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Abstract
Weconsider the problemof estimating expectationswith respect to a target distribution
with an unknown normalising constant, andwhere even the un-normalised target needs
to be approximated at finite resolution. This setting is ubiquitous across science and
engineering applications, for example in the context of Bayesian inference where a
physics-based model governed by an intractable partial differential equation (PDE)
appears in the likelihood. A multi-index sequential Monte Carlo (MISMC) method is
used to construct ratio estimators which provably enjoy the complexity improvements
of multi-index Monte Carlo (MIMC) as well as the efficiency of sequential Monte
Carlo (SMC) for inference. In particular, the proposed method provably achieves
the canonical complexity of MSE−1, while single-level methods require MSE−ξ for
ξ > 1. This is illustrated on examples of Bayesian inverse problems with an elliptic
PDE forward model in 1 and 2 spatial dimensions, where ξ = 5/4 and ξ = 3/2,
respectively. It is also illustrated on more challenging log-Gaussian process models,
where single-level complexity is approximately ξ = 9/4 and multilevel Monte Carlo
(or MIMC with an inappropriate index set) gives ξ = 5/4 + ω, for any ω > 0,
whereas our method is again canonical. We also provide novel theoretical verification
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of the product-form convergence results whichMIMC requires for Gaussian processes
built in spaces of mixed regularity defined in the spectral domain, which facilitates
acceleration with fast Fourier transform methods via a cumulant embedding strategy,
and may be of independent interest in the context of spatial statistics and machine
learning.

Keywords Bayesian inverse problems · Sequential Monte Carlo · Multi-index Monte
Carlo

Mathematics subject classification 65C40 · 60J22 · 65C05 · 62F15 · 62M30

1 Introduction

There has been an explosion of work over the past decade involving the enormously
successful multilevel Monte Carlo (MLMC) method [27] for estimating expectations
with respect to distributions which need to be approximated. The canonical example
is the problem for forward uncertainty quantification (UQ), where a single realisation
of the random variable of interest requires the solution to a stochastic, ordinary, or
partial differential equation (SDE, ODE or PDE) [7, 53, 58]. The MLMC framework
formulates this problem in terms of a sum of increments corresponding to approxima-
tions at successive resolutions, or levels. Under a suitable coupling of the increments,
which is typically fairly trivial in the forward context, the variance of the increments
decays as the resolution and cost increase, and so progressively fewer samples are
required to control the variance at higher levels.

In the context of Bayesian inference, one typically requires expectations with
respect to target distributions for which the normalising constant is unknown. As
an example, let π denote a probability density on X × Y. Assume we know how to
evaluate π(x, y) = π(y|x)π0(x) and π0(x) but not π(y) = ∫

X π(y|x)π0(x)dx . Now
consider the case where one observes y ∈ Y and would like to infer the posterior
distribution π(x |y), given by

π(x |y) = π(y|x)π0(x)

π(y)
. (1)

This is referred to as the Bayesian framework, and π(y|x) and π0(x) are referred to
as the likelihood and the prior, respectively [55]. Note that once the goal of (1) is
established, then a method should be capable of efficiently approximating integrals of
the form:

1

Z

∫

X
ϕ(x) f (x)dx ,

where f (x) ∝ π(y|x)π0(x) and Z = ∫
X f (x)dx (i.e. f (x) itself only needs to be

proportional to the joint density). Methods which have been designed for exactly this
purpose includeMarkov chainMonte Carlo (MCMC) [26], importance sampling [55],
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and combinations thereof such as sequential Monte Carlo (SMC) samplers [15, 21].
The latter methods are particularly powerful, handling elegantly some of the most
challenging issues that arise in this context, such as small variance, strong dependence
between variables, and multimodality.

Over the past decade the excitement aboutMLMChas intersectedwith theBayesian
computation community, in particular relating to the context of Bayesian inverse prob-
lems [59], where an intractable PDE often appears inside the likelihood of the posterior
distribution of interest. For instance, we will later consider the case where the likeli-
hood takes the from:

π(y|x) ∝ e−
1
2 ‖y−G(x)‖2 ,

where y is an observed set of real-valued outputs and G(x) is a solution to the outputs
from the intractable PDE for a given set of input parameters x . This context appears
to be much more subtle, due to the complications of combining these technologies.
Early work is related to MCMC [22, 34] and SMC samplers [5, 6, 48]. More recently,
the methodology has also been applied to the context of partially observed diffusions
[35, 39], for parameter inference [37], online state inference [2, 13, 28, 30, 39, 42], or
both [19]. A notable recent body of work relates to continuous-time observations in
this context [4, 45, 56]. Another notable trend is the application of randomisedMLMC
methods [11, 33, 40, 41, 44] in this context. Typically, these methods require unbiased
estimators of increments, which is particularly challenging in the inference context.
The first work to use randomised MLMC in the context of inference was [11], and
unbiased increment estimators were available in the context of that work. Other more
recent instalments have utilised double randomisation strategies in order to remove
the bias of increment estimators [33, 40, 41].

The benefits ofMLMC are somewhat hampered by the dimension of the underlying
problem. This is an important issue, particularly in the context of a PDE or a SPDE.
For example, the error associated with a finite element method (FEM) approximation
of a PDE typically depends upon the mesh diameter, h, while the number of degrees
of freedom typically scales like h−d , where d is the dimension of the associated PDE.
The multi-index Monte Carlo (MIMC) method was introduced to gracefully handle
the dimension dependence of this problem [29] following, in spirit, from the seminal
work on sparse grids [10]. Instead of an estimator based on a sum of increments, the
MIMC method constructs an estimator based on a sum over an index set of d−fold
composition of increments. Under suitable regularity conditions, this approach is able
to leverage convergence in each dimension independently and thereby mitigate the
curse of dimensionality.

The MIMC method has very recently been applied to the inference context [19,
38, 43]; however, the estimates required for increments of increments have proven
challenging from a theoretical perspective, and this has severely limited progress thus
far. In particular, anMIMCmethod for inferencewith provable convergence guarantees
does not currently exist, except a ratio estimator using simple importance sampling, as
considered for MLMC and QMC in this work [57]. Such estimators are not expected
to be practical for complex target distributions due to a large constant associated with
importance sampling [1, 12].
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The current work breaks down this theoretical barrier and unveils the MISMC
sampler ratio estimator for posterior inference. By employing a ratio estimator, we
introduce a theoretically tractable method which provably achieves the benefits of
both SMC samplers for inference and MIMC for multi-dimensional discretisation.
In particular, rather than dealing with self-normalised increments of increments, as
previous methods have done, the innovation is to construct instead a ratio of MIMC
estimators of an un-normalised integral and its normalising constant, both of which
can be unbiasedly estimated with SMC sampler. This seemingly minor difference of
formulation substantially simplifies the analysis and enables us to establish a theory
for the convergence of an MIMC method for inference problems—a theory which
until this point had been elusive.

This article is structured as follows. In Sect. 2, we provide a class of motivating
problems for the methodology that is developed. In Sect. 3, we provide a review of
the relevant computational methodology that is used in our approach. In Sect. 4, we
present our method and theoretical results. In Sect. 6, we present numerical results.
Finally, in the appendix several technical results are given, necessary for the theory
that is presented in Sect. 4.

2 Motivating Problems

We consider the setting of Bayesian inference for an elliptic partial differential equa-
tion and for the log-Gaussian Cox model, where we must also perform numerical
estimation.

2.1 Elliptic Partial Differential Equation

We consider the following elliptic PDE. Consider a convex domain � ⊂ R
D with

boundary ∂� ∈ C0, a function (force vector field) f : � → R and a function (perme-
ability) a(x) : � → R+ which is parameterized by x ∈ X. For each x ∈ X, we define
the (pressure field) u(x) : � → R as the solution to the following PDE on �

−∇ · (a(x)∇u(x)) = f, on � , (2)

u(x) = 0, on ∂� . (3)

In the above PDE, we assume the force vector field is known, e.g. f = 1. However,
we assume the permeability a(x) depends upon a parameter x which is a random
variable, specifically x ∼ π0. The dependence of a on x induces a dependence of
the solution u on x . Hence, the solution itself, u(x)(z), is a random variable for each
z ∈ �.

For concreteness, assume that D = 2 and � = [0, 1]2. Assume a uniform prior,

x ∼ U (−1, 1)d =: π0. (4)

For x ∼ π0, and z ∈ �, the permeability will take the form
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a(x)(z) = a0 +
d∑

i=1

xiψi (z) , (5)

where ψi are smooth functions with ‖ψi‖L∞(�) ≤ 1 for i = 1, . . . , d, and a0 >
∑d

i=1 xi . In particular, for simplicity and concreteness, let d = 2 and

a(x)(z) = 3+ x1 cos(3π z1) sin(3π z2) + x2 cos(π z1) sin(π z2).

2.1.1 Finite Element Approximation and Error Estimates

Consider the 1D piecewise linear nodal basis functions φK
j defined as follows, for

mesh {zKi = i/(K + 1)}K+1
i=0 , and for j = 1, . . . , K ,

φK
j (z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z−zKj−1

zKj −zKj−1
, z ∈ [zKj−1, z

K
j ]

1− z−zKj
zKj+1−zKj

, z ∈ [zKj , zKj+1]
0, else.

Now, for α = (α1, α2) ∈ N
2, consider the tensor product grid over� = [0, 1]2 formed

by

{(zK1,α
i1

, z
K2,α
i2

)}K1,α+1,K2,α+1
i1=0,i2=0 ,

where K1,α = 2α1 and K2,α = 2α2 (and the mesh-width in each direction is bounded
by 2−αk , k = 1, 2). Let i = i1+K1,αi2 for i1 = 1, . . . , K1,α and i2 = 1, . . . , K2,α and

Kα = K1,αK2,α , and let φα
i (z) = φα

i1,i2
(z1, z2) = φ

K1,α
i1

(z1)φ
K2,α
i2

(z2) be piecewise
bilinear functions. The weak solution of the PDE (2) and (3) will be approximated by
uα(x) = ∑Kα

i=1 u
i
α(x)φα

i ∈ V . Given x , the values of uiα(x) are defined by substitut-
ing the expansion into (2) and taking inner product with φα

j for j = 1, . . . , Kα . In
particular, observe that we have

〈

−∇ ·
(

a(x)∇
Kα∑

i=1

uiα(x)φα
i

)

, φα
j

〉

= 〈f, φα
j 〉 j = 1, . . . , Kα

Using integration by parts and observing that φα
i |∂� ≡ 0, then

Kα∑

i=1

〈a(x)uiα(x)∇φα
i ,∇φα

j 〉 = 〈f, φα
j 〉 j = 1, . . . , Kα

We can represent the solution as a vector uα(x) = [uiα(x) : i = 1, . . . , Kα], and
define fα, j = 〈f, φα

j 〉 and
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Aα,i j (x) :=
∫ z1, j1+1

z1, j1−1

∫ z2, j2+1

z2, j2−1

a(x)(z)∇φα
i (z) · ∇φα

j (z)dz,

where we introduce the notation j := j1 + j2K1,α (for j1 = 1, . . . , K1,α and j2 =
1, . . . , K2,α).

Observe that if i = i1 + i2K1,α , then the integral is zero for all i such that ik <

jk − 1 or ik > jk + 1, for k ∈ {1, 2}. So the above matrix Aα(x) is sparse, and it is
straightforward to verify that it is symmetric positive definite.

The approximate weak solution to Eqs. (2), (3) is given by the system

Aα(x)uα(x) = fα.

Due to the sparsity of Aα(x), for D ≤ 2 the solution can be obtained for a cost of
roughlyO(Kα) using an iterative solver based on Krylov subspaces, such as conjugate
gradients [52]. For D ≥ 3 it may no longer be possible to achieve a linear cost—see,
e.g. [29]. See the references [9, 16] for further description and much more.

The weak solution u of (2) and (3) is said to beW 2,2 regular if there exists aC > 0,
such that

‖∇2u‖ ≤ C‖f‖

for every f ∈ L2(�), where ‖ · ‖ denotes the L2(�) norm. For the purposes of the
present work, it suffices to observe the following proposition [8, 24].

Proposition 2.1 For a(x) given by (5) and uniformly over x ∈ [−1, 1]d , f ∈ L2 and
� convex, the weak solution of (2) and (3) is W 2,2 regular, and there exists a C > 0
such that

‖∇(uα(x) − u(x))‖ ≤ C2−min{α1,α2} .

Furthermore,

‖uα(x) − u(x)‖ ≤ C2−2min{α1,α2} .

2.1.2 A Bayesian Inverse Problem

In the PDE (2) and (3), the parameter x is unknown. Here, we infer estimates about
the true value x from noisy observations of the solution to the PDE, u(x). A further
confounding factor is that the closed form solution to u(x) is, in general, not known
in closed form and instead we must numerically approximate u(x) with uα(x) as
described above.

Now observations y will be introduced and we will consider the inverse problem,
given by

π(dx) := π(dx |y) ∝ L(x)π0(dx) (6)

123



Foundations of Computational Mathematics

where L(x) ∝ π(y|x) and the dependence upon y is suppressed in the notation.
We will use the notations dπ(x) = π(dx) = π(x)dx to mean the same thing, i.e.
probability under π of an infinitesimal volume element dx (Lebesgue measure by
default) centred at x , and the argument may be omitted from dπ where the meaning
is understood.

Define the following vector-valued function

G(u(x)) = [v1(u(x)), . . . , vn(u(x))]�, (7)

where vi ∈ L2 and vi (u(x)) = ∫
vi (z)u(x)(z)dz for i = 1, . . . , n, for some n ≥ 1. It

is assumed that the data take the form

y = G(u(x)) + ν, ν ∼ N (0, �), ν ⊥ x , 1 (8)

and we define

L(x) := exp
(
− 1

2
|y − G(u(x))|2�

)
.

