
Foundations of Computational Mathematics
https://doi.org/10.1007/s10208-023-09607-w

Proof of the Theory-to-Practice Gap in Deep Learning via
Sampling Complexity bounds for Neural Network
Approximation Spaces

Philipp Grohs1,2,3 · Felix Voigtlaender1,4,5

Received: 29 October 2021 / Revised: 15 September 2022 / Accepted: 26 September 2022
© The Author(s) 2023

Abstract
We study the computational complexity of (deterministic or randomized) algorithms
based on point samples for approximating or integrating functions that can be well
approximated by neural networks. Such algorithms (most prominently stochastic gra-
dient descent and its variants) are used extensively in the field of deep learning. One
of the most important problems in this field concerns the question of whether it is
possible to realize theoretically provable neural network approximation rates by such
algorithms. We answer this question in the negative by proving hardness results for
the problems of approximation and integration on a novel class of neural network
approximation spaces. In particular, our results confirm a conjectured and empiri-
cally observed theory-to-practice gap in deep learning. We complement our hardness

Communicated by Teresa Krick and Hans Munthe-Kaas.

Philipp Grohs and Felix Voigtlaender contributed equally to this work.

Invited paper associated to the FoCM 2021 Online Seminar lecture Deep Learning in Numerical Analysis
presented by Philipp Grohs in May 2021.

F. Voigtlaender acknowledges support by the German Research Foundation (DFG) in the context of the
Emmy Noether junior research group VO 2594/1–1.

B Philipp Grohs
philipp.grohs@univie.ac.at

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

2 Research Platform Data Science @ Uni Vienna, Währinger Straße 29/S6, 1090 Vienna, Austria

3 Johann Radon Institute, Altenberger Straße 69, 4040 Linz, Austria

4 Department of Mathematics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching,
Germany

5 Mathematical Institute for Machine Learning and Data Science (MIDS), Catholic University
Eichstätt-Ingolstadt (KU), Auf der Schanz 49, 85049 Ingolstadt, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-023-09607-w&domain=pdf

Foundations of Computational Mathematics

results by showing that error bounds of a comparable order of convergence are (at
least theoretically) achievable.

Keywords Deep neural networks · Approximation spaces · Information based
complexity · Gelfand numbers · Theory-to-computational gaps · Randomized
approximation

Mathematics Subject Classification Primary 41A46 · 68T07; Secondary 41A65 ·
41A25 · 68T05 · 65Y20

1 Introduction

The use of data-driven classification and regression algorithms based on deep neural
networks—coined deep learning—hasmade a big impact in the areas of artificial intel-
ligence, machine learning, and data analysis and has led to a number of breakthroughs
in diverse areas of artificial intelligence, including image classification [24, 29, 32,
47], natural language processing [53], game playing [34, 45, 46, 51], and symbolic
mathematics [31, 42].

More recently, these methods have been applied to problems from the natural sci-
ences where data driven approaches are combined with physical models. Example
applications in this field—called scientific machine learning—include the develop-
ment of drugs [33], molecular dynamics [18], high-energy physics [5], protein folding
[43], or numerically solving inverse problems and partial differential equations (PDEs)
[4, 17, 26, 37, 40].

For this wide variety of different application areas, one can summarize the under-
lying computational problem as approximating an unknown function f (or a quantity
of interest depending on f) based on possibly noisy and random samples (f (xi))mi=1.
In deep learning this is being done by fitting a neural network to these samples using
stochastic optimization algorithms.While there is still no convincingly comprehensive
explanation for the empirically observed success (or failure) of this methodology, its
success critically hinges on the properties

A. that f can be well approximated by neural networks, and
B. that f (or a quantity of interest depending on f) can be efficiently and accurately

reconstructed from a relatively small number of samples (f (xi))mi=1.

In other words, the validity of both A and B constitutes a necessary condition for a
deep learning approach to be efficient. This is especially true in applications related
to scientific machine learning where often a guaranteed high accuracy is required and
where obtaining samples is computationally expensive.

To date most theoretical contributions focused on Property A, namely study-
ing which functions can be well approximated by neural networks. It is now well
understood that neural networks are superior approximators compared to virtually all
classical approximation methods, including polynomials, finite elements, wavelets,
or low rank representations; see [15, 22] for two recent surveys. Beyond that it was
recently shown that neural networks can approximate solutions of high dimensional

123

Foundations of Computational Mathematics

PDEs without suffering from the curse of dimensionality [21, 27, 30]. In light of
these results it becomes clear that neural networks are a highly expressive and ver-
satile function class whose theoretical approximation capabilities vastly outperform
classical numerical function representations.

On the other hand, the question ofwhether property B holds, namely towhich extent
these superior approximation properties can be harnessed by an efficient algorithm
based on point samples, remains one of the most relevant open questions in the field of
deep learning. At present, almost no theoretical results exist in this direction. On the
empirical side, Adcock and Dexter [1] recently performed a careful study finding that
the theoretical approximation rates are in general not attained by common algorithms,
meaning that the convergence rate of these algorithms does not match the theoretically
postulated approximation rates. In [1] this empirically observed phenomenon is coined
the theory-to-practice gap of deep learning. In this paper we prove the existence of
this gap.

1.1 Description of Results

To provide an appropriate mathematical framework for understanding Properties A
and B we introduce neural network spaces which classify functions f : [0, 1]d → R

according to how rapidly the error of approximation by neural networkswith nweights
decays as n → ∞. Specifically we consider neural networks using the rectified linear
unit (ReLU) activation function, i.e., functions of the form

g = TL ◦ (� ◦ TL−1) ◦ · · · ◦ (� ◦ T1), (1.1)

where
T� x = A� x + b� (1.2)

are affine mappings and �
(
(x1, . . . , xn)

) = (
max{x1, 0}, . . . ,max{xn, 0}). Referring

to L as the depth of the neural network (1.1) and to total number of nonzero coefficients
of the matrix-vector pairs (A�, b�)L�=1 in (1.2) as number of weights of the neural
network,we can formalize the property of beingwell approximable by neural networks
as follows.

For α > 0 let

Uα := {
f : [0, 1]d → R : for every n ∈ N

there is a ReLU neural network g with depth L and

n weights of magnitude at most 1 such that ‖ f − g‖∞ ≤ n−α
}

(1.3)

In words, the setsUα consist of all functions that are approximable by neural networks
with depth L and at most n uniformly bounded coefficients to within uniform accuracy
� n−α . For the remainder of the introduction we will say that f can be approximated
at rate α by depth L neural networks if f ∈ Uα .

We emphasize that all our results apply to much more general approximation
spaces than the sets Uα (which is in fact the unit ball of some approximation space),

123

Foundations of Computational Mathematics

incorporating more complex constraints on the approximating neural network while
considering approximation with respect to arbitrary L p norms; see Sect. 2.2 for more
details. In any case, for the current discussion it is sufficient to note that membership
of f in such a space for large α simply means that Property A is satisfied.

For the mathematical formalization of Property B we employ the formalism of
Information Based Complexity (more precisely we will study sampling numbers of
neural network approximation spaces), as for example presented in [25]. This theory
provides a general framework for studying the complexity of approximating a given
solution mapping S : U → Y , with U ⊂ C([0, 1]d) bounded, and Y a Banach space,
under the constraint that the approximating algorithm is only allowed to access point
samples of the functions f ∈ U . Formally, a (deterministic) algorithm using m point
samples is determined by a set of sample points x = (x1, . . . , xm) ∈ ([0, 1]d)m and a
map Q : R

m → Y such that

A(f) = Q
(
f (x1), . . . , f (xm)

) ∀ f ∈ U .

The set of all such algorithms is denoted Algm(U ,Y) and we define the optimal order
for (deterministically) approximating S : U → Y using point samples as the best
possible convergence rate with respect to the number of samples:

βdet∗ (U , S) := sup
{
β ≥ 0 : ∃C > 0 ∀m ∈ N : inf

A∈Algm (U ,Y)
sup
f ∈U

‖A(f) − S(f)‖Y ≤ C · m−β
}
.

In a similar way one can define randomized algorithms and consider the optimal
order βran∗ (U , S) for approximating S using randomized algorithms based on point
samples; see Sect. 2.4.2 below. We emphasize that all currently used deep learning
algorithms, such as stochastic gradient descent (SGD) [44] and its variants (such as
ADAM [28]) are of this form.

In this paper we derive bounds for the optimal orders βdet∗ (U , S) and βran∗ (U , S)
for the unit ball U = Uα and the following solution mappings:

1. The embedding into C([0, 1]d), i.e., S = ι∞ for ι∞ : U → C([0, 1]d), f
→ f ,
2. The embedding into L2([0, 1]d), i.e., S = ι2 for ι2 : U → L2([0, 1]d), f
→ f ,

and
3. The definite integral, i.e., S = T∫ for T∫ : U → R, f
→ ∫

[0,1]d f (x) dx .

1.1.1 Approximation with Respect to the Uniform Norm

We first consider the solution mapping S = ι∞ operating on U = Uα , i.e., the
problem of approximation with respect to the uniform norm. Then the property
βran∗ (U , ι∞) = α would imply that the theoretical approximation rate α with respect
to the uniform norm can in principle be realized by a (randomized) algorithm such
as SGD and its variants. On the other hand, if βran∗ (U , ι∞) < α, then there cannot
exist any (randomized) algorithm based on point samples that realizes the theoretical
approximation rate α with respect to the uniform norm—that is, there exists a theory-
to-practice gap. We now present (a slightly simplified version of) our first main result
establishing such a gap for ι∞.

123

Foundations of Computational Mathematics

Theorem 1.1 (special case of Theorems 4.2 and 5.1) We have

βran∗
(
Uα, ι∞

) = βdet∗
(
Uα, ι∞

) = 1

d
· α

�L/2� + α
∈ [0, 1

d

]
.

Theorem 1.1 states that for every β < 1
d · α

�L/2�+α
and for every m ∈ N there

exists an algorithm using m point samples such that every function f ∈ Uα (i.e.,
f can be approximated at rate α by depth L neural networks) can be reconstructed to
within L∞ error � m−β . Conversely, this rate is the maximally achievable rate. Note
the big discrepancy between the approximation rate α and the maximally achievable
reconstruction rate 1

d · α
�L/2�+α

, especially for large input dimensions d. Probably
the term “gap” is a vast understatement for the difference between the theoretical
approximation rate α and the rate β∗ ≤ min{ 1d , α

d } that can actually be realized by
a numerical algorithm. A particular consequence of Theorem 1.1 is that if all one
knows is that a function f is well approximated by neural networks— no matter
how rapidly the approximation error decays—any conceivable numerical algorithm
based on function samples (such as SGD and its variants) requires at least �(ε−d)

many samples to guarantee an error ε > 0 with respect to the uniform norm. Since
evaluating f takes a certain minimum amount of time, any conceivable numerical
algorithmbased on function samples (such as SGDand its variants)must have aworst-
case runtime scaling at least as �(ε−d) to guarantee an error ε > 0 with respect to
the uniform norm—irrespective of how well f can be theoretically approximated by
neural networks. In particular:

• Any conceivable numerical algorithm based on function samples (such as SGD
and its variants) suffers from the curse of dimensionality—even if neural network
approximations exist that do not.

• On the class of all functions well approximable by neural networks it is impos-
sible to realize these high convergence rates for uniform approximation with any
conceivable numerical algorithm based on function samples (such as SGD and its
variants).

• If the number of layers is unbounded it is impossible to realize any positive conver-
gence rate on the class of all functions well approximable by neural networks for
the problem of uniform approximation with any conceivable numerical algorithm
based on function samples (such as SGD and its variants).

Our findings disqualify deep learning-basedmethods for problemswhere high uniform
accuracy is desired, at least if the only available information is that the function of
interest is well approximated by neural networks.

1.1.2 Approximation with Respect to the L2 Norm

Next we consider the solution mapping S = ι2 operating on U = Uα , i.e., the
problem of approximation with respect to the L2 norm. Also in this case we establish
a considerable theory-to-practice gap, albeit not as severe as in the case of S = ι∞. A
slightly simplified version of our main result is as follows.

123

Foundations of Computational Mathematics

Theorem 1.2 (special case of Theorems 6.3 and 7.1) We have

βran∗
(
Uα, ι2

)
, βdet∗

(
Uα, ι2

) ∈
[

1

2 + 2/α
,
1

2
+ α

�L/2� + α

]
.

We see again that it is impossible to realize a high convergence rate with any
conceivable algorithm based on point samples, no matter how high the theoreti-
cally possible approximation rate α may be. Indeed, the theorem easily implies
βran∗

(
Uα, ι2

)
, βdet∗

(
Uα, ι2

) ≤ 3
2 , irrespective of α. This means that any conceiv-

able (possibly randomized) numerical algorithm based on function samples (such as
SGD and its variants) must have a worst-case runtime scaling at least as�(ε−2/3) to
guarantee an L2 error ε > 0—irrespective of how well the function of interest can be
theoretically approximated by neural networks.On the positive side, there is a uniform
lower bound of 1

2+ 2
α

for the optimal rate, which means that there exist algorithms (in

the sense defined above) that almost realize an error bound ofO(m−1/2), givenm point
samples, for α sufficiently large. Note however that the existence of such an algorithm
by no means implies the existence of an efficient algorithm, say, with runtime scaling
linearly or even polynomially in m.

Our findings disqualify deep learning-based methods for problems where a high
convergence rate of the L2 error is desired, at least if the only available information
is that the function of interest is well approximated by neural networks. On the other
hand, deep learning based methods may be a viable option for problems where a
low—but dimension independent—convergence rate of the L2 error is sufficient.

1.1.3 Integration

Finally we consider the solution mapping S = T∫ operating onU = Uα . The question

of estimatingβran∗
(
Uα, T∫

)
andβdet∗

(
Uα, T∫

)
can be equivalently stated as the question

of determining the optimal order of (Monte Carlo or deterministic) quadrature on neu-
ral network approximation spaces. Again we exhibit a significant theory-to-practice
gap that we summarize in the following simplified version of our main result.

Theorem 1.3 (special case of Theorems 9.1, 9.4, 8.1 and 8.4) We have

βdet∗
(
Uα, T∫

) ∈
[

1

2 + 1/α
, 1 + α

�L/2� + α

]
.

βran∗
(
Uα, T∫

) ∈
[
1

2
+ 1

2 + 2/α
, 1 + α

�L/2� + α

]
.

We see in particular that there are no (deterministic or Monte Carlo) quadrature
schemes achieving a convergence order greater than 2. Further, if the number of
layers is unbounded, there are no (deterministic or Monte Carlo) quadrature schemes
achieving a convergence order greater than 1. On the other hand there exist Monte
Carlo algorithms that almost realize a rate 1 forα sufficiently large. This again does not

123

Foundations of Computational Mathematics

imply the existence of an efficient algorithm with this convergence rate; but it is well-
known that the error bound O(m−1/2) can be efficiently realized by standard Monte
Carlo integration, Theorem 1.3 implies that there is not much room for improvement.

1.1.4 General Comments

We close the overview of our results with the following general comments.

• Our results for the first time shed light on the question ofwhich problem classes can
be efficiently tackled by deep learning methods and which problem classes might
be better handled using classical methods such as finite elements. These findings
enable informed choices regarding the use of these methods. Concretely, we find
that it is not advisable to use deep learning methods for problems where a high
convergence rate and/or uniform accuracy is needed. In particular, no high order
(approximation or quadrature) algorithms exist, provided that the only available
information is that the function of interest iswell approximated by neural networks.

• As another contribution, we exhibit the exact impact of the choice of the architec-
ture, such as the number of layers, and magnitude of the coefficients. Particularly,
we show that allowing the number of layers to be unbounded adversely affects the
optimal rate β∗.

• Our hardness results hold universally across virtually all choices of network archi-
tectures. Concretely, all hardness results of Theorems 1.1, 1.2 and 1.3 hold true
whenever at least 3 layers are used. This means that limiting the number of layers
will not help. In this context we also note that it is known that at least �α/2d�
layers are needed for ReLU neural networks to achieve the (essentially) optimal
approximation rate α

d for all f ∈ Cα([0, 1]d); see [36, Theorem C.6].
• Our hardness results hold universally across all size constraints on the magni-
tudes of the approximating network weights. Furthermore, a careful analysis of
our proofs reveals that our hardness results qualitatively remain true if analogous
constraints are put on the �2 norms of the weights of the approximating networks.
Such constraints constitute a common regularization strategy, termedweight decay
[23]. This means that applying standard regularization strategies—such as weight
decay—will not help.

• In many machine learning problems one assumes that one only has access to
inexact (noisy) samples of a given function. Since this noise can be incorporated
into the stochasticity of a randomized algorithm, our hardness results also hold for
the case of noisy samples.

1.2 RelatedWork

To put our results in perspective we discuss related work.

1.2.1 Information-Based Complexity and Classical Function Spaces

The study of optimal rates β∗ for approximating a given solution map based on point
samples or general linear samples has a long tradition in approximation theory, function

123

Foundations of Computational Mathematics

space theory, spectral theory and information based complexity. It is closely related to
so-called Gelfand numbers of linear operators—a classical and well-studied concept
in function space theory and spectral theory [38, 39]. It is instructive to compare
our findings to these classical results, for example for U the unit ball in a Sobolev
spaces Wα∞([0, 1]d) and S = ι∞. These Sobolev spaces can be (not quite but almost,
see for example [49, Theorem 5.3.2] and [16, Theorem 12.1.1]) characterized by the
property that its elements can be approximated by polynomials of degree≤ n to within
L∞ accuracy O(n−α). Since the set of polynomials of degree ≤ n in dimension d
possesses � nd degrees of freedom, this approximation rate can be fully harnessed by
a deterministic, resp. randomized algorithm based on point samples if βdet∗

(
U , S

) =
α/d, resp. βran∗

(
U , S

) = α/d. It is a classical result that this is indeed the case, see [25,
Theorem 6.1]. This fact implies that there is no theory-to-practice gap in polynomial
approximation and can be considered the basis of any high order (approximation or
quadrature) algorithm in numerical analysis.

In the case of classical function spaces it is the generic behavior that the optimal rate
β∗ increases (linearly) with the underlying smoothness α, at least for fixed dimension
d. On the other hand, our results show that neural network approximation spaces have
the peculiar property that the optimal rate β∗ is always uniformly bounded, regardless
of the underlying “smoothness” α.

To put our results in a somewhat more abstract context we can compare the optimal
rate β∗ to other complexity measures of a function space. A well studied example is
the metric entropy related to the covering numbers Cov(V , ε) of sets V ⊂ C[0, 1]d .
The associated entropy exponent is

s∗(U) := sup
{
λ ≥ 0 : ∃C > 0 ∀ ε ∈ (0, 1) : Cov(U , ε) ≤ exp

(
C · ε−1/λ)},

which, roughly speaking, determines the theoretically optimal rateO(m−s∗) at which
an arbitrary element of U can be approximated from a representation using at
most m bits. On the other hand, β∗ determines the optimal rate O(m−β∗) that can
actually be realized by an algorithm using m point samples of the input function
f ∈ U . For a solution mapping S to be efficiently computable from point sam-
ples, one would therefore expect that β∗ = s∗ or at least that β∗ grows linearly
with s∗. For example, for U the unit ball in a Sobolev spaces Wα∞([0, 1]d) and
S = ι∞ we have s∗(U) = βdet∗ (U , ι∞) = βran∗ (U , ι∞) = α

d . In contrast, Uα =
Uα([0, 1]d) satisfies s∗

(
Uα
) ≥ α according to Lemma 6.2, while Theorem 1.1

shows βdet∗
(
Uα, ι∞

)
, βran∗

(
Uα, ι∞

) ≤ 1
d independent of α, and even βdet∗

(
Uα, ι∞

) =
βran∗

(
Uα, ι∞

) = 0 if the number of layers is unbounded. This is yet another manifes-
tation of the wide theory-to-practice gap in neural network approximation.

1.2.2 Other Hardness Results for Deep Learning

While we are not aware of any work addressing the optimal sampling complexity on
neural network spaces, there exist a number of different approaches to establishing
various “hardness” results for deep learning. We comment on some of them.

A prominent and classical research direction considers the computational complex-
ity of fitting a neural network of a fixed architecture to given (training) samples. It

123

Foundations of Computational Mathematics

is known that this can be an NP complete problem for certain specific architectures
and samples; see [9] for the first result in this direction that has inspired a large body
of follow-up work. This line of work does however not consider the full scope of
the problem, namely the relation between theoretically possible approximation rates
and algorithmically realizable rates. In our results we do not take into account the
computational efficiency of algorithms at all. Our results are stronger in the sense that
they show that even if there was an efficient algorithm for fitting a neural network to
samples, one would need to access too many samples to achieve efficient runtimes.

Another research direction considers the existence of convergent algorithms that
only have access to inexact information about the samples, as is commonly the case
when computing in floating point arithmetic. Specifically, [3] identifies various prob-
lems in sparse approximation that cannot be algorithmically solved based on inputs
with finite precision using neural networks. The deeper underlying reason is that these
problems cannot be solved by any algorithm based on inexact measurements. Thus,
the results of [3] are not really specific to neural networks. In contrast, our hardness
results are highly specific to the structure of neural networks and do not occur for
most other computational approaches.

A different kind of hardness results appears in the neural network approximation
theory literature. There, typically lower bounds are provided for the number of network
weights and/or number of layers that a neural network needs to have in order to
reach a desired accuracy in the approximation of functions from various classical
smoothness spaces [10, 36, 48, 52]. Yet, these bounds exclusively concern theoretical
approximation rates for classical smoothness spaces while our results provide bounds
for the realizability of these rates based on point samples

1.2.3 Other Work on Neural Network Approximation Spaces

Our definition of neural network approximation spaces is inspired by [20] where
such spaces were first introduced and some structural properties, such as embedding
theorems into classical function spaces, are investigated. The neural network spaces
Aα,p

�,c ([0, 1]d) introduced in the present work differ from those spaces in the sense that
we also allow to take the size of the network weights into account. This is important,
as such bounds on the weights are often enforced in applications through regulariza-
tion procedures. Another construction of neural network approximation spaces can be
found in [7] for the purpose of providing a calculus on functions that can be approx-
imated by neural networks without curse of dimensionality. While all these works
focus on aspects related to theoretical approximability of functions, our main focus
concerns the algorithmic realization of such approximations.

1.3 Notation

For n ∈ N, we write n := {1, 2, . . . , n}. For any finite set I �= ∅ and any sequence
(ai)i∈I ⊂ R, we define

∑
i∈I ai := 1

|I |
∑

i∈I ai . The expectation of a random variable
X will be denoted by E[X].

For a subset M ⊂ X of a metric space X , we write M for the closure of M and M◦
for the interior of M . In particular, this notation applies to subsets of R

d . We write
λ(M) for the Lebesgue measure of a (measurable) set M ⊂ R

d .

