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Abstract
Computing spectra is a central problem in computational mathematics with an abun-
dance of applications throughout the sciences. However, in many applications gaining
an approximation of the spectrum is not enough. Often it is vital to determine geo-
metric features of spectra such as Lebesgue measure, capacity or fractal dimensions,
different types of spectral radii and numerical ranges, or to detect gaps in essential
spectra and the corresponding failure of the finite section method. Despite new results
on computing spectra and the substantial interest in these geometric problems, there
remain no general methods able to compute such geometric features of spectra of
infinite-dimensional operators. We provide the first algorithms for the computation of
many of these long-standing problems (including the above). As demonstrated with
computational examples, the new algorithms yield a library of new methods. Recent
progress in computational spectral problems in infinite dimensions has led to the
solvability complexity index (SCI) hierarchy, which classifies the difficulty of com-
putational problems. These results reveal that infinite-dimensional spectral problems
yield an intricate infinite classification theory determining which spectral problems
can be solved andwithwhich type of algorithm. This is verymuch related to S. Smale’s
comprehensive program on the foundations of computational mathematics initiated
in the 1980s. We classify the computation of geometric features of spectra in the SCI
hierarchy, allowing us to precisely determine the boundaries of what computers can
achieve (in any model of computation) and prove that our algorithms are optimal. We
also provide a new universal technique for establishing lower bounds in the SCI hier-
archy, which both greatly simplifies previous SCI arguments and allows new, formerly
unattainable, classifications.
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1 Introduction

This paper resolves open computational spectral problems related to geometric features
of spectra of operators. In other words, we consider the following problem:

Are there algorithms that given a bounded1 operator A ∈ B(l2(N)), approxi-
mate key geometric features (e.g. spectral gaps, notions of sizes and capacity,
measures, topological features such as fractal dimensions, etc.) of the set Sp(A)

from a matrix representation of A?

To answer this question, we use the newly established solvability complexity index
(SCI) hierarchy [18, 51, 91], a classification tool that determines the boundaries ofwhat
is computationally possible. Classifying spectral problems and providing a library of
optimal algorithms2 remains largely uncharted territory in the foundations of com-
putational mathematics. In exploring this territory, there will, necessarily, have to be
many different types of algorithms, as different structures on the various classes of
operators and different spectral properties require different techniques.

A famous example of the above question is the almost Mathieu operator on l2(Z)

(see Sect. 4.4):

(Hαx)n = xn−1 + xn+1 + 2λ cos(2πnα)xn,

which induces the Hofstadter butterfly [92]. The almost Mathieu operator plays an
important role in physics [104], arising in the study of the quantum Hall effect
[160], and has become a laboratory for exploring the spectral properties of ergodic
Schrödinger operators [95]. When α is irrational, the Lebesgue measure of the spec-
trum is 4 |1− |λ||. This formula was conjectured based on the numerical work of
Aubry and André [8] and became one of B. Simon’s problems for the twenty-first
century [146]. It was later proven by Avila and Krikorian [11]. Similarly, M. Kac’s
“TenMartini Problem”, that the spectrum is a Cantor set for all irrational α and λ > 0,
was conjectured by Azbel [13] and also became one of B. Simon’s problems. This
problem attracted a host of numerical and analytical work (see the summary in [104]),
before being proven by Avila and Jitomirskaya [9]. In both of these examples, we
see a crucial interplay between computation, conjecture, and mathematical proof. The

1 Many of our algorithms can also be extended to unbounded operators.
2 For precise notions of algorithm, see Sect. 5.
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above geometric features of spectra play an important role in the physics of the under-
lying quantum system [90, 99, 100, 147]. The almost Mathieu operator is by no means
unique in this regard, and there is a growing literature on computational studies of
geometric features of spectra in diverse areas of physics [14, 68, 83, 94, 103, 106, 110,
120, 125, 133, 138, 139, 156, 161].

However, there is a current lack of rigorous computational theory and convergence
analysis, and no known algorithms can tackle general cases.Moreover, the foundations
of computation (i.e. what is and what is not computationally possible) for computing
geometric features of spectra are almost entirely unexplored.We solve these open prob-
lems and others by providing algorithms that compute geometric features of spectra
and by classifying the computational problems in the SCI hierarchy.

