
[5], but we will adopt it to the setting of infinite-dimensional spaces and compact
mappings, similarly to a recent work [39]. The main theoretical tool to prove the
existence of solutions, in particular the fixed points of continuous and compact maps
in Cn

p, will be the Leray–Schauder degree, which is an extension of fixed-point index
(i.e. the local Brouwer degree of I d − F) to infinite-dimensional Banach spaces. We
only recall the properties of the degree that are relevant to our applications. For a
broader description of the topic together with the proofs of presented theorems, we
point out to [2, 8] and references therein. In particular, in what follows, we will use the
notion of absolute neighbourhood retract (ANR) [8]. We do not introduce the formal
definition but we only note that (1) any Banach space is ANR and (2) any convex,
closed subset of a Banach space (or a finite sum of such) is an ANR (Corollaries 4.4
and 5.4 in Sect. 11 of [8], respectively).

4.1 Fixed-Point Index for Compact Maps in ANRs

Let X be a Banach space. We recall that a continuous function f : X ⊃ V → X is a
compact map iff f (V) is compact in X . With Fix(f ,U) = {x ∈ U : f (x) = x} we
denote the set of fixed points of f in U . Let now X be an ANR [8], in particular X
can be X , and letU be open subset of X , f : U → X . Following [8], byK (

U , X
)
we

denote the set of all compact maps U → X , and by KδU
(
U , X

)
the set of all maps

f ∈ K(U , X) that have no fixed points on δU , Fix(f , δU) = ∅. We will denote
Fix(f) = Fix(f ,U) = Fix(f ,U). Let V ⊂ X be any set in the Banach space X .
We say that a map is admissible in V iff Fix(f , V) is a compact set. The following
stronger assumption that implies admissibility is often used in applications:

Lemma 19 Let X be a Banach space (can be infinite dimensional) and U ⊂ X be
an open set. Assume f : U → X is a continuous, compact map. If f (x)
= x for all
x ∈ δU then f is admissible.

Proof Let F = (I d − f)−1({0}) be the set of fixed points of f . By assumption
f (x)
= x on δU , we have F ∩ δU = ∅ so F ∩ Ū = F ∩ U . The set F is closed as
a preimage of the closed set {0} under continuous function I d − f , and so is F ∩U .

Therefore, F ∩ U is closed and thus compact as a subset of a compact set f (U):

F ∩U = F ∩U = f (F ∩U) ⊂ f (U). �
By Lemma 19, we see that all functions f ∈ KδU (U , X) are admissible, so that

the fixed-point index is well defined on them [8]:

Theorem 20 (Theorem 6.2 in [8]) Let X be an ANR. Then, there exists an integer-
valued fixed-point index function ι(f ,U) ∈ Z (Leray–Schauder degree of I d − f)

123

Foundations of Computational Mathematics

which is defined for all U ⊂ X open and all f ∈ KδU
(
U , X

)
with the following

properties:

(I) (Normalization) If f is constant f (x) = x0 then, ι(f ,U) = 1 iff x0 ∈ U and
ι(f ,U) = 0 iff x0 /∈ U.

(II) (Additivity) If Fi x(f) ⊂ U1 ∪ U2 ⊂ U with U1,U2 open and U1 ∩ U2 = ∅,
then ι(f ,U) = ι(f ,U1)+ ι(f ,U2).

(III) (Homotopy) If H : [0, 1] × U → X is an admissible compact homotopy,
i.e. H is continuous, Ht = H(t, ·) is compact and admissible for all t , then
ι(Ht) = ι(H0) for all t ∈ [0, 1].

(IV) (Existence) If ι(f ,U)
= 0 then Fix(f)
= ∅.
(V) (Excision) If V ⊂ U is open, and f has no fixed points in U\V then ι(f ,U) =

ι(f ,U\V).
(VI) (Multiplicativity) Assume fi : Xi ⊃ Xi ⊃ Ui → Xi , i = 1, 2 are admissi-

ble compact maps, and define f (x1, x2) = (f1(x1), f2(x2)) ∈ X1 × X2 for
(x1, x2) ∈ U := U 1 × U 2. Then f is a continuous, compact and admissible
map with ι(f ,U) = ι(f1,U1) · ι(f2,U2).

(VII) (Commutativity) Let Ui ⊂ Xi ⊂ Xi , for i = 1, 2 be open and assume fi :
U1 → X2, g : U2 → X1 and at least one of the maps f , g is compact.
Define V1 = U1 ∩ f −1(U2) and V2 = U2 ∩ g−1(U1), so that we have maps
g ◦ f : V1 → X1 and f ◦ g : V2 → X2.
Then f ◦g and g◦ f are compact and if Fi x(g◦ f) ⊂ V1 and Fix(f ◦g) ⊂ V2
then

ι(g ◦ f , V1) = ι(f ◦ g, V2).

For us, the key and the mostly used properties are the Existence, Homotopy and
Multiplicativity properties. First one states that, if the fixed-point index is nonzero,
then there must be a solution to the fixed-point problem f (x) = x in the given set. The
homotopy allows to relate the fixed-point index ι(f ,U) to some other, usually easier
and better understood map, for example ι(A,U), where A is some linear function in
finite-dimensional space. Normalization and Multiplicativity are used to compute the
fixed point index in the infinite-dimensional “tail part”.

The following is a well-known fact:

Lemma 21 Let A : Rn → R
n be a linear map. Then for any U ⊂ R

n:

ι(A,U) = sgn (det (I d − A)) . (43)

Applying Commutativity property to f = F ◦ h−1 and g = h gives:

Lemma 22 Let F : U → X be admissible, continuous, compact map and let h : X →
X ′ be a homeomorphism. Then h ◦ F ◦ h−1 : X ′ ⊃ h(U) = V → X ′ is admissible,
and

ι(F,U) = ι(h ◦ F ◦ h−1, V).

123

Foundations of Computational Mathematics

4.2 Covering Relations inRd

In our application, we will apply the fixed-point index to detect periodic orbits of some
Poincaré maps P : Cn

p ⊃ U → Cn
p. Wewill introduce a concept of covering relations.

A covering relation is away to describe that a givenmap f stretches in a properway one
set over another. This notion was formalized in [5] for finite-dimensional spaces and
recently extended to infinite spaces in [39] in the case of mappings between compact
sets. In the sequel we will modify this slightly for compact mappings between (not
compact) sets in the Cn

p spaces.
To set the context and show possible applications, we start with the basic definitions

from [5] in finite-dimensional space Rd , and then we will move to extend the theory
in case of Cn

p spaces later in this section.

Definition 7 (Definition 1 in [5]) An h-set N in R
dN is an object consisting of the

following data:

• |N |—a compact subset of RdN ;
• uN , sN ∈ N such that uN + sN = dN ;
• a homeomorphism cN : RdN → R

dN = R
uN × R

sN such that

cN (|N |) = BuN (0, 1)× BsN (0, 1).

We set:

Nc = BuN (0, 1)× BsN (0, 1)

N−c = δBuN (0, 1)× BsN (0, 1)

N+c = BuN (0, 1)× δBsN (0, 1)

N− = c−1N (N−c)

N+ = c−1N (N+c).

In another words, h-set N is a product of two closed balls in an appropriate coordinate
system. The numbers uN and sN stands for the dimensions of exit (nominally unstable)
and entry (nominally stable) directions.We will usually drop the bars from the support
|N | of the h-set, and use just N (e.g. we will write f (N) instead of f (|N |).

The h-sets are just a way to organize the structure of a support into nominally stable
and unstable directions and to give a way to express the exit set N− and the entry set
N+. There is no dynamics here yet—until we introduce some maps that stretch the
h-sets across each other in a proper way.

Definition 8 (Definition 2 in [5]) Assume N , M are h-sets, such that uN = uM = u.
Let P : |N | → R

dM a continuous map. We say that N P-covers M , denoted by:

N
P�⇒ M

iff there exists continuous homotopy H : [0, 1]×|N | → RdM satisfying the following
conditions:

123

Foundations of Computational Mathematics

• H(0, ·) = P;
• h([0, 1], N−) ∩ M = ∅;
• h([0, 1], N) ∩ M+ = ∅;
• there exists a linear map A : Ru → R

u such that

Hc(1, (p, q)) = (Ap, 0)

A(δ Bu(0, 1)) ⊂ R
u \ Bu(0, 1)

where Hc(t, ·) = cM ◦H(t, ·)◦c−1N is the homotopy expressed in good coordinates.

A basic theorem about covering relations is as follows:

Theorem 23 (Simplified version of Theorem 4 in [5]) Let Xi ⊂ R
d be h-sets and let

X1
P1�⇒ X2

P2�⇒ . . .
Pk�⇒ Xk+1 = X1

be a covering relations chain. Then there exists x ∈ X1 such that

x ∈ X1

(Pr−1 ◦ . . . ◦ P1)(x) ∈ Xr for 2 ≤ r ≤ k,

(Pk ◦ . . . ◦ P1)(x) = x .

Before we move on, we would like to point out what results can be obtained using
Theorem 23:

• Example 1. Let X P�⇒ X , where X is some h-set on a section S ⊂ R
d and P

is a Poincare map S → S induced by the local flow ϕ of some ODE x ′ = f (x).
Then, there exists a periodic solution x to this ODE, with initial value x0 ∈ X .
The parameter uX gives the number of apparently unstable directions for P at x .

• Example 2. Let X1 and X2 be h-sets on a common section S ⊂ R
d , X1∩ X2 = ∅,

and assume Xi
P�⇒ X j for all i, j ∈ {1, 2} where again P is a Poincaré map

S → S induced by the semiflow ϕ of some ODE. Then, this ODE is chaotic in
the sense that there exists a countable many periodic solutions of arbitrary basic
period that visits X1 and X2 in any prescribed order. Also, there exist non-periodic
trajectories with the same property, see for example [5, 42].

In what follows, we will show the same construction can be done under some
additional assumptions in the infinite-dimensional spaces.

4.3 Covering Relations in Infinite-Dimensional Spaces

The crucial tool in proving Theorem 23 is the fixed-point index in finite-dimensional
spaces. Therefore, similar results are expected to be valid for maps and sets for which
the infinite-dimensional analogue, namely Leray–Schauder degree of I d − f , exists.
This was used in [39] for maps on compact sets in infinite-dimensional spaces. In this
work, we do not assume sets are compact, but we use the assumption that the maps are

123

Foundations of Computational Mathematics

compact—the reasoning is almost the same. We will work on spaces X = X1 ⊕ X2,
where X1 is finite dimensional (i.e. X1 ≡ R

M) and X2 will be infinite dimensional
(sometimes refereed to as the tail). In our applications, we will set X = Cn

p =
R

M(d,p,n) × (C0([0, h],Rd))d·p, with X1 = R
M(d,p,n). We will use the following

definitions that are slight modifications of similar concepts from [39], where the tail
was assumed to be a compact set.

Definition 9 LetX be a real Banach space. An h-set with tail is a pair N = (N1, |N2|)
where

• N1 is an h-set in X1,
• |N2| ⊂ X2 is a closed, convex and bounded set.

Additionally, we set uN = uN1 , |N | = |N1| × |N2|, cN = (cN1 , I d) and

Nc = c−1N (|N |) = N1,c × |N2| =
= BuN1

(0, 1)× BsN1
(0, 1)× |N2|.

The tail in the definition refers to the part |N2|. We will just say that N is an h-set
when context is clear. Please note that each h-set N in R

d can be viewed as an h-set
with tail, where the tail is set as the trivial space R0 = {0}.
Definition 10 Let X be as in Definition 9. Let N , M be h-sets with tails in X such
that uN = uM = u. Let P : N → X be a continuous and compact mapping in X .

We say that N P-covers M (denoted as before in Definition 8 by N
P�⇒ M), iff

there exists continuous and compact homotopy H : [0, 1] × |N | → X satisfying the
conditions:

• (C0) H (t, |N |) ⊂ R
dM1 × |M2|;

• (C1) H (0, ·) = P;
• (C2) H

(
[0, 1] , N−1 × |N2|

) ∩ M = ∅;
• (C3) H ([0, 1] , |N |) ∩ (

M+
1 × |M2|

) = ∅;
• (C4) there exists a linear map A : Ru → R

u and a point r̄ ∈ M2 such that for all
(p, q, r) ∈ Nc = BuN1

(0, 1)× BsN1
(0, 1)× |N2| we have:

Hc(1, (p, q, r)) = (Ap, 0, r̄)

A(δ Bu(0, 1)) ⊂ R
u \ Bu(0, 1)

where again Hc(t, ·) = cM ◦ H(t, ·) ◦ c−1N is the homotopy expressed in good
coordinates.

Let us make some remarks on Definition 10. In contrary to [39], we do not assume
that the h-sets with tails N and M are compact in X , but we assume that the map P
is compact instead. However, the definition in [39] is a special case of Definition 10,
if we have uN1 = dN1 and |M2| is a compact set. The additional structure of the
finite-dimensional part N1 we assume in Definition 10 allows for a more general form
of covering occurring in the finite-dimensional part, see Fig. 1.

123

Foundations of Computational Mathematics

Fig. 1 Anexample of a covering relation N
P�⇒ N on an h-setwith tail N = (N1, |N2|), uN1 = 1, sN1 = 1.