123

Foundations of Computational Mathematics

1.4 Structure of the paper

Section 2 formally introduces the neural network approximation spaces Aα,p
�,c and

furthermore provides a review of the most important notions and definitions from
information based complexity. The basis for all our hardness results is developed in
Sect. 3, where we show that the unit ball Uα,∞

�,c ([0, 1]d) in the approximation space

Aα,∞
�,c ([0, 1]d) contains a large family of “hat functions”, depending on the precise

properties of the functions �, c and on α > 0.
The remaining sections develop error bounds and hardness results for the problems

of uniform approximation (Sects. 4 and 5), approximation in L2 (Sects. 6 and 7), and
numerical integration (Sects. 8 and 9). Several technical proofs and results are deferred
to Sect. A.

2 The Notion of Sampling Complexity on Neural Network
Approximation Spaces

In this section, we first formally introduce the neural network approximation spaces
Aα,p

�,c and then review the framework of information based complexity, including the
notion of randomized algorithms and the concept of the optimal order of convergence
based on point samples.

2.1 TheMathematical Formalization of Neural Networks

In our analysis, it will be helpful to distinguish between a neural network
 as a set of
weights and the associated function R�
 computed by the network. Thus, we say that
a neural network is a tuple
 = (

(A1, b1), . . . , (AL , bL)
)
, with A� ∈ R

N�×N�−1 and
b� ∈ R

N� . We then say that a(
) := (N0, . . . , NL) ∈ N
L+1 is the architecture of
,

L(
) := L is the number of layers 1 of
, and W (
) := ∑L
j=1(‖A j‖�0 + ‖b j‖�0)

denotes the number of (nonzero) weights of
. The notation ‖A‖�0 used here denotes
the number of nonzero entries of amatrix (or vector) A. Finally, wewrite din(
) := N0
and dout(
) := NL for the input and output dimension of
, and we set ‖
‖NN :=
max j=1,...,L max{‖A j‖∞, ‖b j‖∞}, where ‖A‖∞ := maxi, j |Ai, j |.

To define the function R�
 computed by
, we need to specify an activation
function. In this paper, we will only consider the so-called rectified linear unit (ReLU)
� : R → R, x
→ max{0, x}, which we understand to act componentwise on R

n , i.e.,
�
(
(x1, . . . , xn)

) = (
�(x1), . . . , �(xn)

)
. The function R�
 : R

N0 → R
NL computed

by the network
 (its realization) is then given by

R�
 := TL ◦ (� ◦ TL−1) ◦ · · · ◦ (� ◦ T1) where T� x = A� x + b�.

1 Note that the number of hidden layers is given by H = L − 1.

123

Foundations of Computational Mathematics

2.2 Neural Network Approximation Spaces

Approximation spaces [14] classify functions according to how well they can be
approximated by a family � = (�n)n∈N of certain “simple functions” of increasing
complexity n, as n → ∞. Common examples consider the case where�n is the set of
polynomials of degree n, or the set of all linear combinations of n wavelets. The notion
of neural network approximation spaces was originally introduced in [20], where �n

was taken to be a family of neural networks of increasing complexity. However, [20]
does not impose any restrictions on the size of the individual network weights, which
plays an important role in practice and—as we shall see—also influences the possible
performance of algorithms based on point samples.

For this reason, we introduce a modified notion of neural network approximation
spaces that also takes the size of the individual networkweights into account. Precisely,
given an input dimension d ∈ N (which we will keep fixed throughout this paper)
and non-decreasing functions � : N → N≥2 ∪ {∞} and c : N → N ∪ {∞} (called
the depth-growth function and the coefficient growth function, respectively), we
define

��,c
n :=

{
R�
 :
 NN with din(
) = d, dout(
) = 1,

W (
) ≤ n, L(
) ≤ �(n), ‖
‖NN ≤ c(n)

}
.

Then, given a measurable subset � ⊂ R
d , p ∈ [1,∞], and α ∈ (0,∞), for each

measurable f : � → R, we define

α,p(f) := max
{

‖ f ‖L p(�), sup
n∈N

[
nα · dp

(
f , ��,c

n

)]} ∈ [0,∞],

where dp(f , �) := infg∈� ‖ f − g‖L p(�).

The remaining issue is that since the set ��,c
n is in general neither closed under

addition nor under multiplication with scalars,
α,p is not a (quasi)-norm. To resolve
this issue, taking inspiration from the theory of Orlicz spaces (see e.g. [41, Theorem 3
inSection 3.2]),we define theneural network approximation space quasi-norm ‖·‖Aα,p

�,c
as

‖ f ‖Aα,p
�,c

:= inf
{
θ > 0 :
α,p(f /θ) ≤ 1

} ∈ [0,∞],

giving rise to the approximation space

Aα,p
�,c := Aα,p

�,c (�) := {
f ∈ L p(�) : ‖ f ‖Aα,p

�,c
< ∞}.

The following lemma summarizes the main elementary properties of these spaces.

Lemma 2.1 Let ∅ �= � ⊂ R
d be measurable, let p ∈ [1,∞] and α ∈ (0,∞). Then,

Aα,p
�,c := Aα,p

�,c (�) satisfies the following properties:

123

Foundations of Computational Mathematics

1. (Aα,p
�,c , ‖ · ‖Aα,p

�,c
) is a quasi-normed space. Precisely, given arbitrary measurable

functions f , g : � → R, it holds that ‖ f + g‖Aα,p
�,c

≤ C · (‖ f ‖Aα,p
�,c

+ ‖g‖Aα,p
�,c

) for

C := 17α .
2. We have
α,p(c f) ≤ |c|
α,p(f) for c ∈ [−1, 1].
3.
α,p(f) ≤ 1 if and only if ‖ f ‖Aα,p

�,c
≤ 1.

4.
α,p(f) < ∞ if and only if ‖ f ‖Aα,p
�,c

< ∞.

5. Aα,p
�,c (�) ↪→ L p(�). Furthermore, if � ⊂ �◦, then Aα,∞

�,c (�) ↪→ Cb(�), where
Cb(�) denotes the Banach space of continuous functions that are bounded and
extend continuously to the closure � of �.

Proof See Sect. A.1. ��

2.3 Quantities Characterizing the Complexity of the Network Architecture

To conveniently summarize those aspects of the growth behavior of the functions �

and cmost relevant to us, we introduce three quantities that will turn out to be crucial
for characterizing the sample complexity of the neural network approximation spaces.
First, we set

�∗ := sup
n∈N

�(n) ∈ N ∪ {∞}. (2.1)

Furthermore, we define

γ �(�, c) := sup
{
γ ∈ [0,∞) : ∃ L ∈ N≤�∗ and C > 0 ∀ n ∈ N : nγ ≤ C · (c(n))L · n�L/2�},

γ �(�, c) := inf
{
γ ∈ [0,∞) : ∃C > 0 ∀ n ∈ N, L ∈ N≤�∗ : (c(n))L · n�L/2� ≤ C · nγ

}
.

(2.2)

Remark 2.2 Clearly, γ �(�, c) ≤ γ �(�, c). Furthermore, since we will only consider
settings in which �∗ ≥ 2, we always have γ �(�, c) ≥ γ �(�, c) ≥ 1. Next, note that if
�∗ = ∞ (i.e., if � is unbounded), then γ �(�, c) = γ �(�, c) = ∞. Finally, we remark
that if �∗ < ∞ and if c satisfies the natural growth condition c(n) � nθ · (ln(2n))κ
for certain θ ≥ 0 and κ ∈ R, then γ �(�, c) = γ �(�, c) = θ · �∗ + ��∗/2�. Thus, in
most natural cases—but not always—γ � and γ � agree.

An explicit examplewhere γ � is not identical to γ � is as follows: Define c1 := c2 :=
c3 := 1 and for n,m ∈ N with 22

m ≤ n < 22
m+1

, define cn := 22
m
. Then, assume that

γ1, γ2 ∈ [0,∞) and κ1, κ2 > 0 satisfy κ1 nγ1 ≤ cn ≤ κ2 nγ2 for all n ∈ N. Applying
the upper estimate for arbitrary m ∈ N and n = nm = 22

m
, we see n = cn ≤ κ2 nγ2 ;

since nm = 22
m → ∞ as m → ∞, this is only possible if γ2 ≥ 1. On the other hand,

if we apply the lower estimate for arbitrary m ∈ N and n = nm = 22
m+1 − 1, we see

because of cn = 22
m = 22

m+1/2 =
√
22m+1 = √

n + 1 that κ1 nγ1 ≤ cn = √
n + 1.

Again, since nm = 22
m+1 − 1 → ∞ as m → ∞, this is only possible if γ1 ≤ 1

2 .
Given these considerations, it is easy to see for � ≡ L ∈ N≥2 that γ �(�, c) ≤

L
2 + � L

2 �, while γ �(�, c) ≥ L + � L
2 �. In particular, γ �(�, c) < γ �(�, c). �

123

Foundations of Computational Mathematics

2.4 The Framework of Sampling Complexity

Let d ∈ N, let ∅ �= U ⊂ C([0, 1]d) be bounded, and let Y be a Banach space. We
are interested in numerically approximating a given solution mapping S : U → Y ,
where the numerical procedure is only allowed to access point samples of the functions
f ∈ U . The procedure can be either deterministic or probabilistic (Monte Carlo). In
this short section, we discuss the mathematical formalization of this problem, based
on the setup of numerical complexity theory, as for instance outlined in [25, Section 2].

The reader should keep in mind that we are mostly interested in the setting where
U is the unit ball in the neural network approximation space Aα,∞

�,c ([0, 1]d), i.e.,

U = Uα,∞
�,c ([0, 1]d) := {

f ∈ Aα,∞
�,c ([0, 1]d) : ‖ f ‖Aα,∞

�,c
≤ 1
}
, (2.3)

and where the solution mapping is one of the following:

1. The embedding into C([0, 1]d), i.e., S = ι∞ for ι∞ : U → C([0, 1]d), f
→ f ,
2. The embedding into L2([0, 1]d), i.e., S = ι2 for ι2 : U → L2([0, 1]d), f
→ f ,

or
3. The definite integral, i.e., S = T∫ for T∫ : U → R, f
→ ∫

[0,1]d f (x) dx .

2.4.1 The Deterministic Setting

A(potentially nonlinear)map A : U → Y is called a deterministicmethodusingm∈
N point measurements (written A ∈ Algm(U ,Y)) if there exists x = (x1, . . . , xm) ∈
([0, 1]d)m and a map Q : R

m → Y such that

A(f) = Q
(
f (x1), . . . , f (xm)

) ∀ f ∈ U .

Given a (solution) mapping S : U → Y , we define the error of A in approximating S
as

e(A,U , S) := sup
f ∈U

‖A(f) − S(f)‖Y .

The optimal error for (deterministically) approximating S : U → Y using m
point samples is then

edetm (U , S) := inf
A∈Algm (U ,Y)

e(A,U , S).

Finally, the optimal order for (deterministically) approximating S : U → Y using
point samples is

βdet∗ (U , S) := sup
{
β ≥ 0 : ∃C > 0 ∀m ∈ N : edetm (U , S) ≤ C · m−β

}
. (2.4)

123

Foundations of Computational Mathematics

2.4.2 The Randomized Setting

A randomized method using m ∈ N point measurements (in expectation) is a
tuple (A,m) consisting of a family A = (Aω)ω∈� of (potentially nonlinear) maps
Aω : U → Y indexed by a probability space (�,F ,P) and a measurable function
m : � → N with the following properties:

1. for each f ∈ U , the map � → Y , ω
→ Aω(f) is measurable (with respect to the
Borel σ -algebra on Y),

2. for each ω ∈ �, we have Aω ∈ Algm(ω)(U ,Y),
3. Eω[m(ω)] ≤ m.

We write (A,m) ∈ Algranm (U ,Y) if these conditions are satisfied. We say that (A,m)

is strongly measurable if the map � × U → Y , (ω, f)
→ Aω(f) is measurable,
where U ⊂ C([0, 1]d) is equipped with the Borel σ -algebra induced by C([0, 1]d).
Remark In most of the literature (see e.g. [25, Section 2]), randomized algorithms
are always assumed to be strongly measurable. All randomized algorithms that we
construct will have this property. On the other hand, all our hardness results apply to
arbitrary randomized algorithms satisfying Properties 1–3 from above. Thus, using
the terminology just introduced we obtain stronger results than we would get using
the usual definition.

The expected error of a randomized algorithm (A,m) for approximating a (solu-
tion) mapping S : U → Y is defined as

e
(
(A,m),U , S

) := sup
f ∈U

Eω

[‖S(f) − Aω(f)‖Y
]
.

The optimal randomized error for approximating S : U → Y using m point
samples (in expectation) is

eranm (U , S) := inf
(A,m)∈Algranm (U ,Y)

e
(
(A,m),U , S

)
.

Finally, the optimal randomized order for approximating S : U → Y using point
samples is

βran∗ (U , S) := sup
{
β ≥ 0 : ∃C > 0 ∀m ∈ N : eranm (U , S) ≤ C · m−β

}
.

The remainder of this paper is concerned with deriving upper and lower bounds
for the exponents βdet∗ (U , S) and βran∗ (U , S), where U = Uα,∞

�,c is the unit ball in

Aα,∞
�,c , and S is either the embedding of Aα,∞

�,c into C([0, 1]d), the embedding into

L2([0, 1]d), or the definite integral S f = ∫
[0,1]d f (t) dt .

For deriving upper bounds (i.e., hardness bounds) for randomized algorithms, we
will frequently use the following lemma, which is a slight adaptation of [25, Proposi-
tion 4.1]. In a nutshell, the lemma shows that if one can establish a hardness result that
holds for deterministic algorithms in the average case, then this implies a hardness
result for randomized algorithms.

123

Foundations of Computational Mathematics

Lemma 2.3 Let ∅ �= U ⊂ C([0, 1]d) be bounded, let Y be a Banach space, and
let S : U → Y . Assume that there exist λ ∈ [0,∞), κ > 0, and m0 ∈ N such
that for every m ∈ N≥m0 there exists a finite set
m �= ∅ and a family of functions
(fγ)γ∈
m ⊂ U satisfying

∑

γ∈
m

‖S(fγ) − A(fγ)‖Y ≥ κ · m−λ ∀ A ∈ Algm(U ,Y). (2.5)

Then βdet∗ (U , S), βran∗ (U , S) ≤ λ.

Proof Step 1 (proving βdet∗ (U , S) ≤ λ): For every A ∈ Algm(U ,Y), Eq. (2.5) implies
because of fγ ∈ U that

e(A,U , S) = sup
f ∈U

‖A(f) − S(f)‖Y ≥
∑

γ∈
m

‖S(fγ) − A(fγ)‖Y ≥ κ m−λ.

Since this holds for every m ∈ N≥m0 and every A ∈ Algm(U ,Y), with κ indepen-
dent of A,m, this easily implies edetm (U , S) ≥ κ m−λ for all m ∈ N≥m0 , and then
βdet∗ (U , S) ≤ λ.

Step 2 (proving βran∗ (U , S) ≤ λ): Let m ∈ N≥m0 and let (A,m) ∈ Algranm (U ,Y)

be arbitrary, with A = (Aω)ω∈� for a probability space (�,F ,P). Define�0 := {ω ∈
� : m(ω) ≤ 2m} and note m ≥ Eω[m(ω)] ≥ 2m · P(�c

0), which shows P(�c
0) ≤ 1

2
and hence P(�0) ≥ 1

2 .
Note that Aω ∈ Alg2m(U ,Y) for each ω ∈ �0, so that Eq. (2.5) (with 2m instead

of m) shows
∑

γ∈
2m

∥
∥S(fγ) − Aω(fγ)

∥
∥
Y ≥ κ · (2m)−λ ≥ κ̃ · m−λ for a constant

κ̃ = κ̃(κ, λ) > 0. Therefore,

e
(
(A,m),U , S

) = sup
f ∈U

Eω‖S(f) − Aω(f)‖Y ≥
∑

γ∈
2m

Eω

∥
∥S(fγ) − Aω(fγ)

∥
∥
Y

≥ Eω

[
1�0(ω)

∑

γ∈
2m

∥
∥S(fγ) − Aω(fγ)

∥
∥
Y

]

≥ P(�0) · κ̃ · m−λ ≥ κ̃

2
· m−λ,

(2.6)
and hence eranm

(
U , S

) ≥ κ̃
2 ·m−λ, since Eq. (2.6) holds for any randomized algorithm

(A,m) ∈ Algranm (U ,Y). Finally, since m ∈ N≥m0 can be chosen arbitrarily, we see as
claimed that βran∗ (U , S) ≤ λ. ��

3 Richness of the Unit Ball in the Spaces A˛,∞
�,c

In this section, we show that ReLU networks with a limited number of neurons and
bounded weights can well approximate several different functions of “hat-function
type,” as shown in Fig. 1. The fact that this is possible implies that the unit ball
Uα,∞

�,c ⊂ Aα,∞
�,c is quite rich; this will be the basis of all of our hardness results.

123

Foundations of Computational Mathematics

Fig. 1 A plot of the
“hat-function” �M,y formally
defined in Eq. (3.1)

We begin by considering the most basic “hat function”�M,y : R → [0, 1], defined
for M > 0 and y ∈ R by

�M,y(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ≤ y − M−1,

M · (x − y + M−1), if y − M−1 ≤ x ≤ y,

−M · (x − y − M−1), if y ≤ x ≤ y + M−1,

0, if y + M−1 ≤ x .

(3.1)

For later use, we note that
∫
R
�M,y(x) dx = M−1. Furthermore, we “lift” �M,y to

a function on R
d by setting �∗

M,y : R
d → R, x = (x1, . . . , xd)
→ �M,y(x1). The

following lemma gives a bound on how economically sums of the functions�M,y can
be implemented by ReLU networks.

Lemma 3.1 Let � : N → N≥2 ∪ {∞} and c : N → N ∪ {∞} be non-decreasing. Let
M ≥ 1, n ∈ N, and 0 < C ≤ c(n), as well as L ∈ N≥2 with L ≤ �(n).

Then

CL · n�L/2�

4Mn

n∑

i=1

εi�
∗
M,yi ∈ �

�,c
(2L+8)n . ∀ ε1, . . . , εn ∈ [−1, 1] and y1, . . . , yn ∈ [0, 1].

Proof Let ε1, . . . , εn ∈ [−1, 1] and y1, . . . , yn ∈ [0, 1]. Let e1 := (1, 0, . . . , 0) ∈
R
1×d and define

A1 := C

2

⎛

⎜
⎝

e1
...

e1

⎞

⎟
⎠∈R

3n×d ,

A(0)
2 := C

2
·(ε1 −2ε1 ε1 · · · εn −2εn εn

)∈ R
1×3n,

A2 :=
(

A(0)
2

−A(0)
2

)

∈ R
2×3n,

as well as

b1 := C

2
·
(
−y1 + M−1 −y1 −y1 − M−1 · · · −yn + M−1 −yn −yn − M−1

)T∈ R
3n .

Finally, set E := (C | −C) ∈ R
1×2 and

123

Foundations of Computational Mathematics

A := C ·

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0
⎫
⎪⎬

⎪⎭
n...

...

1 0

0 1
⎫
⎪⎬

⎪⎭
n...

...

0 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

∈ R
2n×2,

B := C ·
(

n
︷ ︸︸ ︷
1 · · · 1

n
︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

)
∈ R

2×2n,

D := C · (1 . . . 1 −1 . . . −1
) ∈ R

1×2n .

Note that ‖A‖∞, ‖B‖∞, ‖D‖∞, ‖E‖∞, ‖A1‖∞, ‖A2‖∞, ‖A(0)
2 ‖∞ ≤ C . Further-

more, since y j ∈ [0, 1] and M ≥ 1, we also see ‖b1‖∞ ≤ C . Next, note that

‖A1‖�0 , ‖A(0)
2 ‖�0 , ‖b1‖�0 ≤ 3n, ‖A2‖�0 ≤ 6n, ‖A‖�0 , ‖B‖�0 , ‖D‖�0 ≤ 2n, and

‖E‖�0 ≤ 2 ≤ 2n.

For brevity, set γ := CL n�L/2�
4nM and � := ∑n

i=1 εi�
∗
M,yi

, so that � : R
d → R.

Before we describe how to construct a network
 implementing γ · �, we collect a
few auxiliary observations. First, a direct computation shows that

C
2M�M,y(x) = �

(C
2 (x − y + 1

M)
)− 2�

(C
2 (x − y)

)+ �
(C
2 (x − y − 1

M)
)
.

Based on this, it is easy to see

A(0)
2

[
�(A1x + b1)

] = C

2

n∑

j=1

[
ε j ·

(
�
(C
2 (x1 − y j + 1

M)
)

− 2�
(C
2 (x1 − y j)

)+ �
(C
2 (x1 − y j − 1

M)
))]

= C

2

C

2M

n∑

j=1

ε j �
∗
M,y j (x) = C2

4M
�(x). (3.2)

By definition of A2, this shows F(x) = C2

4M

(
�(�(x)), �(−�(x))

)T for all x ∈ R
d ,

for the function F := � ◦ A2 ◦ � ◦ (A1 • +b1) : R
d → R

2.
A further direct computation shows for x, y ∈ R that

[
B�
(
A(xy)

)]

1
= C

n∑

j=1

�
((

A(xy)
)
j

)
= C

n∑

j=1

�(Cx) = C2n �(x)

and similarly
[
B�
(
A(xy)

)]

2
= C2n �(y).

(3.3)
Thus, setting G := B ◦ � ◦ A : R

2 → R
2, we see G(x, y) = C2n

(
�(x), �(y)

)T .
Therefore, denoting by G j := G ◦ · · · ◦G the j-fold composition of G with itself, we
see G j (x, y) = (C2n) j · (�(x), �(y))T for j ∈ N, and hence

G j (F(x)
) = C2 j+2 n j

4M
· (�(�(x)), �(−�(x))

)T ∀ j ∈ N0 and x ∈ R
d , (3.4)

123

Foundations of Computational Mathematics

where the case j = 0 (in which it is understood that G j = idR2) is easy to verify
separately.

In a similar way, we see for H := D ◦ � ◦ A : R
2 → R that

H(x, y) = D
[
�
(
A(xy)

)] = C ·
(n∑

j=1

�(Cx) −
n∑

j=1

�(Cy)

)

= C2n
(
�(x) − �(y)

) ∀ x, y ∈ R. (3.5)

Now, we prove the claim of the lemma, distinguishing three cases regarding L ∈
N≥2.

Case 1 (L = 2): Define
 := (
(A1, b1), (A

(0)
2 , 0)

)
. Then Eq. (3.2) shows R�
 =

C2

4M�. Because of CL n�L/2�
4nM = C2

4M for L = 2, this implies the claim, once we note that

L(
) = L ≤ �(n) ≤ �((2L + 8)n) and ‖
‖NN ≤ C ≤ c(n) ≤ c((2L + 8)n),

as well as W (
) ≤ 9n ≤ (2L + 8)n, since L = 2.
Case 2 (L ≥ 4 is even): In this case, define

 :=
(
(A1, b1), (A2, 0), (A, 0), (B, 0), . . . , (A, 0), (B, 0)︸ ︷︷ ︸

L−4
2 copies of (A,0),(B,0)

, (A, 0), (D, 0)
)

and note for j := L−4
2 that j + 1 = L−2

2 = �L/2� − 1, so that a combination of
Eqs. (3.5) and (3.4) shows

R�
(x) = (H ◦ G j ◦ F)(x) = C2n · C
2 j+2 n j

4M
· (�(�(x)) − �(−�(x))

)

= CL n�L/2�

4Mn
· �(x),

since �(�(z)) = �(z) and �(z) − �(−z) = z for all z ∈ R. Finally, we note as in the
previous case that L(
) = L ≤ �((2L + 8)n) and ‖
‖NN ≤ C ≤ c((2L + 8)n),
and furthermore that

W (
) ≤ 3n + 3n + 6n + L − 4

2

(
2n + 2n

)+ 4n = 16n + (2L − 8)n = (8 + 2L)n.