Here y is suppressed from the notation. Also we apply the convention that |w|� :=
(w��−1w)1/2.

In particular, u(x) is the (weak) solution map of (2) and (3), for given input x .
Denote its weak approximation at resolution multi-index α by uα(x). The approxi-
mated likelihood is given by

Lα(x) := exp(−1

2
|y − G(uα(x))|2�),

and the associated target is

πα(dx) ∝ Lα(x)π0(dx) . (9)

The following proposition summarises the key result.

Proposition 2.2 In the present context, there is a C > 0 such that u, uα ≤ C, hence
a c > 0 such that L, Lα ≥ c > 0, and so (6) and (9) are well defined. Furthermore,
following Proposition 2.1 and the continuity of L as a function of u, the following
rate estimate holds uniformly in x

|Lα(x) − L(x)| ≤ C2−2min{α1,α2} .

For the concrete example of D = 2, let the observations be given by vi (u) := u(zi ),
for i = 1, . . . , 4, where zi ∈ {(0.25, 0.25), (0.25, 0.75), (0.75, 0.75), (0.75, 0.25)},
and let � = ξ2 I . This example has been considered in the context of an MLSMC
sampler method in [6]. It is noted that this example extends the theory described, since
vi /∈ L2.

1 Here we use ⊥ to denote pairwise independence of random variables.
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2.2 Log-Gaussian Process Models

Another model problem which will be considered is the log-Gaussian process (LGP),
and the related log-Gaussian Cox (LGC) process, which are commonly used in spatial
statistics. In this example, the dimension of the state space grows with level.

Specifically, we aim to model a data set comprised of the location of n = 126
Scots pine saplings in a natural forest in Finland [47], denoted z1, . . . , zn ∈ [0, 1]2.
The LGC version of our model is based on the one presented in [31]. The process of
interest is defined as 
 = exp(x) where x is a Gaussian process, a priori distributed
in terms of a KL-expansion as follows, for z ∈ [0, 2]2,

x(z) = θ1 +
∑

k∈Z×Z+∪Z+×0

ρk(θ)(ξkφk(z) + ξ∗
k φ−k(z)) , ξk ∼ CN (0, 1) i.i.d. ,

(10)

where CN (0, 1) denotes a standard complex Normal distribution, ξ∗
k is the complex

conjugate of ξk , and φk(z) ∝ exp[π i z · k] are Fourier series basis functions (with
i = √−1), and

ρ2
k (θ) = θ2/((θ3 + k21)(θ3 + k22))

β+1
2 . (11)

The coefficient β controls the smoothness of the Gaussian process. The parameters
θ will be assumed known in the present work, but these can also be fit within a
hierarchical modelling framework. The associated prior measure is denoted by μ0.
Following the formulation from [31], the likelihoods are defined by

(LGC)
dπ

dπ0
(x) ∝ exp

⎡

⎣
n∑

j=1

x(z j ) −
∫

[0,1]2
exp(x(z))dz

⎤

⎦ , (12)

(LGP)
dπ

dπ0
(x) ∝ exp

⎡

⎣
n∑

j=1

x(z j ) − n log
∫

[0,1]2
exp(x(z))dz

⎤

⎦ . (13)

See, e.g. [61] for a description of the LGP version, which is given second above. Note
that only z ∈ [0, 1]2 is required. The periodic prior measure is defined on [0, 2]2 so
that no boundary conditions are imposed on the sub-domain [0, 1]2 and the fast Fourier
transform (FFT) can be used for approximation, as described below.

The finite approximation is constructed as follows. First the KL expansion (10) is
truncated

xα(z) = θ1 +
∑

k∈Aα

ρ2
k (θ)(ξkφk(z) + ξ∗

k φ−k(z)) , ξk ∼ CN (0, 1) i.i.d. , (14)

where Aα := {−2α1/2, . . . , 2α1/2} × {1, . . . , 2α2/2} ∪ {1, . . . , 2α2/2} × 0. Note that
xα(z) can be approximated on a grid {0, 2−α1 , . . . 1− 2−α1}× {0, 2−α2 , . . . 1− 2−α2}
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using the FFT with a costO((α1+α2)2α1+α2). Now x̂α(z) is defined as an interpolant
(for example linear) over the grid output from FFT. The finite approximation of the
likelihood is then defined by

(LGC)
dπα

dπ0
(xα) ∝ exp

⎡

⎣
n∑

j=1

x̂α(z j ) − Q(exp(xα))

⎤

⎦ , (15)

(LGP)
dπα

dπ0
(xα) ∝ exp

⎡

⎣
n∑

j=1

x̂α(z j ) − n log Q(exp(xα))

⎤

⎦ , (16)

where Q denotes a quadrature rule, whichmay for example be given by Q(exp(xα)) =
2−(α1+α2)

∑
h∈∏2

i=1{0,2−αi ,...,1−2−αi } exp(xα(h)) or Q(exp(xα)) = ∫
x̂α(z)dz.

If one uses the prior with isotropic spectrum ρ2
k (θ) = θ2/(θ3 + k21 + k22)

3
2 , then

our target measure coincides with the standard prior of [31] in the limit as mini αi →
∞. One can understand the connection in this context via the circulant embedding
method based on FFT [46]. However, previous work has employed the (dense) kernel
representation of the covariance function instead of diagonalising it with FFT. For our
product-form spectrum, the regularity would be matched for β = 1, corresponding
to a product of Ornstein–Uhlenbeck processes. Instead, we will choose β = 1.6 for
convenience, which means that our prior is slightly smoother.

2.2.1 LGP and LGC Theoretical Results

First, we state a simple convergence result for Gaussian process of the form (10) with
spectral decay corresponding to (11).

It will be useful to define the following operator A on the space of functions in
L2(�):

A =
∑

k∈Z2

akφk ⊗ φk , ak = (1+ k21)(1+ k22) , (17)

the mixed Sobolev-like norms

‖x‖q := ‖Aq/2x‖ , (18)

where Aq/2 = ∑
k∈Z2 a

q/2
k φk ⊗ φk and we recall ‖ · ‖ is the L2(�) norm, and the

spaces

Hm
q := {x ∈ L2(�); ‖x‖q < ∞} . (19)

Wenote that these spaces ensuremixed regularity (hence superscriptm), rather than the
typical regularity associated with standard Sobolev spaces. It is precisely this property
which multi-index methods are designed to exploit. Figure1 shows the contours of
functions in Hm

1/2 (red) and W 1/2,2 (blue), along with the regions associated with
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Fig. 1 A cartoon of variance contours associated with a function in Hm
1/2 (red) and a function in W 1/2,2

(blue). Letting δa = [2a/2, 2a ], the spectral region associated with an increment of approximations on the
index sets defined in (14), {|k|1 ∈ δa} = {k ∈ Aα} ∩ {k /∈ Aα/2} (with α = (a, a)), is depicted in yellow.

Its intersection with the region associated with an increment of increments, ∩2
i=1{|ki | ∈ δa}, is depicted in

green (Color figure online)

an increment (yellow) and increment of an increment at approximation level α =
(a, a). From inspection, it is clear that increments of increments are of higher order
in comparison with increments for functions in the mixed space, but not for functions
in the standard space.

The following proposition is proven in “Appendix B”.

Proposition 2.3 Let x ∼ π0, where π0 is a Gaussian process of the form (10) with
spectral decay corresponding to (11), and let xα correspond to truncation on the index
set Aα as in (14). Then x ∈ Hm

q for all q < β/2, and for r ∈ [0, q) there is a C > 0
such that

‖xα − x‖2r ≤ C‖x‖2q2−2(q−r)mini αi .

For β = 1, (11) looks like a product of OU processes, with the regularity of Wiener
measure [54]. Hence, following from Proposition 2.3, x is almost surely continuous
for β ≥ 1, and (12) and (13) are well defined. It is worth noting that (12) and (13) are
not well defined for the standard prior, e.g. from [31], since the Sobolev embedding
theorem (see, e.g. [59]) does not guarantee that the solution is almost surely continu-
ous. However, non-infinitesimal representations of (12), i.e. for finite partitions of the
domain, can still be computed as long as 
 is integrable.

The following proposition ensures our LGC and LGP posterior measures are well
defined on function space and has a density with respect to the prior. It is proven in
“Appendix B”.

Proposition 2.4 Given x : � → R is a Gaussian process, with probability measure
denoted π0, defined on compact finite dimensional space �, that is almost surely
continuous and has a finite mean and covariance. If we define π by

(LGC)
dπ

dπ0
(x) ∝ exp

⎡

⎣
n∑

j=1

x(z j ) −
∫

�

exp(x(z))dz

⎤

⎦ ,
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(LGP)
dπ

dπ0
(x) ∝ exp

⎡

⎣
n∑

j=1

x(z j ) − n log
∫

�

exp(x(z))dz

⎤

⎦ ,

for n ∈ N then π(dx) is a well-defined probability measure, and can be represented
in terms of its density with respect to π0:

π(dx) = dπ

dπ0
π0(dx) .

The analogue to Proposition 2.2 takes the following form. The proposition is again
reproduced, and proven, in “Appendix B”.

Proposition 2.5 For both LGP and LGC, there is a C > 0 such that for x ∼ π0 and
xα = PAα

x, where PAα
denotes the orthogonal projection onto the index set Aα

defined in (14), the following rate estimate holds for all q < (β − 1)/2

E|Lα(xα) − L(x)|2 ≤ C2−2min{q,1}min{α1,α2} .

3 Computational Methodology

3.1 Approximate Monte Carlo

For concreteness, in this subsectionwewill consider the case of the PDE example from
Sect. 2.1. The case of Sect. 2.2 follows similarly. Let X := [−1, 1]d be the domain of
x .

3.1.1 Monte Carlo

The forwarduncertainty quantification (UQ)problem is the following.Given aquantity
of interest ϕα = ϕ ◦ uα : X → R, compute its expectation

Eϕα(x) =
∫

X
ϕ(uα(x))π0(dx).

The typical strategy is to independently sample xi ∼ π0, for i = 1, . . . , N , and then
approximate

Eϕα(x) ≈ 1

N

N∑

i=1

ϕ(uα(xi )).

For example, we can let

ϕα(x) = ‖uα(x)‖2 =
∫

�

|uα(x)(z)|2dz ≈
Kα1∑

i=1

Kα2∑

j=1

uiα(x)u j
α(x)

∫

�

φα
i (z)φα

j (z)dz ,

where the latter can be written as uTαKαuα , where Kα,i j := 〈φα
i , φα

j 〉.
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3.1.2 Multi-index Monte Carlo

With MIMC [29], we apply the approximation

Eϕ(x) ≈
∑

α∈I
E[�ϕα(x)] (20)

where the difference of differences operator is defined as �ϕα := �D ◦ · · · ◦ �1ϕα

with �iϕα := ϕα − ϕα−ei , ei is the i
th standard basis vector in R

D , and ϕα ≡ 0 if
αi < 0 for any i . The task is then to approximate the expectation of the increment of
increments for each α ∈ I ⊂ Z

D . For example, for D = 2, one must approximate

E[�ϕα(x)] =
∫

[−1,1]2

(
[ϕ(uα(x)) − ϕ(uα1,α2−1(x))]

− [ϕ(uα1−1,α2(x)) − ϕ(uα1−1,α2−1(x))]
)
π0(dx)

To do this we sample xiα ∼ π0, i.i.d. for i = 1, . . . , Nα , and then approximate

E[�ϕα(x)] ≈ E
Nα
α [�ϕα(x)] := 1

Nα

Nα∑

i=1

�ϕα(xiα)

Observe that E[ENα
α [�ϕα(x)]] = E[�ϕα(x)]. Furthermore, based on approximation

properties of uα , one expects a C > 0 such that

E

[
(ENα

α [�ϕα(X)] − E[�ϕα(X)])2
]
≤ C

Nα

D∏

i=1

2−βiαi . (21)

For the example in Sect. 2.1.1, we have β1 = β2 = 4 [29].
In particular, as we will now describe, we know how to choose the index set I

and schedule of {Nα}α∈I such that the following estimator delivers the same MSE for
significantly smaller cost than the standard method of Sect. 3.1

Eϕ(x) ≈ E
MI
I ϕ(x) :=

∑

α∈I
E
Nα
α [�ϕα(x)]

where ENα
α indicates that Nα independent samples are used at each level α. A concise,

but not comprehensive, summary of the approach is given in the review [27]. For a
detailed treatment see [29]. MLMC corresponds to the case in which there is one
index. The MLMC methodology is more generally applicable to problems in which
the target distribution—in this case the pushforward of π0 through u, (u)#π0, i.e. the
distribution of u(x) for x ∼ π0—needs to be approximated first to finite resolution,
α, before Monte Carlo can be applied.
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Assumption 3.1 There exist positive constants si , βi , γi and C for i = 1, 2, . . . , D,
such that the following holds

(a) |E[�ϕα(x)]| ≤ C2−〈α,s〉;
(b) E

[
(E

Nα
α [�ϕα(X)] − E[�ϕα(X)])2

]
≤ CN−1

α 2−〈α,β〉;
(c) COST(�ϕα(x)) ≤ C2〈α,γ 〉.

For a random variable X , the cost function COST(X) denotes the computational
complexity of a single sample of X .The following two propositions are standard results
for MIMC and are proven in [29].