The tail |N2| is closed and convex in a potentially infinite-dimensional space. The legend is as follows:
the set |N | is the parallelepiped in the middle, whereas its image P(|N |) is stretched across N . The
finite-dimensional part is drawn in (x, y)-plane (width and height of the page), where the tail is drawn in
z-coordinate (depth). The yellow thick line is one copy of the set |N2| (the tail part), blue thick lines mark
the set N+1 (the “entrance set” of the finite-dimensional part of N), red thick lines mark the set N−1 (the “exit

set” of the finite-dimensional part of N), light-blue and light-red polygons mark the entrance set N+1 ×|N2|
and the exit set N−1 ×|N2|, respectively. The grey planes denote the boundary of the stripRdN1 ×|N2|—the
image of |N | under P is forbidden to extend beyond those planes in z-coordinate due to the condition (C0).
The set P(|N |) does not “touch” the entrance set N+1 × |N2|—condition (C3) and the exit set N+1 × |N2|
is mapped outside |N | (red polytopes on left and right part of the picture)—condition (C2). Please note
that the image P(|N |) is allowed to touch the boundary N1 × δ|N2| (place marked with a black arrow)
as long as it does not go beyond the grey planes. It is also allowed to bend in the stable direction of the
finite-dimensional part outside the strip bounded by yellow hyperplanes (see the right part of the picture). It
is easy to see that the map P can be homotopied, with a straight line homotopy fulfilling condition (C0), to
a map (x, y, r) �→ (2 · x, 0, r̄), where r̄ ∈ |N2| (up to the coordinate change cN)—condition (C4) (Color
figure online)

Now we will state theorems, similar to Theorem 23, that joins the sequences of
covering relations to the real dynamics happening in the underlying compact maps.
We start with definitions:

Definition 11 Let k > 0 be a fixed integer and let B be a transition matrix: B ∈
M(k, k) such that Bi j ∈ {0, 1}. Then define:

�+B =
{
s ∈ {1, . . . , k}N : Bsi ,si+1 = 1, ∀i ∈ N

}

and a shift function σ : �+B → �+B by

σ(s)i = si+1.

The pair (�+B , σ) is called a subshift of finite type with transition matrix B.

Definition 12 Let F be a family of compact maps in a real Banach space X .
We say that � = (N ,F ,Cov) is a set of covering relations on X iff

123

Foundations of Computational Mathematics

• F is a collection of continuous and compact maps on X ,
• N is a collection of h-sets with tails Ni ⊂ X , i ∈ {1, .., k},
• Cov ⊂ N ×F ×N is a collection of covering relations, that is, if (Ni , Pl , N j) ∈
Cov then N j

Pl�⇒ N j .

A transition matrix B ∈M(k, k) associated to � is defined as:

Bi j =
{
1 if there exists covering relation Ni

Pl�⇒ N j ∈ Cov

0 otherwise.
(44)

Definition 13 A sequence (xi)i∈N is called a full trajectory with respect to family of
maps F = { fi : 1 ≤ i ≤ m} if for all i ∈ N there is j(i) ∈ {1, . . . ,m} such that
f j(i)(xi) = xi+1.

Now we state two main theorems:

Theorem 24 The claim of Theorem 23 is true for a covering relation chain where sets
Xi are h-sets with tail in a real Banach space X .

Theorem 25 Let � = (N ,F ,Cov) be a set of covering relations and let B be its
transition matrix.

Then, for every sequence of symbols (αi)i∈N ∈ �+B there exist (xi)i∈N—a full
trajectory with respect to F , such that xi ∈ Xαi . Moreover, if (αi)i∈N is T -periodic,
then the corresponding trajectory may be chosen to be a T -periodic sequence too.

Before we do the proofs of Theorems 24 and 25, we note that the examples of
results that can be obtained with covering relations on h-sets with tails are the same
as given before in Sect. 4.2 in the case of a finite-dimensional spaceRd . In the context
of DDEs we will use those theorems for h-sets with tails in the form of a (p, n)-
fset: N = (N1, |N2|) = X(A, R) ⊂ Cn

p. The natural decomposition is such that

{ξ ∈ (
C([0, h],Rd)

)p : [ξ] ⊂ R} = |N2| (the tail) and N1 = A ⊂ R
M(d,p,n) (the

finite-dimensional part). In each application presented later in the paper, wewill decide
on uN1 and on the coordinates cN1 on the finite-dimensional part A.

Proof of Theorem 24 We proceed in a way similar to the proof of Theorem 2 in [39].
To focus the attention and get rid of too many subscripts at once, we assume without
loss of generality that cXi = I d for all i and Xi = Ni × Ri , where Ni ∈ R

M is the
finite-dimensional part.

Let now denote X = X1× · · ·× Xk , N = N1× · · · Nk and R = R1× · · · Rk . Let
also denote by Y = R

M ·k × R. With a slight abuse of notation we can write X ⊂ Y
and that Y ⊂ X k . Since X k is a Banach space (with the product maximum norm)
so is Y with topology inherited from the space X k . Moreover, we have X ⊂ Y with
intY X = int N1 × R1 × · · · × int Nk × Rk . This will be important for proving that a
fixed-point problem we are going to construct is solution-free on the boundary of X
in Y .

123

Foundations of Computational Mathematics

We construct zero finding problem:

Pk(xk) = x1
P1(x1) = x2

· · ·
Pk−1(xk−1) = xk,

(45)

we denote the left side of (45) by F(x) and we are looking for a solution x = F(x)
with x = (x1, x2, . . . , xk) ∈ X . With the already mentioned abuse of notation, we
can write F(a, ξ) = (b, ζ) for a ∈ R

M ·k , ξ ∈ R. In a similar way we construct a
homotopy H , by pasting together homotopies from the definition of h-sets with tails
Xi :

H(t, x) = (Hk (t, xk) , H1 (t, x1) , . . . , Hk−1 (t, xk−1))

It is obvious that H(0, ·) = F and we will show that H(t, ·) is fixed-point free
(admissible) on the boundary δY X . Indeed, since intY X = int N1×R1×. . .×int Nk×
Rk then for (b, ζ) ∈ δY X theremust be i ∈ {1, . . . , k} such that bi ∈ δNi = N+i ∪N−i .
If bi ∈ N−i then (C2) gives Hi (t, (bi , ζi)) /∈ Xi+1 and consequently (Bi+1, ζi+1)
=
H (t, (b, ζ))i+1 (note, if i = k, then we set i + 1 = 1). If bi ∈ N+i , then from (C3)
it follows that Hi−1 (t, (Bi−1, ζi−1)) /∈ (

N+i × |Ri |
)
and so H (t, (b, ζ))i
= (bi , ζi)

(note, if i = 1, then we set i − 1 = k). Therefore, H is admissible, H(t, x)
= x for
all x ∈ δY X . Of course H is also continuous and compact.

Now, Y is an ANR (Corollary 4.4 in Sect. 11. of [8]) so fixed-point index
ι(H(t, ·), X) is well defined and constant for all t ∈ [0, 1]. Applying Multiplica-
tivity, Normalization (on the tail part) and 21 on H(1, ·) we get ι(H(1, ·), X) =
�ι (Ai , Bu(0, 1)) = ±1 (since det(I d − Ai)
= 0 as ‖Ai‖ > 1 due to (C4)).

Finally, Existence property yields a fixed point x̄ to H(0, x) = F(x) = x . �
Proof of Theorem 25 is almost the same as of Theorem 3 in [39], with the exception
that the sets Xi are not compact. This is overcome by considering the convergence of
sequences of points in the images Pi (Xi), which are pre-compact by the assumption
on Pi ’s. �

We conclude with a lemma that allows to easily check whether N
P�⇒ M in case

uN = uM = 1. We will check the assumptions of this lemma later in Sect. 5, with the
help of a computer.

Lemma 26 For an h-set with tail N let define:

• Nl
c = {−1} × Bs ×|N |, Nl = c−1N (Nl

c)—the left edge of N, and
• Nr

c = {1} × Bs ×|N |, Nr = c−1N (Nr
c)—the right edge of N.

LetX be a Banach space, X ⊂ X be an ANR, N = (N1, |N2|), M(M1, |M2|) be h-
sets with tails in X with uN = uM = 1 and P : |N | → X be a continuous and compact
map such that the following conditions apply (with Pc = cM ◦ P ◦ c−1N : Nc → Mc):

1. (CC1) πX2 P (|N |) ⊂ |M2|;

123

Foundations of Computational Mathematics

2. Either (CC2A)

Pc
(
Nl
c

)
⊂ (−∞,−1)× Rs × |M2| and Pc

(
Nr
c

) ⊂ (1,∞)× Rs × |M2|

or (CC2B)

Pc
(
Nl
c

)
⊂ (1,∞)× Rs × |M2| and Pc

(
Nr
c

) ⊂ (−∞,−1)× Rs × |M2|

3. (CC3) Pc (Nc) ∩ (Bs ×|M2|) = ∅
Then, N

P�⇒ M with the homotopy given as H(t, ·) = (1 − t) · P + t · (A, 0, r̄),
where A : R → R such that Ax = 2x (CC2A) or Ax = −2x (CC2B) and r̄ is any
selected point in |M2|.
Proof (C0) and (C1) from Definition 10 are obviously satisfied. We also have (CC2)
implies (C2) and (CC3) is the same as (C3). Therefore, we only need to show (C4),
that is, the image of the homotopy computed on the set δ Bu ×Bs × |N2| does not
touch the set Mc. This is obvious from the definition of A in both cases (CC2A) and
(CC2B). �

Figure 1 presents such a covering in case u = s = 1 and N = M . The easiest way
to assure (CC1) and (CC3) is to assume Pc(Nc) ⊂ R× Bs ×|M2|—in fact we check
this in our computer-assisted proofs presented in the next section.

5 Applications

In this section, we present applications of the discussed algorithm to two exem-
plary problems. First one is a computer-assisted proof of symbolic dynamics in a
delay-perturbed Rössler system [29]. The proof is done for two different choices of
perturbations. The second application consists of proofs of (apparently) unstable peri-
odic orbits in the Mackey–Glass equation for parameter values for which Mackey and
Glass observed chaos in their seminal paper [24].

Before we state the theorems, we would like to discuss presentation of floating-
point numbers in the article. Due to the very nature of the implementation of real
numbers in current computers, numbers like 0.1 are not representable [10], i.e. cannot
be stored in memory exactly. On the other hand, many numbers representable on the
computer could not be presented in the text of the manuscript in a reasonable way,
unless we adopt not so convenient digital base-2 number representation. However, the
implementation IEEE-754 of the floating-point numbers on computers [10] guarantees
that, for any real number x and its representation x̃ in a computer format, there is
always a number |ε| ≤ εmachine such that x̃ = x(1+ ε). The number εmachine defines
the machine precision, and, for the double precision C++ floating-point numbers
that we use in the applications, it is of the order 10−16. Finally, in our computations
we use the interval arithmetic to produce rigorous estimates on the results of all
basic operations such as +, −, ×, ÷, etc. In principle, we operate on intervals [a, b],

123

Foundations of Computational Mathematics

where a and b are representable numbers, and the result of an operation contains all
possible results, adjusting end points so that they are again representable numbers (for
a broader discussion on this topic, see the work [34] and references therein). For a
number x ∈ R we will write [x] to denote the interval containing x . If x ∈ Z then we
have [z] = [z, z], as integer numbers (of reasonably big value) are representable in
floating point arithmetic.

Taking all that into account we use the following convention:

• Whenever there is an explicit decimal fraction defined in the text of the manuscript
of the form d1d2 · · · dk .q1q2 · · · qm , that number appears in the computer imple-
mentation as

[d1d2 · · · dkq1q2 · · · qk] ÷ [10m],

where÷ is computed rigorously with the interval arithmetic. For example, number
10−3 = 0.001appears in source codes asInterval(1.)/Interval(1000.).

• Whenever we present a result from the output of the computer program x as a
decimal number with nonzero fraction part, then we have in mind the fact that
this represents some other number y—the true value, such that y = x(1 + ε)

with |ε| ≤ εmachine. This convention applies also to intervals: if we write interval
[a1, a2], then there are some representable computer numbers b1, b2 which are
true output of the program, so that bi = ai (1+ εi).

• If we write a number in the following manner: d1.d2 · · · dku1u2···uml1l2···lm with digits
li , ui , di ∈ {0, .., 9} then it represents the following interval

[d1.d2 · · · dkl1l2 · · · lm, d1.d2 · · · dku1u2 · · · um] .

For example 12.3789456 represents the interval [12.3456, 12.3789] (here we also
understand the numbers taking into account the first two conventions).

The last comment concerns the choice of various parameters for the proof, namely
the parameters of the space Cn

p and the initial sets around the numerically found
approximations of the dynamical phenomena under consideration. The latter strongly
depend on the investigated phenomena, so we will discuss general strategy in each of
the following sections, whereas the technical details are presented in Appendices A
and B.