Overall, we see also in this case that γ · � ∈ �
�,c
(2L+8)n , as claimed.

Case 3 (L ≥ 3 is odd): In this case, define

 :=
(
(A1, b1), (A2, 0), (A, 0), (B, 0), . . . , (A, 0), (B, 0)︸ ︷︷ ︸

L−3
2 copies of (A,0),(B,0)

, (E, 0)
)
.

123

Foundations of Computational Mathematics

Then, setting j := L−3
2 and noting j = �L/2� − 1, we see thanks to Eq. (3.4) and

because of E = (C | −C) that

R�
(x) = E
(
G j (F(x)

)) = C · C
2 j+2 n j

4M
· (�(�(x)) − �(−�(x))

)

= CL n�L/2�

4Mn
· �(x).

It remains to note as before that L(
) = L ≤ �((2L + 8)n) and ‖
‖NN ≤ C ≤
c((2L + 8)n), and finally that W (
) ≤ 3n + 3n + 6n + L−3

2 (2n + 2n) + 2 =
2 + 6n + 2Ln ≤ (8 + 2L)n, so that indeed γ · � ∈ �

�,c
(8+2L)n also in this case. ��

As an application of Lemma 3.1, we now describe a large class of functions con-
tained in the unit ball of the approximation space Aα,∞

�,c ([0, 1]d).
Lemma 3.2 Let α > 0 and let c : N → N ∪ {∞} and � : N → N≥2 ∪ {∞} be
non-decreasing. Let σ ≥ 2, 0 < γ < γ �(�, c), θ ∈ (0,∞) and λ ∈ [0, 1] with θλ ≤ 1
be arbitrary and define

ω := min
{− θα, θ · (γ − λ) − 1

} ∈ (−∞, 0).

Then there exists a constant κ = κ(α, θ, λ, γ, σ, �, c) > 0 such that for every m ∈ N,
the following holds:

Setting M := 4m and z j := 1
4m + j−1

2m for j ∈ 2m, the functions
(
�∗

M,z j

)
j∈2m are

supported in [0, 1]d and have disjoint supports, up to a null-set. Furthermore, for any
ν = (ν j) j∈2m ∈ [−1, 1]2m and J ⊂ 2m satisfying |J | ≤ σ · mθλ, we have

fν,J := κ · mω ·
∑

j∈J

ν j �
∗
M,z j ∈ Aα,∞

�,c ([0, 1]d) and
∥
∥ fν,J

∥
∥
Aα,∞

�,c ([0,1]d) ≤ 1.

Proof Since γ < γ �(�, c), we see by definition of γ � that there exist L = L(γ, �, c) ∈
N≤�∗ and C1 = C1(γ, �, c) > 0 such that nγ ≤ C1 · (c(n))L · n�L/2� for all n ∈ N.
Because of � ≥ 2, we can assume without loss of generality that L ≥ 2. Furthermore,
since L ≤ �∗, we can choose n0 = n0(γ, �, c) ∈ N satisfying L ≤ �(n0).

Let m ∈ N and let ν and J be as in the statement of the lemma. For brevity, define
f (0)ν,J := ∑

j∈J ν j�
∗
M,z j

. We note that �∗
M,z j

is continuous with 0 ≤ �∗
M,z j

≤ 1 and

supp�∗
M,z j ⊂ {

x ∈ R
d : x1 ∈ z j + [− 1

M , 1
M]} ⊂ {

x ∈ R
d : x1 ∈ j−1

2m + [0, 1
2m]}.

This shows that the supports of the functions �∗
M,z j

are contained in [0, 1]d and are

pairwise disjoint (up to null-sets), which then implies
∥∥ f (0)ν,J

∥∥
L∞ ≤ 1.

Next, since θλ ≤ 1, we have �mθλ� ≤ �m� = m ≤ 2m. Thus, by possibly enlarging
the set J ⊂ 2m and setting ν j := 0 for the added elements, we can without loss of
generality assume that |J | ≥ �mθλ� ≥ 1. Note that the extended set still satisfies
|J | ≤ σ · mθλ since �mθλ� ≤ 2mθλ and σ ≥ 2.

123

Foundations of Computational Mathematics

Now, define N := n0 ·⌈m(1−λ)θ
⌉
and n := N ·|J |, noting that n ≥ n0. Furthermore,

writing J = {i1, . . . , i|J |}, define

(ε1, ..., εn) :=
(
νi1 , ..., νi1︸ ︷︷ ︸

N times

, ..., νi|J | , ..., νi|J |︸ ︷︷ ︸
N times

)
and

(y1, ..., yn) :=
(
zi1 , ..., zi1︸ ︷︷ ︸
N times

, ..., zi|J | , ..., zi|J |︸ ︷︷ ︸
N times

)
.

By choice of C1, we have nγ ≤ C1 · (c(n))L · n�L/2�, so that we can choose 0 < C ≤
c(n) satisfying nγ ≤ C1 ·CL ·n�L/2�. Sincewe also have L ≥ 2 and L ≤ �(n0) ≤ �(n),
Lemma 3.1 shows that

�
�,c
(2L+8)n � CL n�L/2�

4Mn

n∑

i=1

εi�
∗
M,yi = CL n�L/2�N

4Mn
· f (0)ν,J ;

here the final equality comes from our choice of ε1, . . . , εn and y1, . . . , yn .
To complete the proof, we first collect a few auxiliary estimates. First, we see

because of |J | ≥ mθλ that n ≥ n0 m(1−λ)θ mθλ ≥ mθ .
Thus, setting C2 := 16σC1 and recalling that ω ≤ θ · (γ − λ) − 1 by choice of ω,

we see for any 0 < κ ≤ C−1
2 that

κ · mω ≤ mθγ−θλ−1

16σC1
≤ C−1

1 nγ · σ−1m−θλ

4 · 4m ≤ CLn�L/2� · σ−1m−θλ

4M
≤ CLn�L/2�N

4Mn
.

Here, we used in the last step that |J | ≤ σ mθλ, which implies N
n = |J |−1 ≥

σ−1m−θλ. Thus, noting that c��,c
t ⊂ �

�,c
t for c ∈ [−1, 1], we see κ mω f (0)ν,J ∈

�
�,c
(2L+8)n as long as 0 < κ ≤ C−1

2 .

Finally, setC3 := max
{
1, C2, (2L+8)α (2n0σ)α

}
.Weclaim that
α,∞

(
κ mω f (0)ν,J

)

≤ 1 for κ := C−1
3 .Once this is shown,Lemma2.1will show that

∥∥κ mω f (0)ν,J

∥∥
Aα,∞

�,c
≤ 1

as well. To see
α,∞
(
κ mω f (0)ν,J

) ≤ 1, first note that
∥
∥κ mω f (0)ν,J

∥
∥
L∞ ≤ ‖ f (0)ν,J‖L∞ ≤ 1

since ω < 0 and κ = C−1
3 ≤ 1. Furthermore, for t ∈ N there are two cases: For

t ≥ (2L + 8)n we have shown above that κ mω f (0)ν,J ∈ �
�,c
(2L+8)n ⊂ �

�,c
t and hence

tα d∞(κ mω f (0)˚,J ;��,c
t) = 0 ≤ 1. On the other hand, if t ≤ (2L + 8)n then we see

because of
⌈
m(1−λ)θ

⌉ ≤ 1+m(1−λ)θ ≤ 2·m(1−λ)θ and |J | ≤ σ mθλ thatn ≤ 2n0σ mθ .
Since we also have ω ≤ −θα, this implies

tα d∞(κ mω f (0)�ν,J ;��,c
t) ≤ (2L + 8)α nα κ mω

∥∥ f (0)ν,J

∥∥
L∞

≤ (2L + 8)α(2n0σ)α κ mθαm−θα ≤ 1.

All in all, this shows
α,∞
(
κ mω f (0)ν,J

) ≤ 1. As seen above, this completes the proof.
��

123

Foundations of Computational Mathematics

For later use, we also collect the following technical result which shows how to
select a large number of “hat functions” as in Lemma 3.2 that are annihilated by a
given set of sampling points.

Lemma 3.3 Let m ∈ N and let M = 4m and z j = 1
4m + j−1

2m as in Lemma 3.2. Given
arbitrary points x = (x1, . . . , xm) ∈ ([0, 1]d)m, define

Ix := {
i ∈ 2m : ∀ n ∈ m : �∗

M,zi (xn) = 0
}
.

Then |Ix | ≥ m.

Proof Let I cx := 2m \ Ix . For each i ∈ I cx , there exists ni ∈ m satisfying�∗
M,zi

(xni) �=
0. The map I cx → m, i
→ ni is injective, since �∗

M,zi
�∗

M,z�
≡ 0 for i �= � (see

Lemma 3.2). Therefore, |I cx | ≤ m and hence |Ix | = 2m − |I cx | ≥ m.

The function �∗
M,y : R

d → R has a controlled support with respect to the first
coordinate of x , but unbounded support with respect to the remaining variables. For
proving more refined hardness bounds, we shall therefore use the following modified
construction of a function of “hat-type” with controlled support. As we will see in
Lemma 3.5 below, this function can also be well implemented by ReLU networks,
provided one can use networks with at least two hidden layers. ��
Lemma 3.4 Given d ∈ N, M > 0 and y ∈ R

d , define

θ : R → [0, 1], x
→ �(x) − �(x − 1),

�M,y : R
d → R, x
→

[d∑

j=1

�M,y j (x j)

]
− (d − 1),

and ϑM,y : R
d → [0, 1], x
→ θ

(
�M,y(x)

)
.

Then the function ϑM,y has the following properties:

a) ϑM,y(x) = 0 for all x ∈ R
d \ (y + M−1(−1, 1)d

)
;

b) ‖ϑM,y‖L p(Rd) ≤ (2/M)d/p for arbitrary p ∈ (0,∞];
c) For any p ∈ (0,∞] there is a constant C = C(d, p) > 0 satisfying

‖ϑM,y‖L p([0,1]d) ≥ C · M−d/p, ∀ y ∈ [0, 1]d and M ≥ 1
2d .

Proof of Lemma 3.4 Ad a) For x ∈ R
d \ (y + M−1(−1, 1)d

)
, there exists � ∈ d with

|x� − y�| ≥ M−1 and hence �M,y� (x�) = 0; see Fig. 1. Because of 0 ≤ �M,y j ≤ 1,
this implies

�M,y(x) =
∑

j∈d\{�}
�M,y j (x j) − (d − 1) ≤ d − 1 − (d − 1) = 0.

By elementary properties of the function θ (see Fig. 2), this shows ϑM,y(x) =
θ(�M,y(x)) = 0.

123

Foundations of Computational Mathematics

Fig. 2 A plot of the function θ

appearing in Lemma 3.4. Note
that θ is non-decreasing and
satisfies θ(x) = 0 for x ≤ 0 as
well as θ(x) = 1 for x ≥ 1

Ad b) Since 0 ≤ θ ≤ 1, we also have 0 ≤ ϑM,y ≤ 1. Combined with Part a), this

implies ‖ϑM,y‖L p ≤ [λ(y + M−1(−1, 1)d)
]1/p = (2/M)d/p, as claimed.

Ad c) Set T := 1
2dM ∈ (0, 1] and P := y + [−T , T]d . For x ∈ P and arbitrary

j ∈ d, we have |x j − y j | ≤ 1
2dM . Since �M,y j is Lipschitz with Lip(�M,y j) ≤ M

(see Fig. 1) and �M,y j (y j) = 1, this implies

�M,y j (x j) ≥ �M,y j (y j) − ∣∣�M,y j (y j) − �M,y j (x j)
∣∣ ≥ 1 − M · 1

2dM
= 1 − 1

2d
.

Since this holds for all j ∈ d , we see �M,y(x) = ∑d
j=1 �M,y j (x j) − (d −1) ≥

d ·(1− 1
2d) − (d−1) = 1

2 , and hence ϑM,y(x) = θ(�M,y(x)) ≥ θ(12) = 1
2 , since θ is

non-decreasing.
Finally, Lemma A.2 shows for Q = [0, 1]d that λ(Q ∩ P) ≥ 2−dT d ≥ C1 · M−d

with C1 = C1(d) > 0. Hence, ‖ϑM,y‖L p([0,1]d) ≥ 1
2 [λ(Q ∩ P)]1/p ≥ C1/p

1 M−d/p,

which easily yields the claim.

The next lemma shows how well the function ϑM,y can be implemented by ReLU
networks. We emphasize that the lemma requires using networks with L ≥ 3, i.e.,
with at least two hidden layers. ��
Lemma 3.5 Let � : N → N≥2 ∪ {∞} and c : N → N ∪ {∞} be non-decreasing. Let
M ≥ 1, n ∈ N and 0 < C ≤ c(n), as well as L ∈ N≥3 with L ≤ �(n). Then

CL · n�L/2�

4M
· ϑM,y ∈ �

�,c
15(d+L)n ∀ y ∈ [0, 1]d .

Proof Let y ∈ [0, 1]d be fixed. For j ∈ d, denote by e j ∈ R
d×1 the j-th standard

basis vector. Define A1 ∈ R
4nd×d and b1 ∈ R

4nd by

AT
1 := C

2
·
(
e1
∣
∣ . . .

∣
∣e1

︸ ︷︷ ︸
3n times

, 0
∣
∣ . . .

∣
∣ 0

︸ ︷︷ ︸
n times

, e2
∣
∣ . . .

∣
∣e2

︸ ︷︷ ︸
3n times

, 0
∣
∣ . . .

∣
∣ 0

︸ ︷︷ ︸
n times

, . . . , ed
∣
∣ . . .

∣
∣ed

︸ ︷︷ ︸
3n times

, 0
∣
∣ . . .

∣
∣ 0

︸ ︷︷ ︸
n times

)
,

b1 := −C

2
·
(
y1 − 1

M , . . . , y1 − 1
M︸ ︷︷ ︸

n times

, y1, . . . , y1︸ ︷︷ ︸
n times

, y1 + 1
M , . . . , y1 + 1

M︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
n times

,

123

Foundations of Computational Mathematics

y2 − 1
M , . . . , y2 − 1

M︸ ︷︷ ︸
n times

, y2, . . . , y2︸ ︷︷ ︸
n times

, y2 + 1
M , . . . , y2 + 1

M︸ ︷︷ ︸
n times

,−1, . . . ,−1︸ ︷︷ ︸
n times

,

. . . ,

yd − 1
M , . . . , yd − 1

M︸ ︷︷ ︸
n times

, yd , . . . , yd︸ ︷︷ ︸
n times

, yd + 1
M , . . . , yd + 1

M︸ ︷︷ ︸
n times

−1, . . . ,−1︸ ︷︷ ︸
n times

)T

Furthermore, set b2 := 0 ∈ R
2 and b3 := 0 ∈ R

n , let ζ := − 1
M

d−1
d and ξ := − 1

M ,
and define A2 ∈ R

2×4nd and A3 ∈ R
n×2 by

A2 := C

2

(
n times
︷ ︸︸ ︷
1, . . . , 1,

n times
︷ ︸︸ ︷
−2, . . . ,−2,

n times
︷ ︸︸ ︷
1, . . . , 1,

n times
︷ ︸︸ ︷
ζ, . . . , ζ , . . . ,

n times
︷ ︸︸ ︷
1, . . . , 1,

n times
︷ ︸︸ ︷
−2, . . . ,−2,

n times
︷ ︸︸ ︷
1, . . . , 1,

n times
︷ ︸︸ ︷
ζ, . . . , ζ

1, . . . , 1
︸ ︷︷ ︸
n times

,−2, . . . ,−2
︸ ︷︷ ︸

n times

, 1, . . . , 1
︸ ︷︷ ︸
n times

, ξ, . . . , ξ
︸ ︷︷ ︸
n times

, . . . , 1, . . . , 1
︸ ︷︷ ︸
n times

,−2, . . . ,−2
︸ ︷︷ ︸

n times

, 1, . . . , 1
︸ ︷︷ ︸
n times

, ξ, . . . , ξ
︸ ︷︷ ︸
n times

)
,

AT
3 := C

(
1, . . . , 1

−1, . . . ,−1

)
∈ R

2×n .

Finally, set A := C · (1, . . . , 1) ∈ R
1×n , B := C · (1, . . . , 1)T ∈ R

n×1,
and D := C · (1,−1) ∈ R

1×2, as well as E := (C) ∈ R
1×1. Note that

‖A1‖∞, ‖A2‖∞, ‖A3‖∞, ‖A‖∞, ‖B‖∞, ‖D‖∞, ‖E‖∞ ≤ C and ‖b1‖∞, ‖b2‖∞ ≤
C , since M ≥ 1 and y ∈ [0, 1]d . Furthermore, note ‖A1‖�0 ≤ 3dn, ‖A2‖�0 ≤ 8dn,
‖A3‖�0 ≤ 2n, ‖A‖�0 , ‖B‖�0 ≤ n, ‖D‖�0 ≤ 2, and finally ‖b1‖�0 ≤ 4dn and
‖b2‖�0 = 0. Furthermore, note C ≤ c(n) ≤ c(15(d + L)n) and likewise L ≤
�(n) ≤ �(15(d + L)n) thanks to the monotonicity of c, �.

A direct computation shows that

C/2
M �M,y(x) = �

(C
2 (x − y + 1

M)
)− 2�

(C
2 (x − y)

)+ �
(C
2 (x − y − 1

M)
)
.

Combined with the positive homogeneity of the ReLU (i.e., �(t x) = t�(x) for t ≥ 0),
this shows

(
A2 �(A1x + b1) + b2

)
1

= C

2

d∑

j=1

n∑

�=1

[
�
(C
2 (〈x, e j 〉 − (y j − 1

M))
)− 2�

(C
2 (〈x, e j 〉 − y j)

)

+ �
(C
2 (〈x, e j 〉 − (y j + 1

M))
)+ ζ �(C2)

]

= C2n

4M

d∑

j=1

[
�M,y j (x j) − d − 1

d

]
= C2n

4M
�M,y(x).

In the same way, it follows that
(
A2 �(A1x + b1) + b2

)
2 = C2n

4M · (�M,y(x) − 1).
We now distinguish three cases:

123

Foundations of Computational Mathematics

Case 1: L = 3. In this case, set
 := (
(A1, b1), (A2, b2), (D, 0)

)
. Then the

calculation from above, combined with the positive homogeneity of the ReLU shows

R�
(x) = C ·
(
�
(C2n
4M �M,y(x)

)− �
(C2n
4M (�M,y(x) − 1)

))

= C3n
4M θ(�M,y(x)) = C3n

4M ϑM,y(x).

Furthermore, it is straightforward to seeW (
) ≤ 3dn+4dn+8dn+2 ≤ 2+15dn ≤
15(L + d)n. Combined with our observations from above, and noting � L

2 � = 1, we

thus see as claimed that CL ·n�L/2�
4M ϑM,y ∈ �

�,c
15(L+d)n .

Case 2: L ≥ 4 is even. In this case, define

 =
(
(A1, b1), (A2, b2), (A3, b3), (A, 0), (B, 0), (A, 0), . . . , (B, 0), (A, 0)︸ ︷︷ ︸

(L−4)/2 copies of “(B,0),(A,0)”

)

Similar arguments as in Case 1 show that
(
A3 �

(
A2 �(A1x + b1) + b2

) + b3
)
j =

C3n
4M ϑM,y(x) for all j ∈ n, and hence A◦�◦ A3 ◦�◦ A2 ◦�◦ (A1 •+b1) Furthermore,
using similar arguments as in Eq. (3.3), we see for z ∈ [0,∞) that A(�(Bz)) = C2nz.
Combining all these observations, we see

R�
(x) = (C2n)(L−4)/2 · C
4n2

4M
ϑM,y(x) = CL · n�L/2�

4M
· ϑM,y(x).

Since also W (
) ≤ 3dn + 4dn + 8dn + 2n + n + L−4
2 · 2n ≤ 15(d + L)n, we see

overall as claimed that CL ·n�L/2�
4M ϑM,y ∈ �

�,c
15(d+L)n .

Case 3: L ≥ 5 is odd. In this case, define

 :=
(
(A1, b1), (A2, b2), (A3, b3), (A, 0), (B, 0), (A, 0), . . . , (B, 0), (A, 0)

︸ ︷︷ ︸
(L−5)/2 copies of “(B,0),(A,0)”

, (E, 0)
)
.

Avariant of the arguments inCase 2 shows that R�
 = C ·(C2 n)(L−5)/2 · C4n2
4M ϑM,y =

CL ·n�L/2�
4M ϑM,y and W (
) ≤ 15dn + 2n + L−5

2 · 2n + 1 ≤ 15(d + L)n, and hence
CL ·n�L/2�

4M ϑM,y ∈ �
�,c
15(d+L)n also in this last case. ��

Lemma 3.6 Let c : N → N ∪ {∞} and � : N → N≥2 ∪ {∞} be non-decreasing with
�∗ ≥ 3. Let d ∈ N, α ∈ (0,∞), and 0 < γ < γ �(�, c). Then there exists a constant
κ = κ(γ, α, d, �, c) > 0 such that for any M ∈ [1,∞) and y ∈ [0, 1]d , we have

gM,y := κ · M−α/(α+γ) ϑM,y ∈ Aα,∞
�,c with

∥∥gM,y
∥∥
Aα,∞

�,c
≤ 1.

Proof Since γ < γ �(�, c), there exist L = L(γ, �, c) ∈ N≥�∗ andC1 = C1(γ, �, c) >

0 satisfying nγ ≤ C1 · (c(n))L · n�L/2� for all n ∈ N. Since �∗ ≥ 3, we can assume

123

Foundations of Computational Mathematics

without loss of generality that L ≥ 3. Furthermore, since L ≤ �∗, there exists n0 =
n0(γ, �, c) ∈ N satisfying L ≤ �(n0).

Given M ∈ [1,∞) and y ∈ [0, 1]d , set n := n0 · ⌈M1/(α+γ)
⌉
, noting that n ≥ n0.

Since nγ ≤ C1 · (c(n))L · n�L/2�, there exists 0 < C ≤ c(n) satisfying nγ ≤ C1 ·
CLn�L/2�.

Setκ := min{(15(d+L))−α(2n0)−α, (4C1)
−1} > 0 andnoteκ = κ(d, α, γ, �, c).