Proposition 3.1 Assume Assumption 3.1, with βi > γi , for all i = 1, . . . , D. Then for
the total degree index set IL := {α ∈ N

D : ∑D
i=1 δiαi ≤ L,

∑D
i=1 δi = 1}, there are

values of L ∈ N, δi ∈ (0, 1] and {Nα}α∈IL such that

E

⎡

⎢
⎣

⎛

⎝
∑

α∈IL

E
Nα
α [�ϕα(X)] − E[ϕ(X)]

⎞

⎠

2
⎤

⎥
⎦ < Cε2, (22)

with a computational complexity of O(ε−2) for any small ε > 0.

Remark 3.1 Under the same assumptions as in Proposition 3.1, if the index set
is replaced with the tensor product index set IL1:Ld := {α ∈ N

D : α1 ∈
{0, . . . , L1}, . . . , αD ∈ {0, . . . , LD}}, then the same complexity result can be obtained
only with an additional constraint that

∑D
j=1 γ j/s j ≤ 2.

3.2 Monte Carlo for Inference

For simplicity, in this subsection, we define the algorithm for the target π , although
we note that in practice this cannot be implemented for finite cost for our targets, and
it must be replaced with πα . This sets the stage for our method, which combines the
inference approach with the approximation approach described in Sect. 3.1.

3.2.1 Markov Chain Monte Carlo and Importance Sampling

In the context of Bayesian inference, the objective is ultimately to compute expecta-
tions with respect to a probability distribution π proportional to f > 0, where one
can evaluate f but not its integral, denoted by Z = ∫

f (dx), so π(dx) = f (dx)/Z .
In particular, we define f (dx) := L(x)π0(dx) as the target, in the limit α → ∞ of
(9). That is, for arbitrary ϕ : X → R, we want to compute integrals

π(ϕ) :=
∫

X
ϕ(x)π(dx) = 1

Z

∫

X
ϕ(x) f (dx) = f (ϕ)

Z
. (23)
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If we could simulate from π , we would approximate this by

E
N (ϕ) := 1

N

N∑

i=1

ϕ(x (i)), x (i) ∼ π . (24)

However, in the present context this is not possible because the normalising constant
Z is typically unknown and must be calculated numerically. Markov chain Monte
Carlo (MCMC) and (self-normalised) importance sampling are the standard methods
to solve such problems [55]. Both methods provide estimators ϕ̂N with a dimension-
independent convergence rate analogous to EN (ϕ), for some Cϕ > 0:

‖ϕ̂N − π(ϕ)‖2p ≤ Cϕ

N

For MCMC, Cϕ typically depends at worst polynomially on d, and can sometimes be
made independent [17, 50]. However, due to its intrinsic locality, MCMC is doomed to
fail for distributionswhich are concentrated around severalmodeswith low probability
in between. In the case of importance sampling, the latter case is handled gracefully;
however, one must be careful since often Cϕ = O(ed) [1, 3, 12]. To be precise,
estimating

∫
ϕdπ using samples fromπ results inCϕ = O(exp(DKL(πϕ‖π))), where

πϕ = 1
∫

ϕdπ
ϕπ ,

and DKL(ν‖μ) is the Kullback–Leibler divergence from μ to ν [12].
If one can simulate from some π such that π(dx) = 1

Z
f (dx) with Z = ∫

f (dx),

f (dx) = L(x)π0(dx), and L/L ≤ C , then importance sampling consists of replacing
the above unbiased approximation by the following biased but consistent one

∑Ns
i=1 ϕ(x (i))

L(x (i))

L(x (i))
∑Ns

i=1
L(x (i))

L(x (i))

, x (i) ∼ π. (25)

MCMCmethods instead proceed by constructing aMarkov chainM : X×σ(X) →
[0, 1], where σ(X) is the sigma algebra of measurable sets, such that for all A ∈ σ(X)

(πM)(A) :=
∫

X
π(dx ′)M(x ′, A) = π(A) ,

i.e. the Markov chain is π−invariant. Provided the Markov chain is also ergodic then
one may simulate a trajectory and approximate (23) by

1

Ns

Ns+Nb∑

i=1+Nb

ϕ(x (i)), x (i) ∼ M(i)(x (0), ·). (26)
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Here, as above, Ns is the number of samples used, while Nb is the number of initial
samples that are unused because we must first allow our Markov chain to approach
stationarity.

Themost popularMCMCmethod isMetropolis–Hastings (MH),which proceeds by
designing a proposal Markov kernel Q such that the following composition Markov
kernel is ergodic. First, sample x ′ ∼ Q(x (i), dx ′) = q(x (i), x ′)π0(dx ′), then let
x (i+1) = x ′ with probability

min

{

1,
L(x ′)q(x ′, x (i))

L(x (i))q(x (i), x ′)

}

. (27)

Otherwise, let x (i+1) = x (i). Notice that again, as in (25), only the un-normalised
target density L is required. Note that in order to customise the presentation to the
context at hand, we presented a particular category of MH methods, designed for
probability measures on general state spaces, which have densities with respect to π0.
Such methods are justified by the framework of [60], and a particularly convenient
instantiation arises for Gaussian process priors π0, where it is easy to define Q such
that q(x, x ′) = q(x ′, x) for all x, x ′ ∈ X. See [17, 50], and the more recent slice
sampler variant [49].

SequentialMonteCarlo samplers combine these 2 fundamental algorithms – impor-
tance sampling, and propagation byMCMCkernels – along a sequence of intermediate
targets, and are able to achieve some very impressive results. The next subsection intro-
duces this technology.

3.2.2 Sequential Monte Carlo Samplers

Sequential Monte Carlo (SMC) samplers are able to merge the best of both worlds,
by repeatedly leveraging importance sampling on a sequence of target distributions
which are close. In particular, define h1, . . . , hJ−1 by h j = L j+1/L j , where L1 = L ,
L J = L , L appears in (25) (and may likely be π0), f (dx) = L(x)π0(dx) is the
un-normalised target, and for j = 2, . . . , J − 1, Li interpolates in between.

Let π j = f j/Z j , where Z j = ∫
f j (dx) and f j (dx) = L j (x)π0(dx). Note that

f (dx)
∏J−1

i=1 h j (x) = f (dx). The idea of SMC is to simulate from π = π1 and use
these samples to construct a self-normalised importance sampling estimator of f2 with
weights h1 as in (25), and iterate for j = 1, . . . , J − 1, resulting in a self-normalised
importance sampling estimator of π . There is, however, an obvious issue with this
idea. In particular, the locations of the sampled points remain unchanged over each
stage of the algorithm for this sequential importance sampling estimator. This leads to
degeneracy that is no better than the original (one step) importance sampling estimator
(25).

The key idea introduced in [14, 21, 36, 51] is to use Markov transition kernels
between successive target distributions π j and π j+1 in order to decorrelate (or “jitter”)
the particles, while preserving the intermediate target. The standard approach is to let
M j for j = 2, . . . , J be such that (π jM j )(dx) = ∫

π j (dx ′)M j (x ′, dx) = π j (dx),
e.g. an MCMC kernel of the type introduced in the previous subsection, (27).
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The resulting SMC algorithm is given in Algorithm 1. Define

πN
j (ϕ) := 1

N

N∑

i=1

ϕ(x (i)
j ) . (28)

Algorithm 1 SMC sampler

Let x(i)
1 ∼ π1 for i = 1, . . . , N , and ZN

1 = 1. For j = 2, . . . , J , repeat the following steps:

(0) Store ZN
j = ZN

j−1
1
N
∑N

k=1 h j−1(x
(k)
j−1).

(i) Define wi
j = h j−1(x

(i)
j−1)/

∑N
k=1 h j−1(x

(k)
j−1), for i = 1, . . . , N .

(ii) Resample. Select I ij ∼ {w1
j , . . . , w

N
j }, and let x̂(i)

j = x
(I ij )

j−1, for i = 1, . . . , N .

(iii) Mutate. Draw x(i)
j ∼ M j (x̂

(i)
j , ·), for i = 1, . . . , N .

In the resampling step of Algorithm 1, the samples are resampled according to their
weights, so that some “unfit” (low weight) particles will “die” while other “fit” (high
weight) ones will “multiply”. As such, it can be viewed as a sort of genetic selection
mechanism [20]. One can understand this operation as preserving the distribution
of particles as well as the degeneracy of the sample, while exchanging variance of
weights for redundancy of particles. Therefore, at a given instance, there is no net
gain; however, future generations will have replenished diversity. As an example, one
can use multinomial resampling. See [15] for details.

3.2.3 Estimating the Normalising Constant with SMC

Recall Z j =
∫

f j (dx), and observe that

π j (h j ) = 1

Z j

∫
L j+1(x)

L j (x)
f j (dx) = Z j+1

Z j
.

It follows that the ratio of normalising constants of πJ = π to π1 = π , Z/Z , is given
by

Z J

Z1
=

J−1∏

j=1

π j (h j ) .

If Z1 = 1 is known, then this is simply equal to Z , the normalising constant of π .
Observe that using Algorithm 1 we can construct an estimator of each factor by

πN
j (h j ) = 1

N

N∑

i=1

h j (x
(i)
j ) .
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Recall that for any ϕ : X → R we have f J (ϕ) := ∫
ϕ(x) f J (dx) = f J (1)πJ (ϕ), by

definition. Now define the following estimator

f NJ (ϕ) :=
J−1∏

j=1

πN
j (h j )π

N
J (ϕ) = ZN

J πN
J (ϕ) . (29)

where πN
j (ϕ) and ZN

J are as defined in Algorithm 1.
Note that by definition

πN
J (ϕ) = f NJ (ϕ)

ZN
J

= f NJ (ϕ)

f NJ (1)
.

4 Multi-index Sequential Monte Carlo

With the necessary notation and concepts defined in the previous section, we now
establish our theoretical results for Multi-Index Sequential Monte Carlo. Through this
we can provide theoretical guarantees for the Bayesian inverse problems, such as those
defined in Sect. 2.1.2 and we develop methods which apply the MIMC methodology
of Sect. 3.1.2 to that problem.

The main result is an estimator which retains the well-known efficiency of SMC
samplers while provably achieving the complexity benefits of MIMC. This problem
has been considered before in [19, 38, 43], but the present work is the first to establish
convergence guarantees under reasonable verifiable assumptions. To this end, our
objective is to apply SMC samplers to estimate (23) while utilising a multi-index
decomposition of the form (20).

After formulating our problemand introducing some additional notation,wepresent
and prove our main convergence result Theorem 4.1.

4.1 Formulation

For convenience we denote the vector of multi-indices

α(α) := (α1(α), . . . ,α2D (α)) ∈ Z
D×2D+ ,

where α1(α) = α, α2D (α) = α −∑D
i=1 ei , and αi (α) for 1 < i < 2D correspond to

the intermediate multi-indices involved in computing �ϕα , as described above (23).
We note that when α is on the boundary of ZD+ then several of the terms involved in

�ϕα are 0, but we find this notation more expedient than letting α(α) ∈ Z
D×kα+ where

kα = 2#{i;αi �=0} ∈ {0, 2, . . . , 2D} adjusts the dimension kα when α is on the boundary
of the index set.

Define fα(dx) := Lα(x)π0(dx), Zα := ∫
X fα(dx) and πα(dx) = fα(dx)/Zα ,

following from (9). There are two fundamental strategies onemay adopt for estimating
π(ϕ) = f (ϕ)/ f (1) using a multi-telescoping identity as in (20). The first considers
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the following representation

π(ϕ) =
∑

α∈ZD+

�(πα(ϕα)) =
∑

α∈ZD+

�

(
1

Zα

fα(ϕα)

)

. (30)

Note we allow ϕα to depend on α*—for example it could involve the solution to the
PDE.

Directly estimating �(πα(ϕα)) would be quite natural if we were able to sample
from a coupling of (πα1(α), . . . , πα2D (α)), i.e. a distribution �α : σ(X2

D
) → [0, 1]

such that

∫

x− j∈X2D−1
�α(dx) = πα j (α)(dx j ) , for j = 1, . . . , 2D .2

In practice, however, this is non-trivial to achieve. One successful strategy for MLMC
methods is to construct instead an approximate coupling �α such that παi (α)/�α is
bounded for all i = 1, . . . , 2D , then simulate from this and construct self-normalised
importance sampling estimators of the type (25) for each of the individual summands

of �
(

1
Zα

fα(ϕα)
)
appearing in (30). This strategy was introduced for MLMCMC

in [37] and has subsequently been applied to MIMC in the contexts of MCMC [38]
and SMC [19, 43]. These MIMC works lack rigorous convergence results, due to
the challenge of achieving rigorous rates for the individual summands, as well as the
effect of cumbersome off-diagonal terms in the MSE estimates arising from bias of
the summands (which are higher-order for MLMC). Both of these issues are handled
elegantly with the present method.

In the present work, we adopt the second fundamental strategy, which is to use the
ratio decomposition

π(ϕ) = f (ϕ)

f (1)
=
∑

α∈ZD+ �( fα(ϕα))
∑

α∈ZD+ �( fα(1))
. (31)

In their limiting forms in (30) and (31), the expressions are equivalent; however,
from an approximation perspective they are fundamentally different. In the context
of SMC, there are advantages to the latter. In particular, this alleviates both of the
issues with arising from bias of the summands in the aforementioned approach, which
have prevented rigorous convergence results until now. A similar strategy was used
to construct randomised MLMC estimators for Bayesian parameter estimation with
particle MCMC in [11]. This method comprises the main result of this work, and its
development is the topic of the following subsection.