The choice of parameters n and p corresponds basically to the choice of the order
of the numerical method and a fixed step size h = τ

p , respectively.
Usually, in computer-assisted proofs, we want n to be high, so that the local errors

are very small. In the usual case of ODEs with f ∈ C∞ we can use almost any order,
and it is easy for example to set n = 40. However, in the context of Cn

p spaces and
constructing Poincaré maps for DDEs, we are constrained with the long enough time
T = (n + 1) · τ (Definition 3) to obtain well defined maps. Therefore, the choice
of n corresponds usually to the return time to section tP for a given Poincaré map,
satisfying tP (X0) > (n + 1) · τ , for some set of initial data X0 ⊂ Cn

p.
The choice of the step size h is more involved. It should not be too small, to reduce

the computational time and cumulative impact of all local errors after many iterations,

123

Foundations of Computational Mathematics

and not so big, as to effectively reduce the size of the local error. Also, the dynamics
of the system (e.g. stiff systems) can impact the size of the step size h. In the standard
ODE setting, there are strategies to set the step size dynamically, from step to step, e.g.
[9], but in the setting of our algorithm for DDEs, due to the continuity issues described
in Sect. 3, wemust stick to the fixed step size h = τ

p . The step sizemust be also smaller
than the (apparent) radius of convergence of the forward Taylor representation of the
solution at each subinterval, but this is rarely an issue in comparison with other factors,
e.g. the local error estimates. In our applications, we chose p = 2m for a fixedm ∈ N,
so that the grid points are representable floating point numbers (but the implementation
can work for any p).

We also need to account for the memory and computing power resources. For d-
dimensional systems (2), and with n, p fixed, we have that the representation of a
Lohner-type set A = x0 + C · r0 + E in phase space of ϕ, where C ∈ M(M, M),
requires at least O(M2), with M = O(d · n · p). Then, doing one step of the full-step
algorithm is of O(d2 · n2 · M) computational complexity. Due to the long enough
time integration, computation of a single orbit takes usually O(n · p) steps, and we
get the computational complexity of computing image P(X) for a single set X of
O(d · n2 · d · p · n · M) = O(d · n2 · M · M) = O(M2) (if we assume n, d � M).
Therefore, we want to keep M2 = (d · n · p)2 of reasonable size, both because of time
and memory constraints. Our choice here is M ≤ 103.

5.1 Symbolic Dynamics in a Delay-Perturbed Rössler System

In the first application, we use Rössler ODE of the form [29]:

x ′ = − (y + z)

y′ = x + ay

z′ = b + z(x − c).

(46)

In what follows, we will denote r.h.s. of (46) by f and by v ∈ R
3 we denote vector

v = (x, y, z). By πx we denote projection onto x coordinate, similarly for πy, πz .
We set the classical value of parameters a = b = 0.2, c = 5.7 [29]. For those

parameter values, an evidence of a strange attractor was first observed numerically in
[29], see Fig. 2. In [42], it was proved by computer-assisted argument that there is
a subset of the attractor which exhibit symbolic dynamics. A more recent results for
Rössler system can also be found in [6] (Sharkovskii’s theorem) and themethodologies
there should be easily adaptable in the context of delay-perturbed systems presented
in this paper.

We are going to study a delayed perturbation of the Rössler system (46) of the
following form:

v′(t) = f (v(t))+ ε · g(v(t − 1)), (47)

where parameter ε is small. We consider two toy examples: first, where g = f and
the second one where g is given explicitly as

123

Foundations of Computational Mathematics

Fig. 2 Numerically observed
attractor in the Rössler ODE for
classical values of parameters:
a = b = 0.2, c = 5.7. Picture
generated by integrating forward
in time single trajectory for a
long time

Fig. 3 The numerically observed attractors for the system studied in Theorem 28. The cases a–c are shown
from left to right, respectively. The grey attractor is the very long trajectory v(t) obtained for a single
constant initial function. The section S0, represented as a green rectangle on the picture, spans in fact across
the spaceR3, as can bee seen by the red to blue region that shows the segments of v which lie on the section
S0, i.e. the set {vt : πx (v(t)) = 0}. The colours are assigned with ascending πyv(t) value. Those segments
are used to define the Wu coordinate in the set X(A, �) (Color figure online)

g(x, y, z) = (sin(x · y), sin(y · z), sin(x · z)) . (48)

We expect that for any bounded g there should be a sufficiently small ε [33] so that
the dynamics of the perturbed system is preserved. However, in this work, we study
explicitly given value for ε.

Remark 27 The source codes of the proof are generic. The interested reader can experi-
mentwith other forms of the perturbation by just changing the definition of the function
g in the source codes of the example.

Wewill be studying the properties of a Poincarémap defined on the section S0 ⊂ Cn
p

given by:

S0 = {v ∈ Cn
p : πx (v(0)) = 0}.

The section S0 is an extension to Cn
p of the section S = {v ∈ R

3 : πxv = 0} ⊂ R
3

used in the proofs in [42]. The section S is drawn in green in Fig. 3, whereas the
projection of the attractor onto section S0 is drawn as a blue-red gradient (the solution
segments v with πxv(0) = 0).

In what follows, we set the parameters for the space Cn
p to p = 32 and n = 3. We

prove, with the computer assistance, the following theorems:

123

Foundations of Computational Mathematics

Theorem 28 For parameter values a = b = 0.2, c = 5.7 in (46), there exist sets X A =
X(A, �), X1 = X(N1, �), X2 = X(N2, �) ⊂ S0 with explicitly given A, N1, N2
and �, such that for the system (47) with ε = 10−3 and perturbations: (a) g ≡ 0—
original system treated as a DDE, (b) g = f , and (c) g given as in Eq. (48) we have
the following:

1. P(X(A, �)) ⊂ X(A, �) and, in consequence, there exists a non-empty invariant
set in X(A, �) for the map P : S0 → S0.

2. The invariant set I = I nv(P2, X1 ∪ X2) of X1 ∪ X2 under the map P2 on I
is non-empty and the dynamics of P2 is conjugated to the shift on two symbols
(σ : �2 → �2, σ(ek) = ek+1), i.e. if we denote by g : I → �2 the function
g(x)k = i ⇐⇒ P2k(x) ∈ Xi , then we have g ◦ P2|I = σ ◦ g.
Before we present the proof(s), we would like to make a remark on the presentation

of the data from the computer-assisted part:

Remark 29 (Convention used in the proofs) The proofs of those theorems are
computer-assisted and the parameters of the phase space Cn

p of representations are
d = 3, p = 32, n = 3, giving in total the dimension of the finite-dimensional part of
M(d, p, n) = d · (1 + p · (n + 1)) = 387. Therefore, it is not convenient to present
complete data of the proofs in the manuscript. Instead, we assume the sets are explic-
itly given in the following forms (and the interested reader is refereed to “Appendix B”
for the details on how they are constructed):

XA = X(A, R) : A = vref + C · {0} ×Wu × B‖·‖∞M−2(0, 1)

Xi = X(Ni , R) : Ni = vref + C · {0} ×Wi × B‖·‖∞M−2(0, 1)

� = B‖·‖∞d·p (0, 1)

withvref ∈ S0,Wu,W1,W2 closed intervals such thatW1∩W2 = ∅ andWi ⊂ Wu ⊂ R,
and we remind B‖·‖∞D (0, 1) denotes the unit radius ball in the max norm inRD centred
at 0. Note that this description of sets makes it clear they are h-sets with tails on S0
(up to the scaling of nominally unstable direction W), where u = 1 and sA = sNi =
s = M(d, p, n) − 2, the support set |A| = {0} × Wu × B‖·‖∞M−2(0, 1) and the affine

coordinate change cA(·) = vref + C(·) with inverse change c−1A (·) = C−1(· − vre f).
Now, the computation of any Poincaré map P : XA → S0 for the initial data X(A, �)

produces a set X(B,�) = P(X(A, �)) and there exist sets

c−1A (B) = Bc ⊂ {0} × (Bc)2 × B‖·‖∞M−2(0, rB)

� ⊂ B‖·‖∞d·p (0, r�)

for some rB, r� ∈ R+. This allows to describe the geometry of X(A, �) and (esti-
mates on) P(X(A, �)) by just a couple of numbers: Wu , π2Bc (the size of set B in
the nominally unstable direction), rB (upper bound on all coefficients in the finite
nominally stable part) and r� (upper bound on all ξ in the tail part), which are suitable
for a concise presentation in the manuscript.

123

Foundations of Computational Mathematics

The sets used in the computations are obtained by computing the appropriately
enlarged enclosure on the set of segments of solutions to the unperturbed ODE (46).
We choose a set Ã ⊂ R

3 such that Ã ∈ {v ∈ R
3πxv = 0} is a trapping region for the

Poincaré map of the unperturbed ODE: P(Ã) ⊂ Ã. Then we choose a set X(A, �) to
contain the segments of Ã propagated back in time for a full delaywith the unperturbed
ODE:

{v : [−1, 0] → R : v(0) ∈ A, v(s) = ϕ0(s, v(0))} ⊂ A,

where ϕ0 is the flow in R
3 for (46). Detailed procedure how the set A was generated

is described in “Appendix B”. The set Ã was chosen to be {0} × [−10.7,−2.2] ×
[0.021, 0.041], whereas the sets Ñ1 = [−8.4,−7.6] and Ñ2 = [−5.7,−4.6]. Finally,
the orbit v0 with π2v0(0) = −6.8 is selected among the orbits in the attractor as the
reference point of the sets XA, X1, X2. The setWu is chosen asWu = π2Ac = πy Ã−
π2v0(0) = [−3.9, 4.6]. The same is true for sets N1, N2, with W1 = [−1.6,−0.8],
W2 = [1.1, 2.2].

Now, we can proceed to the proofs.

Proof o Theorem 28 The proofs for parts (a), (b), and (c) follow the samemethodology;
therefore, we present the details only for case (a) and then only the estimates from the

other two cases. In principle, we will show that P(XA) ⊂ XA and Xi
P2�⇒ X j for all

i, j ∈ {1, 2} and then apply Theorem 25.
The set X(A, R) and two other sets are given as described in Remark 29. The com-

puter programs for the proof are stored in./examples/rossler_delay_zero.
The data for which presented values were computed is stored in ./data/rossler
_chaos/epsi_0.001. See “Appendix B” for more information. Additionally to
the estimates presented below, the computer programs verify that tP (x) > (n + 1)
(i.e. long enough for Poincaré maps to be well defined) and that the function tP (·) is
well defined. For details, see the previous work [34].

First, we prove that Pc(X(A, �)) ⊂ (Ac, �). Let (Bc,�) will be output of the
rigorous program rig_prove_trapping_region_exists run for the system
in case (a) such that Pc(X(A, �)) ⊂ (Bc,�). It suffices to show the following:

• π2Pc(X(A, �)) = π2Bc ⊂ Wu = π2Ac;
• πi Pc(X(A, �)) = πi Bc < 1 for all i > 2;
• π�i Pc(X(A, �)) = πi� < 1 for all i ∈ {1, . . . , p · d}.

Indeed, we have:

• π2Pc(X(A, �)) = [−3.786230021035, 3.92103823500285] ⊂ [−3.9, 4.6] =
Wu ;

• πi Pc(X(A, �)) ≤ 0.910355124006778 < 1, for i > 2;
• π�i Pc(X(A, �)) ≤ 0.395102819146026 < 1 for all i .

Which finishes the proof of the first assertion.
For the second assertion we prove that we have a set of full covering relations:

Xi
P2�⇒ X j , i, j ∈ {1, 2}.

123

Foundations of Computational Mathematics

Weremind that the sets Ni,c = {0}×[Wl
i ,W

r
i]×B‖·‖∞M−2(0, 1)withW1 = [−1.6,−0.8],

W2 = [1.1, 2.2]. The program./rig_prove_covering_relations produces
the following inequalities:

• (L1-L1) π2P2
c (X(Nl

1, �)) = −1.708946819732338696238902429803 < −1.6 = π2Nl
1,c < π2Nl

2,c

• (R1-R2) π2P2
c (X(Nr

1 , �)) = 2.41771880561839509511664184434 > 2.2 = π2Nr
2,c > π2Nr

1,c

• (R2-L1) π2P2
c (X(Nr

2 , �)) = −1.8392156292928398887194518363 < −1.6 = π2Nl
1,c < π2Nl

2,c

• (L2-R2) π2P2
c (X(Nl

2, �)) = 2.27012035988566469015891346912 > 2.2 = π2Nr
2,c > π2Nl

1,c,

where sets Nl , Nr etc. are defined as in Lemma 26. It is ease to see that those inequali-
ties, together with the existence of trapping region XA, imply that for each i, j ∈ {1, 2}
conditions (CC1)-(CC3) in Lemma 26 are satisfied, that is Xi

P2�⇒ X j , which finishes
the proof for the case (a) after applying Theorem 25.

For the cases (b) and (c) we only present estimates:

• Case (b), g = f . Output from rig_prove_trapping_region_exists is:

– π2Pc(X(A, �)) = [−3.82791635121864, 3.90123013871349] ⊂ [−3.9, 4.6] =
Wu ;

– πi Pc(X(A, �)) ≤ 0.960537051554584 < 1, for i > 2;
– π�i Pc(X(A, �)) ≤ 0.397264977921163 < 1 = r�, for all i .

