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Abstract
This note remedies an error in our paper tilted Conormal Spaces and Whitney Strati-
fications (Found. Comput. Math., 2022).

Correction to:
Found Comput Math
https://doi.org/10.1007/s10208-022-09574-8

Introduction

We are grateful to the research group comprising Lihong Zhi, Nan Li, Zhihong Yang
and Zijia Li for alerting us to an error in [5]: they discovered that the Macaulay2
software package accompanying that paper did not output the origin as a separate
stratum when called with the projective Whitney cusp as input. Our goal in this note
is to explain and fix the error, which originated from a misinterpretation of the alge-
braic criterion [3, Remark 4.11] that underlies the algorithms of [5]. The statement of
the criterion—taken from [3, Remark 4.11] and reproduced below—paraphrases [7,
Proposition 1.3.8].

Lemma 0.1 Let Z be an analytic variety with conormal map κZ : Con(Z) � Z, and
let S ⊂ Z be a smooth analytic subset. The pair (Zreg, S) satisfiesWhitney’s Condition
(B) if and only if we have the containment

I [Con(Z) ∩ Con(S)] ⊂ I [κ−1
Z (S)] (1)

The original article can be found online at https://doi.org/10.1007/s10208-022-09574-8.
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of ideal sheaves, where the right side is an integral closure.

Fix a projective variety X ⊆ P
n and an irreducible subvariety Y of its singular

locus Xsing. The proof of [5, Theorem 4.3] uses Lemma 0.1 in the case where Z = X
and S = Y − A, with A being a certain proper subvariety of Y that contains Ysing. It
turns out, however, that the Lemma only holds in this case if S = Y − A is closed
(namely, if A is empty). To produce the correct variant of (1) when S is open, we are
compelled to return to the original statement of [7, Proposition 1.3.8].

Outline

In Sect. 1, we derive a version of Lemma 0.1 for the case where S is open directly
from [7] in Sect. 1. We rectify our proof of [5, Theorem 4.3] in Sect. 2, and describe
the concomitant modifications to [5] in Sect. 3. These corrections have been fully
incorporated in the arXiv version of our paper [6].

1 The Correct Interpretation

We work throughout in a polynomial ring R which will be either be the coordinate
ring of P

n or of P
n × (Pn)∗.

1.1 Notation, etc. The following conventions are adopted in the sequel:

(1) When considering a closed subscheme Z of either ambient space, we will denote
its defining ideal sheaf byI [Z ]—although this is simply an R-ideal, the notation
serves to emphasize that this ideal may (and often will) fail to be radical.

(2) In contrast, the radical ideal associated to a varietyV in either of our ambient spaces
will be written IV . We also write Vsing for the singular locus, and Vreg = V −Vsing
for the regular points.

(3) We write I [Z ] to indicate the integral closure of I [Z ].
(4) Given a subvariety W ⊂ V and the conormal map κV : Con(V ) � V of V ,

the ideal sheaf of the closed scheme κ−1
V (V − W ) is denoted I [κ−1

V (V − W )];
this equals the intersection of all primary components of I [κ−1

V (V )] that are not
supported on κ−1

V (W ).
(5) Finally, we recall that for a polynomial ideal I � R with primary decomposition

I = Q1 ∩ · · · ∩ Qr , the set Assoc(I ) of I ’s associated primes consists of prime
ideals given by taking the radical of each primary component {√Q1, . . . ,

√
Qr }.

1.2 An Algorithmic Criterion for Condition (B) The following result is [7, Prop
1.3.8], specialized to our situation and using the above notation.1

1 In [7] the authors consider conormal spaces relative to an analytic map f : X → S between smooth
analytic spaces, and obtain a regularity criterion denoted Condition (w f ). This criterion reduces to the
standard Condition (B) when S is a point [7, Remark 1.3.9]. We have therefore discarded the relative
perspective in our rephrasing of [7, Proposition 1.3.8].
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Lemma 1.1 Let X ⊂ P
n be a projective variety with conormal map κX : Con(X) �

X, and consider a subvariety Y of X satisfying Y ⊂ Xsing. Let Ip be the maximal ideal
of a point p ∈ Yreg considered in the coordinate ring of P

n × (Pn)∗. Then Condition
(B) holds for the pair (Xreg,Yreg) at p if and only if we have a containment

Assoc
(
I [Con(X) ∩ Con(Y )] + Ip

) ⊃ Assoc
(
I [κ−1

X (Y )] + Ip
)

of associated primes.