2 Here, x− j omits the j th coordinate from x = (x1, . . . , x2D ) ∈ X2
D
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4.2 Main Result

In order to make use of (31), we need to construct estimators of �( fα(ζα)), both for
our quantity of interest ζα = ϕα and for ζα = 1. To that end, we shall construct
a coupling which approximates �α , and has well-behaved importance weights with
respect to �α . Let

�0(dx) = π0(dx1)
2D∏

i=2

δx1(dxi ) , (32)

where δx1 denotes the Dirac delta function at x1. Note that this is an exact coupling
of the prior in the sense that for any j ∈ {1, . . . , 2D}

∫

x− j∈X2D−1
�0(dx) = π0(dx j ) . (33)

Indeed, it is the same coupling used in Sect. 3.1.2. It is hoped that this coupling of
the prior will carry over to provide error estimates analogous to (21) for the estimator
(31), when computed using SMC. We note that one can estimate (31) directly by
importance sampling with respect to the prior, as described in Sect. 3.1.2; however,
this is not expected to be as efficient as using SMC. We hence adapt Algorithm 1 to
an extended target which is an approximate coupling of the actual target as in [11, 19,
37, 38, 43], and utilise a ratio of estimates analogous to (29), similar to what was done
in [11]. To this end, we define a likelihood on the coupled space as

Lα(x) = max{Lα1(α)(x1), . . . , Lαkα (α)(xkα )} . (34)

Note that kα = 2#{i;αi �=0} ∈ {0, 2, . . . , 2D} ≤ 2D adjusts the effective dimension of
the target when α is on the boundary of the index set. The approximate coupling is
defined by

Fα(dx) = Lα(x)�0(dx) , �α(dx) = 1

Fα(1)
Fα(dx) . (35)

Example 4.1 (Approximate Coupling) As an example of the approximate coupling
constructed in equations (32), (34), and (35), let D = 2, d = 1, and α = (1, 1). Then,
we have

�(1,1)(x1, x2, x3, x4) ∝ max{L11(x4), L10(x3), L01(x2), L00(x1)}
π0(x1)δx1(x2)δx1(x3)δx1(x4) .

Note that for our choice of prior coupling (32), we effectively have a single distribution

�(1,1)(x) ∝ max{L11(x), L10(x), L01(x), L00(x)}π0(x) ,
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but any coupling of the prior which preserves the marginals as in (33) is admissible, so
we prefer to consider this as a target on the “diagonal hyperplane” x1 = x2 = x3 = x4,
as above.

Let Hα, j = Lα, j+1/Lα, j for some intermediate distributions Fα,1, . . . , Fα,J = Fα .
In our case, we use the natural intermediate targets Fα, j (dx) = Lα(x)τ j �0(dx),
where τ1 = 0, τ j < τ j+1, and τJ = 1. For j = 1, . . . , J , we define

�α, j (dx) = 1

Fα, j (1)
Fα, j (dx)

and we let Mα, j be a Markov transition kernel such that (�α, jMα, j )(dx) =
�α, j (dx), analogous to M in Sect. 3.2.2. Any MCMC kernel as described in
Sect. 3.2.1 with target distribution �α, j is suitable for this purpose. An example is the
Metropolis–Hastings kernel described above and in (27).

Remark 4.1 (Tempering) Tempering accurately is crucial, because if the effective
sample size drops too low, then the population will lack sufficient diversity to survive.
Thepurpose of the sequential resampling andmutation is precisely to preserve diversity
in the sample. Sometimes a fixed tempering schedule is suitable for this purpose, for
example τ j = ( j−1)/(J −1). An alternative is to use an adaptive tempering strategy.

Given a (possibly un-normalised) weighted sample {w(k), x(k)}Nk=1, the effective
sample size (ESS) is defined as follows

ESS =
(∑N

k=1 w(k)
)2

∑N
k=1(w

(k))2

This quantity serves as a proxy for the variance of the weighted sample. To understand
the name, note that if w(k) ∝ 1 for all k, then ESS = N , while if w(k∗) ∝ 1 for
some k∗ and w(k) = 0 for k �= k∗ then ESS = 1. If τ j = τ j−1 + h, for h > 0, then
the intermediate weights will be w(k) = Lα(x(k))h , and the corresponding ESS(h)

is a scalar function of h which quantifies the sample attrition that results from the
importance sampling step; precisely what we are aiming to control. The adaptive
tempering parameter τ j is computed by firstly solving ESS(h) = ESSmin with a pre-
specified value of ESSmin, and then letting τ j ← τ j−1 + h. In this way, the effective
sample size is ESSmin each time importance sampling is carried out. The tempering
procedure is carried until τ j = 1.

Remark 4.2 (Role of Dimension D) Note that in high dimensions one would select
an index set in which there are few (or no) terms on the interior. In the present work,
we do not explicitly consider the dependence on D (which is reasonable for small
D ≤ 5 say); however, the methodology is applicable for high-dimensional targets and
that is the subject of future work. The cost of simulating the approximate coupling at
level α will feature a constant 2D multiplying Assumption 4.2(C), because that is how
many likelihood evaluations are required to compute (34), and hence corresponding
multi-increment. The constant can be large, but this will not alter the complexity
estimates.
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Algorithm 2 SMC sampler for coupled estimation of �( fα(ζα))

Let x(i)
1 ∼ π1 for i = 1, . . . , N , ZN

1 = 1, and ω1,k = 1 for k = 1, . . . , 2D . For j = 2, . . . , J ,

k = 1, . . . , 2D , repeat the following steps for i = 1, . . . , N :

(0) Store ZN
j = ZN

j−1
1
N
∑N

k=1 Hα, j−1(x
(k)
j−1).

(i) Define wi
j = Hα, j−1(x

(i)
j−1)/

∑N
k=1 Hα, j−1(x

(k)
j−1).

(ii) Resample. Select I ij ∼ {w1
j , . . . , w

N
j }, and let x̂(i)

j = x
(I ij )

j−1.

(iii) Mutate. Draw x(i)
j ∼ Mα, j (x̂

(i)
j , ·).

For j = 1, . . . , J , and for random variables x(i)
j , i = 1, . . . , N (which will be

sampled from the Markov chain Mα, j ) we define

�N
α, j (dx) := 1

N

N∑

i=1

δx(i)
j

(dx) , (36)

and then define

ZN
α :=

J−1∏

j=1

�N
α, j (Hα, j ) , FN

α (dx) := ZN
α �N

α,J (dx) . (37)

We require the following assumption

Assumption 4.1 Let J ∈ N be given, and let X be a Banach space. For each j ∈
{1, . . . , J } there exists some C > 0 such that for all (α, x) ∈ Z

D+ × X2
D

C−1 < Z , Hα, j (x),Lα(x) ≤ C .

The following proposition can easily be deduced from [Theorem 7.4.2, [20]].

Proposition 4.1 Under Assumption 4.1, we have E[FN
α (ψ)] = Fα(ψ).

Define

ψζα (x) :=
2D∑

k=1

ιkωk(x)ζαk (α)(xk) , ωk(x) := Lαk (α) (xk)
Lα(x)

, (38)

where ιk ∈ {−1, 1} is the sign of the kth term in � fα and ζα : X → R. Following
from Proposition 4.1, we have that

E[FN
α (ψζα )] = Fα(ψζα ) = � fα(ζα) . (39)

Now given I ⊆ Z
D+ , {Nα}α∈I , and ϕ : X → R, for each α ∈ I, run an independent

SMC sampler as in Algorithm 2 with Nα samples, define ZN
α = ZN

J , and define the
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MIMC estimator as

ϕ̂MI
I =

∑
α∈I FNα

α (ψϕα )

max{∑α∈I FNα
α (ψ1), Zmin}

, (40)

where Zmin is a lower bound on Z as given in Assumption 4.1, and FNα
α is defined in

(37).

4.2.1 Theoretical Results

Throughout this subsection, C > 0 is a constant whose value may change from line to
line. The following theorem is the main theoretical result which underpins the results
to follow.

Theorem 4.1 Assume Assumption 4.1. Then, for any J ∈ N there exists a C > 0 such
that for any N ∈ N, ψ : X2D → R bounded and measurable and α ∈ Z

D+

E

[
|FN

α (ψ) − Fα(ψ)|2
]
≤ C

N
Fα(ψ2).

Furthermore,

Fα(ψ2
ζα

) ≤ C
∫

X
(�(Lα(x)ζα(x)))2π0(dx) ,

where ψζα (x) is as (38).

Proof The first result follows from Lemmas 5.1, 5.2 and 5.3, given in Sect. 5. The
second result is derived as follows:

Fα(ψ2
ζα

) =
∫

X2D

⎛

⎝
2D∑

k=1

ιk
Lαk (α)(xk)
Lα(x)

ζαk (α)(xk)

⎞

⎠

2

Lα(x)�0(dx)

=
∫

X2D

1

Lα(x)

⎛

⎝
2D∑

k=1

ιk Lαk (α)(xk)ζαk (α)(xk)

⎞

⎠

2

�0(dx)

≤ C
∫

X
(�(Lα(x)ζα(x)))2π0(dx) .

The first 2 lines are direct substitution and the inequality follows by defining C−1 =
inf x∈X2D Lα(x) and using the definition of �0 in (32). ��

Following from above, the assumptions below will be made.

Assumption 4.2 For any ζ : X → R bounded and Lipschitz, there existC, βi , si , γi >

0 for i = 1, . . . , D such that for resolution vector (2−α1 , . . . , 2−αD ), i.e. resolution
2−αi in the i th direction, the following holds:
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(B) |� fα(ζ )| =: Bα ≤ C2−〈α,s〉;
(V)

∫
X(�(Lα(x)ζα(x)))2π0(dx) =: Vα ≤ C2−〈α,β〉;

(C) COST(Fα(ψϕ)) =: Cα ∝ 2〈α,γ 〉.

The proofs of the main theorems will rely on one more result, Lemma 4.1, given
immediately afterwards.

The next theorem comprises the main result of the paper.

Theorem 4.2 Assume Assumptions 4.1 and 4.2, with βi > γi for i = 1, . . . , D. Then,
for any ε > 0 and suitable ϕ : X → R, it is possible to choose a total degree index
set IL := {α ∈ N

D : ∑D
i=1 δiαi ≤ L,

∑D
i=1 δi = 1}, δi ∈ (0, 1] and {Nα}α∈IL , such

that for some C > 0

E[(ϕ̂MI
I − π(ϕ))2] ≤ Cε2 ,

andCOST(ϕ̂MI
I ) ≤ Cε−2, the canonical rate. The estimator ϕ̂MI

I is defined in equation
(40).

Proof Starting from Lemma 4.1 and given Theorem 4.1, and the Assumptions 4.2, the
result follows in a similar fashion to standard MIMC theory [19, 27, 29, 38, 43]. The
proof is given in “Appendix A” for completeness. ��

Remark 4.3 Under the same assumptions as in Theorem 4.2, and similar to Proposi-
tion 3.1, if the index set is replaced with the tensor product index set IL1:Ld := {α ∈
N

D : α1 ∈ {0, . . . , L1}, . . . , αD ∈ {0, . . . , LD}}, then the same complexity result can
be obtained only with an additional constraint that

∑D
j=1 γ j/s j ≤ 2.

Lemma 4.1 For the estimator (40) ϕ̂MI
I =

∑
α∈I FNα

α (ψϕα )

max{∑α∈I FNα
α (ψ1),Zmin}

, the following

inequality holds

E[(ϕ̂MI
I − π(ϕ))2] ≤ C max

ζ∈{ϕ,1}

⎛

⎝
∑

α∈I
E

[(
FNα

α (ψζα ) − Fα(ψζα )
)2]+

(
∑

α/∈I
Fα(ψζα )

)2
⎞

⎠ .

Proof Recall that from (40) we have ϕ̂MI
I =

∑
α∈I FNα

α (ψϕα )

max{∑α∈I FNα
α (ψ1),Zmin}

. So

E[(ϕ̂MI
I − π(ϕ))2] = E

⎡

⎣

( ∑
α∈I FNα

α (ψϕα )

max{∑α∈I FNα
α (ψ1), Zmin}

− f (ϕ)

f (1)

)2
⎤

⎦

= E

[( ∑
α∈I FNα

α (ψϕα )

max{∑α∈I FNα
α (ψ1), Zmin} f (1)

(

f (1) −max{
∑

α∈I
FNα

α (ψ1), Zmin}
)

+ 1

f (1)

(∑

α∈I
FNα

α (ψϕα ) − f (ϕ)

))2]

.
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Since f (1) ≥ Zmin and |max{A, Z} −max{B, Z}| ≤ |A − B|, we have

E

⎡

⎣

(

max{
∑

α∈I
FNα

α (ψ1), Zmin} − f (1)

)2
⎤

⎦ ≤ E

⎡

⎣

(
∑

α∈I
FNα

α (ψ1) − f (1)

)2
⎤

⎦ .

(41)

Then, we have

E[(ϕ̂MI
I − π(ϕ))2] ≤ C max

ζ∈{ϕ,1}E

⎡

⎢
⎣

⎛

⎝
∑

α∈I
FNα
α (ψζα

) − f (ζ )

⎞

⎠

2
⎤

⎥
⎦

≤ C max
ζ∈{ϕ,1}E

[
⎛

⎝
∑

α∈I
FNα
α (ψζα

) −
∑

α∈I
Fα(ψζα

)

⎞

⎠

2

+
(∑

α∈I
Fα(ψζα

) − f (ζ )

)2]

= C max
ζ∈{ϕ,1}

⎛

⎜
⎝
∑

α∈I
E

[(
FNα
α (ψζα

) − Fα(ψζα
)
)2
]

+
⎛

⎝
∑

α/∈I
Fα(ψζα

)

⎞

⎠

2
⎞

⎟
⎠ .

��
Remark 4.4 It is remarked that one always has Z > 0; therefore, given a target error
level ε, one can always replace Zmin ← ε, and achieve the same result. To see this,
denoting

ẐMI =
∑

α∈I
FNα

α (ψ1) ,

observe that line (41) can be replaced with

|max{ẐMI, ε} − Z | ≤ |ẐMI − Z | + |ε| + |max{Z − ε, 0} −max{Z , 0}|
≤ |Ẑ MI − Z | + 2|ε| .