1.1 The SCI Hierarchy

The SCI hierarchy has recently been used to resolve the problem of computing spectra
of general bounded operators in infinite dimensions [18, 91] and is now being used
to explore the foundations of computation in many diverse areas of mathematics [2,
15, 16, 19–23, 30, 52, 53, 55, 57, 59, 60, 64, 140, 141, 166].3 Whilst for some classes
of operators one can compute spectra with error control [54, 60, 64], a potentially
surprising consequence is that, for general operators, one needs several successive
limits to compute the spectrum. Since traditional approaches are dominated by tech-
niques based on one limit, this explains why many computational spectral problems
remain unsolved and opens the door to an infinite classification theory. Moreover, this
phenomenon is not just restricted to spectral problems but is shared by other areas
of computational mathematics. An example is S. Smale’s problem of root-finding of
polynomials with rational maps [149], which also requires several successive limits as
established byMcMullen [115, 116] and Doyle andMcMullen [70]. These results can
be expressed in terms of the SCI hierarchy [18], which generalises Smale’s seminal
work [148, 150] with Blum et al. [28, 29, 66], and his program on the foundations of
scientific computing and the existence of algorithms.Many other problems in the foun-
dations of computations, such as the work by Weinberger [167], can also be viewed
in the context of the SCI hierarchy.

The SCI hierarchy is further motivated by computer-assisted proofs. Computer-
assisted proofs are rapidly becoming an essential part of modern mathematics [86]
and, perhaps surprisingly, non-computable problems can be used in computer-assisted
proofs. Examples include the recent proof of Kepler’s conjecture (Hilbert’s 18th
problem) [87, 88] on optimal packings of 3-spheres, led by T. Hales, and the
Dirac–Schwinger conjecture on the asymptotic behaviour of ground states of certain
Schrödinger operators, proven in a series of papers by Fefferman and Seco [72–80].
Both of these proofs rely on computing non-computable problems. This apparent para-
dox can be explained by the SCI hierarchy (the �A

1 and �A
1 classes described below

become available for computer-assisted proofs); Hales, Fefferman and Seco implicitly

3 For related work on practical infinite-dimensional numerical linear algebra, see [63, 85, 93, 126–130,
166], and for rigorous data-driven algorithms for spectral properties of Koopman operators (operators on
infinite-dimensional spaces that globally linearise nonlinear dynamical systems), see [56, 58, 65].
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prove �A
1 classifications in the SCI hierarchy in their papers. Some of the problems

we consider also lie in�A
1 ∪�A

1 , meaning that they can be used for computer-assisted
proofs.

1.2 The Problems Addressed in this Paper

The algorithms we provide are sharp in the SCI hierarchy, meaning that they realise
the boundaries of what computers can achieve. Table 1 provides a summary of the
main SCI classifications of this paper. The main theorems are contained in Sect. 3,
including further motivations and classifications for different classes of operators. We
provide resolutions to the following problems:

(i) Computing spectral radii, essential spectral radii, polynomial operator norms
and capacity of spectra. The spectral radius is perhaps the most basic geometric
property of spectra and arises in stability analysis. We show that computing the
spectral radius is high up in the SCI hierarchy for non-normal operators. In fact, it
has the same classification in the SCI hierarchy for general bounded operators as
that of computing the spectrum itself. Classifications are given for different types
of operators (e.g. known column decay, control on resolvent norms) and also for
the essential spectral radius. In many cases, the problem of computing polynomial
operator norms is easier in the sense of SCI hierarchy.We also consider the problem
of computing the logarithmic capacity of the spectrum, following the work of
Halmos [89], which has applications in orthogonal polynomials, approximation
theory and when studying the convergence of Krylov methods (see, for example,
the work of Nevanlinna [121–123] and Miekkala and Nevanlinna [117]).

(ii) Computing essential numerical ranges, gaps in essential spectra, and determining
whether spectral pollution occurs on sets. We provide classification results for the
essential numerical range, which also hold in the case of unbounded operators. In
connection with computing spectra, there has been a substantial effort in studying
the finite section method and locating gaps in essential spectra of operators (see
the discussion in Sect. 3.4). When using the finite section method to approximate
spectra of self-adjoint operators, spurious eigenvalues, known as spectral pollution,
can occur anywhere within these gaps. Paradoxically, we show that determining
if spectral pollution occurs on a given set is strictly harder in the sense of the SCI
hierarchy than computing the spectrum itself. Hence, computing a failure flag for
the finite section method is, in a certain sense, strictly harder than solving the
original problem for which it was designed. Moreover, we establish the SCI of
detecting gaps in essential spectra of self-adjoint operators, a problem that arises
in areas such as perturbation theory and defect models.