Furthermore, note that n ≥ M1/(α+γ) and hence κ M− α
α+γ = κ

M M
γ

α+γ ≤ κ nγ
M ≤

4C1 κ
CL n�L/2�

4M ≤ CL n�L/2�
4M . Combining this with the inclusion c��,c

t ⊂ �
�,c
t for

c ∈ [−1, 1], we see from Lemma 3.5 and because of 3 ≤ L ≤ �(n0) ≤ �(n) that
gM,y = κ M−α/(α+γ) ϑM,y ∈ �

�,c
15(d+L)n .

We claim that
α,∞(gM,y) ≤ 1. To see this, first note ‖gM,y‖L∞ ≤ ‖ϑM,y‖L∞ ≤ 1.

Furthermore, for t ∈ N, there are two cases: For t ≥ 15(d+L)n, we have gM,y ∈ �
�,c
t ,

and hence tα d∞(gM,y, �
�,c
t) = 0 ≤ 1. On the other hand, if t ≤ 15(d + L)n, then

we see because of n ≤ 1n0 + n0 M1/(α+γ) ≤ 2n0 M1/(α+γ) that

tα d∞(gM,y, �
�,c
t) ≤ (15(d + L)

)α
nα ‖gM,y‖L∞ ≤ (15(d + L)

)α
κ nα M−α/(α+γ)

≤ (15(d + L)
)α

(2n0)
α κ Mα/(α+γ) M−α/(α+γ) ≤ 1.

Overall, this shows
α,p(gM,y) ≤ 1, so that Lemma 2.1 shows as claimed that
‖gM,y‖Aα,∞

�,c
≤ 1. ��

4 Error Bounds for Uniform Approximation

In this section, we derive an upper bound on how many point samples of a function
f ∈ Aα,∞

�,c are needed in order to uniformly approximate f up to error ε ∈ (0, 1). The
crucial ingredient will be the following estimate of the Lipschitz constant of functions
F ∈ �

�,c
n . The bound in the lemma is one of the reasons for our choice of the quantities

γ � and γ � introduced in Eq. (2.2).

Lemma 4.1 Let � : N → N ∪ {∞} and c : N → [1,∞] be non-decreasing. Let n ∈ N

and assume that L := �(n) and C := c(n) are finite. Then each F ∈ �
�,c
n satisfies

Lip(Rd ,‖·‖
�1)→R(F) ≤ CL · n�L/2� and Lip(Rd ,‖·‖�∞)→R(F) ≤ d · CL · n�L/2�.

Proof Step 1: For any matrix A ∈ R
k×m , define ‖A‖∞ := maxi, j |Ai, j | and denote

by ‖A‖�0 the number of nonzero entries of A. In this step, we show that

‖A‖�1→�∞ ≤ ‖A‖∞ and ‖A‖�∞→�1 ≤ ‖A‖∞ ‖A‖�0 . (4.1)

To prove the first part, note for arbitrary x ∈ R
m and any i ∈ k that

∣
∣(Ax)i

∣
∣ ≤

m∑

j=1

|Ai, j | |x j | ≤ ‖A‖∞
m∑

j=1

|x j | = ‖A‖∞ ‖x‖�1 ,

123

Foundations of Computational Mathematics

showing that ‖Ax‖�∞ ≤ ‖A‖∞ ‖x‖�1 . To prove the second part, note for arbitrary
x ∈ R

m that

‖Ax‖�1 =
k∑

i=1

∣∣(Ax)i
∣∣ ≤

∑

i, j

|Ai, j | |x j | ≤

‖x‖�∞ ‖A‖∞
∑

i, j

1Ai, j �=0 = ‖A‖∞ ‖A‖�0 ‖x‖�∞ .

Step 2 (Completing the proof): Let F ∈ �
�,c
n be arbitrary, so that F = R�
 for

a network
 = (
(A1, b1), . . . , (AL̃ , bL̃)

)
satisfying L̃ ≤ �(n) = L and ‖A j‖∞ ≤

‖
‖NN ≤ c(n) = C , as well as ‖A j‖�0 ≤ W (
) ≤ n for all j ∈ L̃ .
Set p j := 1 if j is even and p j := ∞ otherwise. Choose N j such that A j ∈

R
N j×N j−1 , and define Tj x := A j x + b j . By Step 1, we then see that Tj : (RN j−1 , ‖ ·

‖
�
p j−1
) → (

R
N j , ‖ · ‖�

p j

)
is Lipschitz with

Lip(Tj) = ‖A j‖�
p j−1→�

p j ≤
{

‖A j‖∞ ‖A j‖�0 ≤ Cn, if j is even,

‖A j‖∞ ≤ C, if j is odd.

Next, a straightforward computation shows that the “vector-valued ReLU” is 1-
Lipschitz as a map � : (Rk, ‖ · ‖�p) → (Rk, ‖ · ‖�p), for arbitrary p ∈ [1,∞]
and any k ∈ N. As a consequence, we see that

F = R�
 = TL̃ ◦ (� ◦ TL̃−1) ◦ · · · ◦ (� ◦ T1) :
(Rd , ‖ · ‖�1) → (R, ‖ · ‖�

pL̃) = (R, | · |)

is Lipschitz continuous as a composition of Lipschitz maps, with overall Lipschitz
constant

Lip(R�
) ≤
L̃∏

j=1

(
C · n j

) = CL̃ · n�L̃/2� ≤ CL · n�L/2�.

where we used the notation n j := n if j is even and n j := 1 otherwise. Furthermore,
we used in the last step that C ≥ 1. The final claim of the lemma follows from the
elementary estimate ‖x‖�1 ≤ d · ‖x‖�∞ for x ∈ R

d . ��
Based on the preceding lemma, we can now prove an error bound for the computa-

tional problem of uniform approximation on the neural network approximation space
Aα,∞

�,c ([0, 1]d).
Theorem 4.2 Let c : N → N ∪ {∞} and � : N → N≥2 ∪ {∞} be non-decreasing
and suppose that γ �(�, c) < ∞. Let d ∈ N and α ∈ (0,∞) be arbitrary, and let
Uα,∞

�,c ([0, 1]d)as inEq. (2.3). Furthermore, let ι∞ : Aα,∞
�,c ([0, 1]d) → C([0, 1]d), f
→ f .

123

Foundations of Computational Mathematics

Then, we have

βdet∗
(
Uα,∞

�,c ([0, 1]d), ι∞
) ≥ 1

d
· α

γ �(�, c) + α
.

Remark a) The proof shows that choosing the uniform grid {0, 1
N , . . . , N−1

N }d as the
set of sampling points (with N ∼ m1/d) yields an essentially optimal sampling scheme.

b) It is well-known (see [25, Proposition 3.3]) that the error of an optimal random-
ized algorithm is at most two times the error of an optimal deterministic algorithm.
Therefore, the theorem also implies that

βran∗
(
Uα,∞

�,c ([0, 1]d), ι∞
) ≥ 1

d
· α

γ �(�, c) + α
.

Proof Since γ �(�, c) < ∞, Remark 2.2 shows that L := �∗ < ∞. Let γ >

γ �(�, c) ≥ 1 be arbitrary. By definition of γ �(�, c), it follows that there exists some
γ ′ ∈ (

γ �(�, c), γ
)
and a constant C0 = C0(γ

′, �, c) = C0(γ, �, c) > 0 satisfy-

ing (c(n))L · n�L/2� ≤ C0 · nγ ′ ≤ C0 · nγ for all n ∈ N. Let m ∈ N be arbitrary and
choose

N := ⌊
m1/d⌋ ≥ 1 and n := ⌈

m1/(d·(γ+α))
⌉ ∈ N.

Furthermore, let I := {
0, 1

N , . . . , N−1
N

}d ⊂ [0, 1]d and set C := c(n) and μ :=
d · CL · n�L/2�, noting that μ ≤ d C0 nγ =: C1 nγ and |I | = Nd ≤ m.

Next, set B := U := Uα,∞
�,c ([0, 1]d) = {

f ∈ Aα,∞
�,c ([0, 1]d) : ‖ f ‖Aα,∞

�,c
≤ 1

}
and

define S := �(B) for

� : C([0, 1]d) → R
I , f
→ (

f (i)
)
i∈I .

For each y = (yi)i∈I ∈ S, choose some fy ∈ B satisfying y = �(fy). Note by

Lemma 2.1 that
α,∞(fy) ≤ 1; by definition of
α,∞, we can thus choose Fy ∈ �
�,c
n

satisfying ‖ fy − Fy‖L∞ ≤ 2 · n−α . Given this choice, define

Q : R
I → C([0, 1]d), y
→

{
Fy, if y ∈ S,

0, otherwise.

We claim that ‖ f − Q(�(f))‖L∞ ≤ C2 · m−α/(d·(γ+α)) for all f ∈ B, for a suitable
constantC2 = C2(d, γ, �, c).Once this is shown, it follows thatβdet∗ (U , ι∞) ≥ 1

d
α

γ+α
,

which then implies the claim of the theorem, since γ > γ �(�, c) was arbitrary.
Thus, let f ∈ B be arbitrary and set y := �(f) ∈ S. By the same arguments as

above, there exists F ∈ �
�,c
n satisfying ‖ f − F‖L∞ ≤ 2 · n−α . Now, we see for each

i ∈ I because of f (i) = (�(f))i = yi = (�(fy))i = fy(i) that

123

Foundations of Computational Mathematics

|F(i) − Fy(i)| ≤ |F(i) − f (i)| + | fy(i) − Fy(i)|
≤ ‖F − f ‖L∞ + ‖ fy − Fy‖L∞

≤ 4 · n−α.

Furthermore, Lemma 4.1 shows that F − Fy : (Rd , ‖ · ‖�∞) → (R, | · |) is Lipschitz
continuous with Lipschitz constant at most 2μ. Now, given any x ∈ [0, 1]d , we can
choose i = i(x) ∈ I satisfying ‖x − i‖�∞ ≤ N−1. Therefore, |(F − Fy)(x)| ≤ 2μ

N +
|(F−Fy)(i)| ≤ 2μ

N +4 n−α.Overall, we have thus shown ‖F−Fy‖L∞ ≤ 2μ
N +4 n−α ,

which finally implies because of Q(�(f)) = Q(y) = Fy that

∥∥ f − Q(�(f))
∥∥
L∞ ≤ ‖ f − F‖L∞ + ‖F − Fy‖L∞ ≤ 6 n−α + 2μ

N
.

It remains to note that our choice of N and n implies m1/d ≤ 1 + N ≤ 2N and
hence 1

N ≤ 2m−1/d and furthermore n ≤ 1 + m1/(d·(γ+α)) ≤ 2m1/(d·(γ+α)). Hence,
recalling that μ ≤ C1 nγ , we see

μ

N
≤ 2C1m

−1/dnγ ≤ 21+γC1m
1
d (

γ
γ+α

−1) = 21+γC1m
− α

d·(γ+α) .

Furthermore, since n ≥ m1/(d·(γ+α)), we also have n−α ≤ m− α
d·(γ+α) . Combining all

these observations, it is easy to see that ‖ f − Q(�(f))‖L∞ ≤ C2 · m− α
d·(γ+α) , for a

suitable constant C2 = C2(d, γ, �, c) > 0. Since f ∈ B was arbitrary, this completes
the proof. ��

5 Hardness of Uniform Approximation

In this section, we show that the error bound for uniform approximation provided
by Theorem 4.2 is optimal, at least in the common case where γ �(�, c) = γ �(�, c)
and �∗ ≥ 3. This latter condition means that the approximation for defining the
approximation space Aα,∞

�,c is performed using networks with at least two hidden
layers. We leave it as an interesting question for future work whether a similar result
even holds for approximation spaces associated to shallow networks.

Theorem 5.1 Let � : N → N≥2 ∪ {∞} and c : N → N ∪ {∞} be non-decreasing with
�∗ ≥ 3. Given d ∈ N and α ∈ (0,∞), let Uα,∞

�,c = Uα,∞
�,c ([0, 1]d) as in Eq. (2.3) and

consider the embedding ι∞ : Aα,∞
�,c ([0, 1]d) ↪→ C([0, 1]d). Then

βdet∗ (Uα,∞
�,c , ι∞), βran∗ (Uα,∞

�,c , ι∞) ≤ 1

d

α

α + γ �(�, c)
.

Proof Set K := [0, 1]d and U := Uα,∞
�,c .

123

Foundations of Computational Mathematics

Step 1:Let 0 < γ < γ �(�, c). Letm ∈ N be arbitrary and
m := 2kd×{±1}, where
k := ⌈

m1/d
⌉
. In this step, we show that there is a constant κ = κ(d, α, γ, �, c) > 0

(independent of m) and a family of functions (f�,ν)(�,ν)∈
m ⊂ U which satisfies

∑

(�,ν)∈
m

∥
∥ f�,ν − A(f�,ν)

∥
∥
L∞ ≥ κ · m− 1

d
α

α+γ ∀ A ∈ Algm
(
U ,C([0, 1]d)). (5.1)

To see this, set M := 4k, and for � ∈ 2kd define y(�) := (1,...,1)
4k + �−(1,...,1)

2k ∈ R
d .

Then, we have

y(�) + (−M−1,M−1)d = 2

M

(
� − (1, . . . , 1)

)+ (1, . . . , 1)

M
+ (−M−1,M−1)d

= 2

M

(
� − (1, . . . , 1) + (0, 1)d

)
⊂ (0, 1)d ,

which shows that the functions ϑM,y(�) , � ∈ 2kd , (with ϑM,y as defined in Lemma 3.4),
have disjoint supports contained in [0, 1]d . Furthermore, Lemma 3.6 yields a constant
κ1 = κ1(γ, α, d, �, c) > 0 such that f�,ν := κ1 · M−α/(α+γ) · ν · ϑM,y(�) ∈ U for
arbitrary (�, ν) ∈
m .

To prove Eq. (5.1), let A ∈ Algm(U ,C([0, 1]d)) be arbitrary. By definition, there
exist x = (x1, . . . , xm) ∈ Km and a function Q : R

m → R satisfying A(f) =
Q(f (x1), . . . , f (xm)) for all f ∈ U . Choose I := Ix := {

� ∈ 2kd : ∀ n ∈ m :
ϑM,y(�) (xn) = 0

}
. Then for each � ∈ I c = 2kd \ I , there exists n� ∈ m such that

ϑM,y(�) (xn�) �= 0. Then the map I c → m, �
→ n� is injective, since ϑM,y(�) ϑM,y(t) =
0 for t, � ∈ 2kd with t �= �. Therefore, |I c| ≤ m and hence |I | ≥ (2k)d − m ≥ m,
because of k ≥ m1/d .

Define h := Q(0, . . . , 0). Then for each � ∈ Ix and ν ∈ {±1}, we have f�,ν(xn) = 0
for all n ∈ m and hence A(f�,ν) = Q(0, . . . , 0) = h. Therefore,

‖ f�,1 − A(f�,1)‖L∞ + ‖ f�,−1 − A(f�,−1)‖L∞

= ‖ f�,1 − h‖L∞ + ‖ − f�,1 − h‖L∞ = ‖ f�,1 − h‖L∞ + ‖h + f�,1‖L∞

≥ ‖ f�,1 − h + h + f�,1‖L∞ = 2 ‖ f�,1‖L∞ = 2κ1 · M−α/(α+γ) ∀ � ∈ Ix .

(5.2)

Furthermore, since k ≤ 1 + m1/d ≤ 2m1/d , we see kd ≤ 2dm and M = 4k ≤
8m1/d and hence M

α
α+γ ≤ 8

α
α+γ m

1
d

α
α+γ . Combining these estimates with Eq. (5.2)

and recalling that |I | ≥ m, we finally see

∑

(�,ν)∈
m

‖ f�,ν − A(f�,ν)‖L∞ ≥ (2k)−d
∑

�∈Ix

∑

ν∈{±1}
‖ f�,ν − A(f�,ν)‖L∞

≥ (2k)−d · |I | · κ1 · M− α
α+γ ≥ κ1

4d
· m−1 |I | · M− α

α+γ

≥ κ1/8

4d
· m− 1

d
α

α+γ ,

123

Foundations of Computational Mathematics

which establishes Eq. (5.1) for κ := κ1/8
4d

.

Step 2 (Completing the proof):Given Eq. (5.1), a direct application of Lemma 2.3
shows that βdet∗ (U , ι∞), βran∗ (U , ι∞) ≤ 1

d
α

α+γ
. Since this holds for arbitrary 0 < γ <

γ �(�, c), we easily obtain the claim of the theorem. ��

6 Error Bounds for Approximation in L2

This section provides error bounds for the approximation of functions in Aα,∞
�,c ([0, 1]d)

based on point samples, with error measured in L2. In a nutshell, the argument is
based on combining bounds from statistical learning theory (specifically from [13])
with bounds for the covering numbers of the neural network sets ��,c

n .
For completeness, we mention that the ε-covering number Cov(�, ε) (with ε > 0)

of a (non-empty) subset � of a metric space (X , d) is the minimal number N ∈ N

for which there exist f1, . . . , fN ∈ � satisfying � ⊂ ⋃N
j=1 Bε(f j). Here, Bε(f) :=

{g ∈ X : d(f , g) ≤ ε}. If no such N ∈ N exists, then Cov(�, ε) = ∞. If we want to
emphasize the metric space X , we also write CovX (�, ε).

For the case where one considers networks of a given architecture, bounds for
the covering numbers of network sets have been obtained for instance in [8, Propo-
sition 2.8]. Here, however, we are interested in sparsely connected networks with
unspecified architecture. For this case, the following lemma provides covering bounds.

Lemma 6.1 Let � : N → N≥2 and c : N → N be non-decreasing. The covering
numbers of the neural network set ��,c

n (considered as a subset of the metric space
C([0, 1]d)) can be estimated by

CovC([0,1]d)(��,c
n , ε) ≤

(
44
ε

· (�(n))4 · (c(n)max{d, n})1+�(n)
)n

for arbitrary ε ∈ (0, 1] and n ∈ N.

Proof Define L := �(n) and R := c(n). We will use some results and notation from
[8]. Precisely, given a network architecture a = (a0, . . . , aK) ∈ N

K+1, we denote by

NN (a) :=
K∏

j=1

([−R, R]a j×a j−1 × [−R, R]a j
)

the set of all network weights with architecture a and all weights bounded (in mag-
nitude) by R. Let us also define the index set I (a) := ⊎K

j=1

({ j} × {1, ..., a j } ×
{1, ..., 1+a j−1}), noting thatNN (a) ∼= [−R, R]I (a). In the following, we will equip
NN (a) with the �∞-norm. Then, [8, Theorem 2.6] shows that the realization map
R� : NN (a) → C([0, 1]d),

→ R�
 is Lipschitz continuous on NN (a), with
Lipschitz constant bounded by 2K 2 RK−1 ‖a‖K∞, a fact that we will use below.

123

Foundations of Computational Mathematics

For � ∈ {1, . . . , L}, define a(�) := (d, n, . . . , n, 1) ∈ N
�+1 and I� := I (a(�)), as

well as

�� :=
{
R�
 :
 NN with din(
) = d, dout(
) = 1,

W (
) ≤ n, L(
) = �, ‖
‖NN ≤ R

}
.

By dropping “dead neurons,” it is easy to see that each f ∈ �� is of the form
f = R�
 for some
 ∈ NN (a(�)) satisfying W (
) ≤ n. Thus, keeping the identi-
fication NN (a) ∼= [−R, R]I (a), given a subset S ⊂ I�, let us write NN S,� := {

 ∈
NN (a(�)) : supp
 ⊂ S

}
; then we have �� = ⋃

S⊂I�,|S|=min{n,|I�|} R�(NN S,�).
Moreover, it is easy to see that |I�| ≤ 2d if � = 1 while if � ≥ 2 then |I�| =
1 + n(d + 2) + (� − 2)(n2 + n). This implies in all cases that |I�| ≤ 2n(Ln + d).

Now we collect several observations which in combination will imply the claimed
bound. First, directly from the definition of covering numbers, we see that if �

is Lipschitz continuous, then Cov(�(�), ε) ≤ Cov(�, ε
Lip(�)

), and furthermore

Cov(
⋃K

j=1 � j , ε) ≤ ∑K
j=1 Cov(� j , ε). Moreover, since NN S,� ∼= [−R, R]|S|, we

see by [8, Lemma 2.7] that Cov�∞(NN S,�, ε) ≤ �R/ε�n ≤ (2R/ε)n . Finally, [50,
Exercise 0.0.5] provides the bound

(N
n

) ≤ (eN/n)n for n ≤ N .
Recall that the realization map R� : NN (a(�)) → C([0, 1]d) is Lipschitz

continuous with Lip(R�) ≤ C := 2L2RL−1 max{d, n}L . Combining this with the
observations from the preceding paragraph and recalling that |I�| ≤ 2n(Ln + d), we
see

CovC([0,1]d)(��, ε) ≤
∑

S⊂I�,|S|=min{n,|I�|}
CovC([0,1]d)

(
R�(NNS,�), ε

)

≤
∑

S⊂I�,|S|=min{n,|I�|}
Cov�∞(NNS,�,

ε
C)

≤
∑

S⊂I�,|S|=min{n,|I�|}

(2CR

ε

)|S| ≤
(|I�|
min{n, |I�|}

)
·
(2CR

ε

)n

≤
(e|I�|
min{n, |I�|}

)n ·
(2CR

ε

)n ≤ (2e(Ln + d)
)n ·

(2CR

ε

)n
.

Finally, noting that ��,c
n = ⋃L

�=1 �� and setting η := max{d, n}, we see via elemen-
tary estimates that

CovC([0,1]d)(��,c
n , ε) ≤ L · (4e(Ln + d)RC/ε

)n ≤ L · (16e L3ηL+1RL/ε
)n

≤ (44 L4 ηL+1RL/ε
)n

,

which implies the claim of the lemma. ��

Using the preceding bounds for the covering numbers of the network sets �
�,c
n ,

we now derive covering number bounds for the (closure of the) unit ball Uα,∞
�,c of the

approximation space Aα,∞
�,c .

123

Foundations of Computational Mathematics

Lemma 6.2 Let d ∈ N, C1,C2, α ∈ (0,∞), and θ, ν ∈ [0,∞). Assume that c(n) ≤
C1 · nθ and �(n) ≤ C2 · lnν(2n) for all n ∈ N.

Then there exists C = C(d, α, θ, ν,C1,C2) > 0 such that for any ε ∈ (0, 1], the
unit ball

Uα,∞
�,c := {

f ∈ Aα,∞
�,c ([0, 1]d) : ‖ f ‖Aα,∞

�,c
≤ 1
}

satisfies

CovC([0,1]d)
(
U

α,∞
�,c , ε

) ≤ exp
(
C · ε−1/α · lnν+1(2/ε)

)
.

Here, we denote by U
α,∞
�,c the closure of Uα,∞

�,c in C([0, 1]d).

Proof Let n := ⌈
(8/ε)1/α

⌉ ∈ N≥2, noting n−α ≤ ε/8. Set C := c(n) and L :=
�(n). Lemma 6.1 provides an absolute constant C3 > 0 and N ∈ N such that N ≤(C3

ε
L4 · (C max{d, n})1+L

)n and functions h1, . . . , hN ∈ �
�,c
n satisfying �

�,c
n ⊂

⋃N
j=1 Bε/4(h j); here, Bε(h) is the closed ball in C([0, 1]d) of radius ε around h.