Output from program ./rig_prove_covering_relations is:

– (L1-L1) π2P2
c (X(Nl

1, �)) = −1.68441041732600168486957556001 < −1.6 = π2Nl
1,c < π2Nl

2,c

– (R1-R2) π2P2
c (X(Nr

1 , �)) = 2.47426823669672664065036803807 > 2.2 = π2Nr
2,c > π2Nr

1,c

– (R2-L1) π2P2
c (X(Nr

2 , �)) = −1.7691511401898917206286440370 < −1.6 = π2Nl
1,c <

π2Nl
2,c

– (L2-R2) π2P2
c (X(Nl

2, �)) = 2.3626852430926440282881761384 > 2.2 = π2Nr
2,c > π2Nr

1,c

• Case (c), g as in (48).Output fromrig_prove_trapping_region_exists
is:

– π2Pc(X(A, �)) = [−3.78710970137727, 3.92188126709857] ⊂ [−3.9, 4.6] =
Wu ;

– πi Pc(X(A, �)) ≤ 0.951680057117636 < 1, for i > 2;
– π�i Pc(X(A, �)) ≤ 0.459753301095895 < 1, for all i .

Output from program ./rig_prove_covering_relations is:

– (L1-L1) π2P2
c (X(Nl

1, �)) = −1.714200213156898695427259804897 < −1.6 = π2Nl
1,c < π2Nl

2,c

– (R1-R2) π2P2
c (X(Nr

1 , �)) = 2.42039685511179108774107762390 > 2.2 = π2Nr
2,c > π2Nr

1,c

– (R2-L1) π2P2
c (X(Nr

2 , �)) = −1.84115793272991538300180457653 < −1.6 = π2Nl
1,c <

π2Nl
2,c

123

Foundations of Computational Mathematics

– (L2-R2) π2P2
c (X(Nl

2, �)) = 2.27014452562246167377344403297 > 2.2 = π2Nr
2,c > π2Nr

1,c

�
Figure 3 shows the numerical representations of the apparent strange attractor in

the respective systems, while Fig. 4 depicts the computed estimates of the proof in a
human-friendly manner. The total running time of the proof in (a) is around 16min,
and the cases (b) and (c) of around 23min. Computations were done on a laptop with
Intel® CoreTM i7-10750H 2.60GHz CPU. The majority of the computations is done
in the proof of trapping region XA, which must be divided into 200 pieces along
the vector Wu . Those computations are easily parallelized (each piece computed in
a separate thread). The data and programs used in the proofs are described in more
detail in “Appendix B”, together with the links to source codes.

5.2 Unstable Periodic Orbits in Mackey–Glass Equation

In this application, we study the following scalar equation:

x ′(t) = −γ · x(t)+ β · x(t − τ)

1+ (x(t − τ))n
. (49)

In [24], the authors shown numerical evidence of chaotic attractor in that system, see
Fig. 5a. In their work, Mackey and Glass used the following values of parameters:
τ = 2, n = 9.65, β = 2, γ = 1. In our previous work [34], we have shown existence
of several (apparently) stable periodic orbit for n ≤ 8. In this work, we show that the
new algorithm, together with the fixed-point index, can be used to prove more diverse
spectrum of results.We prove existence of several (apparently) unstable periodic orbits
for the classical values of parameters, forwhich the chaotic attractor is observed, τ = 2,
n = 9.65, β = 2, γ = 1.

Remark 30 In what follows, we get rid of the variable delay τ and we rescale the
system to have unit delay by the change of variables: y(t) = x(τ · t). It is easy to see
that Eq. (49) in the new variables becomes:

y′(t) = τ · f (y(t), y(t − 1)),

that is, we can remove parameter τ by rescaling β and γ to β̄ = τ · β and γ̄ = τ · γ .
We state the following:

Theorem 31 Each of the three approximate solutions T̄ i shown in Fig.5c, d has a
small, explicitly given vicinity Vi ⊂ Cn

p with n = 4 and p = 128 of the initial segment

T̄ i
0 such that there exists a true periodic solution T

i with the initial segment T i
0 ∈ Vi of

the Mackey–Glass equation (49) for the classical parameter values τ = 2, n = 9.65,
β = 2, γ = 1 [24].

Proof of Theorem 31 we use the parameters β = 4 and γ = 2, n = 9.65 and τ = 1 in
(49) and we use Remark 30. The proof is similar to that of Theorem 28 and boils down

123

Foundations of Computational Mathematics

Fig. 4 The rigorous estimates obtained in the computer-assisted part of the proof of Theorem 28. The cases
a–c are presented top to bottom, respectively. The left picture shows the representation of the computer-
assisted proof of the trapping region XA . The set is divided into 200 pieces XA,i along the Wu direction,
each piece is coloured according to ascending number. Then for each piece XA,i the image P(XA,i) is
computed and drawn in the same colour (but with increased intensity). The dimension of the boxes in the y
coordinate represents the hull of the nominally stable part of the set P(XA,i), i.e. the interval Ii = [ylo, yup]
such that all πA j Pc(X) ⊂ Ii , for j ∈ {3, . . . , M} and π� j (Pc(X)) ⊂ I for j ∈ {1, . . . , p · d}. Obviously,
each Ii ⊂ B1 (0,max(P(rA), P(r�))). A clear evidence of the Smale horseshoe-like dynamics can be seen
in the picture, as the box is folding on itself under the map P . On the right picture, there are represented
the sets X1 (light red, with red and yellow borders) and X2 (light blue, with blue and purple borders). The
images of the borders under the map P2 are presented as lines (in fact thin boxes) in the grey area outside
X1 ∪ X2. It is evident that P(W1,l) (red) and P(W2,r) (purple) are both mapped to the left of both sets and
P(W1,r) (yellow) and P(W2,l) (blue) are mapped to the right. Therefore, condition (CC2A) is satisfied
between the sets X1 and any of Xi ’s, and condition (CC2B) between X2 and any Xi , i ∈ {1, 2}. Please
consult online version of the plots for better quality (Color figure online)

123

Foundations of Computational Mathematics

Fig. 5 a The apparently chaotic attractor of the Mackey–Glass equation (49) for the classical parameter
values τ = 2, n = 9.65, β = 2, γ = 1 [24]. The attractor is drawn for a single very long solution, whose
time-delay embedding coordinates (x(t), x(t − τ)) are shown in the picture. b The representation of the
attractor drawn in the coordinates

(
xn(0), xn+1(0)

)
, where xn+1 = P(xn), xn , xn+1 ∈ C([−τ, 0],R).

The map P is constructed on the section S = {x : x(t) = x(t − τ), x(t) < 0.96}, see Fig. 13 in [23]. The
periodic points T 1, T 2, T 4 of respective periods 1, 2 and 4 for map P are drawn in colours blue, green,
red. c The same solutions are drawn in the time-delay embedding of the attractor and d as the solutions
over time long enough to contain basic periods of all presented solutions

to checking appropriate covering relations. The initial segments T̄ i lie on the section
S = {x ∈ C([0, 1],R) : x(0) = x(−1), x(t) < 0.96}. The index i corresponds to the
basic period of the solution T i as a periodic point of a map P : S → S. In the
coverings, we use map P2 to guarantee that the return time tP to the section is long
enough.

Each of the Vi = X(Ni , �i) is given with Ni = T̄ i
0 +Ci · ri with ri = {0}×Wu

i ×
[−1, 1]M−2. Additionally, in case of T 4 we have another set V ′4 = X(N ′4, �′4) with
N ′4 of the similar form: N ′4 = P2(T̄ 4)+C ′4 · r ′4. In other words, the origin point of the
set N ′4 is the second iteration of the Poincaré map P2 of the initial segment of T 4. The
sets are obtained as described in “Appendix B”. Each of these sets defines a section
Si = {x ∈ Cn

p : ci · (a(x)− T̄ i
0) = 0} (different from S), where ci = (Ci)·,1—the first

column of the matrix Ci . The reason for that is described in “Appendix B” and boils
down to assure that diam(tP (Xi)) is as small as possible.

We will show that:

V1
PS1→S1�⇒ V1, V2

PS2→S2�⇒ V2, V4
PS4→S′4�⇒ V ′4

PS′4→S4�⇒ V4, (50)

123

Foundations of Computational Mathematics

where the Poincaré maps PSi→S j are derived from the flow of Eq. (49) and maps
indicated sections: PSi→S j : Si → S j , with additional assumption that the return
time tP is long enough. We will drop the subscripts if they are easily known from the
context.

For T 1 we have:

• for all i > 2, |πi Pc(X(N1, �i))| = 0.614451801967851 < 1
• for all i ,

∣∣π�i Pc(X(N1, �i))
∣∣ = 0.999998174289212 < 1

• π2Pc(X(Nr
1 , �)) = −4.514877050431105

3.845940820239275 < −1 = π2Nl
c

• π2Pc(X(Nr
1 , �)) = 4.496773405715568

3.827847664967472 > 1 = π2Nr
c

For T 2 we have:

• for all i > 2, |πi Pc(X(N2, �2))| ≤ 0.731193331043839 < 1
• for all i ,

∣∣π�i Pc(X(N2, �2))
∣∣ ≤ 0.999996951451891 < 1

• π2Pc(X(Nr
2 , �2)) = 5.033339010859840

3.995778903452447 > 1 = π2Nr
2,c

• π2Pc(X(Nr
2 , �2)) = −5.016322912452834

3.978765934264806 < −1 = π2Nl
2,c

For T4 we have:

• for all i > 2, |πi Pc(X(N4, �4))| ≤ 0.999948121260377 < 1
• for all i ,

∣∣π�i Pc(X(N4, �4))
∣∣ ≤ 0.956276660970399 < 1

• π2Pc(X(Nl
4, �4)) = −3.2368193002087367

1.1221122505976317 < −1 = N ′4
l
c

• π2Pc(X(Nr
4 , �4)) = 3.2385726261859316

1.1239689716822263 > 1 = N ′4
r
c

and

• for all i > 2,
∣∣πi Pc(X(N ′4, �′4))

∣∣ ≤ 0.898580326387734 < 1
• for all i ,

∣∣π�i Pc(X(N ′4, �′4))
∣∣ ≤ 0.952378028038733 < 1

• π2Pc(X(N ′4
l
, �′4)) = 3.0485204456349866

1.6331410212899785 > 1 = N4
r
c

• π2Pc(X(N ′4
r
, �′4)) = −3.0495636957165507

1.6341550945779965 < −1 = N4
l
c

All those inequalities satisfy appropriate assumptions of Lemma 26. Therefore, all the
coverings from (50) exist and, from Theorem 25, we infer existence of appropriate
periodic points T i

0 ∈ Vi . �
The diameters of the sets expressed in commonly used functional norms are pre-

sented in Table 2. The data and programs used in the proofs are described in more
detail in “Appendix B”, together with the links to source codes.

5.3 A Comment About the Exemplary Systems

Both Rössler and Mackey–Glass systems studied as an exemplary application in this
work are chaotic for the parameters used. However, Mackey–Glass system is a scalar
equation, so the chaos present in the systemmust be a result of the infinite nature of the
phase space and the delay plays a crucial role here. It is not clear if the dynamics can be
approximatedwith a finite number ofmodes, and how to choose good coordinate frame
to embed the attractor. The Rössler system on the other hand is a 3D chaotic ODE (for

123

Foundations of Computational Mathematics

Table 2 The basic period T of each solution and the diameters of the sets Vi estimated (upper bounds) in var-

ious functional norms: ‖x‖L∞ = sup[−τ,0] |x(t)|, ‖x‖L2 =
(∫ 0
−τ (x(t))2dt

) 1
2 , ‖x‖H4 =

∑4
i=0 ‖x(i)‖L2

L∞ L2 H4 T (expressed in τ)

T 1
0 2.74231097479455 · 10−7 3.10483831050838 · 10−6 21.9495663834241 2.632897901501874884924421

T 2
0 1.34240247683063 · 10−7 1.52442781918968 · 10−6 23.4410359636472 5.982965324098800269668710

T 4
0 2.09990758524436 · 10−8 1.91536904191854 · 10−6 26.9986770914825 11.4064042053034463860772954

Note that the period T is expressed as the number of full delays, and will be doubled for the original system
with τ = 2, β = 2, γ = 1 and n = 9.65

parameters specified), and the chaotic behaviour is the result of the dynamic in this
explicitly finite dimension space. The systems of the form (47) are small perturbations
of the ODE and thus one can expect the dynamics of the ODE persist in some sense, at
least for ε small enough [33]. It is much easier to propose sets for the covering relations
inherited directly from the coverings in finite dimension for unperturbed system, see
“Appendix B”, where we use the flow of unperturbed ODE to generate the apparently
unstable direction for the trapping region containing the attractor.

Acknowledgements Researchhas been supportedbyPolishNational ScienceCentreGrantNo. 2016/22/A/S
T1/00077.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Lohner-Type Algorithm for Control of the Wrapping
Effect

In the “Appendix”, we present technical details of the implementation of an efficient
Lohner-type control of the wrapping effect.

A.1: Lohner’s Algorithms and Lohner’s Sets—Basic Idea

Lohner [22] proposed, in the case of finite-dimensional maps G : RM → R
M , to use

a decomposition of the rigorous method for G into the numerical (approximate) part
� : RM → R

M , that can be explicitly differentiated w.r.t. initial value x , and the
remainder part of all the errors Rem, such that G(x) ∈ �(x)+Rem(X) for all x ∈ X .
The Lohner’s original idea was to use mean value form of the � part to “rotate” the
coordinate frame to reduce the impact of the so called thewrapping effect encountered
when using interval arithmetic. Without the change of local coordinate frame for the

123

http://creativecommons.org/licenses/by/4.0/

Foundations of Computational Mathematics

Fig. 6 An illustration taken from [34] of the wrapping effect problem for a classical, idealized mathematical
pendulum ODE ẍ = −x . The picture show a set of solutions in the phase space (x, x ′). The grey boxes
shows the set of initial conditions (a box) moved by the flow. The coloured boxes present the wrapping
effect occurring at each step when we want to enclose the moving points in a product of intervals in the
basic coordinate system. For example, the blue square on the left encloses the image of the first iteration. Its
image is then presented with blue rhombus which is enclosed again by an orange square. Then the process
goes on. We see that the impact of the wrapping effect rapidly becomes overwhelming (Color figure online)

set, the result of computations would be represented as an Interval box in RM and big
overestimates would occur, see for example Fig. 6. The Lohner’s idea allows to reduce
this problem significantly.