(iii) ComputingLebesguemeasure of spectra andpseudospectra, anddetermining if the
spectrum is Lebesgue null. An important property of the spectrum is its Lebesgue
measure, with recent progress in the field of Schrödinger operators with random
or almost periodic potentials [9, 11, 12, 17, 135]. If the spectrum of an operator
is Lebesgue null; then, this implies the absence of absolutely continuous spectra,4

4 For algorithms that compute spectral measures and decompositions, see [53, 61, 63] and their recent
physical applications in [62, 97].
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which is related to transport properties if the operator represents a Hamiltonian.
Whilst results are known for specific one-dimensional examples such as the almost
Mathieu operator [11] or the Fibonacci Hamiltonian [154], very little is known in
the general case or higher dimensions. This is reflected by the difficulty of per-
forming rigorous numerical studies, despite many examples studied in the physics
literature (see the references in [10, 24, 147]). We provide the first algorithms for
computing the Lebesgue measure of spectra and pseudospectra, and determining
whether the spectrum is Lebesgue null, for many different classes of operators.

(iv) Computing fractal dimensions of spectra. Fractal dimensions of spectra are impor-
tant in many applications. For example, in quantum mechanics, they lead to upper
bounds on the spreading of wavepackets and are related to time-dependent quan-
tities associated with wave functions [90, 99, 100]. Fractal spectra appear in a
wide variety of contexts, such as exciting new results in multilayer materials (e.g.
bilayer graphene) [68, 83, 94, 133], strained materials [120, 139] or quasicrystals
[14, 103, 106, 156]. Another well-studied area where fractal spectral properties
appear is optics [125, 138], following the analytical and numerical work of Berry
and coauthors [25–27]. Despite the physical importance of fractal dimensions, ana-
lytical results are known only for a limited number of specific models. Moreover,
there are currently no algorithms for computing fractal dimensions of spectra for
general operators, or even tridiagonal self-adjoint operators. We provide the first
algorithms for computing the box-counting and Hausdorff dimensions of spectra
for many different classes of operators.

1.3 Contributions to the SCI Hierarchy Itself

Our final contribution is a new tool to prove lower bounds (impossibility results) in
the SCI hierarchy. This is crucial for some of the classifications of the above problems
and holds regardless of the model of computation. We show that for a certain special
class of combinatorial problems, the SCI hierarchy is equivalent to the Baire hierarchy
from descriptive set theory. (This equivalence does not hold in general.) By embedding
these combinatorial problems into spectral problems,5 we provide the first technique
for dealing with problems that have SCI greater than three and also greatly simplify the
proofs of results lower down in the SCI hierarchy. However, it should be stressed that
this is not a paper on descriptive set theory or mathematical logic. Our discussion is
entirely self-contained andwritten for a wide audience from a primarily computational
background.

1.4 Outline of Paper

In Sect. 2, we provide a brief summary of the SCI hierarchy and define the classes of
operators for the interpretation of Table 1 and themain results. A detailed discussion of
the SCI hierarchy is delayed until Sect. 5.1. In Sect. 3, we summarise our main results
on the classification of computational spectral problems. Computational examples are

5 This technique is not restricted to spectral problems—it can be adapted to other scenarios.
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then given in Sect. 4. For example, we provide numerical evidence that a portion of the
spectrum of the graphical Laplacian on an infinite Penrose tile is Lebesgue null and
fractal, with a fractal dimension of approximately 0.8, and that the whole spectrum has
a logarithmic capacity of approximately 2.26. Mathematical preliminaries, including
definitions of the SCI hierarchy and the new tool to provide lower bounds in the SCI
hierarchy, are presented in Sect. 5. Proofs of our results are given in Sects. 6–9. Tomake
the paper self-contained, we include a short appendix on the results/algorithms of [64],
which are used in some of our proofs. Pseudocode for many of the new algorithms is
provided in “Appendix B”.

2 Essentials of the SCI Hierarchy and Preliminary Definitions

2.1 A Brief Introduction to the SCI Hierarchy

2.1.1 Description of the SCI Hierarchy

First, we define a computational problem. The basic objects of a computational prob-
lem are:

• �, called the domain,
• �, a set of complex-valued functions on �, called the evaluation set,
• (M, d), a metric space,
• 	 : � →M the problem function.

The set � is the set of objects that give rise to our computational problems, the goal
being to compute the problem function 	 : � → M. The set � is the collection of
functions that provide us with the information we are allowed to read as input to the
algorithm. This leads to the following definition:

Definition 2.1 (Computational problem) Given a domain�; an evaluation set�, such
that for any A1, A2 ∈ �, A1 = A2 if and only if f (A1) = f (A2) for all f ∈ �;
a metric space M; and a problem function 	 : � → M, we call the collection
{	,�,M,�} a computational problem.

The definition of a computational problem is deliberately general. The SCI of a
computational problem is the smallest number of successive limits needed to compute
the solution to the problem. We call a corresponding suitably indexed family of algo-
rithms a ‘tower of algorithms’. In addition, we will use finer notions of error control.
For example, consider the case that (M, d) is the space of non-empty compact subsets
of C, equipped with the Hausdorff metric. Then, the SCI hierarchy [18, 51] can be
described as follows.