Theorem 4.2 formulates the total degree index set with general δ satisfying some
loose conditions. In the paper [29], optimal δ is constructed according to a profit
indicator. The focus of the present work is on the canonical case, where the complexity
is dominated by low levels, so we simply choose δ ∝ s. The proof of Theorem 4.2 is
based on the general δ, and it is easy to see that this choice suffices.

To achieve the canonical rate of complexity, Theorem 4.3 with the tensor product
index set relies on the essential assumption that

∑D
j=1

γ j
s j

≤ 2, which ensures that the
samples at the finest index do not dominate the cost. If the assumption is violated,
then only the subcanonical complexity

∑D
j=1

γ j
s j

can be achieved. This rate may often
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be D−dependent, resulting in a so-called curse of dimensionality. In comparison,
Theorem 4.2 with the total degree index set releases this constraint, and improves
the computational complexity for many problems from subcanonical to canonical, as
illustrated in the numerical examples.

4.3 Verification of Assumptions

Here we briefly discuss the models considered before in connection with the required
Assumptions 4.2. Note that both posteriors have the form exp(�(x)) for some � :
X → R, and are approximated by �α : X → R.

Proposition 4.2 Let X be a Banach space with D = 2 s.t. π0(X) = 1, with norm ‖ · ‖X.
For all ε > 0, there exists a C(ε) > 0 such that the following holds for �,�α given
by (13), (16), or log(L), log(Lα) from (9), respectively:

� exp(�α(xα)) ≤ C(ε) exp(ε‖x‖2X)
(
|��α(xα)| + |�1�α−e2(xα−e2)|

×|�2�α−e1(xα−e1)|
)

.

Proof Let us introduce the shorthand notation A11 = �α(xα), A10 = �α−e2(xα−e2),
A01 = �α−e1(xα−e1), A00 = �α−e1−e2(xα−e1−e2). We have

� exp(�α(xα)) = exp(A11) − exp(A10) − (exp(A01) − exp(A00))

= exp(A10) (exp(A11 − A10) − 1) − exp(A00) (exp(A01 − A00) − 1)

= exp(A10) (exp(A11 − A10) − exp(A01 − A00))

+ (exp(A01) − exp(A00)) (exp(A10 − A00) − 1)

≤ C(ε) exp(ε‖x‖2X)(|A11 − A10 − (A01 − A00)|
+|A01 − A00||A10 − A00|) ,

where we have added and subtracted exp(A10) (exp(A01 − A00) − 1) in going from
the second to the third line. The final line follows from the mean value theorem and
equations (59) and (72) with X = Hm

r , r > 1/2. These trivially hold for (9).
The issue which prevented us from achieving above for LGC is that terms like

exp(−A10) ∝ exp(−�α(xα)) appear in the constant, which involve a factor like
exp(

∫
exp(x(z))dz). Fernique theorem does not guarantee that such double exponen-

tials are finite. However, for LGP, we instead have

exp(−A10) ∝ (

∫

�

exp(x(z))dz)n ≤ |�|n exp(n‖x‖L∞(�)) ≤ |�|n exp(n‖x‖r ).

��
PDE. The following proposition updates Proposition 2.1 and is proven in the literature
onmixed regularity of the solution of elliptic PDE, asmentioned already in Sect. 3.1.2.
See, e.g. [29] and references therein.
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Proposition 4.3 Let uα be the solution of (2) and (3) at resolution α, as described
in Sect. 2.1.1, for a(x) given by (5) and uniformly over x ∈ [−1, 1]d , and f suitably
smooth. Then, there exists a C > 0 such that

‖�uα(x)‖V ≤ C2−α1−α2 .

Furthermore,

‖�uα(x)‖ ≤ C2−2(α1+α2) .

Note that since Lα(x) ≤ C < ∞ by Assumption 4.1, the constant in Proposition
4.2 can be made uniform over x , and hence the required rate in Assumption 4.2 is
established immediately.
LGP. Will restrict consideration to LGP here, since LGC features double exponentials
which are difficult to handle theoretically in this context. The following proposition
updates Proposition 2.3 as required for differences of differences.

Proposition 4.4 Let x ∼ π0, where π0 is a Gaussian process of the form (10) with
spectral decay corresponding to (11), and let xα correspond to truncation on the
index set Aα = ∩2

i=1{|ki | ≤ 2αi } as in (14). Then there is a C > 0 such that for all
q < (β − 1)/2

‖�xα‖2 ≤ C‖x‖2q2−2q
∑2

i=1 αi .

Proof The proof follows along the same lines as that of Proposition 2.3 (B.1), except
instead of projection onto ∪2

i=1{|ki | > 2αi }, the projection here is onto the set of
indices ∩2

i=1{2αi−1 ≤ |ki | ≤ 2αi }, i.e.

‖A−q/2P∩2
i=1{2αi−1≤|ki |≤2αi }‖L(L2,L2) ≤ C2−q

∑2
i=1 αi .

��
The key phenomenon that takes place is that the difference of difference�xα leaves

a remainder which is an intersection ∩2
i=1{2αi−1 ≤ |ki | ≤ 2αi }, rather than the union

∪2
i=1{2αi−1 ≤ |ki | ≤ 2αi }, associated with the truncation error in Proposition 2.3,

which one would achieve with a single difference from xα − xα−1. This eliminates
all indices in which k−1

i = O(1) for some i , and provides the required product-form
rates.

Proposition 4.5 The rate from Proposition 4.4 is inherited by the likelihood, resulting
in verification of Assumption 4.2(V) with βi = β.

Proof The proof follows along the lines of Proposition 2.5. In this case, following
from Proposition 4.2, for all ε > 0 and q < β/2, we have

Eπ0 (�Lα(xα))2 ≤ Eπ0C(ε) exp(ε‖x‖2r )
(
��α(xα) + �1
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�α−e2(xα−e2)�2�α−e1(xα−e1)
)2

≤ C2−2q
∑2

i=1 αi ,

where the second line is computed with estimates similar to (72), and Fernique The-
orem to conclude, as in the proof of Proposition 2.5. ��

5 Proofs Relating Theorem 4.1

In this section, we prove Lemmas 5.1, 5.2 and 5.3 from which Theorem 4.1 is an
immediate consequence. We fix α ∈ I throughout this section and thus, to avoid
notational overload, we henceforth suppress it from our notation.

For j = 2, . . . , J , we define

� j (�) := �(Hj−1M j )

�(Hj−1)
, (42)

and observe that the iterates of the algorithm of Sect. 3.2.2 can be rewritten in the
concise form

xij ∼ � j (�
N
j−1) , for i = 1, . . . , N , (43)

where we recall the definition (28) for the empirical measure�N
j−1. Let�1(�) := �.

A finer error analysis beyond Proposition 4.1 requires keeping track of the effect of
errors (�N

j − � j (�
N
j−1)) and accounting for the cumulative error at time J . To this

end, and for any ψ : X2D → R bounded, we define the following partial propagation
operator for p = 1, . . . , J

Qn,J (ψ)(xn) =
∫

X2D×(J−n)

ψ(x J )

J∏

j=n+1

Hj−1(x j−1)M j (x j−1, x j )dxn+1:J ,

(44)

where QJ ,J = I2D , i.e. QJ ,J (ψ)(x J ) = ψ(x J ). We will assume for simplicity that
F1 := �0, the prior, so that F1(1) = 1. Note that then �0(Q1(ψ)(x1)) = FJ (ψ) =
F(ψ).

Wepresent now the followingwell-known representation of the error as amartingale
w.r.t. the natural filtration of the particle system (see [11, 20])

FN
J (ψ) − F(ψ) =

J∑

n=1

FN
n (1)

[
�N

n − �n(�
N
n−1)

]
(Qn,J (ψ))

︸ ︷︷ ︸
SNn,J (ψ)

, (45)
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where we denote the summands as SNn,J (ψ). This clearly shows the unbiasedness

property presented in Proposition 4.1. In particular, EFN
J (ψ) = F(ψ), as can be seen

by backwards induction conditioning first on {xiJ−1}Ni=1 and recalling the form of
FN
n (1) given in (37). This brings us to our first supporting lemma. Throughout these

calculations, C is a finite constant whose value may change on each appearance. The
dependencies of this constant on the various algorithmic parameters are made clear
from the statement.

Lemma 5.1 Assume Assumption 4.1. Then, for any J ∈ N there exists C > 0 such
that for any N ∈ N and any ψ : X2D → R bounded and measurable

E[(FN
J (ψ) − F(ψ))2] ≤ C

N

J∑

n=1

E[(Qn,J (ψ)(x1n))
2].

Proof Following from (45), we have

E(FN
J (ψ) − F(ψ))2 ≤ C

J∑

n=1

E[(SNn,J (ψ))2]

≤ C

N
E[(Qn,J (ψ)(x1n))

2] .

The first inequality results from application of the Burkholder–Gundy–Davis inequal-
ity. The second inequality follows via an application of the conditionalMarcinkiewicz–
Zygmund inequality and the fact that FN

n (1) is upper-bounded by a constant via
Assumption 4.1. ��
Lemma 5.2 Assume Assumption 4.1. Then, for any J ∈ N and n ∈ {1, . . . , J } there
exists a C > 0 such that for any N ∈ N and ψ : X2D → R bounded and measurable

(Qn,J (ψ)(xn))2 ≤ CQn,J (ψ
2)(xn) .

Proof Observe that for any xn ∈ X2
D
, Qn,J (ψ)(xn)/Qn,J (1)(xn) is a probability

distribution. Therefore, Jensen’s inequality provides

(Qn,J (ψ)(xn))2 = (Qn,J (1)(xn))2
(
Qn,J (ψ)(xn)
Qn,J (1)(xn)

)2

≤ Qn,J (1)(xn)Qn,J (ψ
2)(xn) .

The result follows with C = supxn∈X2D Qn,J (1)(xn). ��
Lemma 5.3 Assume Assumption 4.1. Then for any J ∈ N and n ∈ {1, . . . , J } there
exists a C > 0 such that for any N ∈ N and any ψ : X2

D → R bounded and
measurable

E[Qn,J (ψ
2)(x1n)] ≤ CF(ψ2).
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Proof We proceed by induction. The result for n = 1 follows immediately from
Lemma 5.2 and the fact that we defined �1(�1) = �1 = F1 = �0:

�0(Q1,J (ψ
2)(x1)) =

∫

X2D×J
ψ2(x J )�0(x1)

J−1∏

j=1

Hj (x j )M j+1(x j , x j+1)dx1:J

=
∫

X2D×J
ψ2(x J )F(x J )dx J .

Now, assume the result holds for n − 1:

E[Qn−1,J (ψ
2)(x1n−1)] = E(�n−1(�

N
n−2)[Qn−1,J (ψ

2)]) ≤ CF(ψ2) , (46)

and we will show that this implies it holds for n.
We have that

�n(�
N
n−1)[Qn,J (ψ

2)] = �n(�n−1(�
N
n−2))[Qn,J (ψ

2)]
︸ ︷︷ ︸

T1

+{�n(�
N
n−1) − �n(�n−1(�

N
n−2))}[Qn,J (ψ

2)]
︸ ︷︷ ︸

T2

.

We consider bounding the expectations of T1 and T2 in turn.
T1. We have

�n(�n−1(�
N
n−2))[Qn,J (ψ

2)] = 1

�n−1(�
N
n−2)(Hn−1)

×
∫

X2D×2
�n−1(�

N
n−2)(dxn−1)Hn−1(xn−1)Mn(xn−1, dxn)Qn,J (ψ

2)(xn) .

By Assumption 4.1 inf x Hn−1(x) ≥ C−1 and

Qn−1,J (ψ
2)(xn−1) =

∫

X2D
Hn−1(xn−1)Mn(xn−1, dxn)Qn,J (ψ

2)(xn) .

Therefore, by the inductive hypothesis

E

(
�n(�n−1(�

N
n−2))[Qn,J (ψ

2)]
)
≤ CE

(
�n−1(�

N
n−2)[Qn−1,J (ψ

2)]
)

≤ CF(ψ2) .
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T2. For the second term, we have
∣
∣
∣{�n(�

N
n−1) − �n(�n−1(�

N
n−2))}[Qn,J (ψ

2)]
∣
∣
∣

=
∣
∣
∣
∣
∣

�N
n−1(Hn−1MnQn,J (ψ

2))

�N
n−1(Hn−1)

− �n−1(�
N
n−2)(Hn−1MnQn,J (ψ

2))

�n−1(�
N
n−2)(Hn−1)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1

�N
n−1(Hn−1)

(�N
n−1 − �n−1(�

N
n−2))(Qn−1,J (ψ

2))

∣
∣
∣
∣
∣

︸ ︷︷ ︸
T2,1

+
∣
∣
∣
∣
∣

(�n−1(�
N
n−2) − �N

n−1)(Hn−1)

�N
n−1(Hn−1)�n−1(�

N
n−2)(Hn−1)

�n−1(�
N
n−2)(Qn−1,J (ψ

2))

∣
∣
∣
∣
∣

︸ ︷︷ ︸
T2,2

.