In a case of a general map G one can use the mean value form for � to get the
following:

�(z) ∈ �(x)+ [D�([X])] · (X − x) (51)

for all z ∈ X ⊂ R
M , and the point x ∈ X is just any point, but usually chosen to

be the centre of the set X . Here [X] ∈ I
M is an interval hull of X and [D�([X])] is

an interval matrix that contains the true Jacobians D�(z) at all z ∈ [X]. Then, the
strategy to reorganize operations depends on the shape of the set. In the simplest case
let assume

X = x + C · r0 + r (52)

where C is a linear transform R
M → R

M , x ∈ R
M , and with interval vectors r0, r

∈ I
M centred at 0. Using (51) we have:

�(z) ∈ �(x)+ [D�([X])] · (C · r0 + r) ,

= �(x)+ ([D�([X])] · C) · r0 + [D�([X])] · r (53)

It is now evident, that the result set has structure similar to (52):

G(z) ∈ Y := x̄ + C̄ · r0 + r̄ . (54)

With some additional reorganizations to keep x and C as thin as possible (e.g. point
vector and matrix) and vectors r and r0 centred at 0, we arrive at the following Lohner-
type algorithm:

123

Foundations of Computational Mathematics

x̄ := m(�(x)+ Rem(X)) (55)

S := [D�([X])] · C (56)

C̄ := m(S) (57)

r̄ := (S − m(S)) · r0 + [D�([X])] · r + (�(x)+ Rem(X)− m (�(x)+ Rem(X))) ,

(58)

where m(·) is an operation that returns the middle point of the interval vector or matrix.
The terms in (58) might require some comments: the first term is the error left from
the part S · r0 introduced by taking midpoint of matrix S as C̄ in (57). Second term is
just applying mean value form on the r part. Third term is the error introduced after
taking midpoint of the sum in (55) as the new reference x̄ . If the matrix [D�([X])]
and the term Rem(X) are “thin” (i.e. their entries as intervals have small diameter)
then we hope the newly introduced errors should be small in comparison with the term
C̄ · r0.

This is just one of the proposed shapes of the set in Lohner’s algorithm, the so
called “parallelepiped (C · r0 part) with interval form of the remainder (the r part is
an interval box in IM)”. A more general approach is the “doubleton set”:

X = x + C · r0 + B · r (59)

where matrix B is chosen in some way (to be described later). The Lohner algorithm
is more involved in this case:

x̄ := m(�(x)+ Rem(X))

S := [D�([X])] · C
C̄ := m(S)

Q · R := m ([D�([X])] · B) (60)

B̄ := Q (61)

r̄ :=
(
Q−1 · [D�([X])] · B

)
· r +

+
(
Q−1 · (S − m(S))

)
· r0 +

+
(
Q−1 · (�(x)+ Rem(X)− m (�(x)+ Rem(X)))

)
. (62)

The difference from the previous algorithm in (58) is in Eqs. (60)–(62). The idea of the
improvement over the previous version is that one hope the first term in (62) to have
some wrapping effect controlled by the matrix Q−1, when doing interval enclosure.
The choice about Q and Q−1 is done in Eq. (60) and depends on the algorithm
implementation. Ideally, we should set R = I d, so that

Q = m ([D�([X])] · B) , (63)

just as in case of (57). However, we need to compute rigorous inverse of this matrix,
which might be either computationally expensive, very difficult, or even impossible.

123

Foundations of Computational Mathematics

On the other hand, we can choose Q = I d, which transforms the algorithm into the
previous one (for sets with the interval form of the remainder, i.e. defined as (52)).
Finally, the most commonly used method is to apply (rigorously) any QR decompo-
sition in (60) so that the matrix Q−1 = QT is easily obtainable. This strategy will be
crucial later to get better results for DDEs in the case of d > 1 (systems of equations).

One last remark, before we move on to the application of the Lohner’s idea in the
context of DDEs, is that the method can be applied also to functions G : RM1 →
R

M2 where the dimensions of the domain and the image is different: M1
= M2.
Formulas (55)–(58) are all valid, but one must be very careful about dimensions of all
vectors and matrices involved in the computations.

A.2: Lohner’s Algorithm—Complexity and Optimization Idea

Lohner’s algorithm complexity is dominated by the two main factors: computation
of [D�([X])] used in (56) and multiplication of matrices. Additionally, there might
be some set-structure-dependent complexity, such as the need to compute the QR
decomposition and the inverse of the matrix Q in (60). All other operations such
as matrix–vector multiplication and matrix–matrix and vector–vector additions have
lower computational complexity. Computation of [D�([X])] cannot be avoided and
has complexity depending on the complexity of the formula for �. The complexity
of matrix–matrix multiplication is O(M3), not taking into account the possible faster
(and more complicated) multiplication algorithms (e.g. Strassen’s algorithm and sim-
ilar). In the rest of the “Appendix”, we will discuss the possible simple and effective
optimization of those dominant operations based on the sparse structure of [D�([X])].
We will recall from [34] that the [D�([X])] is very sparse in the case of the integra-
tion algorithm I for DDEs. We will extend and provide nicer description for the “fast
matrix multiplication” method presented in [34] that is easily generalized for any used
variables u in the case of multiple delays. Moreover, later on, we will discuss possible
shape of the matrix B in (59) which will provide better results but without significant
cost in the computational complexity.

The matrix multiplication optimization idea was first proposed in [34] for a specific
case of DDEs with one delay i.e. of the form (2). Now we propose a more elegant and
more general implementation, that will be suitable for implementation of the problem
(26) and with d > 1 (systems of equations). The idea is based on the decomposition
of the computation of A · B, A ∈ M(M, M), B ∈ M(M, N) into consecutive
computation of products of Ai,·—i th row of A and B. In our case we think of A as
A = [D�([X])]. Let assume that Ai,· has a lot of zeros (it is sparse). Let denote by
u(·) (name conflict intentional) the following projection

u = (πl1 , πl2 , . . . , πlk), ∀lk : Ai,lk
= 0

The function u : RM → R
k and reduces the dimension of the vectors from M to k,

so we will call it a reduction. For matrix B, we define:

123

Foundations of Computational Mathematics

u(B) =

⎛
⎜⎜⎜⎝

Bl1,·
Bl2,·
...

Blk ,·

⎞
⎟⎟⎟⎠ , (64)

that is, u(B) ∈M(k, N) contains all rows corresponding to the variables used in the
reduction u. It is now easy to see that

Ai,· · B = u(Ai,·) · u(B), (65)

and the complexity of the operation is reduced from O(M · N) to O(k · M). We can
now apply the multiplication in a loop for all i separately, changing the u accordingly
(or using the same u for some coordinates and domultiple rows of A at the same time).

We note that, in the simplest case, when u = (πl) (only one nonzero element in the
i th row of A), and Ai,l = 1 we have:

Ai,· · B = 1 · Bl,· (66)

and we can skip multiplication completely, changing it to a shift (selection of a given
row). This will be used when A has a large I d block in its structure.

A.3: Lohner-Type Algorithm for DDEs Integrator—Preparation

Now, we apply the Lohner strategy to our rigorous DDE integrator I. We decompose
the general method for many delays from Sect. 3.3 into the numerical procedure � :
R
n
p,q → R

n
p,q+1 and the remainderRem : Rn

p,q×Id·p → I
n
p,q+1×Id·p in the following

way:

n := n(η, f) (67)

y(u(x)) :=
(
z(x), wn+1 ∗ F [n] (u(x))

)
(68)

�(a(x)) := (
T(y(u(x)); h), y(u(x)), j2(x), . . . , jp−1(x)

)
(69)

RemA(x, [ξ]) :=
(
[F][n+2] · [0, h] · hn+1, 0, . . . , 0

)
∈ I

n
p,q+1 (70)

RemR(x, [ξ]) :=
([0, h]
n + 2

· [F][n+2], [ξ]2(x), . . . , [ξ]p−1(x)
)
∈ I

d·p (71)

where F [n] as in (27), [F] as in (30), and a(x) = (z(x), j(x)) is the finite-dimensional
part of the description (z, j, ξ) of x . The order n of the new jet (67) comes from (28) in
the algorithm, see details there. The intermediate variable y is defined in (68) to shorten
(69) and underline the dependence on the “used variables” u(x). We remind that the
“used variables” vector u(x) is defined for DDE (26) with m delays τ1 = p1 · h = τ

(i.e. p1 = p), τ > τi = pi · h > τ j = p j · h for i, j ∈ {2, ...,m}, i < j ,
pi , p j ∈ {1, ..., p − 1} as:

123

Foundations of Computational Mathematics

u(x) = (z(x), jp1(x), jp2(x), . . . , jpm (x)).

Please note that, with some abuse of notation, we can think of u as a vector inRdim(u).
If x ∈ Cn

p then dim(u) = d(1+ m · (n + 1)).
First we observe that the map � is well defined map from R

M → R
M+d with

M = M(d, p, η) and it can be differentiated w.r.t. a if f is smooth enough, for
example as in our simplifying assumption f ∈ C∞. Therefore, the Lohner algorithm
might be applied “as it is” to the algorithm in the pair of Eqs. (69) and (70) (the A-part
of the set). However, this approach would be highly ineffective in applications, we
will demonstrate now why.

A.4: Naive, Straightforward Implementation and the Structure of D8

For simplicity, let us assume we deal with the interval representation of the error
term B · r = I d · r in the Lohner set (59) for X = X(A, R) ⊂ Cn

p. In that case,
it is easy to observe that the dominant operation in the Lohner’s algorithm (in terms
of computational complexity) is the matrix–matrix multiplication in Eq. (56). The
application of the standard naive matrix multiplication leads to the computational
complexity ofO(M3) = O((d ·n·p)3) since thematrix dimensions of both D�(x) and
C dimensions are of the order of O(d ·n · p). This is also true (under some assumption)
if the size of the representation M grows as the algorithm is iterated. Indeed, let
consider X0 = X(x + C · r0 + r , R) with C ∈ M(M, N) r0 ∈ I

N , r ∈ I
M = I

n
p,0.

Usually N = M , but set-up with N ≤ M might be beneficial in some applications.
Let now consider the chain of sets Xi = �(Xi−1) represented as Lohner’s sets (59).
We have, that in the i th step (i ≥ 1) the sizes of the matrices involved in Eq. (56)
are D�(Xi) ∈ M (M + d · i, M + d · (i − 1)), C ∈ M (M + d · (i − 1), N) and
the result matrix S ∈ M(M + d · i, N). So the naive multiplication complexity is
proportional to

(M + d · i) · (M + d · (i − 1)) · N ∈ O(M3),

provided that both N , i ∈ O(M)—this is usually the case, as N > M does not make
sense and i � M is not feasible computationally.

Please note that, forM used in applications, we usually haveM ≈ 1000. Therefore,
the matrix–matrix multiplication in the naive implementation of Lohner’s algorithm
does enormousO(109)operations per integration step.On the other hand, investigating
Eqs. (69)–(71) reveals that the dynamics on a lot of coefficients is simply a shift to the
past. Therefore, [D�([X])] has a following nice block structure:

D�(v) =
⎛
⎝ J11(v) J12(v) J13(v)

J21(v) J22(v) J23(v)

0 I d 0

⎞
⎠ . (72)

The matrix J11(v) ∈M(d, d) corresponds to the derivative Dz�z(v), i.e. the deriva-
tive of the zth component (value of the solution x at current time t = h) w.r.t.

123

Foundations of Computational Mathematics

to the change in z(x)—the value of x in the previous step (at t = 0). Likewise,
J13(v) ∈ M(d, d · (n + 1)) corresponds to the Djp�z(v), J21(v) = Dz� j1(v) ∈
M((n+2)· p, d), and so on.Wewill denote thematrix (J11, J12, J13) as Du�z(v) and
(J21, J22, J23) as Du� j1(v), respectively. Here, we use the convention that subindex
such as ji , z, etc. denotes the corresponding set of variables from the description of
the function x = (z, j, ξ).

Investigating the matrices J12(v) and J22(v) we see they correspond to the deriva-
tives of � w.r.t. values at all intermediate delays τpi , i > 1, so they might also contain
a large number of zeros (if the equation does not depend on a particular τi). When we
are dealing with only one delay (m = 1), then J12(v) = 0 and J22(v) = 0. In that
case, we can apply idea proposed in the previous Sect. 1 to get enormous reduction
in the computational complexity. We will additionally introduce the structure to the
matrix B defined in (59) to help with wrapping effect in the error part B · r .
Remark 32 All matrices Ji j in the actual implementation of the method are computed
using automatic differentiation techniques. Those techniques can be readily applied
to any equation of the form (26) as long as f is a composition of simple (well known)
functions like sin, exp, etc. and standard algebraic operations ×, ÷, +, −. We do not
discus details of this matter in the article.