If A ⊂ Y is a closed proper subvariety that contains Ysing but not the point p, then
the above criterion for (Xreg,Yreg) gives an identical criterion for the pair (Xreg,Y−A)

at p. Our goal here is to derive from this local result a global algorithmic criterion for
checking whether or not (Xreg,Y − A) satisfies Condition (B) at all points y ∈ Y − A.
In the statement below, I [κ−1

X (Y − A)], respectively I [κ−1
X (Y − A)], denotes the

intersection of all primary components ofI [κ−1
X (Y )], respectivelyI [κ−1

X (Y )], which
are not supported on κ−1

X (A).

Lemma 1.2 Let X ,Y be as defined in the statement of Lemma 1.1 and let A � Y
be a subvariety with Ysing ⊂ A. Then Condition (B) holds for all points in the pair
(Xreg,Y − A) if and only if we have the containment

Assoc
(
I [Con(X) ∩ Con(Y )] + I [κ−1

X (Y − A)]
)

⊃ Assoc
(
I [κ−1

X (Y − A)]
)

(2)
of associated primes.

Proof Set Y ′ = Y − A. We know from Lemma 1.1 that Condition (B) holds for
(Xreg,Y ′) at a point p ∈ Y ′ if and only if we have the containment

Assoc
(
I [Con(X) ∩ Con(Y )] + Ip

) ⊃ Assoc
(
I [κ−1

X (Y )] + Ip
)

. (3)

We now claim that requiring such a containment for each p in Y ′, is equivalent to the
containment in (2).

Since p is not in A by assumption, we have that κ−1
A (p) is not contained in any

primary components supported on κ−1(A) and hence, when summing with Ip, we
can replace I [κ−1

X (Y − A)] on the left side of (2) by I [κ−1
X (Y )]. Similarly, when

summing with Ip, the integral closure on the right side may as well be replaced by
I [κ−1

X (Y )].
Recall thatI [κ−1

X (Y −A)] is the ideal sheaf of the scheme κ−1
X (Y − A); thus, if we

have containment (3) for every p ∈ Y ′, then we automatically have the corresponding
containment for the Zariski closures, hence we obtain (2).

Conversely, suppose that (2) holds and consider any p /∈ A. All associated primes of
I [κ−1

X (Y−A)]+Ip arise from summing Ip with associated primes ofI [κ−1
X (Y−A)].

Since all these primes are also contained in the left hand set, and since we have
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I [κ−1
X (Y − A)] + Ip = I [κ−1

X (Y )] + Ip = ICon(X) + Ip

we obtain the desired containment (3). ��

2 Rectifying the Argument

Let R be the coordinate ring of P
n × (Pn)∗, and consider a projective variety X ⊂ P

n

with conormal map κX : Con(X) � X . For any subvariety Y ⊂ X , the ideal sheaf
I [κ−1

X (Y )] constitutes an honest homogeneous ideal IY+ICon(X) of R, and it therefore
makes sense from an algorithmic perspective to perform a primary decomposition [1,
Chapter 4.8] of this ideal. Given such a homogeneous ideal I � R, we will denote the
associated projective subvariety of P

n × (Pn)∗ by V(I ). Here is the corrected version
of [5, Theorem 4.3].

Theorem 2.1 Let X ⊂ P
n be a pure dimensional projective variety and Y a nonempty

irreducible subvariety of its singular locus Xsing. Consider a primary decomposition
(of R-ideals)

I [κ−1
X (Y )] =

s⋂

i=1

Qi ,

and let σ ⊂ {1, 2, . . . , s} be the set of indices i for which dim κX (V(Qi )) < dim Y .
Define

A :=
[
⋃

i∈σ

κX (V(Qi ))

]

∪ Ysing. (4)

Then the pair (Xreg,Y − A) satisfies Condition (B).

Proof By the remarks following [9, Thm 3.12], we have

I [κ−1
X (Y − A)] =

⋂

i∈ρA

Qi , (5)

where ρA ⊂ {1, . . . , s} is the collection of all i for which κX (V(Qi ))− A is nonempty.
Since Y is irreducible and κX (Qi ) is a subvariety of Y for each i , we have i ∈ ρA if
and only if κX (V(Qi )) = Y . Therefore, ρA is the complement of σ in {1, . . . , s} (note
that Ysing is a proper subvariety of Y so κX (V(Qi ))−Ysing is nonempty for any i ∈ ρA

and the remaining factors are those where i ∈ σ ). ByWhitney’s result on the existence
of stratifications [10, Theorem 19.2], there is a proper subvariety B � Y containing
Ysing so that (Xreg,Y − B) satisfies Condition (B). Thus, Lemma 1.2 guarantees the
containment