For each j ∈ N choose g j ∈ Uα,∞
�,c ∩ Bε/2(h j), provided that the intersection is

non-empty; otherwise choose g j := 0 ∈ Uα,∞
�,c .

We claim that Uα,∞
�,c ⊂ ⋃N

j=1 Bε(g j). To see this, let f ∈ Uα,∞
�,c be arbitrary; then

Lemma 2.1 shows that
α,∞(f) ≤ 1. Directly from the definition of
α,∞ we see that
we can choose h ∈ �

�,c
n satisfying nα ‖ f −h‖L∞ ≤ 2 and hence ‖ f −h‖L∞ ≤ ε

4 . By
choice of h1, . . . , hN , there exists j ∈ N satisfying ‖h − h j‖L∞ ≤ ε

4 . This implies
‖ f − h j‖L∞ ≤ ε

2 and therefore f ∈ Bε/2(h j) ∩ Uα,∞
�,c �= ∅. By our choice of g j ,

we thus have g j ∈ Uα,∞
�,c ∩ Bε/2(h j) and hence ‖ f − g j‖L∞ ≤ ε. All in all, we have

thus shown Uα,∞
�,c ⊂ ⋃N

j=1 Bε/2(g j) and hence also U
α,∞
�,c ⊂ ⋃N

j=1 Bε/2(g j). This

implies CovC([0,1]d)(U
α,∞
�,c , ε) ≤ N , so that it remains to estimate N sufficiently well.

To estimate N , first note that

n ≤ 1 + (8
ε
)1/α ≤ 2 · 81/α ε−1/α and

ln(n) ≤ ln(2n) ≤ ln(4 · 81/α) + 1
α
ln(1

ε
) ≤ C4 · ln(2

ε
) (6.1)

for a suitable constant C4 = C4(α) > 0. This implies

L ≤ 1 + L ≤ 2L ≤ 2C2 lnν(2n) ≤ 2C2C
ν
4 · lnν(2

ε
) ≤ C5 · lnν(2

ε
)

with a constant C5 = C5(C2, ν, α) ≥ 1.

123

Foundations of Computational Mathematics

Now, using Eq. (6.1) and noting max{d, n} ≤ d n, we obtain C6 = C6(d, α,C1) >

0 and C7 = C7(d, α, θ, ν,C1,C2) > 0 satisfying

(
C max{d, n})1+L ≤ (C1 d · nθ+1)1+L ≤ (C6 · n1+θ

)1+L ≤ (C6 · n1+θ
)C5 lnν (2/ε)

= exp
((

ln(C6) + (1 + θ) ln(n)
) · C5 lnν(2/ε)

)

≤ exp
((

ln(C6) + (1 + θ)C4 ln(2/ε)
) · C5 lnν(2/ε)

)

≤ exp
(
C7 · lnν+1(2/ε)

)
.

(6.2)

Furthermore, using the elementary estimate ln x ≤ x for x > 0, we see

C3

ε
L4 ≤ C3C

4
5 · ln4ν(2/ε) · ε−1 ≤ 24νC3C

4
5 · ε−(1+4ν)

= exp
(
C8 + (1 + 4ν) · ln(1/ε)) ≤ exp

(
C9 ln(2/ε)

) ≤ exp
(
C10 lnν+1(2/ε)

) (6.3)

for suitable constants C8,C9,C10 all only depending on ν, α,C2.
Overall, recalling the estimate for N from the beginning of the proof and using

Eqs. (6.1), (6.2) and (6.3), we finally see

N ≤
(C3

ε
L4 · (C max{d, n})1+L

)n ≤ exp
(
(C10 + C7) · n · lnν+1(2/ε)

)

≤ exp
(
2 · 81/α · (C10 + C7) · ε−1/α · lnν+1(2/ε)

)
,

which easily implies the claim of the lemma. ��
Combining the preceding covering number bounds with bounds from statistical

learning theory, we now prove the following error bound for approximating functions
f ∈ Aα,∞

�,c from point samples, with error measured in L2.

Theorem 6.3 Let d ∈ N, C1,C2, α ∈ (0,∞), and θ, ν ∈ [0,∞). Let c : N → N and
� : N → N≥2 be non-decreasing and such that c(n) ≤ C1 ·nθ and �(n) ≤ C2 · lnν(2n)
for all n ∈ N. Let Uα,∞

�,c as in Eq. (2.3), and denote by U
α,∞
�,c the closure of Uα,∞

�,c in

C([0, 1]d).
Then there exists a constant C = C(α, θ, ν, d,C1,C2) > 0 such that for each

m ∈ N, there are points x1, . . . , xm ∈ [0, 1]d with the following property:

∀ f , g ∈ U
α,∞
�,c with f (xi) = g(xi) for all i ∈ m :

‖ f − g‖L2([0,1]d) ≤ C · (ln1+ν(2m)
/
m
) α/2
1+α . (6.4)

In particular, this implies for the embedding ι2 : Aα,∞
�,c ([0, 1]d) ↪→ L2([0, 1]d) that

βdet∗
(
U

α,∞
�,c , ι2

) ≥ α/2

1 + α
.

123

Foundations of Computational Mathematics

Remark The proof shows that the points x1, . . . , xm can be obtained with positive
probability by uniformly and independently sampling x1, . . . , xm from [0, 1]d . In
fact, an inspection of the proof shows for each m ∈ N that this sampling procedure
will result in “good” points with probability at least

1 − exp
(

− [m · lnα·(1+ν)(2m)
]1/(1+α)

)
.

Proof Step 1: An essential ingredient for our proof is [13, Proposition 7]. In this step,
we briefly recall the general setup from [13] and describe how it applies to our setting.

Let us fix a function f0 ∈ U
α,∞
�,c for themoment. In [13], one startswith a probability

measureρ on Z = X×Y , where X is a compact domain andY = R. In our casewe take
X = [0, 1]d and we define ρ(M) := ρ f0(M) := λ({x ∈ [0, 1]d : (x, f0(x)) ∈ M})
for any Borel set M ⊂ X × Y . In other words, ρ is the distribution of the random
variable ξ = (η, f0(η)), where η is uniformly distributed in X = [0, 1]d . Then, in the
notation of [13], the measure ρX on X is simply the Lebesgue measure on [0, 1]d and
the conditional probability measure ρ(• | x) on Y is ρ(• | x) = δ f0(x). Furthermore,
the regression function fρ considered in [13] is simply fρ = f0, and the (least squares)
error E(f) of f : X → Y is E(f) = ∫

[0,1]d | f (x) − f0(x)|2 dλ(x) = ‖ f − f0‖2
L2 ;

to emphasize the role of f0, we shall write E(f ; f0) = ‖ f − f0‖2
L2 instead. The

empirical error of f : X → Y with respect to a sample z ∈ Zm is

Ez(f) := 1

m

m∑

i=1

(
f (xi) − yi

)2 where z = ((x1, y1), . . . , (xm, ym)
)
.

We shall also use the notation

Ex(f ; f0) := Ez(f) = 1

m

m∑

i=1

(
f (xi) − f0(xi)

)2 where yi = f0(xi) for i ∈ m.

Furthermore, as the hypothesis space H we choose H := U
α,∞
�,c . As required in

[13], this is a compact subset of C(X); indeed U
α,∞
�,c ⊂ C([0, 1]d) is closed and has

finite covering numbers Cov(U
α,∞
�,c , ε) for arbitrarily small ε > 0 (see Lemma 6.2).

Thus, U
α,∞
�,c ⊂ C([0, 1]d) is compact; see for instance [2, Theorem 3.28].

Moreover, since every (x, y) ∈ Z satisfies y = f0(x) almost surely (with respect
to ρ = ρ f0), and since all f ∈ H = U

α,∞
�,c satisfy ‖ f ‖C([0,1]d) ≤ 1, we see that

ρ f0 -almost surely, the estimate | f (x) − y| = | f (x) − f0(x)| ≤ 2 =: M holds for all
f ∈ H. Furthermore, in [13], the function fH ∈ H is a minimizer of E overH; in our
case, since f0 ∈ H, we easily see that fH = f0 and E(fH) = 0. Therefore, the error
in H of f ∈ H as considered in [13] is simply EH(f) = E(f) − E(fH) = E(f).
Finally, the empirical error in H of f ∈ H is given by EH,z(f) = Ez(f) − Ez(fH).
Hence, if z = (

(x1, y1), . . . , (xm, ym)
)
satisfies yi = f0(xi) for all i ∈ m, then

EH,z(f) = Ez(f) = Ex(f ; f0), because of fH = f0.
Now, let x = (x1, . . . , xm) be i.i.d. uniformly distributed in [0, 1]d and set

yi = f0(xi) for i ∈ m and z = (z1, . . . , zm) = (
(x1, y1), . . . , (xm, ym)

)
. Then

123

Foundations of Computational Mathematics

z1, . . . , zm
iid∼ ρ f0 . Therefore, [13, Proposition 7] (applied with α = 1

6) shows for
arbitrary ε > 0 and m ∈ N that there is a measurable set

E = E(m, ε, f0) ⊂ ([0, 1]d)m ∼= [0, 1]dm
with λ(E) ≤ Cov

(
U

α,∞
�,c , ε

48

) · e−mε/288satisfying

sup
f ∈H

E(f ; f0) − Ex(f ; f0)

E(f ; f0) + ε
= sup

f ∈H
EH(f) − EH,z(f)

EH(f) + ε
≤ 1

2
∀ x ∈ ([0, 1]d)m \ E .

(6.5)
Here, we remark that [13, Proposition 7] requires the hypothesis spaceH to be convex,
which is not in general satisfied in our case. However, as shown in [13, Remark 13],
the assumption of convexity can be dropped provided that fρ ∈ H, which is satisfied
in our case.
Step 2: In this step, we prove the first claim of the theorem. To this end, we first apply
Lemma 6.2 to obtain a constant C3 = C3(α, ν, θ, d,C1,C2) > 0 satisfying

Cov
(
U

α,∞
�,c , ε

) ≤ Nε := Cov
(
U

α,∞
�,c , ε

48

)≤ exp
(
C3·ε−1/α·ln1+ν(2/ε)

) ∀ ε ∈ (0, 1].
(6.6)

Next, defineC4 := 1+ α
1+α

andC5 := C1+ν
4 , and chooseC6 = C6(α, ν, θ, d,C1,C2)

≥ 1 such that 2C3C5 − C6
288 ≤ −1 < 0.

Let m ∈ N be arbitrary with m ≥ m0 = m0(α, ν, θ, d,C1,C2) ≥ 2, where

m0 is chosen such that ε := C6 · (ln1+ν(2m)
/
m
)α/(1+α) satisfies ε ∈ (0, 1]; the case

m ≤ m0 will be considered below. Let N := Nε as in Eq. (6.6). Since Cov(U
α,∞
�,c , ε) ≤

N , we can choose f1, . . . , fN ∈ U
α,∞
�,c such that U

α,∞
�,c ⊂ ⋃N

j=1 Bε(f j), where

Bε(f) := {
g ∈ C([0, 1]d) : ‖ f − g‖L∞ ≤ ε

}
. Now, for each j ∈ N , choose E j :=

E(m, ε, f j) ⊂ ([0, 1]d)m as in Eq. (6.5), and define E∗ := ⋃N
j=1 E j .

Note because of C6 ≥ 1 and ln(2m) ≥ ln(4) ≥ 1 that ε ≥ (ln1+ν(2m)
/
m
)α/(1+α)

≥ m−α/(1+α) and hence

ln(2/ε) ≤ ln(2) + α
1+α

ln(m) ≤ C4 ln(2m) and thus ln1+ν(2/ε) ≤ C5 ln1+ν(2m).

Using the estimate for N = Nε from Eq. (6.6) and the bound for the measure of E j

from Eq. (6.5), we thus see

λ(E∗) ≤ N · Cov(Uα,∞
�,c , ε

48

) · e−mε/288 ≤ exp
(
2C3 · ε−1/α · ln1+ν(2/ε) − mε/288

)

≤ exp
(
2C3C5 · (m/ ln1+ν(2m)

)1/(1+α) · ln1+ν(2m) − C6
288 · m1− α

1+α · (ln(2m)
)(1+ν) α

1+α

)

≤ exp
(
m

1
1+α · (ln(2m)

)(1+ν) α
1+α · (2C3C5 − C6

288

))

≤ exp
(

− m
1

1+α · (ln(2m)
)(1+ν) α

1+α

)
< 1.

Thus, we can choose x = (x1, . . . , xm) ∈ ([0, 1]d)m \ E∗. We claim that every such
choice satisfies the property stated in the first part of the theorem.

To see this, let f , g ∈ U
α,∞
�,c be arbitrary with f (xi) = g(xi) for all i ∈ m.

By choice of f1, . . . , fN , there exists some j ∈ N satisfying ‖ f − f j‖L∞ ≤ ε.

123

Foundations of Computational Mathematics

Since x /∈ E∗, we have x /∈ E j = E(m, ε, f j). In view of Eq. (6.5), this implies
E(g; f j)−Ex(g; f j) ≤ 1

2 (E(g; f j)+ε), and after rearranging, this yields E(g; f j) ≤
2 Ex(g; f j) + ε. Because of ‖g − f j‖L2 ≤ ‖g‖L∞ + ‖ f j‖L∞ ≤ 2 and thanks to the
elementary estimate (a + ε)2 = a2 + 2aε + ε2 ≤ a2 + 5ε for 0 ≤ a ≤ 2, we thus see

‖g − f ‖2L2 ≤ (‖g − f j‖L2 + ‖ f j − f ‖L2
)2

≤ ‖g − f j‖2L2 + 5ε = E(g; f j) + 5ε ≤ 2 Ex(g; f j) + 6ε.

But directly from the definition and because of g(xi) = f (xi) and ‖ f − f j‖L∞ ≤ ε,

we see Ex(g; f j) = 1
m

∑m
i=1

(
g(xi) − f j (xi)

)2 ≤ ε2 ≤ ε. Overall, we thus see that

‖g − f ‖2L2 ≤ 8ε = 8C6
(
ln1+ν(2m)

/
m
) α
1+α

∀ f , g ∈ U
α,∞
�,c satisfying f (xi) = g(xi) for all i ∈ m.

We have thus proved the claim form ≥ m0. Since ‖g− f ‖L2 ≤ ‖ f ‖L∞ +‖g‖L∞ ≤ 2
for arbitrary f , g ∈ U

α,∞
�,c , it is easy to see that this proves the claim for all m ∈ N,

possibly after enlarging C .
Step 3: To complete the proof of the theorem, for each y = (y1, . . . , ym) ∈ R

m ,
choose a fixed f y ∈ U

α,∞
�,c satisfying

f y ∈ argmin
f ∈Uα,∞

�,c

m∑

i=1

(
f (xi) − yi

)2;

existence of f y is an easy consequence of the compactness of U
α,∞
�,c ⊂ C([0, 1]d).

Define

 : R
m → U

α,∞
�,c , y
→ f y and

A : U
α,∞
�,c → U

α,∞
�,c , f
→

(
(f (x1), . . . , f (xm))

)
.

Then given any f ∈ U
α,∞
�,c , the function g := A f ∈ U

α,∞
�,c satisfies f (xi) = g(xi) for

all i ∈ m, and hence ‖ f − A f ‖L2 ≤ C · (ln1+ν(2m)
/
m
) α/2
1+α , as shown in the previous

step. By definition of βdet∗ (U
α,∞
��,�c , ι2), this easily entails βdet∗ (U

α,∞
��,�c , ι2) ≥ α/2

1+α
. ��

7 Hardness of Approximation in L2

This section presents hardness results for approximating the embedding Aα,∞
�,c ([0, 1]d)

↪→ L2([0, 1]d) using point samples.

123

Foundations of Computational Mathematics

Theorem 7.1 Let c : N → N ∪ {∞} and � : N → N≥2 ∪ {∞} be non-decreasing with
�∗ ≥ 2. Let d ∈ N and α ∈ (0,∞). Set γ � := γ �(�, c) as in Eq. (2.2) and let Uα,∞

�,c
as in Eq. (2.3). For the embedding ι2 : Uα,∞

�,c → L2([0, 1]d), f
→ f , we then have

βdet∗
(
Uα,∞

�,c , ι2
)
, βran∗

(
Uα,∞

�,c , ι2
) ≤

⎧
⎨

⎩

min
{ 1
2 + α

α+γ � ,
2α

α+γ �

}
, if α + γ � < 2,

min
{ 1
2 + α

α+γ � , α, 1
2 + α− 1

2
α+γ �−1

}
, if α + γ � ≥ 2

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2α
α+γ � , if α + γ � < 2,

α, if α + γ � ≥ 2 and α ≤ 1
2 ,

1
2 + α− 1

2
α+γ �−1

, if α + γ � ≥ 2 and 1
2 ≤ α ≤ γ �,

1
2 + α

α+γ � , if α + γ � ≥ 2 and α ≥ γ �.

(7.1)

Remark The bound from above might seem intimidating at first sight, so we point out
two important consequences: First,we alwayshaveβdet∗

(
Uα,∞

�,c , ι2
)
, βran∗

(
Uα,∞

�,c , ι2
) ≤

1
2 + α

α+γ � ≤ 3
2 , which shows that no matter how large the approximation rate α is,

one can never get a better convergence rate than m−3/2. Furthermore, in the impor-
tant case where γ � = ∞ (for instance if the depth-growth function � is unbounded),
then βdet∗

(
Uα,∞

�,c , ι2
)
, βran∗

(
Uα,∞

�,c , ι2
) ≤ 1

2 + α
α+γ � = 1

2 . These two bounds are the
interesting bounds for the regime of large α.

For small α > 0, the theorem shows

βdet∗
(
Uα,∞

�,c , ι2
)
, βran∗

(
Uα,∞

�,c , ι2
) ≤ max

{ 2α
α+γ � , α

} ≤ max
{ 2
γ � , 1

} · α ≤ 2α,

since γ � ≥ 1. This shows that one cannot get a good rate of convergence for small
exponents α > 0.

Proof Step 1 (preparation): Let 0 < γ < γ � be arbitrary and let θ ∈ (0,∞) and
λ ∈ [0, 1] with θλ ≤ 1 and set ω := min{−θα, θ · (γ − λ) − 1} ∈ (−∞, 0).

Let m ∈ N be arbitrary and set M := 4m and z j := 1
4m + j−1

2m for j ∈ 2m. Then,
Lemma 3.2 yields a constant κ = κ(γ, α, λ, θ, �, c) > 0 (independent ofm) such that

fν,J := κ · mω ·
∑

j∈J

ν j �
∗
M,z j ∈ Uα,∞

�,c ∀ J ⊂ 2m with |J | ≤ 2 · mθλ

and ν = (ν j) j∈2m ∈ [−1, 1]2m .

Furthermore, Lemma 3.2 shows that the functions (�∗
M,zi

)i∈2m have supports con-

tained in [0, 1]d which are pairwise disjoint (up to null-sets). By continuity, this implies
�∗

M,zi
�∗

M,z�
≡ 0 for i �= �.

Let k := �mθλ�, noting because of θλ ≤ 1 that k ≤ �m� = m and k ≤ 1 + mθλ ≤
2 · mθλ. Set Pk(2m) := {

J ⊂ 2m : |J | = k
}
and
m := {±1}2m × Pk(2m). The idea

of the proof is to show that Lemma 2.3 is applicable to the family (fν,J)(ν,J)∈
m .

123

Foundations of Computational Mathematics

Step 2: In this step, we prove

∑

(ν,J)∈
m

∥∥ fν,J − A(fν,J)
∥∥
L2([0,1]d) ≥ κ

32
·mω+ 1

2 (θλ−1) ∀ A ∈ Algm
(
U , L2([0, 1]d)). (7.2)

To see this, let x = (x1, . . . , xm) ∈ ([0, 1]d)m and Q : R
m → L2([0, 1]d) be arbitrary.

Define I := Ix := {
i ∈ 2m : ∀ n ∈ m : �∗

M,zi
(xn) = 0

}
as in Lemma 3.3 and recall

the estimate |I | ≥ m from that lemma.
Now, given ν(1) ∈ {±1}I and ν(2) ∈ {±1}I c as well as J ∈ Pk(2m), define

Fν(1),J := κ · mω ·
∑

j∈I∩J

ν
(1)
j �∗

M,z j and gν(2),J := κ · mω ·
∑

j∈I c∩J

ν
(2)
j �∗

M,z j

and finally hν(2),J := gν(2),J − Q
(
gν(2),J (x1), . . . , gν(2),J (xm)

)
. Note by choice of

I = Ix that fν,J (xn) = gν(2),J (xn) for all n ∈ m, if we identify ν with (ν(1), ν(2)),
as we will continue to do for the remainder of the proof. Thus, we see for fixed but
arbitrary ν(2) ∈ {±1}I c and J ∈ Pk(2m) that

∑

ν(1)∈{±1}I

∥∥ fν,J − Q
(
fν,J (x1), . . . , fν,J (xm)

)∥∥
L2([0,1]d)

=
∑

ν(1)∈{±1}I

∥∥Fν(1),J + hν(2),J

∥∥
L2([0,1]d)

= 1

2

∑

ν(1)∈{±1}I

(∥
∥Fν(1),J + hν(2),J

∥
∥
L2([0,1]d) + ∥∥F−ν(1),J + hν(2),J

∥
∥
L2([0,1]d)

)

(∗)≥
∑

ν(1)∈{±1}I
‖Fν(1),J‖L2([0,1]d)

(�)≥ 2|I | · κ

8
· mω ·

(|I ∩ J |
m

)1/2

.

(7.3)

Here, the step marked with (∗) used the identity F−ν(1),J = −Fν(1),J and the ele-
mentary estimate ‖ f + g‖L2 + ‖ − f + g‖L2 = ‖ f + g‖L2 + ‖ f − g‖L2 ≥
‖ f + g + f − g‖L2 = 2 ‖ f ‖L2 . Finally, the step marked with (∗) used that the
functions

(
�∗

M,zi

)
i∈2m have disjoint supports (up to null-sets) contained in [0, 1]d and

that �∗
M,z j

(x) ≥ 1
2 for all x ∈ [0, 1]d satisfying |x1 − z j | ≤ 1

2M ; since M = 4m, this

easily implies ‖�∗
M,zi

‖L2([0,1]d) ≥ 1
2

(1
2M

)1/2 ≥ m−1/2

8 and hence

‖Fν(1),J‖L2([0,1]d) = κ · mω ·
∥∥
∥
∑

j∈I∩J

ν
(1)
j �∗

M,z j

∥∥
∥
L2([0,1]d)

= κ · mω ·
(∑

j∈I∩J

|ν(1)
j |2 ‖�∗

M,z j ‖2L2([0,1]d)
)1/2 ≥ κ

8
· mω ·

(
|I ∩ J |

/
m
)1/2

.