A.5: Lohner Algorithm Using Du8z and Du8j1 Directly

Let X(A, R) ⊂ Cn
p,q be an fset such that

A = x + C · r0 + B · r (73)

as in the Lohner structure (59) where C ∈M(M, N), M = dim(Rn
p,q). The matrix

B will have a special block diagonal:

B =

⎛
⎜⎜⎜⎜⎜⎝

Bz 0 · · · 0

0 Bj1,[0] 0
. . .

... 0
. . .

. . .

0
...

. . . Bjp,[ηp]

⎞
⎟⎟⎟⎟⎟⎠ , (74)

where each Bb,b ∈M(d, d).
Now, we can apply (54) to the pair of methods (�,RemA) in Eqs. (69)–(70) to

get a new fset of the same structure Y = X(x̄ + C̄ · r0 + r̄ ,RemR(X)) ⊂ Cn
p,q+1 so

that for all z ∈ X(A, R) we have ϕ(h, z) ∈ Y . Please note that C̄ ∈M(M + d, N),
r̄ ∈ R

n
p,q+1 = R

M+d and r0 ∈ R
N stays the same as in the original Lohner’s algorithm

(this is important). The extra d rows in matrix C̄ are due to the extra Taylor coefficient
computed at t = 0. In general, in i th iteration of the algorithm the matrix Ci will be of
the dimensionM(M0 + d · i, N) and the error term r will be of dimension RM0+d·i ,
B ∈M(M0 + d · i, M0 + d · i), where M0 = M(d, p0, η0) is the dimensional of the

123

Foundations of Computational Mathematics

initial set X0 ∈ Cη0
p0 at the beginning of the integration process. In applications, we

usually set N = M0.

Remark 33 There is a slight abuse of notation here, as we are using x to denote the
base point of the set A and, at the same time, usually it denotes the segment of the
solution x ∈ X . However, the two are used in a different context, so it should not
create confusion (one is the Lohner’s set of the A part in X(A, R), second is as an
element of X(A, R)). We will state explicitly if x ∈ X otherwise x always denotes
the mid point of A. Please also note that, by definition, if x ∈ X , then naturally
a(x) ∈ A = x + C · r0 + B · r .

Now, the crucial part is to look at each d-dimensional variable z(X) and ji,[k](X)

as a separate Lohner’s set with its own structure inherited from the full set X =
X(A, R) and apply the Lohner’s algorithm separately on each part, together with the
optimization idea from A.2.

A.5.1: The Convention

As with the u in (64), for a matrix C ∈M(M, N) we define z(C) and ji,[k](C) as the
matrix containing all the appropriate rows fromC . Each z(C) and ji,[k](C) is therefore
a matrix inM(d, N).

It is easy to see that if the set X = X(A, R), with A as in (73), then

z(X) = z(x)+ z(C) · r0 + Bz · z(r),

where Bz ∈ M(d, d) given as in (74) and z(C) ∈ M(d, M). Similarly ji,[k](X) =
ji,[k](x)+ ji,[k](C) · r0 + Bji,[k] · ji,[k](r).
Remark 34 The use of the abstract operations z(·), ji,[k](·), and u allows for a more
general implementation of themethods, independent of the actual storage organization
of the data in computer programs.

A.5.2: The Shift Part

First consider the easy case of computing ji (X̄) in Ā = �(a(X)) for i > 1. We
observe that

Djl� ji (a(X)) =
{
I dd×d l = i − 1

0d×d otherwise
.

as this is the case of the shift to the past in Eq. (21). The procedure is exact [i.e.
RemA(X) ji = 0, see Eq. (70)] and no extra errors are introduced. Therefore:

ji (X̄) = ji−1(X),

123

Foundations of Computational Mathematics

and using observation (66) we have for all appropriate k:

ji,[k](C̄) = ji−1,[k](C)

ji,[k](x̄) = ji−1,[k](x)
B̄ ji,[k] = Bji−1,[k] (75)

ji,[k](r̄) = ji−1,[k](r). (76)

With a proper computer implementation those assignment operations could be avoided
completely, for example by implementing some form of pointers swap or just by
designing the data structures to be easily extended to accommodate new data. This
last approach is implemented in our current source code so that the computational
complexity is negligible.

What is left to be computed are two parts: j1(X̄) and z(X̄).

A.5.3: The8j1 Part

From (69) we have

� j1,[k](a(x)) = (y (u(x)))[k] =
(
z(x), wn+1 ∗ F [n] (u(x))

)
[k] .

It is obvious that � j1,[k] as a function of the variables a is in fact a function only of the
subset of variables u, so is the function

� j1 =
(
� j1,[0] ,� j1,[1] , . . . , � j1,[n(f ,η)]

)
Therefore, with some abuse of notation, we can define Du� j1(u) for all u ∈ u(X).
This is a matrix M(K , dim(u)) with K = (1+ n(f , η)) · d and is given by:

Du� j1 =

⎛
⎜⎜⎜⎝

Du� j1,[0]
Du� j1,[1]

...

Du� j1,[n(f ,η)]

⎞
⎟⎟⎟⎠ .

This way we can skip the computation of many entries in D� j1,[k] .
Applying the trick from Eq. (65) on each row of D� j1 · C we get:

D� j1(u) · C = Du� j1(u) · u(C). (77)

The dimension of matrices taking part in the multiplication on the right side are
M(K , dim(u)) andM(dim(u), N). Therefore, the cost of the computation is O(K ·
dim(u) · N) instead of O(K · M · N) when performing the multiplication on the left.

123

Foundations of Computational Mathematics

A.5.4: The8z Part

Similarly as before, we treat �z(a(x)) as a function of only used variables �z(u(x)).
It has an explicit formula:

�z(u(x)) = T(y(u(x)); h) =
n(f ,η)∑
k=0

� j1,[k](u(x)) · hk,

so that the Jacobian Du�z(u) has a known form expressed in terms that are already
computed:

Du�z(u) =
n(f ,η)∑
k=0

Du� j1,[k](u(x)) · hk . (78)

Therefore, the computation of Du�z is computationally inexpensive in comparison
with the matrix–matrix multiplication.

Applying again the trick from Eq. (65) on each row of D�z · C and the Eq. (78),
we get:

D�z(u) · C =
n(f ,η)∑
k=0

(
Du� j1,[k](u) · u(C)

) · hk

=
n(f ,η)∑
k=0

(
j1,[k]

(
Du� j1(u) · u(C)

)) · hk,
where the matrix term Du� j1(u) · u(C) is already computed in Eq. (77). Therefore,
the cost of this operation consists only of additions and scalar-matrix multiplication
and, thus, may be neglected in comparison with other operations in the Lohner-type
algorithm.

A.5.5: Summary Computational Cost of D8 · C Multiplication

Taking all into account, we get that computing the matrix–matrix multiplication of
the Lohner-type algorithm applied to the integration scheme for DDEs is dominated
only by the multiplication Du� j1(u) · u(C) in (77). Its cost is O(K · dim(u) · N)

with K = (1 + n(f , η)) · d which is a big reduction from O(M2 · N). To better see
this, note that dim(u) ≤ M and assuming ηi = n for all i (for simplicity) we have
M = d · (1 + (n + 1) · p) = O(d · n · p). In that case K = d · (n + 2) and we
get the upper estimate on the complexity O(d · n · M · N) = O(d2 · n2 · p · N).
The naive implementation has the complexity O(d2 · n2 · p2 · N). Moreover, if we
assume a constant and small number of delays used in the definition of r.h.s. f of Eq.
(26), m = const � p then we get complexity of order O(d2 · n2 · N)—a reduction
in the factor p2. Noting that p is usually the biggest of the parameters d, p, n (see
applications), we get an enormous reduction in the computation times, making the

123

Foundations of Computational Mathematics

algorithm feasible to be applied for a variety of problems. To see how big is the
reduction let assume p = 128, n = 4, d = 1 and N = M as in the Mackey–Glass
examples. We get (dpn)3 = 134217728 of order 108, whereas d2 · n2 · M = 10256
of order 104.

A.5.6: QR Decomposition on8z ,8j1 Parts in the Case d > 1

Up to now, we only focussed (56) in the Lohner-type algorithm for DDEs. Now, we
need to return to the problem of managing local errors—the part B · r in (59), and the
formulas in Eqs. (60)–(62).

First, we note that the structure of matrix B in (73) is block diagonal (74). We want
to create a matrix B̄ in the representation of �(X) + Rem(X) of the same structure.
The choice of the block-diagonal structure of B is dictated by the need to compute
Q−1 = B̄−1 in (62). We cannot hope to be able to rigorously compute decomposition
Q ·R or rigorously invert a big and fullmatrix B̄, as those operations are ill-conditioned
and very costly (O(M3)). The sparse diagonal matrix B removes both those problems
with the trade-off in a form of more complicated algorithm and some extra error terms.

We have already used the structure of B in Eqs. (75)–(76) to reduce problem com-
plexity significantly for the shift part, i.e. computing B̄ ji ,[k] for all i > 1. What is left
to compute is B̄ j1,[k] ∈M(d, d) and B̄z ∈M(d, d).

To define appropriate Q j1,[k] = B̄ j1,[k] and a new ji,[k] (r̄) we investigate the term
[D�([X])] · B · r from Eq. (62). Taking projection onto the j1,[k]th coordinate and
using the u-variable trick, we get:

j1,[k] ([D�([X])] · B · r) = [
Du� j1,[k]([X])

] · u(B) · u(r) =
=: D · u(B) · u(r),

with D = [
Du� j1,[k]([X])

]
for a shorter notation. A close inspection reveals that

D · u(B) ∈M(d, dim(u)). Such a matrix is not suitable to apply the QR strategy of
the Lohner’s set. We expand further:

D · u(B) = (
Dz · Bz D jp1,[0] · Bjp1,[0] Djp1,[1] · Bjp1,[1] · · · Djpm ,[ηpm] · Bjpm ,[ηpm]

)
,

D · u(B)=(
Dz · Bz D jp1,[0] · Bjp1,[0] Djp1,[1] · Bjp1,[1] · · · Djpm ,[ηpm] · Bjpm ,[ηpm]

)
,

(79)

where Djq,[s] =
[
Djq,[s]� j1,[k]([X])

] ∈M(d, d). Now, the term D · u(B) · u(r) can
be computed as follows:

Now, a decision has to be made, as to which I ∈ u = (z, jp1,[0], jp1,[1], . . .) to choose
for the QR decomposition:

Q j1,[k] · R j1,[k] = m(DI · BI).

123

Foundations of Computational Mathematics

and to compute r̄ j1,[k] according to (62):

r̄ j1,[k] =
(
Q−1j1,[k] · Dz · Bz

)
· rz +

∑
ji,[k]∈u

(
Q−1ji,[k] · Dj1,[k] · Bji,[k]

)
· r ji,[k] + (80)

+
(
Q−1j1,[k] · j1,[k] (S − m(S))

)
· r0 + (81)

+Q−1j1,[k] ·
(
� j1,[k](x)+ Rem j1,[k](x)− m

(
� j1,[k](x)+ Rem j1,[k](x)

))
(82)

The matrix–matrix and matrix–vector operations are done in the order defined by
parentheses. Note that all operations are well defined. The dimensions of the matrices
are as follows: Q−1j1,[k], DJ , BJ ∈M(d, d), and ji,[k](S) ∈M(d, N) for all variables

J ∈ u. The vectors are: r0 ∈ I
N while rJ ,� j1,[k](x),Rem j1,[k](x) ∈ I

d .

Remark 35 The same algorithm might be used to compute r̄z . We only change the
projection j1,[k] to z in the presented formulas.

A.5.7: Complexity of Handling Doubleton Set Structure

The computational cost of using QR strategy with the doubleton set structure (59)
in comparison with the interval form of the error terms in the basic structure (52)
is as follows. In the basic set structure, the operation (58) is exactly realized by the
presented algorithmwhen we take Q = I dd×d and we use the fact that each BJ = I d.
We can, of course, skip multiplication by I d. Therefore, the cost of operations is (we
count scalar multiplications):

• for (80): dim(u)
d · d2 = d · dim(u)

• for (81): d · N ,
• for (82): 0 (no matrix–matrix and matrix–vector multiplications).

In total, we get that computing r̄ J for each J ∈ {
z, j1,[0], . . . , j1,[n]

}
is O(d · (dim(u)

+ N)). Taking into account dim(u) ≤ M and d � M , together with the assumption
N = M (in applications) we get the complexity O(d ·M) = O(M) under assumption
that d = const , small.

The algorithm for the doubleton set (59) with non-trivial QR decomposition has
the following complexity for each r̄ J :

• cost of computing QR decomposition for a matrix DI · BI ∈M(d, d), usually it
is O(d3) multiplications,

• cost of computing Q−1, should not exceed O(d3), but it is usually O(1)—if Q is
chosen to be orthogonal,

• for (80): dim(u)
d · (d3 + d3 + d2

) = O(d2 · dim(u))

• for (81): d2 · N + N · d = O(d2 · N),
• for (82): d2.

In total, the complexity is O
(
d2 · (d + dim(u)+ N)

)
. Under the same assumptions

as before, we estimate that in applications the complexity is O(d2 · M). Therefore,

123

Foundations of Computational Mathematics

handling the proposed doubleton structure is not much more costly than using the
interval form of the remainder (at least for small d).