The SCI hierarchy Given a collection C of computational problems,

(i) 
α
0 = �α

0 = �α
0 is the set of problems that can be computed in finite time (the

SCI = 0). In other words, ∃ an algorithm � such that �(A) = 	(A),∀A ∈ �.
(ii) 
α

1 is the set of problems that can be computed using one limit (the SCI
= 1) with control of the error, i.e. ∃ a sequence of algorithms {�n} such that
d(�n(A),	(A)) ≤ 2−n, ∀A ∈ �.
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Table 1 Summary of the main results for the readable information �1 consisting of matrix values

Description of problem SCI hierarchy classification Theorem

Computing the spectral radius. Varies. e.g. Normal operators: ∈ �A
1 , /∈ 
G

1 3.3

Controlled resolvent: ∈ �A
2 , /∈ 
G

2

General bounded operators: ∈ �A
3 , /∈ 
G

3

Computing the essential spectral
radius.

Varies. e.g. Most classes: ∈ �A
2 , /∈ 
G

2 3.6

General bounded operators: ∈ �A
3 , /∈ 
G

3

Computing polynomial operator
norms.

With bounded dispersion: ∈ �A
1 , /∈ 
G

1 3.7

Without bounded dispersion: ∈ �A
2 , /∈ 
G

2

Computing the capacity of the
spectrum.

With bounded dispersion: ∈ �A
2 , /∈ 
G

2 3.7

Without bounded dispersion: ∈ �A
3 , /∈ 
G

3

Computing gaps in the essential
spectrum.

∈ �A
3 , /∈ 
G

3 3.10

Computing the essential numerical
range.

∈ �A
2 , /∈ 
G

2 3.10

Determining whether spectral
pollution can occur on a set (i.e.
failure of finite section method).

∈ �A
3 , /∈ 
G

3 3.10

Computing the Lebesgue measure of
the spectrum.

Varies. e.g. 3.13

Bounded dispersion: ∈ �A
2 , /∈ 
G

2

Self-adjoint and general bounded: ∈ �A
3 , /∈ 
G

3

Computing the Lebesgue measure of
the pseudospectrum.

Varies. e.g. 3.14

Bounded dispersion: ∈ �A
1 , /∈ 
G

1

Self-adjoint and general bounded: ∈ �A
2 , /∈ 
G

2

Determining whether the Lebesgue
measure of the spectrum is zero.

Varies. e.g. 3.16

Bounded dispersion: ∈ �A
3 , /∈ 
G

3

Self-adjoint and general bounded: ∈ �A
4 , /∈ 
G

4

Computing the box-counting
dimension of the spectrum (when it
exists).

Varies. e.g. 3.18

Bounded dispersion:∈ �A
2 , /∈ 
G

2

Self-adjoint: ∈ �A
3 , /∈ 
G

3

Computing the Hausdorff dimension
of the spectrum.

Varies. e.g. 3.18
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Table 1 continued

Description of problem SCI hierarchy classification Theorem

Bounded dispersion:∈ �A
3 , /∈ 
G

3

Self-adjoint: ∈ �A
4 , /∈ 
G

4

The main theorems contain classifications for different classes of operators (see Table 3 for the operator
classes)

(iii) �α
1 : We have 
α

1 ⊂ �α
1 ⊂ 
α

2 and �α
1 is the set of problems for which ∃ a

sequence of algorithms {�n} such that ∀A ∈ � we have �n(A) → 	(A) as
n → ∞. Moreover, supz∈�n(A) dist(z, 	(A)) ≤ 2−n , where dist(x, S) denotes
the Euclidean distance of x to S.

(iv) �α
1 : We have 
α

1 ⊂ �α
1 ⊂ 
α

2 and �α
1 is the set of problems for which ∃ a

sequence of algorithms {�n} such that ∀A ∈ � we have �n(A) → 	(A) as
n →∞. Moreover, supz∈	(A) dist(z, �n(A)) ≤ 2−n .

(v) 
α
2 is the set of problems that can be computed using one limit (SCI= 1) without

error control, i.e. ∃ a sequence of algorithms {�n} such that limn→∞ �n(A) =
	(A), ∀A ∈ �.

(vi) 
α
m+1, for m ∈ N, is the set of problems that can be computed by using m

successive limits, (SCI ≤ m), i.e. ∃ a family of algorithms {�nm ,...,n1} such that

lim
nm→∞

· · · lim
n1→∞

�nm ,...,n1(A) = 	(A), ∀A ∈ �.