These two terms are now considered.
T2,1. The expected value of T2,1 can be bounded as follows:

E

[∣∣
∣
(
�N

n−1 − �n−1(�
N
n−2)

)
(Qn−1,J )(ψ

2)

∣
∣
∣
]
≤ E

[∣∣
∣�N

n−1(Qn−1,J )(ψ
2)

∣
∣
∣
]

+ E

[∣∣
∣�n−1(�

N
n−1)(Qn−1,J (ψ

2))

∣
∣
∣
]

= E

[
�N

n−1(Qn−1,J )(ψ
2)
]

+ E

[
�n−1(�

N
n−1)(Qn−1,J (ψ

2))
]

≤ 2E
[
�n−1(�

N
n−1)(Qn−1,J (ψ

2))
]

≤ 2CF(ψ2) .

Where the triangle inequality is used in the first line, positivity is used in the second,
the Martingale property is used in the third, and the induction hypothesis is used to
conclude. Thus, after appropriately redefining the constant C , we have that

E[T2,1] ≤ CF(ψ2).

T2,2. Finally, for the second term, note that by Assumption 4.1 there is a C < ∞
such that

∣
∣
∣
∣
∣

(�n−1(�
N
n−2) − �N

n−1)(Hn−1)

�N
n−1(Hn−1)�n−1(�

N
n−2)(Hn−1)

∣
∣
∣
∣
∣
≤ C .

Thus, by again applying the induction hypothesis (46) one has that

E[T2,2] ≤ CF(ψ2)

and this suffices to complete the proof. ��
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Fig. 2 2D Elliptic PDE with random diffusion coefficient rate of convergence for MLSMC and MISMC
with the self-normalised increments estimator and the ratio estimator, where MISMC is applied with the
tensor product index set and the total degree index set. Each MSE is computed with 200 realisations. Rates
of regression: (1) MISMCSN_TP: −1.007 (2) MISMCSN_TD: −0.996 (3) MISMCRE_TP: −0.964 (4)
MISMCRE_TD: −0.925 (5) MLSMCSN: −0.880 (6) MLSMCRE: −0.918

6 Numerical Results

First, we considered the toy example of a 1D DE simplification of the PDE introduced
in Sect. 2.1. Since the method reduces to a multilevel method in this case, the results
are provided in “Appendix C.1”.

6.1 2D Elliptic PDE with RandomDiffusion Coefficient

In this subsection, we look at the 2D elliptic PDE with random diffusion coefficient
fromSect. 2.1. The problem is defined in (2)–(3). The domain of interest is� = [0, 1]2,
the forcing term is f = 100, a(x)(z) = 3+ x1 cos(3z1) sin(3z2) + x2 cos(z1) sin(z2),
and the prior is x ∼ U [−1, 1]2. The observation operator and observation take the
form of (7) and (8), respectively.

Let the observations be given at a set of four points - {(0.25,0.25), (0.25,0.75),
(0.75,0.25), (0.75,0.75)}. Corresponding observations are generated by y = uα(x∗)+
ν, where uα(x∗) is the approximate solution of the PDE at α = [10, 10] with x∗ =
[−0.4836,−0.5806] drawn from U [−1, 1]2, and ν ∼ N (0, 0.52). Due to the zero
Dirichlet boundary condition, the solution is zero when αi = 0 and αi = 1 for
i = 1, 2. So we set αi ← αi + 2 for i = 1, 2 as the starting indices. The 2D PDE
solver applied here is modified based on a MATLAB toolbox called IFISS [23] such
that the solver can accept a random coefficient and solve the problem of interest. The
algorithm is applied withMetropolis–Hastingsmethod and a fixed tempering schedule
for all α, where J = 3 and τ j = ( j − 1)/2.
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Fig. 3 LGC model with MLSMC and MISMC with the self-normalised increments estimator and the ratio
estimator, where MISMC corresponds to the total degree index set. Each MSE is computed with 100
realisations. Rate of regression: (1) MISMCRE_TD:−1.022 (2) MISMCSN_TD:−0.973 (3) MLSMCRE:
−0.686 (4) MLSMCSN: −0.677

For this example, we have s1 = s2 = 2 and β1 = β2 = 4 for the mixed rates
corresponding to Assumptions 4.2, which implies that along the diagonal α1 = α2 the
rates for �Fα are s1 + s2 = 4 and β1 + β2 = 8. This is shown in Figs. 7 and 8. The
contour plot 9 performs a more general illustration. For the multilevel formulation,
s = 2 and β = 4, which can be observed from Fig. 10.

Considering the quantity of interest x21 + x22 , MSE in Fig. 2 is calculated with 200
realisations. Total computational costs are computedwith the same idea as the previous
questions. The reference solution is computed byMLSMC instead ofMISMC to avoid
errors in algorithm. MISMC algorithm is carried on with the two different index sets
mentioned above—tensor product and total degree index set. According to the rates of
regression in the caption of Fig. 2, bothMLSMC andMISMCwith the self-normalised
increment estimator and the ratio estimator have the rate of convergence close to -1
falling into the canonical case, which is as expected.

The advantage of MISMC can be shown in the following examples, where we can
only achieve subcanonical rates with MLSMC and MISMC with the tensor product
index set but the canonical rate withMISMCwith the total degree index set. It is worth
to note that this advantage is because the total degree index set which abandons the
most expensive estimation.

6.2 Log-Gaussian Process Models

After considering the PDE examples in previous subsections, we show the numeri-
cal results of the LGC model introduced in Sect. 2.2. The parameters are chosen as
θ = (θ1, θ2, θ3) = (0, 1, 110.339). For this particular example, the increment rates
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Fig. 4 LGP model with MLSMC and MISMC with the self-normalised increments estimator and the ratio
estimator, where MISMC corresponds to the total degree index set. Each MSE is computed with 100
realisations. Rate of regression: (1) MISMCRE_TD:−0.994 (2) MISMCSN_TD:−0.950 (3) MLSMCRE:
−0.643 (4) MLSMCSN: -712

associated with MLSMC are s = 0.8 and β = 1.6, while the mixed rates associated
with MISMC are si = 0.8 and βi = 1.6 for i = 1, 2. The rates for s and β can be
observed from Fig. 14 and mixed rates for si and βi for i = 1, 2 can be observed from
Figs. 11, 12 and 13. This forward simulation method has a cost rate of γ = 2+ω, for
any ω > 0, while the traditional full factorisation method used in [32] (and references
therein) has γ = 6. However, one has γi = 1 + ω < βi < γ . This means circulant
embedding will deliver a single level complexity of approximately MSE−9/4, while
the traditional grid-based approach has complexity MSE−19/4. An implementation of
MLMCdeliversMSE−5/4−ω. Finally,MIMCwith TD index set (δi = 0.5 for i = 1, 2)
delivers canonical complexity of MSE−1. Note that, because

∑2
j=1

γ j
s j

= 5/2 > 2,

the important assumption
∑2

j=1
γ j
s j

≤ 2 for MISMC with TP index set is violated, the
cost of the finest level samples dominates the total cost, and MISMC TP therefore has
the same subcanonical complexity as MLMC.

SMC sampler is applied with the pre-conditioned Crank-Nicolson (pCN) MCMC
[17, 50] as the mutation kernel and adaptive tempering described in Remark 4.1. The
quantity of interest is taken as ϕ(x) = ∫

[0,1]2 exp(x(z))dz andαi ← αi+5 for i = 1, 2
are the starting indices. Figure3, and the rate of regression in the caption, show the
above claims that MISMC TD is canonical with rate of convergence close to -1 and
MLSMC is subcanonical. MISMC TP is not included here since the computational
complexity of this method is the same as that of MLSMC for this example. The
only difference between the two methods is the constant. Compared with MLSMC,
MISMCTPhas extra indices and two extra terms at all internal indices. Thismeans that
MISMC TP has a larger constant than MLSMC. MISMC TD turns the computational
complexity from subcanonical, which all that is achievable withMISMCTP,MLSMC,
and SMC, to canonical, indicating the benefits of MISMC TD.
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6.3 Log-Gaussian Process Model

In this subsection, we consider the LGP model introduced in Sect. 2.2. By changing
the likelihood and parameters accordingly as θ = (θ1, θ2, θ3) = (0, 1, 27.585), the
LGP model follows the same analysis as the LGC model in the previous subsection
and gives the same numerical results for regularity and complexity. More precisely,
the increment rates associated with MLSMC are s = 0.8 and β = 1.6, and the mixed
rates associated with MISMC are si = 0.8 and βi = 1.6 for i = 1, 2, which are
the same as LGC. Figure 18 shows the increment rates for s and β, and Figs. 15, 16
and 17 show the mixed rates for si and βi for i = 1, 2. The rates corresponding to the
computational costs of MLSMC and MISMC are γ = 2 + ω and γi = 1 + ω < γ ,
for any ω > 0, respectively. Being the same as that of LGC, the complexity of LGP is
MSE−5/4−ω with MLSMC and MSE−1 with MISMC.

As above, SMC sampler is applied with the pre-conditioned Crank-Nicolson
(pCN) MCMC [17, 50] as the mutation kernel and adaptive tempering described
in Remark 4.1. Considering the quantity of interest ϕ(x) = ∫

[0,1]2 exp(x(z))dz and
letting the starting indices αi ← αi + 5 for i = 1, 2, Fig. 4, and the rate of regres-
sion in the caption, show the same claims that MISMC TD is canonical with rate of
convergence close to -1 and MLSMC is subcanonical.
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A Proofs relating to Theorem 4.2 and Remark 4.3

Let Bα = Fα(ψζα ), and recall from Assumption 4.2 (V) that

E

[(
FNα

α (ψζα ) − Fα(ψζα )
)2] ≤ Vα/Nα ,

and from Assumption 4.2 (C) that the total computational cost is
∑

α∈I NαCα . Fol-
lowing from Theorem 4.1, we have

E[(ϕ̂MI
I − π(ϕ))2] ≤ C max

ζ∈{ϕ,1}

⎛

⎝
∑

α∈I

Vα

Nα

+
(
∑

α/∈I
Bα

)2
⎞

⎠ . (47)

Then, E[(ϕ̂MI
I − π(ϕ))2] is less than Cε2 as long as both maxζ∈{ϕ,1}

∑
α∈I Vα and

maxζ∈{ϕ,1}
(∑

α/∈I Bα

)2 are of O(ε2). We can now prove the Remark 4.3 as follows.

123

http://creativecommons.org/licenses/by/4.0/


Foundations of Computational Mathematics

Proof We start from inequality (47) and replace the general index set I by the tensor
product index set IL1:LD := {α ∈ N

d : α1 ∈ {0, . . . , L1}, . . . , αD ∈ {0, . . . , LD}}.
Let Li = �log2(D/ε)/si , for i = 1, . . . , D, where �· denotes ceiling a noninteger
to an integer. The bias term is bounded as follows

∑

α/∈IL1 :LD

Bα =
∑

α/∈IL1 :LD

Fα(ψζα ) ≤ C
∑

α/∈IL1 :LD

D∏

i=1

2−αi si ≤ C
D∑

i=1

2−Li si ,

where the inequality above follows from Assumption 4.2(B). Substituting Li in the
inequality, the bias term is of O(ε). By Lemma A.4,

∑
α∈IL1 :LD

Vα/Nα is minimised

and equals ε2 by choosing

Nα = ε−2

⎛

⎝
∑

α′∈IL1 :LD

√
Vα′Cα′

⎞

⎠

√
Vα

Cα

.

The sample size can only be treated as an integer and there should be at least one
sample in each multi-index of resolution. So let the upper bound of Nα be

Nα ≤ 1+ ε−2

⎛

⎝
∑

α′∈IL1 :LD

√
Vα′Cα′

⎞

⎠

√
Vα

Cα

.

Then, the total computational cost CIL1 :LD is given by

CIL1 :LD =
∑

α∈IL1 :LD

NαCα = O

⎛

⎜
⎝ε−2

⎛

⎝
∑

α∈IL1 :LD

√
VαCα

⎞

⎠

2

+
∑

α∈IL1 :LD

Cα

⎞

⎟
⎠ .

By Assumption 4.2, we have

∑

α∈IL1 :LD

√
VαCα ≤

∑

α∈IL1 :LD

C
D∏

i=1

2αi (γi−βi )/2 =
⎛

⎝
D∏

i=1

C
Li∑

αi=0

2αi (γi−βi )/2

⎞

⎠ .

Since βi > γi ,
∑

α∈IL1 :LD
√
VαCα = O(1). In addition,

∑
α∈IL1 :LD

Cα =
O(ε−

∑
i=1 Dγi /si ) and this is bounded by O(ε−2) due to the assumption that∑D

i=1 γi/si ≤ 2. Thus, the total computational cost is dominated by O(ε−2). ��
The proof of Theorem4.2 is similar as that of Remark 4.3. The details are as follows.

Proof We start from inequality (47) and replace the general index set with the total
degree index set IL := {α ∈ N

d :∑D
i=1 δiαi ≤ L,

∑D
i=1 δi = 1}.
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Let L = log
(
ε−1(log ε−1)2(n1−1)

)
/A1, where A1 = mini=1,...,D log(2)δ−1

i si and
n1 = #{i = 1, . . . , D : log(2)δ−1

i si = A1}. Using Lemma A.1, the bias term can be
bounded as follows

∑

α/∈IL

Bα =
∑

α/∈IL

Fα(ψζα )

≤ C
∑

α/∈IL

D∏

i=1

2−αi si

≤ C
∫

{x∈RD+: ∑D
i=1 δi xi>L,

∑D
i=1 δi=1}

D∏

i=1

e− log(2)xi si dx

= C
∫

{x∈RD+: ∑D
i=1 xi>L}

e−
∑D

i=1 log(2)δ
−1
i xi si dx

≤ Ce−A1L Ln1−1

where A1 and n1 are defined above. Substituting in the L and applying Lemma A.3,
the bias term is of O(ε).