Remark 36 Please note that the current strategy does not help in the scalar case d = 1.
The two sets are in this case equivalent, and the computational cost is basically the
same.

A.5.8: Choice of the Matrix DI · BI for the QR Procedure

As to the selection of the matrix DI · BI used in the QR decomposition procedure,
in our current implementation we always use I = z. The motivation is as follows:
in our applications to the Rössler system we apply the method to a perturbed system
x ′(t) = f (x(t))+ε · g(x(t−τ))with ε small. Therefore, we expect that the influence
DJ · BJ for J
= z will be small. Taking I = z allows to compare the method to the
ODE version of the proofs. Indeed, if we set ε = 0 and integrate the problem with our
code, all DJ = 0d×d and the method (80)–(82) reduces to that of the ODE (we only
do operations on z coordinate).

Other choices of I are easily implementable and one might want to pursue other
forms of the matrix B, for example using various size blocks Bji that does QR decom-
position on more than d dimensions.

Appendix B: Description of the Data and Computer Programs

In the appendix, we present details of the methodology to generate initial sets for
computer-assisted proofs. As the data sets are large, one cannot hope to select good
initial set candidates “by hand”, as can be done sometimes in the context of low-
dimensional ODEs or maps. Instead, some kind of automatic or semi-automatic
procedure must be used.

B.1: Source Codes and aVirtual Machine

The compressed archive of the source codes can be downloaded from the web page
[30]. A file README.txt from the main directory contains information on depen-
dencies, compiling process and running the programs on the user’s own computer.
For users not wanting to compile files by themselves, we made an image of a vir-
tual machine (VM) with Linux system, all compiler tools, and the source codes
compiled to executables that were used to produce data for this paper. It can be
downloaded from [31], where one also find the instructions for running the virtual
machine. A computer running Docker VM on a Linux system is needed to use
the virtual machine image. We recommend following instructions on the official
web page: https://docs.docker.com/engine/install/ and selecting
the user’s system.

123

Foundations of Computational Mathematics

B.2: List of Programs Used in Computer-Assisted Proofs

All the programs used in proofs reside in the subdirectories placed under the root
directory of the compressed archive or in the directory /home/user/DDEs in the
VMimage. This root directory is common for all programs, and inwhat followswegive
paths relative to this root directory. The programs can be found in the ./examples
subdirectory. The data for the proofs used in this paper can be found in ./results
subdirectory.

B.2.1: The Program Used to Produce Data in Table 1

Theprogramsused for benchmark inTable 1 canbe found in./examples/benchmark.
The program can be compiled by issuing the following command in the main directory
of the source codes:

make benchmark

To obtain data from Table 1 one needs to invoke the following command in the
./bin/examples/benchmark directory:

./benchmark diam=’[0,0]’ xi=’[0,0]’ dirpath=’table-1’

Results of the computations will be stored in ./bin/examples/benchmark/
table-1 and will consist of several files (.tex, .pdf, .png, .dat, etc.). One
need latex and gnuplot packages installed in the host system for the program to
work correctly. One can make various tests by changing the parameters. The full list
of parameters is presented below:

./benchmark \
initial=’{[1.1,1.1]}’ \
dirpath=’.’ \
prefix=’benchmark’ \
N=’[8,8]’ \
n=’4’ \
p=’128’ \
epsi=’50%’ \
diam=’[-1e-06,1e-06]’ \
xi=’[−0.1,0.1]’

The values on the right of = are the default values. It is important to put the parame-
ters into single quotes ’...’. The systemmodelled by the program is Mackey–Glass
equation with γ = 1, β = 2, τ = 2 and n = N (do not confuse with n in the definition
of Cn

p. Parameter initial represents x0 in the definition of the initial Lohner set
X(A0, R0), A0 = x0 + I d · r0, r0 given by diam (see later). Parameter initial
can either be an interval, in that case the program will treat x0 as a representation of a
constant initial function x0 ≡ initial; or it can be a path to a file containing a vec-
tor describing the (z, j) part of the initial segment. For examples of such files, please
refer to initial data in the computer-assisted proofs. Parameter dirpath describes
the directory of the output files from the program. It is advised to select non-existing

123

Foundations of Computational Mathematics

folder, as the program overwrites existing files without asking. Parameter prefix
will be appended in front of all filenames. Parameters n and p correspond to n and
p in Cn

p and are the order of the representation and the number of grid points on the

base interval [−2, 0], respectively. The full step h = 2
p . Parameter epsi corresponds

to ε step done to simulate computation of the Poincaré map, and can be given as a
percentage of the full step h or as an explicit interval. Parameter diam is the diameter
r0 of the A0 = x0 + I d · r0 part in X(A0, R0), while xi is the diameter of R0.

B.2.2: The Programs Used in the Proof of Theorem 28

The programs used in the proof of Theorem 28 reside in the following subdirectories:

• ./examples/rossler_delay_zero for the Rössler original ODE (46), but
studied in the extended space Cn

p over the base delay interval [−1, 0]. Programs
in this directory are used to generate common set for all the proofs.

• ./examples/rossler_delay_rossler for the delayed perturbation of
the form g = f .

• ./examples/rossler_delay_other for the delayed perturbation g given
in (48).

Each of the directories contain the following programs

• nonrig_attractor (non-rigorous, approximate), it is used to generate initial
set of functions to be used in the program nonrig_coords. It generates also
plot to view the structure of the apparent attractor.

• nonrig_coords (non-rigorous, approximate) it computes first approximation
of the coordinate frame for the set A in the definition of the set X(A, R). The
program uses the output of the program nonrig_attractor to generate a set
S of several hundred solution segments lying on the section S0. Due to the nature
of Rössler attractor, those segments are contained in a thin strip over (x, y)-plane
(set is thin in z direction), see Fig. 3. Then, a reference solution vre f segment is
selected as the one closest to the centre of this collection. Let denote by |S| the
number of solution segments in S. We define:

wi = vi − vre f , vi ∈ S \ {vre f },
ui = ui

ui2
,

u =
∑

ui

|S| − 1

or, in other words, u is the mean vector that spans the intersection of the apparent
Rössler attractor with the section S0. The vector is normed in such a way that
u2 = 1. This corresponds to πyu = 1. The initial coordinate frame is chosen to
be:

123

Foundations of Computational Mathematics

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
... uT

... I d(M−2)×(M−2)
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (83)

that is, first column corresponds to the normal vector to the section hyperplane
S0 = {v : πxv(0) = 0}, the second column corresponds to the nominally unstable
direction u, and the rest of coordinates are just the canonical basis in R

M−2. The
set X(A, �) is then defined with: A = vre f + C̃ · r0, with r0 to be defined by the
next program rig_find_trapping_region.

• rig_find_trapping_region (rigorous) as input, it takes the width W =
[Wl ,Wr] of the set in the nominally unstable direction u and the coordinate frame
vre f and C̃ . Then it starts with A0 = vre f +C̃ ·r with r1 = 0, r2 = W , ri = (−ε, ε)

for some small ε for i > 2. Then, it tries to obtain the set X(A, �) iteratively “from
below”, i.e. at each step k = 0, 1, ... it computes image P(X(Ak, �)) and checks
if it is subset of X(Ak, �). If the test is passed, the program stops, otherwise it
takes Ak+1 = hull(Ak, πAP(X(Ak, �))) and continues to the next step. The
computation of P(X(Ak, �)) is done by dividing the input set into N pieces along
the nominally unstable direction r2. For proofs used in this work N = 200.
Finally, when the set A is found, the coordinate frame C̃ is changed (by rescaling)

to C = C̃ ·Diag(r) so that A = vre f +C ·
(
{0} ×W × B‖·‖∞M−2(0, 1)

)
. The matrix

Diag(r) denotes the diagonal matrix with ri ’s on the diagonal.
• rig_prove_trapping_region_exists (rigorous) the program computes
the image of the set X(A, �) under the Poincaré map P : S0 → S0. If the
rig_find_trapping_region is successful in finding the rigorous candidate
A, then this program must succeed, as it computes the image P(X(A, �)) in the
same way, dividing the set into the same N pieces.

• rig_prove_covering_relations (rigorous) the program checks the con-
ditions (CC2A) and (CC2B) of Lemma 26 on sets X(N1, �) and X(N2, �). The
sets are defined as the restrictions of the set X(A, �) on the nominally unstable
direction r2. The user can manipulate the definitions of sets changing the values
in the configuration file rig_common.h.

Remark 37 To prepare the set X(A, �) for Theorem 28, we run rig_find_trapp
ing_region for the system without the delay first. Then, we use it again on the
resulting set for the delayed systems. In this way, we obtain three sets A0 for the
unperturbed system, A f for g = f and Ag for the system with g given as in (48). As
the final set A we take A = hull(A0, A f , Ag). The computer-assisted proofs show
that this set is a trapping region for all systems.

The data used in the proofs can be found for each of the systems in the respective
directories:

• ./results/work3_rossler_delay_zero,
• ./results/work3_rossler_delay_rossler,

123

Foundations of Computational Mathematics

• ./results/work3_rossler_delay_other.

B.2.3: The ProgramsUsed in the Proof of Periodic Orbits in theMackey–Glass Equation

Theprogramsused in theproof ofTheorem31canbe found in./examples/mackey
_glass_unstable. There is a single program for each of the orbits: prove_T1,
prove_T2, and prove_T4, respectively. The data for the proofs are stored in
./results/work3_mackey_glass_proofs. Additionally, a set of generic
programs to generate the flow, coordinates and sets for proofs are available in
./examples/mackey_glass_finder. The programs comprise a full set of
tools that once compiled can be used to find candidates for periodic solutions to
Mackey–Glass equation for any set of parameters and later to prove their existence.
With a little effort the programs can be adjusted to work with any scalar DDE—small
changes in the file constans.h should suffice. The collection of programs is as
follows:

• attractor-coords-nonrig non-rigorous program to generate good coordi-
nates for presentation of theMackey-Gass attractor (used for parameters in chaotic
regime).

• compare-rig a program to compare two interval sets and print the comparison
in a human-friendly manner.

• draw-nonrig non-rigorous program to draw solutions in various ways.
• find-nonrig a non-rigorous Newton-like method to refine the non-rigorous
candidate for a periodic solution with high accuracy.

• jac-poincare-nonrig a program to compute non-rigorous image of the
Poincaré map P for a single initial condition x , together with the (approximate)
Jacobian DP(x).

• periodic-coords-nonrig a program to generate the “good” basis for the
set X(A, R). The procedure is described in more detail later in the “Appendix”.

• poincare-nonrig a program to compute non-rigorous Poincaré map for a
collection of initial conditions.

• poincare-rig a program to compute rigorously the image of the Poincaré map
P on a (p, n)-fset X(A, R) ⊂ Cn

p.
• simple-coords-nonrig alternative program to generate very simple coor-
dinates, where majority of base vectors comes from the cannonical basis.

An exemplary process of finding good candidates and initial sets for orbits T 1, T 2
andT 4canbe found in the subdirectory./results/work3_mackey_glass_fi
nder. The scripts contained there were used to generate data for this paper, and they
are as follows ($i ∈ {1, 2, 4}):
• setup.sh a common set-up script for all other scripts. In principle, user only
edits this file.

• T$i-1-make-coords.sh uses some aforementioned programs to refine the
candidate solution x0 (mid point of the set) and generate good coordinates for the
fset X(A, �), with A = x0 + C · r0.
In case of the solution T 4, the script is more complicated as it finds a pair of sets

123

Foundations of Computational Mathematics

X1 = X(A1, �1), X2 = X(A2, �2) for the covering X1
P1�⇒ X2

P2�⇒ X1, where
P1, P2 are two Poncaré maps, defined between two different sections.

• T$i-2-find-start.sh try to do the first step of an algorithm to find appro-

priate r0 and � such that X(A, �)
P�⇒ X(A, �). It starts with a thin set

x0 + C · {0} × W × [0, 0]M − 2 and build the set X1 = P(X). The sets are
set to have the first coordinate of width W (guessed by the user, similarly to the
building sets in the Rössler case).
The procedure is more involved in the case of T 4, as there are two sets X1 and X2

on different sections such that we hope X1
P1�⇒ X2

P2�⇒ X1. The program tries to
find both sets at the same time.

• T$i-3-find-once.sh subsequent iteration of the previous algorithm. The
user needs to run this script until satisfactory r0 and � is found. This part of the
finding procedure is semi-automatic, as the decision when to stop the procedure
is left to the user.
The data generated by the authors of this manuscript can be found in the following
directory: ./data/examples/mg.

• T$i-4-proof.sh the script runs the final check of the covering relations in the
proof of Theorem 31. If the W width in the unstable direction was set improperly
in the previous steps (too narrow), then the script might fail to prove the covering
relation.
In case of T 1 and T 2 the program checks the simplest covering relation X

P�⇒ X .

In case of T 4 the covering relation to check is more involved: X1
P1�⇒ X2

P2�⇒ X1,
where P1, P2.