(vii) �α
m is the set of problems in 
α

m+1 such that, letting �nm (A) = limnm−1→∞ · · ·
limn1→∞ �nm ,...,n1(A), supz∈�nm (A) dist(z, 	(A)) ≤ 2−nm . In otherwords, com-
puting the mth limit is a �α

1 problem.
(viii) �α

m is the set of problems in
α
m+1 such that supz∈	(A) dist(z, �nm (A)) ≤ 2−nm .

In other words, computing the mth limit is a �α
1 problem.

Schematically, the SCI hierarchy can be viewed in the following way:

�α
0 �α

1 �α
2


α
0 
α

1 �α
1 ∪�α

1 
α
2 �α

2 ∪�α
2 
α

3 · · ·

�α
0 �α

1 �α
2

=

=

� � � � ��

�

�

�

�

�

�

�

�

�

�

A visual demonstration of these classes is shown in Fig. 1. For the description for
decision problems, see Sect. 5.1. The�α

1 and�α
1 classes become crucial in computer-

assisted proofs (see below).

Remark 2.2 (Computability, not complexity) It is important to note that (despite its
name) the SCI hierarchy is a hierarchy for classifying computability, not complexity.
Most computational spectral problems of interest are /∈ 
1 in the SCI hierarchy, and
complexity theory onlymakes sense for problems in
1.Hence, it is impossible to build
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Fig. 1 Meaning of �1 and �1 convergence for a problem function 	 computed in the Hausdorff metric.
The red areas represent 	(A), whereas the green areas represent the output of the algorithm �n(A). �1
convergence means convergence as n → ∞ but each point in the output �n(A) is at most distance 2−n
from 	(A). Similarly, in the case of �1, we have convergence as n →∞ but any point in 	(A) is at most
distance 2−n from �n(A) (Color figure online)

a complexity theory for most infinite-dimensional spectral problems. The scientific
community computes with non-computable problems (/∈ 
1) on a daily basis (e.g. in
quantum mechanics). This also happens in high-profile computer-assisted proofs (see
below). 
�

2.1.2 The Model of Computation˛

The α in the superscript indicates the model of computation, which is described in
Sect. 5.1. For α = G, the underlying algorithm is general (see Definition 5.1) and
can use any tools at its disposal. The reader may think of a Blum–Shub–Smale (BSS)
machine or a Turing machine with access to any oracle, although a general algorithm
is even more powerful. However, for α = A this means that only arithmetic opera-
tions and comparisons are allowed. In particular, if rational inputs are considered, the
algorithm is a Turing machine, and in the case of real inputs, a BSS machine. Hence,
a result of the form

/∈ 
G
k is stronger than /∈ 
A

k .

Indeed, a /∈ 
G
k result is universal and holds for any model of computation. Moreover,

∈ 
A
k is stronger than ∈ 
G

k ,

and similarly for the �k and �k classes. In this paper, we prove lower bounds for
α = G and upper bounds for α = A, thus obtaining the strongest results. Remark 5.12
discusses further how themodel of computation is of less importance in infinite dimen-
sions.

2.1.3 Computer-Assisted Proofs

The class of problems
A
1 are precisely those that are computable according toTuring’s

definition of computability (i.e. there exists an algorithm such that for any ε > 0
the algorithm can produce an ε-accurate output). However, most infinite-dimensional

123



Foundations of Computational Mathematics

spectral problems are /∈ 
A
1 . The simplest example is the problem of computing

spectra of infinite diagonalmatrices. Very few interesting infinite-dimensional spectral
problems are actually in 
A

1 , and most of the literature on spectral computations
provides algorithms that yield 
A

2 classification results. Such algorithms converge,
but may not provide error control. In many cases, error control is impossible.

Problems not in 
A
1 are a daily occurrence in the sciences due to suggestive

numerical simulations or evidence based on experiments. However, in the field of
computer-assisted proofs, this is not possible, since only 100% rigour is accepted.
Nevertheless, there are many examples of famous conjectures that have been proven
using computational problems that do not lie in
A

1 . For example, the proof of Kepler’s
conjecture (Hilbert’s 18th problem) [87, 88] relies on decision problems that are not in

A

1 [15].Another example isC. Fefferman andL. Seco’s proof of theDirac–Schwinger
conjecture on the asymptotics of ground states of certain Schrödinger operators [72–
80]. The reason for this apparent paradox is that the �A

1 and �A
1 classes are larger

than
A
1 , but can still be used in computer-assisted proofs. Both of the above examples

implicitly prove �A
1 classifications. For example, suppose we have a computational

spectral problem that lies in �A
1 . This means that there is an algorithm that will con-

verge and never provide incorrect output, up to a user-specified error bound. Thus,
conjectures about operators never having spectra in a certain area (a common problem
in stability analysis, for example) could be disproved by a computer-assisted proof.
Recent results using computer-assisted proofs in spectral theory include [33, 111].