123

Foundations of Computational Mathematics

Combining Eq. (7.3) with Lemma A.4 and recalling that k ≥ mθλ, we finally see

∑

(ν,J)∈
m

∥∥ fν,J − Q
(
fν,J (x1), . . . , fν,J (xm)

)∥∥
L2([0,1]d)

≥
∑

J∈Pk (2m)

∑

ν(2)∈{±1}I c

∑

ν(1)∈{±1}I

∥∥ fν,J − Q
(
fν,J (x1), . . . , fν,J (xm)

)∥∥
L2([0,1]d)

≥ κ

8
· mω

∑

J∈Pk (2m)

(|Ix ∩ J |
m

)1/2

≥ κ

32
· mω+ 1

2 (θλ−1).

Recall that this holds for any m ∈ N, arbitrary x = (x1, . . . , xm) ∈ ([0, 1]d)m and
any map Q : R

m → L2([0, 1]d). Thus, we have established Eq. (7.2).
Step 3: In view of Eq. (7.2), an application of Lemma 2.3 shows that

βdet∗ (U , ι2), β
ran∗ (U , ι2) ≤ 1

2 −ω− θλ
2 = 1

2 +max
{
θ ·(α− λ

2), 1+θ ·(λ2 −γ)
}
(7.4)

for arbitrary 0 < γ < γ �, θ ∈ (0,∞) and λ ∈ [0, 1] with θλ ≤ 1; here, we note that
1
2 − θλ

2 ≥ 0 and −ω ≥ 0.
From Eq. (7.4), it is easy (but slightly tedious) to deduce the first line of Eq. (7.1);

the details are given in Lemma A.5. Finally, the second line of Eq. (7.1) follows by a
straightforward case distinction. ��

8 Error Bounds for Numerical Integration

In this section, we derive error bounds for the numerical integration of functions f ∈
Aα,∞

�,c ([0, 1]d)based onpoint samples.Wefirst consider (inTheorem8.1) deterministic
algorithms, which surprisingly provide a strictly positive rate of convergence, even for
neural network approximation spaces without restrictions on the size of the network
weights. Then, in Theorem 8.4, we consider the case of randomized (Monte Carlo)
algorithms. As usual for such algorithms, they improve on the deterministic rate of
convergence (essentially) by a factor ofm−1/2, at the cost of having a non-deterministic
algorithm and (in our case) of requiring a non-trivial (albeit mild) condition on the
growth function c used to define the space Aα,∞

�,c .

Theorem 8.1 Let d ∈ NandC, σ, α ∈ (0,∞). Let c : N → N ∪ {∞} and � : N →
N≥2 ∪ {∞} be non-decreasing and assume that �(n) ≤ C · (ln(en))σ for all n ∈ N.
Then, with Uα,∞

�,c as in Eq. (2.3) and with T∫ : Aα,∞
�,c → R, f
→ ∫

[0,1]d f (x) dx, we
have

βdet∗
(
Uα,∞

�,c , T∫
) ≥ α

1 + 2α
∈
(
0,

1

2

)
.

The proof relies on VC-dimension-based bounds for empirical processes. For the
convenience of the reader, we briefly review the notion of VC dimension. Let � �= ∅

123

Foundations of Computational Mathematics

be a set, and let∅ �= H ⊂ {0, 1}� be arbitrary. In the terminology ofmachine learning,
H is called a hypothesis class. The growth function of H is defined as

τH : N → N, m
→ sup
x1,...,xm∈�

∣
∣{(f (x1), ..., f (xm)

) : f ∈ H}∣∣,

see [35, Definition 3.6]. That is, τH(m) describes the maximal number of different
ways in which the hypothesis class H can partition points x1, . . . , xm ∈ �. Clearly,
τH(m) ≤ 2m for each m ∈ N. This motivates the definition of the VC-dimension
VC(H) ∈ N0 ∪ {∞} of H as

VC(H) :=
{
0, if τH(1) < 21,

sup
{
m ∈ N : τH(m) = 2m

} ∈ N ∪ {∞}, otherwise.

For applying existing learning bounds based on the VC dimension in our setting, the
following lemma will be essential.

Lemma 8.2 Let C1 ≥ 1 and C2, σ1, σ2 > 0. Then there exist constants n0 =
n0(C1,C2, σ1, σ2) ∈ N and C = C(C1) > 0 such that for every n ∈ N≥n0 and every
L ∈ N with L ≤ C2 · (ln(en))σ2 , the following holds:

For any set � �= ∅ and any hypothesis classes ∅ �= H1, . . . ,HN ⊂ {0, 1}� satis-
fying

N ≤ L · (Ln2n
)

and VC(H j) ≤ C1 · n · (ln(en))σ1 for all j ∈ N ,

we have

VC(H1 ∪ · · · ∪ HN) ≤ C · n · (ln(en))1+σ1 .

Proof ChooseC0 = 10C1 so that ln 2− C1
C0

≥ 1
2 ; here we used that ln 2 ≈ 0.693 ≥ 6

10 .
Set C3 := 1 + 2 ln(C2) + 2σ2 and choose n0 = n0(C1,C2, σ1, σ2) ∈ N so large that
for every n ≥ n0, we have C3 · (ln(en))−σ1 ≤ 1

6 and C1 ln(20e) · (ln(en))−1 ≤ 1
6 .

For any subset∅ �= H ⊂ {0, 1}�, Sauer’s lemma shows that if dH := VC(H) ∈ N,
then τH(m) ≤ (em/dH)dH for all m ≥ dH; see [35, Corollary 3.18]. An elementary
calculation shows that the function (0,∞) → R, x
→ (em/x)x is non-decreasing on
(0,m]; thus, we see

τH(m) ≤ (em/d)d ∀m ∈ N and d ∈ [dH,m] ∩ [1,∞); (8.1)

this trivially remains true if dH = 0.
Let n ∈ N≥n0 , L , and H1, . . . ,HN as in the statement of the lemma. Set

H := H1 ∪ · · · ∪ HN and m := ⌈
C0 · n · (ln(en))σ1+1

⌉
; we want to show that

VC(H) ≤ m. By definition of the VC dimension, it is sufficient to show that

123

Foundations of Computational Mathematics

τH(m) < 2m . To this end, first note by a standard estimate for binomial coefficients
(see [50, Exercise 0.0.5]) that

N ≤ L ·
(
Ln2

n

)
≤ L · (eLn2/n)n ≤ (eL2n)n = exp

(
n · ln(eL2n)

) ≤ exp
(
C3n ln(en)

)
,

thanks to the elementary estimate ln x ≤ x , since ln(en) ≥ 1 and L ≤ C2 · (ln(en))σ2 ,
and by our choice of C3 at the beginning of the proof.

Next, recall that C0 = 10C1 and note dH j ≤ d := C1 · n · (ln(en))σ1 ∈ [1,m], so
that Eq. (8.1) shows because of m ≤ 2C0 · n · (ln(en))σ1+1 that

τH j (m) ≤
(em

C1 · n · (ln(en))σ1
)C1 n (ln(en))σ1 ≤ (20e ln(en))C1 n (ln(en))σ1

.

Combining all these observations and using the subadditivity property τH1∪H2 ≤
τH1 + τH2 and the bounds m ≥ C0 n (ln(en))σ1+1 and ln(2) − C1

C0
≥ 1

2 as well as

C0 ≥ 1, we see with θ := C0 n (ln(en))σ1+1 that

τH(m)

2m
≤ N

2m
· (20e ln(en))C1 n (ln(en))σ1

≤ exp
(
C3n ln(en) + C1n (ln(en))σ1 ln(20e ln(en)) − m ln(2)

)

≤ exp
(
− θ ·

[
ln(2) − C1

C0
− C1 ln(20e)

ln(en)
− C3

(ln(en))σ1

])

≤ exp
(

− θ ·
[1
2

− 1

6
− 1

6

])
= exp

(−θ
/
6
)
< 1,

since n ≥ n0 and thanks to our choice of n0 from the beginning of the proof.
Overall, we have thus shown τH(m) < 2m and hence VC(H) ≤ m ≤ 2C0 · n ·

(ln(en))σ1+1, which completes the proof, for C := 2C0 = 20C1. ��
As a consequence, we get the following VC-dimension bounds for the network

classes ��,∞
n .

Lemma 8.3 Let d ∈ N and � : N → N≥2 such that �(n) ≤ C · (ln(en))σ for all n ∈ N

and certain C, σ > 0. Then there exist n0 = n0(C, σ, d) ∈ N and C ′ = C ′(C) > 0
such that for all λ ∈ R and n ≥ n0, we have

VC
({
1g>λ : g ∈ ��,∞

n

}) ≤ C ′ · n · (ln(en))σ+2.

Proof Given a network architecture a = (a0, . . . , aK) ∈ N
K+1, we denote the set of

all networks with architecture a by

NN (a) :=
K∏

j=1

(
R
a j×a j−1 × R

a j
)
,

123

Foundations of Computational Mathematics

and by I (a) := ⊎K
j=1

({ j} × {1, ..., a j } × {1, ..., 1 + a j−1}
)
the corresponding index

set, so that NN (a) ∼= R
I (a).

Define L := �(n). For � ∈ {1, . . . , L}, define I� := I (a(�)) and a(�) :=
(d, n, . . . , n, 1) ∈ N

�+1, as well as

�� :=
{
R�
 :
 NN with din(
) = d, dout(
) = 1,

W (
) ≤ n, L(
) = �,

}
.

By dropping “dead neurons,” it is easy to see that each f ∈ �� is of the form f = R�

for some
 ∈ NN (a(�)) satisfying W (
) ≤ n. In other words, keeping the identifi-
cation NN (a) ∼= R

I (a), given a subset S ⊂ I�, let us write

NN S,� := {
R�
 ∈ NN (a(�)) : supp
 ⊂ S

};

then �� = ⋃
S⊂I�,|S|=min{n,|I�|} NNS,�. Moreover, |I�| ≤ 2d if � = 1 while |I�| =

1 + n(d + 2) + (� − 2)(n2 + n) for � ≥ 2, and this implies in all cases that |I�| ≤
2n(Ln + d) ≤ L ′ · n2 for L ′ := 4d L .

Overall, given a class F ⊂ { f : R
d → R} and λ ∈ R, let us write F(λ) :=

{1 f>λ : f ∈ F}. Then the considerations from the preceding paragraph show that

��,∞
n (λ) ⊂

L⋃

�=1

⋃

S⊂I�,|S|=min{n,|I�|
NN S,�(λ). (8.2)

Now, the set NN S,� can be seen as all functions obtained by a fixed ReLU network
(architecture) with at most n nonzero weights and � layers, in which the weights are
allowed to vary. Therefore, [6, Eq. (2)] shows for a suitable absolute constantC (0) > 0
that

VC(NN S,�(λ)) ≤ C (0) · n� ln(en) ≤ C (0)C · n · (ln(en))σ+1.

Finally, noting that the number of sets over which the union is taken in Eq. (8.2)

is bounded by
∑L

�=1

(|I�|
nmin{n, |I�|}

)
≤ ∑L

�=1

(L ′ n2
n

) ≤ L · (L ′ n2
n

) ≤ L ′ · (L ′ n2
n

)
,

we can apply Lemma 8.2 (with σ1 = σ + 1, σ2 = σ , C1 = max{1,C (0)C}, and
C2 = 4dC) to obtain n0 = n0(d,C, σ) ∈ N and C ′ = C ′(C) > 0 satisfying
VC(�

�,∞
n (λ)) ≤ C ′ · n · (ln(en))σ+2 for all n ≥ n0. ��

Proof of Theorem 8.1 Define θ := 1
1+2α andγ := − σ+2

1+2α . Letm ≥ m0 withm0 chosen
such that n := �mθ · (ln(em))γ � satisfies n ≥ n0 for n0 = n0(σ,C, d) ∈ N provided
by Lemma 8.3. Let G := {g ∈ �

�,∞
n : ‖g‖L∞ ≤ 3} and note that Lemma 8.3 shows for

every λ ∈ R that VC({1g>λ : g ∈ G}) ≤ C ′ · n · (ln(en))σ+2 for a suitable constant
C ′ = C ′(C) > 0. Therefore, [11, Proposition A.1] yields a universal constant κ > 0

123

Foundations of Computational Mathematics

such that if X1, . . . , Xm
iid∼ U ([0, 1]d), then

E

[
sup
g∈G

∣∣
∣∣

∫

[0,1]d
g(x)dx − 1

m

m∑

j=1

g(X j)

∣∣
∣∣

]
≤ 6κ

√
C ′ n (ln(en))σ+2

m
.

In particular, there exists x = (X1, . . . , Xm) ∈ ([0, 1]d)m such that

∣∣∣∣

∫

[0,1]d
g(x)dx − 1

m

m∑

j=1

g(X j)

∣∣∣∣ ≤ 6κ

√
C ′ n (ln(en))σ+2

m
=: ε1 ∀ g ∈ G.

Next, note because of γ < 0 that n ≤ mθ (ln(em))γ ≤ mθ and hence ln(en) �
ln(em). Therefore,

ε1 �

√
n · (ln(en))σ+2

m
� m

θ−1
2 · (ln(em))

σ+2+γ
2 = m− α

1+2α · (ln(em))−αγ =: ε2,

where the implied constant only depends on α. Similarly, we have n−α �
m−αθ (ln(em))−αγ = ε2, because of mθ · (ln(em))γ ≤ n + 1 ≤ 2n.

Finally, set Q : R
m → R, (y1, . . . , ym)
→ 1

m

∑m
j=1 y j and let f ∈ Aα,∞

�,∞ with
‖ f ‖Aα,∞

�,∞ ≤ 1 be arbitrary. By Lemma 2.1, we have
α,∞(f) ≤ 1, which implies that

‖ f ‖L∞ ≤ 1, and furthermore that there is some g ∈ �
�,∞
n satisfying ‖ f − g‖L∞ ≤

2n−α ≤ 2, which in particular implies that g ∈ G. Therefore,
∣∣∣
∫

[0,1]d
f (x)dx − Q

(
f (X1), . . . , f (Xm)

)∣∣∣

≤
∣∣∣
∫

[0,1]d
f (x) − g(x) dx

∣∣∣+
∣∣∣
∫

[0,1]d
g(x) dx − 1

m

m∑

j=1

g(X j)

∣∣∣+
∣∣∣
1

m

m∑

j=1

(g − f)(X j)

∣∣∣

≤ 2‖ f − g‖L∞ + ε1 � ε2.

Since this holds for all f ∈ Uα,∞
�,c , with an implied constant independent of f and m,

and since ε2 = m− α
1+2α · (ln(em))−αγ , this easily implies βdet∗ (Uα,∞

�,c , T∫) ≥ α
1+2α . ��

Our next result shows that randomized (Monte Carlo) algorithms can improve the
rate of convergence of the deterministic algorithm from Theorem 8.1 by (essentially)
a factor m−1/2. The proof is based on our error bounds for L2 approximation from
Theorem 6.3.

Theorem 8.4 Let d ∈ N, C1,C2, α ∈ (0,∞), and θ, ν ∈ [0,∞). Let � : N → N≥2
and c : N → N be non-decreasing and such that c(n) ≤ C1·nθ and �(n) ≤ C2·lnν(2n)
for all n ∈ N. Let U := Uα,∞

�,c = {
f ∈ Aα,∞

�,c : ‖ f ‖Aα,∞
�,c

≤ 1
}
.

123

Foundations of Computational Mathematics

There exists C = C(α, θ, ν, d,C1,C2) > 0 such that for every m ∈ N, there exists
a strongly measurable randomized (Monte Carlo) algorithm (A,m) with m ≡ m and
A = (Aω)ω∈� that satisfies

(
E

∣∣∣Aω(f) −
∫

[0,1]d
f (t) dt

∣∣∣
)2

≤ E

[∣∣∣Aω(f) −
∫

[0,1]d
f (t) dt

∣∣∣
2
]

≤ C · 1

m
· (ln1+ν(2m)

/
m
) α
1+α (8.3)

for all f ∈ U. In particular, this implies

βran∗
(
Uα,∞

�,c , T∫
) ≥ 1

2
+ α/2

1 + α
. (8.4)

Proof Set Q := [0, 1]d . Let m ∈ N≥2 and m′ := �m
2 � ∈ N and note that

m
2 ≤ m′ + 1 ≤ 2m′ and hence m

4 ≤ m′ ≤ m
2 . Let C = C(α, θ, ν, d,C1,C2) > 0

and x = (x1, . . . , xm′) ∈ Qm′
as provided by Theorem 6.3 (applied with m′ instead

of m). Note that H := U
α,∞
�,c ⊂ C(Q) is closed and nonempty, with finite covering

numbers CovC(Q)(H, ε), for arbitrary ε > 0; see Lemma 6.2. Hence, H ⊂ C(Q)

is compact, see for instance [2, Theorem 3.28]. Let us equip H with the Borel σ -
algebra induced by C(Q). Then, it is easy to see from Lemma A.3 that the map
M : H → R

m′
, f
→ (

f (x1), . . . , f (xm′)
)
is measurable and that there is a measur-

able map B : R
m′ → H satisfying B(y) ∈ argming∈H

∑m′
i=1

(
g(xi) − yi

)2 for all

y ∈ R
m′
.

Given f ∈ H, note that g := B(M(f)) ∈ H satisfies g(xi) = f (xi) for all i ∈ m′,
so that Theorem 6.3 shows

∥∥ f − B(M(f))
∥∥
L2 ≤ C · (ln1+ν(2m′)

/
m′) α/2

1+α ≤ C ′ · (ln1+ν(2m)
/
m
) α/2
1+α , (8.5)

for a suitable constant C ′ = C ′(α, θ, ν, d,C1,C2) > 0.
Now, consider the probability space � = Qm′ ∼= [0, 1]m′d , equipped with the

Lebesgue measure λ. For z ∈ �, write � � z = (z1, . . . , zm′) and define

! : � × C(Q) → R, (z, g)
→ 1

m′
m′∑

j=1

g(z j).

It is easy to see that ! is continuous and hence measurable; see Eq. (A.2) for more
details.

Note that for z = (z1, . . . , zm′) ∈ �, the random vectors z1, . . . , zm′ ∈ Q
are stochastically independent. Furthermore, for arbitrary g ∈ C(Q), we have
Ez[g(z j)] = ∫

[0,1]d g(t) dt = T∫ (g). Using the additivity of the variance for

123

Foundations of Computational Mathematics

independent random variables, this entails

Ez

[(
!(z, g) − T∫ (g)

)2] = Var!(z, g) = (
1
/
m′)2

m′∑

j=1

Var
(
g(z j)

)

≤ (1/m′)2
m′∑

j=1

∫

[0,1]d
|g(x)|2 dx = ‖g‖2

L2

m′ .

(8.6)

Finally, for each z ∈ � define

Az : H → R, f
→ !
(
z, f − B(M(f))

)+ T∫
(
B(M(f))

)

Since the map T∫ : C([0, 1]d) → R is continuous and hence measurable, it is easy

to verify that � × Uα,∞
�,c � (z, f)
→ Az(f) is measurable. Furthermore, explicitly

writing out the definition of Az shows that

Az(f) = 1

m′
m′∑

j=1

f (z j) − 1

m′
m′∑

j=1

B
(
f (x1), . . . , f (xm′)

)
(z j) + T∫

(
B(f (x1), . . . , f (xm′))

)

only depends on m′ + m′ ≤ m point samples of f . Thus, if we set m ≡ m, then
(A,m) is a strongly measurable randomized (Monte Carlo) algorithm (A,m) ∈
Algranm (Uα,∞

�,c ,R).
To complete the proof, note that a combination of Eqs. (8.5) and (8.6) shows

Ez

[(
Az(f) − T∫ (f)

)2] = Ez

[(
!(z, f − B(M(f))) − T∫ (f − B(M(f)))

)2]

≤ 1

m′
∥
∥ f − B(M(f))

∥
∥2
L2 ≤ 4 (C ′)2 · m−1 · (ln1+ν(2m)

/
m
) α
1+α

for all f ∈ U . Combined with Jensen’s inequality, this proves Eq. (8.3) for the case
m ∈ N≥2. The case m = 1 can be handled by taking Aω ≡ 0 and possibly enlarging
the constant C in Eq. (8.3). Directly from the definition of βran∗ (Uα,∞

�,c , T∫), we see
that Eq. (8.3) implies Eq. (8.4). ��

9 Hardness of Numerical Integration

Our goal in this section is to prove upper bounds for the optimal order β∗(Uα,∞
�,c , T∫)

of quadrature on the neural network approximation spaces, both for deterministic and
randomized algorithms. Our bounds for the deterministic setting in particular show
that regardless of the “approximation exponent” α, the quadrature error givenm point
samples can never decay faster than O(m−min{2,2α}). In fact, if the depth growth
function � is unbounded, or if the weight growth function c grows sufficiently fast (so
that γ �(�, c) = ∞), then no better rate than O(m−min{1,α}) is possible.

123

Foundations of Computational Mathematics

For the case of randomized (Monte Carlo) algorithms, the bound that we derive
shows that the expected quadrature error given atmostm point samples (in expectation)

can never decay faster thanO(m−min{2, 12+2α}). In fact, if γ � = ∞ then the error cannot

decay faster than O(m−min{1, 12+α}).
Our precise bound for the deterministic setting reads as follows:

Theorem 9.1 Let � : N → N≥2 ∪ {∞} and c : N → N ∪ {∞} be non-decreasing,
and let d ∈ N and α > 0. Let γ � := γ �(�, c) as in Eq. (2.2) and Uα,∞

�,c ([0, 1]d) as in
Eq. (2.3). For the operator T∫ : Uα,∞

�,c ([0, 1]d) → R, f
→ ∫
[0,1]d f (x) dx, we then

have

βdet∗ (Uα,∞
�,c , T∫) ≤

{
2α

α+γ � , if α + γ � < 2,

min
{
α, 1 + α−1

α+γ �−1

}
if α + γ � ≥ 2

(9.1)

=

⎧
⎪⎨

⎪⎩

2α
α+γ � , if α + γ � ≤ 2

α, if α + γ � > 2 and α ≤ 1,

1 + α−1
α+γ �−1

if α + γ � ≥ 2 and α > 1.

(9.2)

Remark Since the bound abovemight seem intimidating at first sight, we discuss a few
specific consequences. First, the theorem impliesβdet∗ (Uα,∞

�,c , T∫) ≤ max
{
α, 2α

α+γ �

} ≤
max{1, 2

γ � }α ≤ 2α and hence βdet∗ (Uα,∞
�,c , T∫) → 0 as α ↓ 0. Furthermore, the theo-

rem shows that βdet∗ (Uα,∞
�,c , T∫) ≤ 2, and if γ � = ∞, then in fact βdet∗ (Uα,∞

�,c , T∫) ≤
min{α, 1}.

Proof For brevity, set U := Uα,∞
�,c .