Assoc(I [Con(X) ∩ Con(Y )] + I [κ−1
X (Y − B)]) ⊃ Assoc(I [κ−1

X (Y − B)]).
(6)
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Applying (5) with A replaced by B, we note that ρB must contain ρA because we have
κX (V(Qi )) = Y for every i ∈ ρA, and Y − B is nonempty for B � Y . Setting

C := B ∪
⎡

⎣
⋃

i∈ρB−ρA

κX (V(Qi ))

⎤

⎦ ,

we note that Condition (B) automatically holds for (Xreg,Y −C) since B is contained
in C , whence by Lemma 1.2 we have

Assoc(I [Con(X) ∩ Con(Y )] + I [κ−1
X (Y − C)]) ⊃ Assoc(I [κ−1

X (Y − C)]).
(7)

The argument which gave us ρA ⊆ ρB also yields ρA ⊆ ρC . We now claim that the
opposite containment also holds, whence ρA = ρC . To see this, note that C contains
κX (V(Qi )) for all the i ∈ ρB − ρA, i.e., for all the i satisfying κX (V(Qi )) � Y .
Thus, if i ∈ ρC then κX (V(Qi )) = Y and hence ρC ⊆ ρA, which establishes the
claim. Hence by construction, I [κ−1

X (Y − C)] and I [κ−1
X (Y − A)] are identical

since both equal
⋂

i∈ρA
Qi . Using (7), one final appeal to Lemma 1.2 confirms that

the pair (Xreg,Y − A) satisfies Condition (B), as desired. ��
Besides being far simpler than the flawed proof of [5, Theorem 4.3], the argu-

ment given above has the advantage of adapting readily to the scenario where Y is
pure-dimensional but not necessarily irreducible. In this case, one defines ρA to con-
sist precisely of those i ∈ {1, . . . , s} for which κX (V(Qi )) equals an irreducible
component of Y , all of which are equidimensional. Similarly any valid choice of B
must be a proper subvariety of some irreducible component of Y and hence satisfy
dim (B) < dim (Y ). The proof then proceeds identically.

Example 2.2 Consider the projectivized Whitney Cusp X̃ ⊂ P
3 given by

X̃ = V
(
x0x

3
1 + x20 x

2
2 − x21 x

2
3

)
.

The singular locus X̃Sing equalsV(x0, x1)∪V(x1, x2), and the usual (affine) Whitney
cusp X ⊂ C

3 is obtained by setting x0 = 1. The singular locus of X is the line
Y := V(x1, x2); note we slightly abuse notation and write Y for both the affine and
projective variety defined by x1 = x2 = 0. Now, we have a primary decomposition

I [κ−1
X (Y )] =

9⋂

i=1

Qi , where:

κX (V(Q1)) = κX (V(Q2)) = Y , κX (V(Q3)) = V(x1, x2, x3),
κX (V(Q4)) = V(x0, x1, x2), κX (V(Q j )) = ∅ for 5 ≤ j ≤ 9.

Thus, applying Theorem 2.1 and setting x0 = 1 establishes Condition (B) for the pair
Xreg = X − Y and Y ′ = Y − V(x1, x2, x3), which in turn gives the following strata:
Xreg, Y ′, and V(x1, x2, x3).
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3 Changes to Algorithms, Performance and Complexity

The changes to the algorithms of [5] are minimal — one simply replaces the Decom-
pose subroutine from [5, Section 5.2] by the one presented below.

Decompose(Y , X)

Input: Projective varieties Y ⊂ X in P
n , with d := dim Y .

Output: A list of subvarieties Y• of Y .
1 Set Y• := (Yd ,Yd−1, . . . ,Y0) := (Y , ∅, . . . , ∅)

2 Set J := ICon(X) + IY
3 For each primary component Q of a primary decomposition of J
4 Set K := Q ∩ C[x]
5 If dimV(K ) < dim Y
6 Add V(K ) to Y≥dimV(K )

7 Return Y•
Similarly, the algorithm DecomposeFlag from [5, Section 6.1] should be updated to
the following.

DecomposeFlag(Y , X ,F•)
Input: Proj. varieties Y ⊂ X with d := dim Y and a flag F• on X .
Output: A list of subvarieties Y• ⊂ Y .

1 Set Y• := (Yd ,Yd−1, . . . ,Y0) := (∅, . . . , ∅)

2 Set J := ICon(X) + IY
3 For each primary component Q of a primary decomposition of J
4 Set K := Q ∩ C[x]
5 If dimV(K ) < dim Y
6 Merge Y• with InducedFlag(V(K ),F•)
7 Return Y•

All other parts ofWhitStrat and related algorithms from [5] remain unchanged, and
[5, Proposition 5.1] which guarantees correctness follows immediately from Theorem
2.1. All the proofs in Sects. 5, 6 and 7 of [5] should be updated so that appeals to [5,
Theorem 4.3] are replaced by invocations of Theorem 2.1.