2.2 Evaluation Sets and Domains

Throughout this paper, unless otherwise specified, Awill be a bounded operator acting
on the canonical Hilbert space l2(N) (we define �B := B(l2(N))), and realised as a
matrix with respect to the canonical basis. However, the results of this paper extend to
general separable Hilbert spaces H through a choice of orthonormal basis e1, e2, . . .
if one can compute the matrix values of the operators with respect to this basis (see
the discussion of the evaluation sets below). For example, we can treat operators
naturally defined on lattices such as Z

d , or more generally on graphs. Such operators
are abundant in mathematical physics. Below we give the evaluation sets and classes
of operators treated in this paper. For convenience, this information is summarised in
Tables 2 and 3.

Table 2 Summary of evaluation sets used in this paper

Evaluation set Information available to algorithm Meaning

�1 f 1i, j : A �→ 〈Ae j , ei 〉 for i, j ∈ N Matrix entries of A

�2 f 1i, j : A �→ 〈Ae j , ei 〉 for i, j ∈ N Matrix entries of A, A∗A, and AA∗

f 2i, j : A �→ 〈Ae j , Aei 〉 for i, j ∈ N

f 3i, j : A �→ 〈A∗e j , A∗ei 〉 for i, j ∈ N
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Table 3 Summary of classes of operators treated in this paper

Domain (class of operators) Meaning

�B Bounded operators

�N Bounded normal operators

�SA Bounded self-adjoint operators

�D Bounded self-adjoint diagonal operators

� f Bounded operators with known f satisfying (2.1)

�g Bounded operators with known g satisfying (2.2)

Note that all considered classes lie in �B, and that �D ⊂ �SA ⊂ �N, �D ⊂ � f , and �N ⊂ �g:x �→x

2.2.1 Evaluation Sets

We consider two natural sets of information that our algorithms can read. The first,
�1, provides the entries of the matrix representation of Awith respect to the canonical
basis {ei }i∈N:

�1 = { f 1i, j : A �→ 〈Ae j , ei 〉|i, j ∈ N}.

The second, �2, appends �1 with the entries of the matrix representations of A∗A
and AA∗ with respect to the canonical basis {ei }i∈N:

�2 = �1 ∪ { f 2i, j : A �→ 〈Ae j , Aei 〉, f 3i, j : A �→ 〈A∗e j , A∗ei 〉|i, j ∈ N}.

We include�2 since it is natural for problems posed in variational form, and can often
be evaluated through numerical integration. When considering classes with functions
f (and {cn}) and g as in (2.1) and (2.2) below, we will add these to the relevant
evaluation set (evaluating g at rational points) and with an abuse of notation still use
the notation�i . A small selection of the problems also require additional information,
such as when testing if a set intersects a spectral set, but any changes to �i will be
pointed out where appropriate.

2.2.2 Classes of Operators

Let�N denote the class of normal operators in�B,�SA denote the class of self-adjoint
operators in �N, and �D denote the class of self-adjoint diagonal operators in �SA.
For f : N → N, f (n) ≥ n + 1 define

D f ,n(A) := max
{∥∥(I − Pf (n))APn

∥∥,
∥∥Pn A(I − Pf (n))

∥∥} , (2.1)

where Pm is the orthogonal projection onto span{e1, . . . , em}. Given such an f , we
assume access to an estimate D f ,n(A) ≤ cn(A) ∈ Q≥0, where cn → 0 as n → ∞.
We let� f denote the class of bounded operators with known function f and {cn}.6 As
6 Sometimes the sequence {cn} is not needed and we will explicitly mention when this is the case.
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a special case, if we know our matrix is sparse with finitely many nonzero entries in
each column and row (and we know the positions of the nonzero entries) then we know
an f with cn = 0. Let g : R+ → R+ be a strictly increasing, continuous function that
vanishes only at 0 with limx→∞ g(x) = ∞. Let �g be the class of bounded operators
with

g(dist(z,Sp(A))) ≤ ‖R(z, A)‖−1 , (2.2)

for z ∈ C, where R(z, A) = (A− z I )−1. A simple compactness argument shows that
such a g always exists for any given A ∈ �B. However, the classification of spectral
problems in the SCI hierarchy generally depends on whether one knows an estimate
for g or not. For example, in the self-adjoint and normal cases, g(x) = x is the trivial
choice of g. Operators with g(x) = x are known as G1 and include the well-studied
class of hyponormal operators (operators with A∗A − AA∗ ≥ 0) [136]. A common
assumption is that