Step 1: Let 0 < γ < γ �, θ ∈ (0,∞), and λ ∈ [0, 1] with θλ ≤ 1 be arbitrary and
define ω := min{−θα, θ · (γ − λ) − 1}. In this step, we show that

e(A,U , T∫) ≥ κ2 · m−(1−ω−θλ) ∀m ∈ N and A ∈ Algm(U ,R), (9.3)

for a suitable constant κ2 = κ2(α, γ, θ, λ, �, c) > 0.
To see this, let m ∈ N and A ∈ Algm(U ,R) be arbitrary. By definition, this

means that there exist Q : R
m → R and x = (x1, . . . , xm) ∈ ([0, 1]d)m satisfying

A(f) = Q
(
f (x1), . . . , f (xm)

)
for all f ∈ U . Set M := 4m and let z j := 1

4m + j−1
2m

for j ∈ 2m as in Lemma 3.2. Furthermore, choose I := Ix := {
i ∈ 2m : ∀ n ∈ m :

�∗
M,zi

(xn) = 0
}
and recall from Lemma 3.3 that |I | ≥ m. Define k := �mθλ� and

note k ≤ 1 + mθλ ≤ 2mθλ. Since θλ ≤ 1, we also have k ≤ �m� = m ≤ |I |. Hence,
there is a subset J ⊂ I satisfying |J | = k.

Now, an application of Lemma 3.2 yields a constant κ1 = κ1(α, γ, θ, λ, �, c) > 0
(independent of m and A) such that f := κ1 mω

∑
j∈J �∗

M,z j
satisfies ± f ∈ U .

Since J ⊂ I , we see by definition of I = Ix that f (xn) = 0 for all n ∈ m and hence
A(± f) = Q(0, . . . , 0) =: μ.Using the elementary estimatemax{|x−μ|, |−x−μ|} ≥

123

Foundations of Computational Mathematics

1
2

(|x − μ| + |x + μ|) ≥ 1
2 |x − μ + x + μ| = |x |, we thus see

e(A,U , T∫) ≥ max
{∣∣T∫ (f) − Q

(
f (x1), . . . , f (xm)

)∣∣,
∣
∣T∫ (− f) − Q

(− f (x1), . . . ,− f (xm)
)∣∣
}

≥ max
{∣∣T∫ (f) − μ

∣∣,
∣∣−T∫ (f) − μ

∣∣
}

≥ |T∫ (f)| = κ1 · mω · |J |
M

(∗)≥ κ1

4
· mω−1+θλ =: κ2 · m−(1−ω−θλ),

as claimed in Eq. (9.3). Here, the step marked with (∗) used that |J | = k ≥ mθλ and
that M = 4m.

Step 2 (Completing theproof):Eq. (9.3) shows that edetm (U , T∫) ≥ κ2·m−(1−ω−θλ)

for all m ∈ N, with κ2 > 0 independent of m. Directly from the definition of
βdet∗ (U , T∫) and ω, this shows

βdet∗ (U , T∫) ≤ 1 − ω − θλ

= 1 + max
{
θ · (α − λ), 1 + θ · (λ − γ) − θλ

}

= 1 + max
{
θ · (α − λ), 1 − θγ

}
,

and this holds for arbitrary 0 < γ < γ �, θ ∈ (0,∞), and λ ∈ [0, 1] satisfying θλ ≤ 1.
It is easy (but somewhat tedious) to shows that this implies Eq. (9.1); see Lemma A.6
for the details. Finally, Eq. (9.2) follows from Eq. (9.1) via an easy case distinction. ��

As our next results, we derive a hardness results for randomized (Monte Carlo)
algorithms for integration on the neural network approximation space Aα,∞

�,c . The
proof hinges on Khintchine’s inequality, which states the following:

Proposition 9.2 ([12, Theorem 1 in Section 10.3]) Let n ∈ N and let (Xi)i=1,...,n
be independent random variables (on some probability space (�,F ,P)) that are
Rademacher distributed (i.e., P(Xi = 1) = 1

2 = P(Xi = −1) for each i ∈ n). Then
for each p ∈ (0,∞) there exist constants Ap, Bp ∈ (0,∞) (only depending on p)
such that for arbitrary c = (ci)i=1,...,n ⊂ R, the following holds:

Ap ·
(n∑

i=1

c2i

)1/2

≤
∥∥∥∥

n∑

i=1

ci Xi

∥∥∥∥
L p(P)

=
(

E

∣∣∣∣

n∑

i=1

ci Xi

∣∣∣∣

p)1/p

≤ Bp ·
(n∑

i=1

c2i

)1/2

Remark 9.3 Applying Khintchine’s inequality for p = 1 and ci = 1, we see

∑

ν∈{±1}n

∣∣∣∣

n∑

i=1

νi

∣∣∣∣ ≥ A1 · n1/2, (9.4)

which is what we will actually use below.

123

Foundations of Computational Mathematics

Our precise hardness result for integration using randomized (Monte Carlo) algo-
rithms reads as follows.

Theorem 9.4 Let � : N → N≥2 ∪ {∞} and c : N → N ∪ {∞} be non-decreasing. Let
d ∈ N and α ∈ (0,∞). Let γ � := γ �(�, c) as in Eq. (2.2) and Uα,∞

�,c ([0, 1]d) as in
Eq. (2.3). For the operator T∫ : Uα,∞

�,c ([0, 1]d) → R, f
→ ∫
[0,1]d f (x) dx, we then

have

βran∗
(
Uα,∞

�,c , T∫
) ≤

⎧
⎨

⎩

min
{
1 + α

α+γ � ,
1
2 + 2α

α+γ �

}
, if α + γ � < 2,

min
{
1 + α

α+γ � ,
1
2 + α, 1 + α− 1

2
α+γ �−1

}
, if α + γ � ≥ 2.

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2 + 2α

α+γ � , if α + γ � < 2,
1
2 + α, if α + γ � ≥ 2 and α ≤ 1

2 ,

1 + α− 1
2

α+γ �−1
, if α + γ � ≥ 2 and 1

2 ≤ α ≤ γ �,

1 + α
α+γ � , if α + γ � ≥ 2 and α ≥ γ �.

(9.5)

Remark We discuss a few special cases. First, we always have βran∗ (Uα,∞
�,c , T∫) ≤

1 + α
α+γ � ≤ 2, which shows that no matter how large the approximation rate α is,

one can never get an (asymptotically) better error bound than m−2. Furthermore, if
γ � = ∞ (for instance if � is unbounded), then βran∗ (Uα,∞

�,c , T∫) ≤ 1 + α
α+γ � = 1.

The previous bounds are informative for (somewhat) large α. For small α > 0, it
is more useful to note that the theorem shows βran∗ (Uα,∞

�,c) ≤ 1
2 + max

{ 2α
α+γ � , α

} ≤
1
2 + max

{ 2
γ � , 1

}
α ≤ 1

2 + 2α.

Proof For brevity, set U := Uα,∞
�,c and γ � := γ �(�, c).

The main idea of the proof is to apply Lemma 2.3 for a suitable choice of the family
of functions (fν,J)(ν,J)∈
m ⊂ U .

Step 1 (Preparation): Let 0 < γ < γ �, θ ∈ (0,∞), and λ ∈ [0, 1] with θλ ≤ 1 be
arbitrary and defineω := min{−θα, θ ·(γ −λ)−1}. Given a fixed but arbitrarym ∈ N,
set M := 4m and z j := 1

4m + j−1
2m as in Lemma 3.2. Furthermore, let k := ⌈

mθλ
⌉
and

note because of θλ ≤ 1 that k ≤ �m� = m and k ≤ 1 + mθλ ≤ 2mθλ.
Define Pk(2m) := {J ⊂ 2m : |J | = k} and
m := {±1}2m × Pk(2m). Then,

Lemma 3.2 yields a constant κ1 = κ1(γ, θ, λ, α, �, c) > 0 such that for any (ν, J) ∈

m , the function

fν,J := κ1 m
ω
∑

j∈J

ν j �
∗
M,z j satisfies fν,J ∈ U .

Step2:Weshowforγ, θ, λ, ω as inStep2 that there existsκ3 = κ3(γ, θ, λ, α, �, c)>
0 (independent of m ∈ N) such that

∑

(ν,J)∈
m

∣∣T∫ (fν,J) − A(fν,J)
∣∣ ≥ κ3 · m−(1− θλ

2 −ω) ∀m ∈ N and A ∈ Algm(U ,R).

(9.6)

123

Foundations of Computational Mathematics

To see this, let A ∈ Algm(U ,R) be arbitrary. By definition, we have A(f) =
Q
(
f (x1), . . . , f (xm)

)
for all f ∈ U , for suitable x = (x1, . . . , xm) ∈ ([0, 1]d)m

and Q : R
m → R. Now, define I := Ix := { j ∈ 2m : ∀ n ∈ m : �∗

M,z j
(xn) = 0}

and recall from Lemma 3.3 that |I | ≥ m.
Set I c := 2m \ I . For ν(1) = (ν j) j∈I ∈ {±1}I and ν(2) := (ν j) j∈I c ∈ {±1}I c and

J ∈ Pk(2m), define

gν(1),J := κ1m
ω
∑

j∈J∩I

ν
(1)
j �∗

M,z j and hν(2),J := κ1m
ω
∑

j∈J∩I c
ν
(2)
j �∗

M,z j .

Furthermore, define μν(2),J := T∫ (hν(2),J) − Q
(
hν(2),J (x1), . . . , hν(2),J (xm)

)
. By

choice of I , we have gν(1),J (xn) = 0 for all n ∈ m, and hence fν,J (xn) = hν(2),J (xn),
if we identify ν with (ν(1), ν(2)), as we will do for the remainder of this step.

Finally, recall from Lemma 3.2 that supp�∗
M,z j

⊂ [0, 1]d and hence T∫ (�∗
M,z j

) =
M−1 = 1

4m . Overall, we thus see for arbitrary J ∈ Pk(2m) and ν(2) ∈ {±1}I c that
∑

ν(1)∈{±1}I

∣
∣∣T∫ (fν,J) − Q

(
fν,J (x1), . . . , fν,J (xm)

)∣∣∣

=
∑

ν(1)∈{±1}I

∣∣∣T∫ (gν(1),J) + μν(2),J

∣∣∣ =
∑

ν(1)∈{±1}I

∣∣∣
∣
κ1mω

M

∑

j∈J∩I

ν
(1)
j + μν(2),J

∣∣∣
∣

(∗)= 1

2

∑

ν(3)∈{±1}I∩J

(∣∣∣
κ1mω

M

∑

j∈J∩I

ν
(3)
j + μν(2),J

∣∣∣+
∣∣∣
κ1mω

M

∑

j∈J∩I

(−ν
(3)
j) + μν(2),J

∣∣∣
)

(�)≥
∑

ν(3)∈{±1}I∩J

∣∣∣
κ1mω

M

∑

j∈J∩I

ν
(3)
j

∣∣∣ ≥ κ2 m
ω−1 · |J ∩ I |1/2

(9.7)
for a suitable constant κ2 = κ2(γ, θ, λ, α, �, c) > 0. Here, the very last step used
Eq. (9.4) and the identity M = 4m. Furthermore, the step marked with (∗) used that

∑

σ∈{±1}K
aσ = 1

2

(∑

σ∈{±1}K
aσ +

∑

σ∈{±1}K
aσ

)
= 1

2

(∑

σ∈{±1}K
aσ +

∑

σ∈{±1}K
a−σ

)
,

while the elementary estimate |x+y|+|−x+y| = |x+y|+|x−y| ≥ |x+y+x−y| =
2|x | was used at the step marked with (�).

Combining Eq. (9.7) and Lemma A.4, we finally obtain κ3 = κ3(γ, θ, λ, α, �, c) >

0 satisfying

∑

(ν,J)∈
m

∣∣T∫ (fν,J) − A(fν,J)
∣∣ =

∑

J∈Pk (m)

∑

ν(2)∈{±1}I c

∑

ν(1)∈{±1}I

∣∣T∫ (fν,J) − A(fν,J)
∣∣

≥ κ2 m
ω−1

∑

J∈Pk (m)

|J ∩ I |1/2 ≥ κ3 m
ω−1 · k1/2 ≥ κ3 m

ω−1+ θλ
2 ,

123

Foundations of Computational Mathematics

as claimed in Eq. (9.6). Since m ∈ N and A ∈ Algm(U ; R) were arbitrary and κ3 is
independent of A and m, Step 2 is complete.

Step 3: In view of Eq. (9.6), a direct application of Lemma 2.3 shows that

βran∗ (U , T∫) ≤ 1 − ω − θλ
2 = 1 + max

{
θ · (α − λ

2), 1 + θ · (λ2 − γ)
}

for arbitrary 0 < γ < γ �, θ ∈ (0,∞), and λ ∈ [0, 1] with θλ ≤ 1. From this,
the first part of Eq. (9.5) follows by a straightforward but technical computation; see
Lemma A.5 for the details. The second part of Eq. (9.5) follows from the first one by
a straightforward case distinction. ��

Funding Open access funding provided by University of Vienna.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Postponed Technical Results and Proofs

A.1 Proof of Lemma 2.1

This section provides the proof of Lemma 2.1, which is based on the following lemma
concerning closure properties of the sets ��,c

n .

Lemma A.1 With �̃(n) := min{�(n), n}, we have��,c
n = �

�̃,c
n . Furthermore, for every

n ∈ N, we have �
�,c
n + �

�,c
n ⊂ �

�,c
9n .

Proof We first prove�
�,c
n = �

�̃,c
n . To this end, we prove for fixed n ∈ N by induction

on � ∈ N≥n that�
�,c
n ⊂ �

n,c
n . For � = n, this is trivial. Thus, suppose that��,c

n ⊂ �
n,c
n

for some � ∈ N≥n and let f ∈ �
�+1,c
n , say f = R�
 with ‖
‖NN ≤ c(n) and

W (
) ≤ n, as well as L(
) ≤ � + 1. If L(
) ≤ �, then f ∈ �
�,c
n ⊂ �

n,c
n by

induction. Hence, we can assume that L(
) = � + 1.
Writing
 = (

(A1, b1), ..., (A�+1, b�+1)
)
with bm ∈ R

Nm and Am ∈ R
Nm×Nm−1 ,

we have A j = b j = 0 for some j ∈ � + 1, since otherwise n + 1 ≤ � + 1 ≤
∑�+1

j=1

(‖A j‖�0+‖b j‖�0
)=W (
) ≤ n. If j = � + 1, we trivially have f ≡ 0 ∈ �

n,c
n ;

thus, let us assume j ≤ � and define

̃ := (
(0N j+1×d , b j+1), (A j+2, b j+2), . . . , (A�+1, b�+1)

)
.

Since A j = b j = 0 and �(0) = 0, it is straightforward to verify R�
̃ = R�
 = f .
Since furthermore ‖
̃‖NN ≤ ‖
‖NN ≤ c(n) and W (
̃) ≤ W (
) ≤ n, as well as

123

http://creativecommons.org/licenses/by/4.0/

Foundations of Computational Mathematics

L(
̃) ≤ � − j + 1 ≤ �, this implies f ∈ �
�,c
n ⊂ �

n,c
n , where the last inclusion holds

by induction. This completes the induction.
To prove �

�,c
n + �

�,c
n ⊂ �

�,c
5n , let f , g ∈ �

�,c
n , so that f = R�
 and g = R�!

for networks
,! satisfying W (
),W (!) ≤ n and ‖
‖NN , ‖!‖NN ≤ c(n), as
well as L(
), L(!) ≤ min{n, �(n)}; here we used the first part of the lemma. By
possibly swapping
,! and f , g, we can assume that k := L(
) ≤ L(!) =: �. If
k = �, define
̃ :=
. If otherwise k < �, write
 = (

(A1, b1), . . . , (Ak, bk)
)
where

Ak ∈ R
1×Nk−1 and bk ∈ R

1, and define
 := ((
1
1

)
,
(
0
0

))
and � := (

(1,−1), 0
)
and

finally

̃ :=
(
(A1, b1), . . . , (Ak−1, bk−1),

((
Ak−Ak

)
, (

bk−bk)
)
,
, . . . ,
,�

)
,

where
 appears � − k − 1 times, so that L(
̃) = �. Using the identities x =
�(x) − �(−x) and �(�(x)) = �(x), it is easy to see R�
̃ = R�
 = f . Moreover,
‖
̃‖NN ≤ max{1, c(n)} = c(n) and W (
̃) ≤ 2W (
) + 2(� − k) ≤ 4n.

Finally, explicitly writing
̃ = (
(B1, c1), . . . , (B�, c�)

)
and ! = (

(C1, e1), . . . ,
(C�, e�)

)
with c�, e� ∈ R

1 and B�,C� ∈ R
1×N�−1 , define

�1 :=
⎛

⎝
(

B1
C1
04×1

)
,

⎛

⎝

c1
e1
c�−c�
e�−e�

⎞

⎠

⎞

⎠ and

�m :=
((

Bm 0 0
0 Cm 0
0 0 I4×4

)
,
(cm

em
04×1

))
for m ∈ {2, . . . , � − 1},

and set

� :=
(
�1, . . . , ��−1,

(
(B� | C� | 1 | −1 | 1 | −1), 0

))
.

Using the identities �(�(x)) = �(x) and x = �(x)−�(−x), it is then straightforward
to verify R�� = R�
̃ + R�! = f + g. Moreover, ‖�‖NN ≤ c(n) ≤ c(9n),
L(�) = � ≤ �(n) ≤ �(9n), and W (�) ≤ W (
̃) + W (!) + 4 � ≤ 9n. Here, we used
that � and c are non-decreasing and that � ≤ n. Overall, we have shown f + g ∈ �

�,c
9n ,

as claimed. ��
With Lemma A.1 at our disposal, we can now prove Lemma 2.1.

Proof of Lemma 2.1 Step 1 (Showing
α,p(f + g) ≤ C · (
α,p(f) +
α,p(g))): To
see this, let n ∈ N≥9 and write n = 9m + k with m ∈ N and k ∈ {0, . . . , 8}, noting
that n ≤ 17m. By Lemma A.1, we have �

�,c
n ⊃ �

�,c
9m ⊃ �

�,c
m + �

�,c
m and hence

nα dp(f + g, ��,c
n) ≤ nα dp(f + g, ��,c

m + ��,c
m)

≤ 17αmα · (dp(f , ��,c
m) + dp(g, �

�,c
m)
)

≤ 17α · (
α,p(f) +
α,p(g)
)
.

123

Foundations of Computational Mathematics

Moreover, if n ≤ 8, then we see because of 0 ∈ �
�,c
n that

nα dp(f + g, ��,c
n) ≤ 8α‖ f + g‖L p ≤ 8α ·

(‖ f ‖L p + ‖g‖L p) ≤ 8α · (
α,p(f) +
α,p(g)).

Overall,we thus see for everyn ∈ N thatnα dp(f +g, ��,c
n) ≤ C ·(
α,p(f)+
α,p(g)).

Since also ‖ f + g‖L p ≤ ‖ f ‖L p + ‖g‖L p ≤
α,p(f) +
α,p(g) ≤ C · (
α,p(f) +

α,p(g)),we see that
α,p(f + g) ≤ C · (
α,p(f)+
α,p(g)), as claimed in this step.
Step 2 (Showing
α,p(c f) ≤ |c|
α,p(f) for |c| ≤ 1): Since |c| ≤ 1, it is straight-

forward to see c��,c
n ⊂ �

�,c
n and hence nα dp(c f , �

�,c
n) ≤ nα dp(c f , c�

�,c
n) =

|c|nα dp(f , �
�,c
n).This implies
α,p(c f) ≤ max

{‖c f ‖L p , |c| supn∈N
[
nα dp(f , �

�,c
n)
]}

= |c|
α,p(f).
Step 3 (Showing
α,p(f) < ∞ ⇐⇒ ‖ f ‖Aα,p

�,c
< ∞):

“⇒:” For θ := 1 +
α,p(f) ∈ [1,∞), Step 2 shows
α,p(f /θ) ≤ 1
θ

α,p(f) ≤ 1,

and hence ‖ f ‖Aα,p
�,c

< ∞.

“⇐:” Let ‖ f ‖Aα,p
�,c

< ∞. Hence, there exists θ > 0 satisfying
α,p(f /θ) ≤ 1 <

∞. Step 1 shows
α,p(2g) =
α,p(g + g) ≤ 2C
α,p(g). Inductively, this implies

α,p(2mg) ≤ (2C)m
α,p(g) for every m ∈ N. Now, choosing m ∈ N such that
θ ≤ 2m , Step 2 shows

α,p(f) =
α,p(
θ
2m 2

m f
θ
) ≤
α,p(2

m f
θ
) ≤ (2C)m
α,p(

f
θ
) < ∞.

Step 4 (Homogeneity of ‖ · ‖Aα,p
�,c

): It is easy to see ‖0‖Aα,p
�,c

= 0. Moreover, given

c ∈ R \ {0}, Step 2 shows that
α,p(± f) =
α,p(f). Therefore,

‖c f ‖Aα,p
�,c

= inf{θ > 0 :
α,p(c f /θ) ≤ 1}
= |c| · inf { θ

|c| : θ > 0 and
α,p
(f
θ/|c|

) ≤ 1
}

= |c| ‖ f ‖Aα,p
�,c

.

Step 5 (Definiteness of ‖ · ‖Aα,p
�,c

): If ‖ f ‖Aα,p
�,c

= 0, then for each n ∈ N there exists

θn ∈ (0, 1
n) satisfying
α,p(f /θn) ≤ 1. By Step 2, this implies

‖ f ‖L p ≤
α,p(f) =
α,p
(
θn

f
θn

) ≤ θn
α,p
(f
θn

) ≤ θn −−−→
n→∞ 0,

and hence f = 0.
Step 6 (If ‖ f ‖Aα,p

�,c
∈ (0,∞), then
α,p(f /‖ f ‖Aα,p

�,c
) ≤ 1): By definition of ‖ f ‖Aα,p

�,c
,

there exists a sequence (θn)n∈N ⊂ (0,∞) satisfying θn → θ := ‖ f ‖Aα,p
�,c

and

α,p(f /θn) ≤ 1 for all n ∈ N. Since f
θn

→ f
θ
and since dp(·, ��,c

m) is continuous
with respect to ‖ · ‖L p , this implies for each m ∈ N that

max
{∥∥ f

θ

∥∥
L p , mα dp

(f
θ
, ��,c

m

)} = lim
n→∞max

{∥∥ f
θn

∥∥
L p , mα dp

(f
θn
, ��,c

m

)} ≤ 1,

123

Foundations of Computational Mathematics

and hence
α,p(f /θ) ≤ 1.
Step 7 (Showing ‖ f + g‖Aα,p

�,c
≤ C · (‖ f ‖Aα,p

�,c
+ ‖g‖Aα,p

�,c
)): The claim is trivial if

‖ f ‖Aα,p
�,c

∈ {0,∞} or ‖g‖Aα,p
�,c

∈ {0,∞}. Hence, we can assume that A := ‖ f ‖Aα,p
�,c

∈
(0,∞) and B := ‖g‖Aα,p

�,c
∈ (0,∞). By Steps 1, 2, and 6, this implies

α,p
(f +g
C(A+B)

) ≤ 1
C
α,p

(f
A+B + g

A+B

)

≤
α,p
(A
A+B

f
A

)+
α,p
(B
A+B

g
B

)

≤ A
A+B
α,p

(f
A

)+ B
A+B
α,p

(g
B

) ≤ 1,

and hence ‖ f + g‖Aα,p
�,c

≤ C · (A + B) = C · (‖ f ‖Aα,p
�,c

+ ‖g‖Aα,p
�,c

), as claimed.