Following the similar steps as the proof for Remark 4.3 and replacing the tensor
product index set with the total degree index set, the total computational cost CIL can
be formulated as

CIL =
∑

α∈IL

NαCα = O

⎛

⎜
⎝ε−2

⎛

⎝
∑

α∈IL

√
VαCα

⎞

⎠

2

+
∑

α∈IL

Cα

⎞

⎟
⎠ .

Starting from the first term, since βi > γi , we have

∑

α∈IL

√
VαCα ≤

∑

α∈IL

2
∑D

i=1 αi (γi−βi )/2

≤ 1
∏D

i=1(1− 2(γi−βi )/2)
.

Considering the second term
∑

α∈IL
Cα and using Lemma A.2, we have

∑

α∈IL

Cα =
∑

α∈IL

2
∑D

i=1 αiγi

≤ C
∫

{x∈RD+: ∑D
i=1 xi≤L}

e
∑D

i=1 log(2)δ
−1
i γi xi dx

≤ CeA2L Ln2−1,

where A2 = maxi=1,...,D log(2)δ−1
i γi and n2 = #{i = 1, . . . , D : log(2)δ−1

i γi =
A2}.
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Substituting L into the upper bound, and since 2si ≥ βi > γi , we have γi/si ≤ 2
which gives

∑
α∈IL

Cα ≤ O(ε−2). Then, the summation of the two terms is ofO(ε−2).
��

Lemmas A.1 and A.2 are from Lemma 6.3 and 6.2 of [29].

Lemma A.1 For L ≥ 1 and a ∈ R
D+ , there exists a C(a) > 0 such that the following

inequality holds

∫

{x∈RD+: ∑D
i=1 xi>L}

e−
∑D

i=1 ai xi dx ≤ Ce−A1L Ln1−1,

where

A1 = min
i=1,...,D

ai , n1 = #{i = 1, . . . , D : ai = A1}.

Lemma A.2 For L ≥ 1 and a ∈ R
D+ , there exists a C(a) > 0 such that the following

inequality holds

∫

{x∈RD+: ∑D
i=1 xi≤L}

e
∑D

i=1 ai xi dx ≤ CeA2L Ln2−1,

where

A2 = max
i=1,...,D

ai , n2 = #{i = 1, . . . , D : ai = A2}.

Lemma A.3 For L = log
(
ε−1(log ε−1)2(n−1)

)
/A

e−AL Ln−1 ≤ Cε

where C = (2(n − 1)/A)n−1.

Proof The argument follows by the following sequence of equalities. The final inequal-
ity, below, follows since [log x − x] ≤ 0 for x = log log ε−1.

log
(
e−AL Ln−1

)

= −AL + (n − 1) log L

= − log ε−1 − 2(n − 1) log log ε−1 + (n − 1) log

(
1

A
log

(
ε−1(log ε−1)2(n−1)

))

= log ε − 2(n − 1) log log ε−1 + (n − 1) log
1

A
+ (n − 1) log log ε−1

+ (n − 1) log
(
2(n − 1) log log ε−1

)

= log ε + (n − 1) log(2(n − 1)/A) + (n − 1)
[
log log log ε−1 − log log ε−1

]
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≤ log(ε(2(n − 1)/A)n−1),

as required. ��

Lemma A.4 For a fixed ε2 = ∑
α∈I E

[(
FNα

α (ψζα ) − Fα(ψζα )
)2] = ∑

α∈I
Vα

Nα

(from Lemma 4.1), the cost is minimised by choosing Nα such that

Nα = ε−2

(
∑

α′∈I

√
Vα′Cα′

)√
Vα

Cα

.

Proof Given fixed ε2 =∑
α∈I

Vα

Nα
, the cost can beminimised as a function of {Nα}α∈I

by applying the Lagrangemultipliermethod. For someLagrangemultiplierλ, we solve
the minimisation problem

min
Nα

∑

α∈I
NαCα + λ2

(
∑

α∈I

Vα

Nα

− ε2

)

.

This gives the optimal value of Nα = λ
√
Vα/Cα for each α ∈ I. Plugging the solution

to {Nα}α∈I into the constraint equation ε2 =∑
α∈I

Vα

Nα
gives λ = ε−2∑

α∈I
√
VαCα

and therefore

Nα = ε−2

(
∑

α′∈I

√
Vα′Cα′

)√
Vα

Cα

.

��

B LGC Results

We restate and prove Proposition 2.3.

Proposition B.1 Let x ∼ π0, where π0 is a Gaussian process of the form (10) with
spectral decay corresponding to (11), and let xα correspond to truncation on the index
set Aα as in (14). Then x ∈ Hm

q for all q < β/2, and for r ∈ [0, q) there is a C > 0
such that

‖xα − x‖2r ≤ C‖x‖2q2−2(q−r)mini αi .

Proof Since x ∼ π0 is a Gaussian process, in order to prove x ∈ Hm
q for all q < β/2,

it suffices to prove that E‖x‖2q < ∞. Indeed there is a C > 0 such that

E‖x‖2q ≤ C
∑

k∈Z2

((1+ k21)(1+ k22))
q− β+1

2 ,
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from which it is clear that 2q < β provides a sufficient condition for summability. To
see this, define xk = 〈φk, x〉 ≡ ∫

φk(z)x∗(z)dz, and note that E|xk |2 = ρk(θ) and
{φk}k∈Z are orthonormal. In more detail,

E[‖x‖2q ] = E

[
‖Aq/2x‖2

]

= E

∥
∥
∥
∥
∥
∥

∑

k∈Z
aq/2
k φk 〈φk, x〉︸ ︷︷ ︸

xk

∥
∥
∥
∥
∥
∥

2

=
∑

k,k′∈Z2

aq/2
k aq/2

k′ 〈φk, φk′ 〉︸ ︷︷ ︸
δk,k′

Exkxk′

=
∑

k∈Z2

(1+ k21)
q(1+ k22)

q
E|xk |2

=
∑

k∈Z2

(1+ k21)
q(1+ k22)

qρk(θ)2

≤ C
∑

k∈Z2

(1+ k21)
q(1+ k22)

q 1

((1+ k21)(1+ k22))
β+1
2

= C
∑

k∈Z2

((1+ k21)(1+ k22))
q− β+1

2

Now let PAα
denote the projection onto the index set Aα . Observe that there is a

C > 0 such that

‖A−q/2 − A−q/2PAα
‖2L(L2,L2)

= sup
‖x‖=1

∑

k /∈Aα

a−q
k x2k

≤ C(2−2qα1 + 2−2qα2) , (48)

where L(L2, L2) denotes the space of linear operators from L2 to L2.
For r ∈ [0, q), we have

‖xα − x‖2r = ‖A−q/2A(q+r)/2(x − PAα
x)‖2

≤ ‖(A−(q−r)/2 − A−(q−r)/2PAα
)Aq/2x‖2

≤ C‖x‖2q2−2(q−r)mini αi ,

where the first line follows from the definition, the second follows from commutativity
of PAα

and A, and the final line follows from the definition of operator norm and (48).
��

We restate and prove Proposition 2.4.

Proposition B.2 Given x : � → R is a Gaussian process, with probability measure
denoted π0, defined on compact finite dimensional space �, that is almost surely
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continuous and has a finite mean and covariance. If we define π by

(LGC)
dπ

dπ0
(x) ∝ exp

⎡

⎣
n∑

j=1

x(z j ) −
∫

�

exp(x(z))dz

⎤

⎦ ,

(LGP)
dπ

dπ0
(x) ∝ exp

⎡

⎣
n∑

j=1

x(z j ) − n log
∫

�

exp(x(z))dz

⎤

⎦ .

for n ∈ N then π(dx) is a well-defined probability measure, and can be represented
in terms of its density with respect to π0:

π(dx) = dπ

dπ0
π0(dx) .

We first proof the proposition for LGC.

Proof For π with LGC to be well defined, the first exponential above must be inte-
grable. Specifically, we require that

0 < Z := Eπ0

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
∫

�

exp(x(s))ds

⎫
⎬

⎭

⎤

⎦ < ∞ .

To upper-bound Z notice that
∑n

j=1 x(s j ) is a real-valued Gaussian random variable

with finite mean and variance, which we denote by μ and σ 2, respectively. Also,
exp(x(s)) is non-negative thus

Z := Eπ0

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
∫

�

exp(x(s))ds

⎫
⎬

⎭

⎤

⎦

≤ Eπ0

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j )

⎫
⎬

⎭

⎤

⎦ = E[eμ+σ 2/2] < ∞ .

This gives the required upper-bound.
For the lower-bound, we note that since x(s) is almost surely continuous and �

is compact, then sups∈� x(s) is almost surely finite. Thus
∫
�
exp(x(s))ds is almost

surely finite, because
∫
�
exp(x(s))ds < |�| exp(sups∈� x(s)). Thus, by Monotone

convergence, there exists a value of K1 such that

P

( ∫

�

exp(x(s))ds > K1

)
≤ 1/4
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Similarly since
∑n

i=1 xi (s) is Gaussian, there exists a value of K2 such that

P

⎛

⎝
n∑

j=1

x j (s) ≤ −K2

⎞

⎠ ≤ 1/4

Taking, K = 2(K1 ∨ K2)

P

⎛

⎝
n∑

j=1

x(s j ) −
∫

�

exp(x(s))ds > −K

⎞

⎠

≥ P

⎛

⎝
n∑

j=1

x(s j ) > −K/2,−
∫

[0,1]2
exp(x(s))ds > −K/2

⎞

⎠

≥ 1− P

⎛

⎝
n∑

j=1

x(s j ) ≤ −K/2

⎞

⎠− P

(

K/2 ≤
∫

�

exp(x(s))ds

)

≥ 1− 1

4
− 1

4
= 1

2
.

Thus Markov’s inequality for corresponding value of K gives

Z :=Eπ0

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
∫

�

exp(x(s))ds

⎫
⎬

⎭

⎤

⎦ ≥ 1

2
e−K > 0 ,

as required. ��
We now prove the proposition for LGP.

Proof For π with LGP to be well defined, the second exponential above must be
integrable. Specifically, we require that

0 < Z := Eπ0

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) − n log

(∫

�

exp(x(s))ds

)
⎫
⎬

⎭

⎤

⎦ < ∞ .

First, we show Z is lower bounded by 0. Notice that since the process x(s) is almost
surely continuous in s and the domain � is compact. Thus almost surely it holds that

Z̃ := exp

⎧
⎨

⎩

n∑

j=1

x(s j ) − n log

(∫

�

exp(x(s))ds

)
⎫
⎬

⎭
> 0

As an immediate consequence Z = Eπ0 [Z̃ ] > 0, as required.
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We now show Z is upper-bounded. Notice that, if we let u = (ui : i = 1, .., n)

be independent uniformly distributed on � (wlog we assume |�| = 1) then we can
bound as follows

Z̃ = exp

⎧
⎨

⎩

n∑

j=1

x(s j )

⎫
⎬

⎭

(∫

�

exp(x(s))ds

)−n

= exp

⎧
⎨

⎩

n∑

j=1

x(s j )

⎫
⎬

⎭

(
Eu

[
e
∑n

i=1 x(ui )
])−1

≤ exp

⎧
⎨

⎩

n∑

j=1

x(s j )

⎫
⎬

⎭
Eu

[
e−

∑n
i=1 x(ui )

]
= Eu

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
n∑

i=1

x(ui )

⎫
⎬

⎭

⎤

⎦ (49)

The inequality above applies Jensen’s Inequality. Thus, we see we can bound Z by
bounding the expectation of exp{∑n

j=1 x(s j )−
∑n

i=1 x(ui )}with respect to π0 and u.
By Fubini’s Theorem [62], we can hold u fixed and take the expectation with respect to
π0. Notice that under π0, x is a Gaussian process with bounded mean and covariance.
We let μ and σ bound the mean and covariance of x . So, conditional on u, it holds
that

Eπ0

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
n∑

i=1

x(ui )

⎫
⎬

⎭

⎤

⎦ ≤ enμ+nσ 2/2 .

Since the above upper bound is independent of u, we have that

Eπ0

⎡

⎣Eu

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
n∑

i=1

x(ui )

⎫
⎬

⎭

⎤

⎦

⎤

⎦ ≤ enμ+nσ 2/2 . (50)

Note that Fubini for positive random variables allows interchanging integrals without
a priori finite guarantees [62]. Combining inequalities (49) and (50) we have

Z = Eπ0 [Z̃ ] ≤ Eπ0

⎡

⎣Eu

⎡

⎣exp

⎧
⎨

⎩

n∑

j=1

x(s j ) −
n∑

i=1

x(ui )

⎫
⎬

⎭

⎤

⎦

⎤

⎦ ≤ enμ+nσ 2/2 < ∞ ,

which gives the required upper bound on Z . ��

We now restate and prove Proposition 2.5.

Proposition B.3 For both LGP and LGC, there is a C > 0 such that for x ∼ π0 and
xα = PAα

x, where PAα
denotes the projection onto the index set Aα defined in (14),

the following rate estimate holds for all q < (β − 1)/2

E|Lα(xα) − L(x)|2 ≤ C2−2min{q,1}min{α1,α2} .
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Proof The result is proven for the more difficult case of LGC. The LGP case follows
similarly. Define

�(x) :=
n∑

j=1

x(z j ) −
∫

�

exp(x(z))dz (51)

�α(xα) :=
n∑

j=1

x̂α(z j ) − Q(exp(xα)) , (52)

wherewe recall the definition of x̂α above (15).Now L(x) = exp(�(x)) and Lα(xα) =
exp(�α(xα)). Note that π0 = N (0, C) and that C has the kernel representation

C(z, z′) =
∑

k1

ρ2
k1φk1(z1)φk1(z

′
1)
∑

k2

ρ2
k2φk2(z2)φk2(z

′
2) =: C1(z1, z′1)C2(z2, z′2) .