‖R(z, A)‖ ≤ C

dist(z,Sp(A))
∀z /∈ Sp(A),

for some constantC , which is equivalent to A ∈ �g with g(x) = x/C . For example, if
A is similar to a normal operator with a similarity transformation S that has bounded
condition number κ(S), we can take C = κ(S). Other examples with nonlinear g
include perturbations of self-adjoint operators [84, e.g. Theorem 7.7.1]. More gener-
ally, one can view the function g as a measure of stability of the spectrum of A through
the formula

Spε(A) := Sp(A) ∪ {z /∈ Sp(A) : ‖R(z, A)‖ ≥ 1/ε} =
⋃

B∈�B,‖B‖≤ε

Sp(A + B),

(2.3)
where Spε(A) denotes the (ε-)pseudospectrum of A [162]. The function g is held fixed
for a given class �g and a smaller g leads to a larger class of operators �g .

3 Main Results: The Foundations of Computing Geometric Features of
Spectra

Our results classify computing geometric features of spectra in the SCI hierarchy. In
other words, we are concerned with the foundations of computation for geometric
features of spectra. There are two aspects of this classification: proving impossibility
results (lower bounds), where we make use of the tools developed in Sect. 5 and
Theorem 5.19, and proving upper bounds through the construction of algorithms.
This ensures that our algorithms realise the boundary of what computers can achieve
in spectral computations. We have included routines for some of the main algorithms
in “Appendix B” and computational examples in Sect. 4.

Remark 3.1 (Bounding the operator norm) The proofs of lower bounds make clear
that all classifications still hold if we replace the respective sub-class � ⊂ �B by the
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restriction to operators in � having operator norm at most M ∈ R>0, adding such a
value M (constant function) to the evaluation set �. 
�

Remark 3.2 (Computing the resolvent norm) Some of the algorithms are built on the
local approximation of the functions (or similar functions) defined by

γn(z; A) = min{σinf((A − z I )|PnH), σinf((A
∗ − z̄ I )|PnH)},

where σinf denotes the smallest singular value or injection modulus:

σinf(T ) = inf{‖T v‖ : ‖v‖ = 1}.

The functions γn converge to the resolvent norm ‖R(z, A)‖−1 uniformly on compact
subsets of C from above as n → ∞. This idea was crucial in [60, 64] to compute
spectra with �A

1 error control for a large class of operators. A theme of some of our
proofs, especially those concerning Lebesgue measure and fractal dimensions, is the
extension of these ideas to compute geometric properties of the spectrum. 
�

3.1 Spectral Radii

We begin with a very simple geometric feature of the spectrum. The spectral radius,
r(A), of a bounded operator A is the supremum of the absolute values of members
of the spectrum, which is attained. Spectral radii commonly appear in applications
involving stability analysis. We set 	r (A) := r(A) and make the following initial
observations:

(i) One can easily show that the computational problem of the operator norm of any
A ∈ �B lies in �A

1 . Hence, since r(A) ≤ ‖A‖, we can easily get an upper bound
for 	r (A) in one limit. Of course, if A is not normal, this upper bound may not
agree with 	r (A).

(ii) If an operator lies in �g with g(x) = x , then the convex hull of the spectrum
is equal to the closure of the numerical range (recall that the numerical range
is {〈Ax, x〉 : ‖x‖ = 1}) [131]. Such operators are known as convexoid and the
problem of computing 	r (A) for such operators lies in �A

1 .

(iii) In light ofGelfand’s famous formula	r (A) = limn→∞ ‖An‖ 1
n , onemight expect

that the computation of 	r (A) is strictly easier in the sense of the SCI hierarchy
than that of the spectrum.

The following shows that the intuition in (iii) is misguided in general and only
occurs if an operator is convexoid as in (ii). Computing 	r (A) is just as hard as
computing the spectrum for the class�B. Controlling the resolvent via a function g as
in (2.2) makes the problem easier in the sense of SCI hierarchy than the general class
�B, but is not sufficient to reduce the SCI of the problem to 1.
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Theorem 3.3 Let g : R+ → R+ be a strictly increasing, continuous function that
vanishes only at 0 with limx→∞ g(x) = ∞. In addition, suppose that g(x) ≤ (1−δ)x
for some δ ∈ (0, 1). Then:


G
1 �� {	r , �D,�1} ∈ �A

1 , 
G
1 �� {	r , �N,�1} ∈ �A

1 , 
G
1 �� {	r , � f ∩�g,�1} ∈ �A

1 ,


G
2 �� {	r , �g,�1} ∈ �A

2 , 
G
2 �� {	r , � f ,�1} ∈ �A

2 , 
G
3 �� {	r , �B,�1} ∈ �A

3 .