B.2.4: Idea of the Coordinate Selection

The following procedure is adopted in the program periodic-coords-nonrig
for choosing right coordinates for periodic orbits proofs. Each set Vi = X(Ai , �i)

with Ai = T̄ i
0 +Ci · ri . The matrix Ci must be computed carefully, as it was shown in

[34] and in more detail in [13]. In short, one expects that the linearized dynamics near
the stationary point T̄ i

0 of the Poincaré map Pi , i ∈ 1, 2, 4 should decompose into
invariant subspaces Ec ⊕ Eu ⊕ Es with dim(Ec) = dim(Eu) = 1. The subspace Ec

corresponds to the direction along the flow, where Eu is the unstable space of solutions
that have a backward in-time limit at the fixed point, where Es is the space of those
solutions that approach the fixed point as t → +∞. The matrix Ci is chosen as a
composition of the bases of appropriate subspaces:

Ci =
(
cT uT sT3 . . . sTM

)
, (84)

where we have:

• c is the vector defining a section and is chosen in the program as a left eigenvector
(i.e. eigenvector of the transposed matrix) of the approximate matrix DP(T̄ i

0)

corresponding to the eigenvalue λ2 = 1.
• u is the eigenvector of DP(T̄ i

0) corresponding to the largest and unstable eigen-
value λ1 with |λ1| > 1.

123

Foundations of Computational Mathematics

• the set of vectors s j is the basis of the (finite projection) of the stable subspace
Es . It is obtained as an orthonormal basis orthogonal to the vector ũ—the left
eigenvector corresponding to the unstable eigenvalue λ1.

The reason why those are chosen as described is explained in detail in [13, 34], and
we skip the details here. We only hint that the selection of c guarantees to have a very
thin interval [tp(X)] in rigorous computations of Poincaré maps, where selection of
s3, . . . sM gives a hope that the finite-dimensional projection of the P(X) onto stable
subspace Es could be mapped inside the stable part of the initial set X (πEs P(X) ⊂
πEs X) without the need to resort to a set subdivision in computations.

B.2.5: Utility Programs

The programs in directory./examples/converter are used in someother scripts
to do conversion between different kinds of data, for example making interval versions
of vector/matrices from their double counterparts. One important program is the
matrix converter convmatrix that can compute rigorously in high precision the
rigorous inverse of interval matrix. For more information how to use those programs,
see their source code documentation. The list of utility programs is as follows:

• convmatrix a conversion between various formats of matrices. It can compute
rigorous inverse of a matrix in high precision.

• convvector a conversion between various formats of vectors.
• growvector converts an interval vector [x] into [w] = m([x]) + r ·

([x] − m([x])), for some r ∈ R.
• splitvector converts an interval vector [x] into [w] = m([x]) and [v] =
[x] − m([x]).

• crmatrix takes a matrix C and a vector r and makes a rigorous matrix Cr such
that C · r ⊂ Cr · [−1, 1]M .

• rmatrix takes a vector r and makes rigorous matrices R and R−1 such that
Ri,i = ri , Ri, j = 0 otherwise.

• invmatrixtest performs a test if the pair of matrices A and B given on input
has the property that I d ⊂ A · B and I d ⊂ B · A. Computes also the width
(maximal diameter of all entries) of A · B and B · A, allowing to assess the quality
of computed inverses.

• matrixcmp compares two (large) matrices in a human-friendly manner.
• midmatrix compute m(A) for a matrix A.
• vectorcmp compares two (large) vectors in a human-friendly manner.
• vectorhull compute an interval hull of all vectors given on input.

References

1. F.A. Bartha, T. Krisztin, and A. Vigh. Stable periodic orbits for the Mackey–Glass equation. J. Differ-
ential Equations, 296 (2021), 15–49.

2. R.F. Brown. A Topological Introduction to Nonlinear Analysis. Second Edition. Springer, New York,
2004.

123

Foundations of Computational Mathematics

3. K.E.M. Church. Validated integration of differential equations with state-dependent delay. Commun.
Nonlinear Sci. Numer. Simul., https://doi.org/10.1016/j.cnsns.2022.106762(2022).

4. R.D. Driver. Ordinary and Delay Differential Equations. Springer, New York, 1977.
5. M. Gidea and P. Zgliczyński. Covering relations for multidimensional dynamical systems. J. Differ-

ential Equations, 202 (2004), 32–58.
6. A. Gierzkiewicz and P. Zgliczyński. From the Sharkovskii theorem to periodic orbits for the Rössler

system. J. Differential Equations, 314 (2022), 733–751.
7. J. Gimeno, J.-P. Lessard, J.D. Mireles James, and J. Yang. Persistence of Periodic Orbits under State-

dependent Delayed Perturbations: Computer-assisted Proofs. arxiv:2111.06391
8. A. Granas and J. Dugundi. Fixed Point Theory. Springer, New York, 2003.
9. D.F. Griffiths and D.J. Higham. Numerical Methods for Ordinary Differential Equations: Initial Value

Problems. Springer, London, 2010.
10. IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. https://doi.org/10.1109/

IEEESTD.2008.4610935 (2008).
11. T. Kapela, M. Mrozek, D. Wilczak, and P. Zgliczyński. CAPD DynSys library. http://capd.ii.uj.edu.pl,

2014. Accessed: 2022-06-24.
12. T. Kapela, M. Mrozek, D. Wilczak, and P. Zgliczyński. CAPD::DynSys: A flexible C++ toolbox

for rigorous numerical analysis of dynamical systems. Commun. Nonlinear Sci. Numer. Simul., 101
(2021), 105578.

13. T. Kapela, D. Wilczak, and P. Zgliczyński. Recent advances in a rigorous computation of Poincaré
maps. Commun. Nonlinear Sci. Numer. Simul., 110 (2022), 106366.

14. G.Kiss and J-P.Lessard.Computational fixed-point theory for differential delay equationswithmultiple
time lags. J. Differential Equations, 252 (2012), 3093 – 3115.

15. T. Krisztin. Periodic solutions with long period for the Mackey–Glass equation . Electron. J. Qual.
Theory Differ. Equ., 83 (2020), 1–12.

16. T. Krisztin and G. Vas. Large-Amplitude Periodic Solutions for Differential Equations with Delayed
Monotone Positive Feedback. J. Dyn. Diff. Eq., 23 (2011), 727–790.

17. T. Krisztin, H.O. Walther, and J. Wu. Shape, smoothness and invariant stratification of an attracting set
for delayed monotone positive feedback. American Mathematical Society, Providence, 1999.

18. B. Lani-Wayda andR. Srzednicki. A generalized Lefschetz fixed point theorem and symbolic dynamics
in delay equations. Ergodic Theory Dynam. Systems, 22 (2002), 1215–1232.

19. B. Lani-Wayda and H-O. Walther. Chaotic Motion Generated by Delayed Negative Feedback Part II:
Construction of Nonlinearities. Math. Nachr., 180 (1996), 141–211.

20. J-P. Lessard. Recent advances about the uniqueness of the slowly oscillating periodic solutions of
Wright’s equation. J. Differential Equations, 248 (2010), 992–1016.

21. J.-P. Lessard and J.D. Mireles James. A rigorous implicitC1 Chebyshev integrator for delay equations.
J. Dynam. Differential Equations, 33 (2021), 1959–1988.

22. R.J. Lohner. Computation of Guaranteed Enclosures for the Solutions of Ordinary Initial and Boundary
Value Problems, in Computational Ordinary Differential Equations (J.R. Cach, and I. Gladwel, eds)
pp. 425–434, 1992.

23. M.C.Mackey andL.Glass.Mackey–Glass equation, article on Scholarpedia. http://www.scholarpedia.
org/article/Mackey-Glass_equation. Accessed: 2022-06-24.

24. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197
(1977), 287–289.

25. J. Mallet-Paret and G. R. Sell. The Poincaré–Bendixson Theorem for Monotone Cyclic Feedback
Systems with Delay. J. Differential Equations, 125 (1996), 441 – 489.

26. R.E. Moore. Interval Analysis. Prentice Hall, Hoboken, 1966.
27. L.B. Rall. Automatic Differentiation: Techniques and Applications. Springer, Berlin, 1981.
28. A. Rauh and E. Auer. Verified integration of differential equations with discrete delay. Acta Cybernet.,

25 (2022), 677–702.
29. O.E. Rössler. An equation for continuous chaos. Physics Letters A, 57 (1976), 397–398.
30. R. Szczelina. Source codes for the computer assisted proofs. http://scirsc.org/p/dde-highorder.

Accessed: 2022-06-24.
31. R. Szczelina. Virtual machine with the source codes. http://scirsc.org/p/dde-highorder-vm. Accessed:

2022-06-24.
32. R. Szczelina. A computer assisted proof of multiple periodic orbits in some first order non-linear delay

differential equation. Electron. J. Qual. Theory Differ. Equ., 83 (2016), 1–19.

123

https://doi.org/10.1016/j.cnsns.2022.106762
http://arxiv.org/abs/2111.06391
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
http://capd.ii.uj.edu.pl
http://www.scholarpedia.org/article/Mackey-Glass_equation
http://www.scholarpedia.org/article/Mackey-Glass_equation
http://scirsc.org/p/dde-highorder
http://scirsc.org/p/dde-highorder-vm

Foundations of Computational Mathematics

33. R. Szczelina and P. Zgliczyński. Delayed perturbation of ODEs. In preparation.
34. R. Szczelina and P. Zgliczyński. Algorithm for rigorous integration of Delay Differential Equations

and the computer-assisted proof of periodic orbits in the Mackey–Glass equation. Found. Comput.
Math., 18 (2018), 1299–1332.

35. W.Tucker.A rigorousODEsolver andSmale’s 14th problem. Found.Comput.Math., 2 (2002), 53–117.
36. J.B. van den Berg and J. Jaquette. A proof ofWright’s conjecture. J. Differential Equations, 264 (2018),

7412–7462.
37. G. Vas. Configurations of periodic orbits for equations with delayed positive feedback. J. Differential

Equations, 262 (2017), 1850 – 1896.
38. H.-O.Walther. The impact onmathematics of the paper “Oscillation andChaos in PhysiologicalControl

Systems” by Mackey and Glass in Science, 1977. arxiv:2001.09010 (2020).
39. D.Wilczak andP. Zgliczyński. A geometricmethod for infinite-dimensional chaos: Symbolic dynamics

for the Kuramoto–Sivashinsky PDE on the line. J. Differential Equations, 269 (2020), 8509–8548.
40. J. Yang, J. Gimeno, andR.De la Llave. Parameterizationmethod for state-dependent delay perturbation

of an ordinary differential equation. SIAM J. Math. Anal., 53 (2021), 4031–4067.
41. M. Zalewski. Computer-assisted proof of a periodic solution in a nonlinear feedback DDE. Topol.

Methods Nonlinear Anal., 33 (2009), 373–393.
42. P. Zgliczynski. Computer assisted proof of chaos in the Rössler equations and in the Hénon map.

Nonlinearity, 10 (1997), 243–252.
43. P. Zgliczyński. C1-Lohner algorithm. Found. Comput. Math., 2 (2002), 429–465.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2001.09010

	High-Order Lohner-Type Algorithm for Rigorous Computation of Poincaré Maps in Systems of Delay Differential Equations with Several Delays
	Abstract
	1 Introduction
	1.1 Our Results in the Perspective of Current Research in the Field
	1.2 Notation

	2 Finite-Dimensional Description of the Phase Space
	2.1 Basic Definitions
	2.2 Outline of the Method and the Motivation for Phase Space Description
	2.3 Representation of the Phase Space

	3 Rigorous Integrator: Basic Algorithms and Some Improvements
	3.1 ODE Tools
	3.2 The Rigorous Integrator in Cnp,q
	3.3 Extension to Many Delays
	3.4 Steps Smaller than h
	3.5 Computation of Poincare Maps
	3.6 The Lohner-Type Control of the Wrapping Effect
	3.7 Benchmarks

	4 Topological Tools
	4.1 Fixed-Point Index for Compact Maps in ANRs
	4.2 Covering Relations in mathbbRd
	4.3 Covering Relations in Infinite-Dimensional Spaces

	5 Applications
	5.1 Symbolic Dynamics in a Delay-Perturbed Rössler System
	5.2 Unstable Periodic Orbits in Mackey–Glass Equation
	5.3 A Comment About the Exemplary Systems

	Acknowledgements
	Appendix A: Lohner-Type Algorithm for Control of the Wrapping Effect
	A.1: Lohner's Algorithms and Lohner's Sets—Basic Idea
	A.2: Lohner's Algorithm—Complexity and Optimization Idea
	A.3: Lohner-Type Algorithm for DDEs Integrator—Preparation
	A.4: Naive, Straightforward Implementation and the Structure of DΦ
	A.5: Lohner Algorithm Using DuΦz and DuΦj1 Directly
	A.5.1: The Convention
	A.5.2: The Shift Part
	A.5.3: The Φj1 Part
	A.5.4: The Φz Part
	A.5.5: Summary Computational Cost of DΦcdotC Multiplication
	A.5.6: QR Decomposition on Φz, Φj1 Parts in the Case d > 1
	A.5.7: Complexity of Handling Doubleton Set Structure
	A.5.8: Choice of the Matrix DI cdotBI for the QR Procedure

	Appendix B: Description of the Data and Computer Programs
	B.1: Source Codes and a Virtual Machine
	B.2: List of Programs Used in Computer-Assisted Proofs
	B.2.1: The Program Used to Produce Data in Table 1
	B.2.2: The Programs Used in the Proof of Theorem 28
	B.2.3: The Programs Used in the Proof of Periodic Orbits in the Mackey–Glass Equation
	B.2.4: Idea of the Coordinate Selection
	B.2.5: Utility Programs

	References