3.1 UpdatedRuntimes In Table 1, we illustrate the impact of updatingDecompose on
the run times of our algorithm. The corrected version is slightly, but not substantially,
slower than the previous version. In terms of memory usage, the updated code used
between 0.0005 and 0.270 GB of RAM (which is similar to the old implementation),
with all but the last entry in the table requiring no more than 0.0007 GB. The updated
version of our Macualay2 program is available at the link below:

http://martin-helmer.com/Software/WhitStrat/WhitneyStratifications.m2

3.2 Complexity Here we fix the complexity estimates of [5, Section 8]. We will
write GB(n, δ) to indicate the complexity of performing Gröbner basis computations
on an ideal generated by polynomials in n variables of degree at most δ. The time
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Table 1 Run times of corrected algorithm implemented in theWhitney StratificationsMacaulay2 package
working over Q on an Intel Xeon E3-1245 v5 CPU with 32 GB of RAM

INPUT New time Old time

V
(
x0x

2
1 − x22 x3

)
⊂ P

3 0.2s 0.2s

V
(
x41 x2 − x50 − x40 x3 − x40 x4

)
⊂ P

4 0.6s 0.4s

V
(
x33 − x1x

2
2 − x20 x3 + x20 x4 − x3x

2
4

)
⊂ P

4 0.9s 0.5s

V
(
x26 − x1x2 + x0x4, x

2
0 − x0x3 − x25

)
⊂ P

6 1.7s 0.9s

V
(
x20 x4 − x1x

2
2 + x33 , x20 − x1x4

)
⊂ P

4 2.0s 1.6s

V
(
x4x7 − x1x2 + x27 , x20 − x0x5 − x27 , x3x7 − x26

)
⊂ P

7 272.8s 242.5s

complexity of computing Gröbner bases and the degrees of the output polynomials
both lie inO(δ2

n
)—see [8]. The main change here must be made to the bounds on the

number of components appearing in line 3 of the new version of Decompose and on
their degrees. It is known that the computation of a primary decomposition has worst
case complexity proportional to that of Gröbner basis computation, see for instance
[2] and the references therein.

Let X ⊂ P
n−1 be a projective variety with homogeneous ideal IX �C[x1, . . . , xn],

and assume that IX is generated by polynomials of degree at most δ. We write μ to
indicate the dimension of the singular locus Xsing. By [5, Proposition 8.1], we know
that

(1) deg Xsing < δn , and

(2) for any subvariety Y ⊂ Xsing we have deg(Vμ) ≤ δ3n
2
,

where Vμ ⊂ C
n−1×C

n−1 denotes the restriction of the scheme defined by IY + ICon(X)

to an affine patch. In the new version of Decompose, we loop over all primary com-
ponents of an ideal. Note that the desired quantities are bounded by an expression
which is polynomial in δ2

n
. When updating [5, Proposition 8.3] we are led to con-

sider various ideals in C[x1, . . . , xn] and C[x1, . . . , xn, ξ1, . . . , ξn]. For an arbitrary
polynomial ideal J with generators of degree at most d in N variables (we will have
either N = n or N = 2n) we therefore bound both the degree and number of primary
components of J by d�2N , for some fixed positive integer � that is independent of the
input. An analysis of the primary decomposition algorithm of [4], see also [2], yields
a (not sharp) upper bound � ≤ 36N 2. The proposition below replaces [5, Proposition
8.3] and it is proved in an identical fashion after making the adjustments noted above.

Proposition 3.1 The following quantities are bounded by

δ(3�)μn2μ2nμ

when Decompose is called from WhitStrat during the any step of the algorithm:
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(1) the number of primary components of J ;
(2) the degrees of the generating polynomials of J and K .

Finally, we state the updated overall complexity bound for the algorithm which
replaces [5, Theorem 8.4], the proof is again identical to that of [5, Theorem 8.4] but
using the updated bounds given above, and is hence omitted.

Theorem 3.2 Let X be a complex projective subvariety of P
n whose defining poly-

nomials have degree at most δ and whose singular locus has dimension μ. The time
complexity of running WhitStrat on X is bounded in

O
(
(μ + 2)2 · (D + 2) · GB(n, D)

)
,

where D = δ(3�)μn2μ2nμ
and GB(n, D) is the cost of computing Gröbner bases.

Our eventual complexity bound remains polynomial in the complexity of Gröbner
basis computation, and hence the general performance trends are similar.
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