This means that the dependence between z1 and z2 is only statistical, via ξk in (10),
and therefore a given realisation x ∼ π0 admits factorisation

x(z) =
∑

k1

ρk1φk1(z1)x2,k1(z2) ,

where, for each k1, the i.i.d. random variables

x2,k1(z2) =
∑

k2

ξk1,k2ρk2φk2(z2)

have the properties of x ′2 ∼ N (0, C2), i.e. x2,k1 ∈ Hβ/2 and the one-dimensional
Sobolev embedding theorem (see, e.g. [59]) provides ‖x2,k1‖L∞(�) ≤ C‖x2,k1‖r , for
r ∈ [1/2, β/2]. Furthermore, letting x̂1(z1) := ∑

k1 ρk1‖x2,k1‖rφk1(z1), it is clear
that ‖x̂1‖r = ‖x‖r < ∞ for r < β/2. Hence, applying Sobolev embedding theorem
again on x̂1(z1), we have ‖x̂1‖L∞(�) ≤ C‖x̂1‖r , for r ∈ [1/2, β/2]. Now, since
‖φk1‖L∞(�) = 1 for all k1 and ρk1‖x2,k1‖r ≥ 0,

‖x̂1‖L∞(�) = sup
z1

∑

k1

ρk1‖x2,k1‖r |φk1(z1)| (53)

≥ C sup
z1

∑

k1

ρk1‖x2,k1‖L∞(�)|φk1(z1)| (54)

≥ C sup
z1,z2

∣
∣
∣
∣
∣
∣

∑

k1

∑

k2

ρk1φk1(z1)ξk1,k2ρk2φk2(z2)

∣
∣
∣
∣
∣
∣

(55)

= C‖x‖L∞(�) . (56)

Sobolev embedding theorem is used on x2,k1 in the second line, and definitions are
used in the third and fourth lines. In conclusion, ‖x‖L∞(�) ≤ C‖x‖r , for r ≥ 1/2.
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We have that

n∑

j=1

x(z j ) ≤ n sup
z∈�

x(z) ≤ C‖x‖r . (57)

Therefore,

�(x),�α(xα) ≤ ‖x‖r . (58)

Furthermore, observe that this implies that for all ε > 0

�(x),�α(xα) ≤ ε‖x‖2r + ε−1 . (59)

To see this consider the cases ‖x‖r > ε−1 and ‖x‖r ≤ ε−1 separately.
By the mean value theorem,

E[|Lα(xα) − L(x)|2] =
∫

Hm
β/2

(exp(�(x)) − exp(�α(xα))2 dπ0 (60)

≤
∫

Hm
β/2

exp (max{�(x),�α(xα)}) |�(x) − �α(xα)|2 dπ0 .

(61)

Note that for the exponential term in the integral

exp(max{�(x),�α(xα)}) ≤ exp(�(x)) + exp(�α(xα)) (62)

≤ C(ε) exp(ε‖x‖2r ) (63)

and for the squared term

|�(x) − �α(xα)|2 =
∣
∣
∣
∣
∣
∣

n∑

j=1

x(z j ) −
∫

�
exp(x(z))dz −

n∑

j=1

x̂α(z j ) + Q(exp(xα))

∣
∣
∣
∣
∣
∣

2

(64)

≤ 2

∣
∣
∣
∣

n∑

j=1

x(z j ) −
n∑

j=1

x̂α(z j )

∣
∣
∣
∣

2

+ 2

∣
∣
∣
∣

∫

�
exp(x(z))dz − Q(exp(xα))dz

∣
∣
∣
∣

2

(65)

The bound (63) is clear following (59). Now consider the bound of |�(x) −
�α(xα)|2. For the first term of (65), let x̂α correspond to piecewise linear interpo-
lation for simplicity. As in (57) we have

∣
∣
∣
∣

n∑

j=1

(x(z j ) − x̂α(z j ))

∣
∣
∣
∣ ≤ C‖x − x̂α‖r .
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Given standard piecewise linear approximation estimates which lead to Proposi-
tion 2.1, and weaker versions such as [25]

‖xα − x̂α‖ ≤ 2−min{α1,α2}‖∇xα‖ ≤ C2−min{α1,α2}‖xα‖1 ,

it is natural to assume the following generalisation, for p > 0 and r + p ≤ 2,

‖xα − x̂α‖r ≤ 2−pmin{α1,α2}‖xα‖r+p . (66)

For p = (β − 1)/2, and r = 1/2, the bound is

‖x − x̂α‖r ≤ ‖x − xα‖r + ‖xα − x̂α‖r ≤ ‖x − xα‖r + 2−
(β−1)

2 min{α1,α2}‖xα‖β/2 .(67)

Recall that, by 2.3, x ∼ π0 implies that x ∈ Hm
β/2 a.s. and hence xα ∈ Hm

β/2 a.s.
Now consider the second term of (65). For the sake of concreteness, we use the

trapezoidal quadrature rule so that Q(exp(xα)) = 2−(α1+α2)
∑

h∈∏2
i=1{0,2−αi ,...,1} wh

exp(xα(h)) (where wh = (1/2)I and I = #{i; hi ∈ {0, 1}}, i.e. the boundary terms
are down-weighted, by 1/2 on edges and 1/4 at corners). Now

∫

�

exp(x(z))dz − Q(exp(xα)) =
∫

�

(exp(x(z)) − exp(xα(z)))dz

+
∫

�

exp(xα(z))dz − Q(exp(xα)) . (68)

For the first term, we have

∫

�

(exp(x(z)) − exp(xα(z)))dz ≤ ‖ exp(max{x(z), xα(z)})‖‖x − xα‖
≤ C exp(‖x‖r )‖x − xα‖ , (69)

where the first line follows from the mean value theorem and Cauchy Schwartz
inequality, while in the second line, the first factor follows from the inequality
‖x‖L∞(�) ≤ ‖x‖r , and the fact that |�| < ∞. Note that we are restricted to the
‖ · ‖r estimate as a result of the pointwise observations, as in (58), but ‖x‖ ≤ ‖x‖r
so (69) is suitable. For the second term of (68), since the trapezoidal rule for D = 2
follows from iterating the D = 1 rules, Theorem 1.8 of [18], along with similar
manipulations as above, implies

∫

�

exp(xα(z))dz − Q(exp(xα)) ≤ C2−min{α1,α2} exp(‖x‖r )‖xα‖1 . (70)

Following fromProposition 2.3, we require β ≥ 2 so that x ∈ Hm
1 a.s. and the constant

in the second term (70) is controlled. Combining (69) and (70) in (68), we have
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∫

�

exp(x(z))dz − Q(exp(xα)) ≤ C exp(‖x‖r )‖x − xα‖
+C2−min{α1,α2} exp(‖x‖r )‖xα‖1 . (71)

Now let r = 1/2 + δ for δ > 0 arbitrarily small. Then for q ∈ (0, (β − 1)/2),
plugging (67) and (71) into (65) and using the same argument leading to (59) and then
Proposition 2.3, we have

|�(x) − �α(xα)|2 ≤ C(ε) exp(2ε‖x‖2β/2)2
−2min{q,1}min{α1,α2} . (72)

We note that our interest here is in rough priors with q ≤ 1. In case q > 1, one
would employ higher-order interpolation and quadrature such that these errors do not
limit the rate of convergence.

Finally,

E[|Lα(xα) − L(x)|2] ≤ C(ε)

∫

Hm
β/2

exp(3ε‖x‖2β/2)dπ02
−2min{q,1}min{α1,α2}

≤ C2−2min{q,1}min{α1,α2}

Thefirst inequality is by substituting (63) and (72) in (61) and applying‖x‖2r ≤ ‖x‖2β/2.
We note that the first inequality holds for all ε > 0. Fernique theorem (e.g. Theorem
6.9 of [59]) guarantees that π0(exp(3ε‖x‖2β/2)) < ∞ for some ε > 0, and allows us
to conclude with the second line. ��

C Additional Numerical Results

C.1 1DToy Example

We consider a 1D Toy Example first, whose likelihood is analytically tractable. This
example is taken from [41]. Note that the multi-index methods are the same as mul-
tilevel methods in 1D. Considering the PDE (2)–(3) with D = 1, let � = [0, 1],
a = 1, and the forcing term be f = x , where x is a random input with a uniform
prior such that x ∼ U [−1, 1]. This differential equation can be solved analytically
as u(x) = −0.5x(z2 − z). Assume the observation operator as (7) and the observa-
tion taking the form as (8). The pointwise observations are well defined in 1D with
x ∈ L2(�). We take the observations at ten points in the interval (0,1) with a step
size 1/10. Let � = 0.2. Observations are generated by y = −0.5x∗(z2 − z) + ν,
where y = [y1, . . . , y10], z = [z1, . . . , z10], x∗ = 0.2581 drawn from U [−1, 1] and
ν ∼ N (0, 0.22).

For this example, the quantity of interest used is x2. By applying the FEM and
discretising the differential equation with the step size hl = 2−l−1, we have s = 2,
β = 4. This is shown in Fig 6a and b. The value of γ is 1 because we use a linear
nodal basis function for FEM and tridiagonal solver. The algorithm is applied with
Metropolis–Hastings method and a fixed tempering schedule for all α, where J = 3.
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Fig. 5 1D toy example, SMC, MLMCMC and MISMC rate of convergence by MSE vs Cost. Rates of
regression: (1) MLSMC_SN: −1.011 (2) MLSMC_RE: −1.005 (3) SMC: −0.753 (4) MLMCMC_SN:
−1.005

Fig. 6 1D toy example convergence rates. Bl is computed with 100 realisations and shown in panel 6a along
with a line corresponding to s = 2. Vl is computed with 100 realisations and shown in panel 6a along with
a line corresponding to β = 4

The MSE shown in Fig. 5 is calculated with 100 realisations, where the reference
solution canbeworkedout as in [41]. The total computational cost is ofO(

∑L
l=0 NlCl).

For comparison, single-level SMC, MLMCMC and MLSMC with the self-
normalised increment estimator are applied in this example. It is difficult to observe
the approximate rates from the plot directly, so we fit the rates and demonstrate those
in the caption. The rate of convergence of single-level SMC is close to -4/5. The rate
of convergence of MLMCMCwith the self-normalised increment estimator, MLSMC
with the self-normalised increment estimator and our MLSMC with ratio estimator
are all approximately -1, which is the canonical complexity and better in terms of rate
of convergence than the single-level methods as expected. The difference of perfor-
mance between MLMCMC and MLSMC with either of the two estimators is only up
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to a constant. MLMCMC has a smaller constant here, presumably as a consequence
of the simplicity of the problem and the tuning of MLSMC. Our MLSMC with the
ratio estimator appears to have a slightly larger constant, while the theoretical results
remain its advantage.

C.2 2D Elliptic PDE with RandomDiffusion Coefficient

See Figs. 7, 8, 9 and 10.

Fig. 7 2DElliptic PDEwith randomdiffusion coefficient. Verification ofMISMC rates as inAssumption 4.2
for α1 given α2 = 7, computed with 20 realisations and 1000 samples for each realisation. Left: s1. Right:
β1. The same result holds for an α1 = 7 (not shown)

Fig. 8 2DElliptic PDEwith randomdiffusion coefficient. Verification ofMISMC rates as inAssumption 4.2
for α1 = α2, computed with 20 realisations and 1000 samples for each realisation. Left: s1 + s2. Right:
β1 + β2

123



Foundations of Computational Mathematics

Fig. 9 2DElliptic PDEwith randomdiffusion coefficient.Verification ofMISMCrates as inAssumption4.2,
computed with 20 realisations and 1000 samples for each realisation. Left: s. Right: β

Fig. 10 2D Elliptic PDE with random diffusion coefficient. Verification of increment rates associated with
MLSMC. Computed with 20 realisations and 2000 samples for each realisation. Left: s. Right: β
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C.3 LGC

See Figs. 11, 12, 13 and 14.

Fig. 11 LGCmodel. Verification of mixed rates associated with Assumption 4.2 for MISMC, over α2 given
α1 = 8, computed with 20 realisations and 1000 samples for each realisation. Left: s2. Right: β2. The same
result holds over α1 for α2 = 8 (not shown)

Fig. 12 LGCmodel. Verification ofmixed rates associated with Assumption 4.2 forMISMC, over α2 = α1,
computed with 20 realisations and 1000 samples for each realisation. Left: 2s. Right: 2β
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Fig. 13 LGC model. Verification of mixed rates associated with Assumption 4.2 for MISMC, over α2 and
α1, computed with 20 realisations and 1000 samples for each realisation. Left: 2s. Right: 2β

Fig. 14 LGC model. Verification of increment rates for MLSMC, computed with 20 realisations and 1000
samples for each realisation. Left: s. Right: β
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C.4 LGP

See Figs. 15, 16, 17 and 18.

Fig. 15 LGPmodel. Verification of mixed rates associated with Assumption 4.2 for MISMC, over α2 given
α1 = 8, computed with 20 realisations and 1000 samples for each realisation. Left: s2. Right: β2. The same
result holds over α1 for α2 = 8 (not shown)

Fig. 16 LGPmodel. Verification of mixed rates associated with Assumption 4.2 forMISMC, over α2 = α1,
computed with 20 realisations and 1000 samples for each realisation. Left: 2s. Right: 2β
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Fig. 17 LGP model. Verification of mixed rates associated with Assumption 4.2 for MISMC, over α2 and
α1, computed with 20 realisations and 1000 samples for each realisation. Left: 2s. Right: 2β

Fig. 18 LGP model. Verification of increment rates for MLSMC, computed with 20 realisations and 1000
samples for each realisation. Left: s. Right: β
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