Step 8 (Showing
α,p(f) ≤ 1 ⇐⇒ ‖ f ‖Aα,p
�,c

≤ 1): “⇒” follows by definition of

‖ · ‖Aα,p
�,c

.

“⇐” is trivial if f = 0. Otherwise, Steps 6 and 2 show for θ := ‖ f ‖Aα,p
�,c

∈ (0, 1]
that
α,p(f) =
α,p(θ

f
θ
) ≤
α,p(f /θ) ≤ 1.

Step 9: In this step,we prove the last part of Lemma2.1. First, note that if ‖ f ‖Aα,p
�,c (�) ≤

1, then ‖ f ‖L p ≤
α,p(f) ≤ 1 thanks to Step 8. This proves Aα,p
�,c (�) ↪→ L p(�).

Next, if � ⊂ �◦, then it is easy to see for f ∈ Cb(�) that ‖ f ‖sup,� :=
supx∈� | f (x)| = ‖ f ‖L∞(�), and this implies that Cb(�) ⊂ L∞(�) is closed. There-
fore, it suffices to show Aα,∞

�,c (�) ⊂ Cb(�). To see this, let f ∈ Aα,∞
�,c (�); by Step 3,

this implies θ :=
α,∞(f) < ∞. Furthermore, ‖ f ‖L∞ < ∞. By definition of
α,∞,
for each n ∈ N there exists Fn ∈ �

�,c
n satisfying ‖Fn − f ‖L∞ ≤ 2Cn−α → 0

as n → ∞; in particular, ‖Fn‖sup,� = ‖Fn‖L∞ < ∞. Finally, since Fn can be
extended to a continuous function on all of R

d , we see Fn ∈ Cb(�) and hence
f ∈ Cb(�) = Cb(�). ��

A.2 A Technical Result used in Sect. 3

Lemma A.2 For each d ∈ N, T ∈ (0, 1], and x ∈ [0, 1]d , we have

λ
([0, 1]d ∩ (x + [−T , T]d)) ≥ 2−d T d .

Proof For brevity, set Q := [0, 1]d . Below, we show

λ
(
Q ∩ (x + [−T , T]d)) ≥ T d ∀x ∈ Q and T ∈ (0, 1

2], (A.1)

which clearly implies the claim for these T . Furthermore, for T ∈ [12 , 1], the above
estimate shows λ

(
Q ∩ (x + [−T , T]d)) ≥ λ

(
Q ∩ (x + [− 1

2 ,
1
2]d)) ≥ 2−d ≥ 2−dT d ,

which proves the claim for general T ∈ (0, 1].
Thus, let x ∈ Q and T ∈ (0, 1

2]. For each j ∈ d , define ε j := −1 if x j ≥ 1
2 and

ε j := 1otherwise. Let P := ∏d
j=1

(
ε j [0, T]) ⊂ [−T , T]d .We claim that x+P ⊂ Q.

123

Foundations of Computational Mathematics

Once this is shown, it follows that λ
(
Q∩(x +[−T , T]d)) ≥ λ(x + P) = T d , proving

Eq. (A.1).
To see that indeed x + P ⊂ Q, let y ∈ P be arbitrary. For each j ∈ d , there are

then two cases:

1. If x j ≥ 1
2 , then ε j = −1 and − 1

2 ≤ −T ≤ y j ≤ 0. Thus, 0 ≤ x j − 1
2 ≤ x j + y j ≤

x j ≤ 1, meaning (x + y) j ∈ [0, 1].
2. If x j < 1

2 , then ε j = 1 and 0 ≤ y j ≤ T ≤ 1
2 . Thus, 0 ≤ x j ≤ x j+y j ≤ 1

2+ 1
2 = 1,

so that we see again (x + y) j ∈ [0, 1].
Overall, this shows in both cases that x + y ∈ [0, 1]d = Q. ��

A.3 A Technical Result RegardingMeasurability

Lemma A.3 Let ∅ �= � ⊂ R
d be compact and let ∅ �= H ⊂ C(�) be compact. Then,

equipping H with the Borel σ -algebra induced from C(�), the following hold:

1. The map

M : �m × H → �m × R
m,

(x, f) = (
(x1, . . . , xm), f

)
→
(
x,
(
f (x1), . . . , f (xm)

))

is continuous and hence measurable;
2. there is a measurable map B : �m × R

m → H satisfying

B(x, y) ∈ argmin
g∈H

m∑

i=1

(
g(xi) − yi

)2

∀ x = (x1, . . . , xm) ∈ �m and y = (y1, . . . , ym) ∈ R
m .

Proof Part 1: It is enough to prove continuity of each of the components of M . For
the component (x, f)
→ x this is trivial. For the component (x, f)
→ f (x j) note
that if �m � x(n) → x ∈ �m and H � fn → f ∈ H (with convergence in C(�)),
then

∣∣ f (x j) − fn
(
x(n)
j

)∣∣ ≤ ∣∣ f (x j) − f
(
x(n)
j

)∣∣+ ∣∣ f (x(n)
j

)− fn
(
x(n)
j

)∣∣

≤ ∣∣ f (x j) − f
(
x(n)
j

)∣∣+ ‖ f − fn‖C(�) −−−→
n→∞ 0,

(A.2)

since f is continuous. Thus, M is continuous. To see that this implies that M is
measurable, note that both �m and H are separable metric spaces (and hence second
countable), so that the product σ -algebra on �m × H coincides with the Borel σ -
algebra on �m × H; see for instance [19, Theorem 7.20].
Part 2: For this part, we use the “Measurable Maximum Theorem,” [2, Theo-
rem 18.19]. Thanks to this theorem, setting S := �m × R

m , it is enough to show
that

123

Foundations of Computational Mathematics

1. the set-valued map 2 ϕ : S � C(�), (x, y)
→ H is weakly measurable with
nonempty, compact values;

2. the map F : S × C(�) → R,
(
(x, y), g

)
→ −∑m
i=1

(
g(xi) − yi

)2 is a
Carathéodory function (see [2, Definition 4.50]).

By our assumptions onH, it is clear that ϕ has nonempty, compact values. The weak
measurability of ϕ follows directly from the definition, see [2, Definition 18.1]. For
the second property, it is enough to show that F is continuous. This follows as in
Eq. (A.2). ��

A.4 A Technical Result Regarding Random Subsets of {1, . . . ,m}

Lemma A.4 Let m ∈ N and 1 ≤ k ≤ 2m. Write Pk(2m) := {J ⊂ 2m : |J | = k}.
Then, for each subset I ⊂ 2m with |I | ≥ m, we have

∑

J∈Pk (2m)

|J ∩ I |1/2 ≥ 1

4
· k1/2.

Proof Let I c := 2m \ I . We note for any T ⊂ 2m that the quantity ψ(T) :=∑
J∈Pk (2m) |J ∩ T |1/2 only depends on the cardinality |T | and that ψ(T) ≤ ψ(S)

if |T | ≤ |S|. Since |I | ≥ m ≥ |I c|, this implies ψ(I) ≥ ψ(I c). Combined with the
estimate

|J ∩ I | 12 + |J ∩ I c| 12 ≥
[
max

{|J ∩ I |, |J ∩ I c|}
] 1
2 ≥

[
1
2

(|J ∩ I | + |J ∩ I c|)
] 1
2

≥ (12 |J |) 12 ≥ 1
2 |J | 12 = 1

2k
1
2

which holds for all J ∈ Pk(2m), we finally see

∑

J∈Pk (2m)

|J ∩ I |1/2 = ψ(I) ≥ ψ(I) + ψ(I c)

2

= 1

2

∑

J∈Pk (2m)

(|J ∩ I | 12 + |J ∩ I c| 12) ≥ 1

4
k

1
2 .

��

A.5 TwoTechnical Optimization Results

Lemma A.5 Let γ � ∈ [1,∞] and α > 0. Let

! := {
(γ, θ, λ) ∈ (0,∞) × (0,∞) × [0, 1] : γ < γ � and θλ ≤ 1

}
. (A.3)

2 A set-valued map f : X � Y is a map f : X → 2Y , into the power set 2Y of Y .

123

Foundations of Computational Mathematics

Then

inf
(γ,θ,λ)∈!

max
{
θ · (α − λ

2), 1 + θ · (λ2 − γ)
}

≤
⎧
⎨

⎩

min
{

α
α+γ � ,

2α
α+γ � − 1

2

}
, if α + γ � < 2,

min
{

α
α+γ � , α − 1

2 ,
α− 1

2
α+γ �−1

}
, if α + γ � ≥ 2.

Remark In fact, one has equality. But since we do not need this, we omit the proof
(and the explicit statement) of this fact.

Proof Step 1 (Preparations): Define f1(γ, θ, λ) := θ · (α − λ
2) and f2(γ, θ, λ) :=

1 + θ · (λ2 − γ) as well as f := max{ f1, f2} and β∗ := inf(γ,θ,λ)∈! f (γ, θ, λ). For
arbitrary 0 < γ < γ �, we have (γ, 1

α+γ
, 0) ∈ ! and hence β∗ ≤ f (γ, 1

α+γ
, 0) =

max
{

α
α+γ

, 1 − γ
α+γ

} = α
α+γ

. Letting γ ↑ γ �, this implies

β∗ ≤ α

α + γ �
. (A.4)

Step 2 (The case γ � = ∞): Let us first consider the case γ � = ∞. In this case,
Eq. (A.4) showsβ∗ ≤ 0. Furthermore, given0 < γ < γ � = ∞,wehave (γ, 1, 1) ∈ !,
which shows that β∗ ≤ f (γ, 1, 1) = max

{
α − 1

2 ,
3
2 − γ

}
. Letting γ → ∞, we thus

see β∗ ≤ α − 1
2 and hence β∗ ≤ min{0, α − 1

2 }. It is easy to see that this implies the
claim for γ � = ∞.

Hence, we can assume from now on that γ � is finite. Then, we easily see for
g1(θ, λ) := θ · (α − λ

2) and g2(θ, λ) := 1+ θ · (λ2 − γ �) as well as g := max{g1, g2}
and � := {(θ, λ) ∈ (0,∞) × [0, 1] : θλ ≤ 1} that β∗ ≤ inf(θ,λ)∈� g(θ, λ).
Step 3 (The case α + γ � < 2): In this case, we have 2

α+γ � ∈ (1,∞) and hence

(2
α+γ � ,

α+γ �

2) ∈ �. Furthermore, g1(2
α+γ � ,

α+γ �

2) = g2(
2

α+γ � ,
α+γ �

2) = 2α
α+γ � − 1

2

andhenceβ∗ ≤ 2α
α+γ � − 1

2 . TogetherwithEq. (A.4), this proves the claim forα+γ � < 2.

Step 4 (The case α + γ � ≥ 2): Note g1(1, 1) = α − 1
2 and g2(1, 1) = 3

2 − γ � ≤
3
2−(2−α) = α− 1

2 . Since (1, 1) ∈ �, this impliesβ∗ ≤ g(1, 1) = α− 1
2 . Furthermore,

θ0 := 1
α+γ �−1

∈ (0, 1] and hence (θ0, 1) ∈ �. It is easy to see g1(θ0, 1) = g2(θ0, 1) =
α− 1

2
α+γ �−1

and hence β∗ ≤ g(θ0, 1) = α− 1
2

α+γ �−1
. Combining these two estimates with

Eq. (A.4) completes the proof for the case α + γ � ≥ 2. ��
Lemma A.6 Let γ � ∈ [1,∞] and α > 0. Let ! be as in Eq. (A.3). Then

inf
(γ,θ,λ)∈!

max
{
θ · (α − λ), 1 − θγ

} ≤
{

2α
α+γ � − 1, if α + γ � ≤ 2,

min
{
α − 1, α−1

α+γ �−1

}
, if α + γ � > 2.

(A.5)

Proof For brevity, denote the left-hand side of Eq. (A.5) by β∗.

123

Foundations of Computational Mathematics

We first consider the special case γ � = ∞. Define g := max{g1, g2}, where
g1(γ, θ, λ) := θ · (α − λ) and g2(γ, θ, λ) := 1 − θγ . For any γ > 0, we have
g1(γ, 1, 1) = α−1 and g2(γ, 1, 1) = 1−γ and furthermore (γ, 1, 1) ∈ !. Therefore,
β∗ ≤ g(γ, 1, 1) = max{α − 1, 1 − γ } −−−→

γ→∞ α − 1. Furthermore, for arbitrary

γ > 0 we have (γ, 1
γ
, 0) ∈ ! and g1(γ,

1
γ
, 0) = α

γ
and g2(γ,

1
γ
, 0) = 0, so that

β∗ ≤ min{0, α
γ

} −−−→
γ→∞ 0. Overall, we have thus shown β∗ ≤ min{α − 1, 0}, which

easily implies that Eq. (A.5) holds in case of γ � = ∞.
Hence, we can assume that γ � < ∞. Then, setting � := {(θ, λ) ∈ (0,∞) ×

[0, 1] : θλ ≤ 1} and furthermore f := max{ f1, f2} for f1(θ, λ) := θ(α − λ) and
f2(θ, λ) := 1 − θγ �, it is easy to see by continuity that β∗ ≤ inf(θ,λ)∈� f (θ, λ). We
now distinguish two cases:

Case 1 (α + γ � ≤ 2): In this case, θ0 := 2
α+γ � ∈ [1,∞) and λ0 := 1

θ0
∈ (0, 1]

satisfy (θ0, λ0) ∈ �. Furthermore, it is easy to see f1(θ0, λ0) = 2α
α+γ � −1 = f2(θ0, λ0).

Thus, β∗ ≤ f (θ0, λ0) = 2α
α+γ � − 1, which proves Eq. (A.5) in this case.

Case 2 (α + γ � > 2): First note because of α + γ � > 2 that f1(1, 1) = α − 1 >

1 − γ � = f2(1, 1) and hence β∗ ≤ f (1, 1) = α − 1. Furthermore, we have θ∗ :=
1

α+γ �−1
∈ (0, 1) and hence (θ∗, 1) ∈ �. Furthermore, it is easy to see f1(θ∗, 1) =

α−1
α+γ �−1

= f2(θ∗, 1) which implies β∗ ≤ f (θ∗, 1) = α−1
α+γ �−1

. Overall, we see β∗ ≤
min

{
α − 1, α−1

α+γ �−1

}
, which shows that Eq. (A.5) holds for α + γ � > 2. ��

References

1. B. Adcock and N. Dexter. The gap between theory and practice in function approximation with deep
neural networks. SIAM Journal on Mathematics of Data Science, 3(2):624–655, 2021.

2. C. D. Aliprantis and K. C. Border. Infinite dimensional analysis. Springer, Berlin, third edition, 2006.
3. V. Antun, M. J. Colbrook, and A. C. Hansen. The difficulty of computing stable and accurate neu-

ral networks: On the barriers of deep learning and Smale’s 18th problem. Applied Mathematics,
119(12):e21071511, 2022.

4. S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse problems using data-driven
models. Acta Numerica, 28:1–174, 2019.

5. P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with
deep learning. Nature communications, 5(1):1–9, 2014.

6. P. L. Bartlett, N.Harvey, C. Liaw, andA.Mehrabian. Nearly-tightVC-dimension and Pseudodimension
Bounds for Piecewise Linear Neural Networks. Journal of Machine Learning Research, 20(63):1–17,
2019.

7. P. Beneventano, P. Cheridito, A. Jentzen, and P. vonWurstemberger. High-dimensional approximation
spaces of artificial neural networks and applications to partial differential equations. arXiv preprint
2012.04326, 2020.

8. J. Berner, P. Grohs, and A. Jentzen. Analysis of the Generalization Error: Empirical Risk Minimiza-
tion over Deep Artificial Neural Networks Overcomes the Curse of Dimensionality in the Numerical
Approximation of Black–Scholes Partial Differential Equations. SIAM Journal on Mathematics of
Data Science, 2(3):631–657, 2020.

9. A. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. In Advances in neural
information processing systems, pages 494–501, 1989.

10. H. Bölcskei, P. Grohs, G. Kutyniok, and P. C. Petersen. Optimal approximationwith sparsely connected
deep neural networks. SIAM J. Math. Data Sci., 1:8–45, 2019.

123

Foundations of Computational Mathematics

11. A.Caragea, P. Petersen, andF.Voigtlaender.Neural network approximation and estimation of classifiers
with classification boundary in a Barron class. arXiv preprint 2011.09363, 2020.

12. Y. S. Chow and H. Teicher. Probability theory. Springer Texts in Statistics. Springer-Verlag, NewYork,
third edition, 1997.

13. F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc. (N.S.),
39(1):1–49, 2002.

14. R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303 of Grundlehren der Math-
ematischen Wissenschaften. Springer-Verlag, Berlin, 1993.

15. R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numerica, 30:327–444,
2021.

16. Z. Ditzian and V. Totik. Moduli of smoothness, volume 9. Springer Science & Business Media, 2012.
17. W.E andB.Yu. The deep ritzmethod: a deep learning-based numerical algorithm for solving variational

problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.
18. F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals, S. Kearnes,

P. F. Riley, and O. A. Von Lilienfeld. Prediction errors of molecular machine learning models lower
than hybrid DFT error. Journal of chemical theory and computation, 13(11):5255–5264, 2017.

19. G. B. Folland. Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc.,
New York, second edition, 1999.

20. R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender. Approximation spaces of deep neural
networks. Constructive Approximation, 55:259–367, 2022.

21. P. Grohs, F. Hornung, A. Jentzen, and P. Von Wurstemberger. A proof that artificial neural networks
overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differ-
ential equations. Memoirs of the American Mathematical Society, 2020.

22. P. Grohs, D. Perekrestenko, D. Elbrächter, andH. Bölcskei. Deep neural network approximation theory.
IEEE Transactions on Information Theory, 67(5):2581–2623, 2021.

23. A. Gupta and S.M. Lam.Weight decay backpropagation for noisy data. Neural Networks, 11(6):1127–
1138, 1998.

24. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

25. S. Heinrich. Random approximation in numerical analysis. In Functional analysis (Essen, 1991), vol-
ume 150 of Lecture Notes in Pure and Appl. Math., pages 123–171. Dekker, New York, 1994.

26. J. Hermann, Z. Schätzle, and F. Noé. Deep-neural-network solution of the electronic Schrödinger
equation. Nature Chemistry, 12(10):891–897, 2020.

27. M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen. A proof that rectified deep neural networks
overcome the curse of dimensionality in the numerical approximation of semilinear heat equations.
SN Partial Differential Equations and Applications, 1(2):1–34, 2020.

28. D. P. Kingma and J. Ba. Adam: Amethod for stochastic optimization. arXiv preprint 1412.6980, 2014.
29. A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25, pages 1097–1105. Curran Associates, Inc., 2012.

30. G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural networks
and parametric PDEs. arXiv preprint 1904.00377, 2019.

31. G. Lample and F. Charton. Deep learning for symbolic mathematics. In International Conference on
Learning Representations, 2019.

32. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

33. J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik. Deep neural nets as a method for quantitative
structure–activity relationships. Journal of chemical information and modeling, 55(2):263–274, 2015.

34. V.Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.Wierstra, andM. Riedmiller. Playing
Atari with deep reinforcement learning. arXiv preprint 1312.5602, 2013.

35. M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT Press, Cam-
bridge, MA, 2018.

36. P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Networks, 108:296–330, 2018.

37. D. Pfau, J. S. Spencer, A. G. Matthews, and W. M. C. Foulkes. Ab initio solution of the many-electron
Schrödinger equation with deep neural networks. Physical Review Research, 2(3):033429, 2020.

38. A. Pietsch. Eigenvalues and s-numbers. Cambridge University Press, 1986.

123

Foundations of Computational Mathematics

39. A. Pinkus. N-widths in Approximation Theory, volume 7. Springer Science & Business Media, 2012.
40. M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

41. M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure
and Applied Mathematics. Marcel Dekker, Inc., New York, 1991.

42. D. Saxton, E. Grefenstette, F. Hill, and P. Kohli. Analysing mathematical reasoning abilities of neural
models. In International Conference on Learning Representations, 2018.

43. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. Nelson,
and A. Bridgland. Improved protein structure prediction using potentials from deep learning. Nature,
577(7792):706–710, 2020.

44. S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014.

45. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, and M. Lanctot. Mastering the game of Go with deep neural
networks and tree search. Nature, 529(7587):484–489, 2016.

46. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, and A. Bolton. Mastering the game of Go without human knowledge. Nature, 550(7676):354–
359, 2017.

47. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1–9, 2015.

48. M.Telgarsky. Benefits of depth in neural networks. InConference on learning theory, pages 1517–1539.
PMLR, 2016.

49. A. F. Timan. Theory of approximation of functions of a real variable. Elsevier, 2014.
50. R. Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press, Cambridge, 2018.
51. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,

T. Ewalds, and P. Georgiev. Grandmaster level in StarCraft II usingmulti-agent reinforcement learning.
Nature, 575(7782):350–354, 2019.

52. D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In Con-
ference on Learning Theory, pages 639–649. PMLR, 2018.

53. T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural language
processing. IEEE Computational intelligence magazine, 13(3):55–75, 2018.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces
	Abstract
	1 Introduction
	1.1 Description of Results
	1.1.1 Approximation with Respect to the Uniform Norm
	1.1.2 Approximation with Respect to the L[Please insert \PrerenderUnicode{Â²} into preamble] Norm
	1.1.3 Integration
	1.1.4 General Comments

	1.2 Related Work
	1.2.1 Information-Based Complexity and Classical Function Spaces
	1.2.2 Other Hardness Results for Deep Learning
	1.2.3 Other Work on Neural Network Approximation Spaces

	1.3 Notation
	1.4 Structure of the paper

	2 The Notion of Sampling Complexity on Neural Network Approximation Spaces
	2.1 The Mathematical Formalization of Neural Networks
	2.2 Neural Network Approximation Spaces
	2.3 Quantities Characterizing the Complexity of the Network Architecture
	2.4 The Framework of Sampling Complexity
	2.4.1 The Deterministic Setting
	2.4.2 The Randomized Setting

	3 Richness of the Unit Ball in Neural Network Approximation Spaces
	4 Error Bounds for Uniform Approximation
	5 Hardness of Uniform Approximation
	6 Error Bounds for Approximation in L[Please insert \PrerenderUnicode{Â²} into preamble]
	7 Hardness of Approximation in L[Please insert \PrerenderUnicode{Â²} into preamble]
	8 Error Bounds for Numerical Integration
	9 Hardness of Numerical Integration
	A Postponed Technical Results and Proofs
	A.1 Proof of Lemma 2.1
	A.2 A Technical Result used in Sect. 3
	A.3 A Technical Result Regarding Measurability
	A.4 A Technical Result Regarding Random Subsets of {1,...,m}
	A.5 Two Technical Optimization Results

	References