When considering the evaluation set �2, the only changes are the following classifi-
cations:


G
1 �� {	r ,�g,�2} ∈ �A

1 , 
G
2 �� {	r ,�B,�2} ∈ �A

2 .

Remark 3.4 The�A
2 algorithm for {	r ,� f } does not need a null sequence {cn} bound-

ing the dispersion, D f ,n(A) ≤ cn , to be sharp in theSCI hierarchy since this is absorbed
in the first limit. 
�

Remark 3.5 The proofs of the lower bounds in Theorem 3.3 for �g require g with the
stated additional property and δ > 0. In particular, the lower bound does not cover the
smaller class of G1 operators. 
�

3.2 Essential Spectral Radii

Next, we consider the essential spectral radius. Define the essential spectrum of A ∈
�B as

Spess(A) =
⋂

B∈�K

Sp(A + B),

where �K denotes the class of compact operators. The essential spectral radius,
	er (A), is simply the supremum of the absolute values over Spess(A).

Theorem 3.6 We have the following classifications for i = 1, 2:


G
2 �� {	er , �D,�i } ∈ �A

2 , 
G
2 �� {	er , �N,�i } ∈ �A

2 , 
G
2 �� {	er , � f ,�i } ∈ �A

2 .

Whereas, for general operators,


G
3 �� {	er ,�B,�1} ∈ �A

3 , 
G
2 �� {	er ,�B,�2} ∈ �A

2 .
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3.3 Capacity and Polynomial Operator Norms

Given a polynomial p of degree at least two,7 we consider the problem of computing
	r ,p = ‖p(A)‖ and the capacity of the spectrum defined by

	cap(A) = inf
monic polynomial p

‖p(A)‖ 1
deg(p)

= lim
d→∞ inf

{
‖p(A)‖ 1

d : monic polynomial p, deg(p) = d
}

.

A theorem of Halmos shows that this definition of capacity agrees with the usual
potential-theoretic definition of capacity of the set Sp(A) [89]. Roughly speaking,
the capacity measures the ability of Sp(A) to hold electrical charge. We will also
see some other measures of size in Sects. 3.5 and 3.6. The capacity of the spectrum
is of particular interest in Krylov methods where, for instance, it is related to the
speed of convergence8 [117, 119, 121–123]. The capacity is also an important object
in local spectral theory [1, 105, 119], and related work [48, 124] includes methods
for computing the polynomially convex hull of an operator. The following theorem
provides the relevant SCI classifications.

Theorem 3.7 We have the following classifications for i = 1, 2 and �̂ = �D or � f :


G
1 �� {	r ,p, �̂,�i } ∈ �A

1 , 
G
2 �� {	cap, �̂,�i } ∈ �A

2 .

For �̃ = �N,�g or �B,


G
2 �� {	r ,p, �̃,�1} ∈ �A

2 , 
G
3 �� {	cap, �̃,�1} ∈ �A

3


G
1 �� {	r ,p, �̃,�2} ∈ �A

1 , 
G
2 �� {	cap, �̃,�2} ∈ �A

2 .

The proof shows these problems have the same classifications for �SA as �N.
Somewhat surprising is the result that the computation of ‖p(A)‖ requires two suc-
cessive limits for self-adjoint operators. The proof shows that one reason for this is
spectral pollution associated with finite section methods.

7 We fix the polynomial p for the strongest possible negative results. However, the existence of the towers
of algorithms also holds when considering the polynomial p itself as an input.
8 This is an idealisation since the capacity studies operator normswhile trueKrylov processes look at p(A)x
with one or several vectors x . However, from local spectral theory (e.g. [118]) it follows that, generically,
the asymptotic speeds are the same.
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3.4 Essential Numerical Range, Gaps in Essential Spectra and Detecting Failure of
Finite Section

We now consider geometric features of spectra that are related to the finite section
method, the most intensely studied computational method of approximating spectra
[35, 36, 40, 41].9 Thebasic formof thefinite sectionmethod approximates the spectrum
of A by Sp(Pn A|PnH), where {Pm} is a sequence of finite-dimensional projections
converging strongly to the identity as m → ∞. The computation is often done with
finite element, finite difference or spectral methods by discretising the operator on a
suitable finite-dimensional space [31, 32, 47, 50, 102, 108, 137, 168]. Even when A is
self-adjoint, spurious eigenvalues, that have nothing to do with Sp(A), can accumulate
anywherewithin gaps of the essential spectrum as n →∞.10 This is known as spectral
pollution. More precisely, the essential numerical range of A ∈ �B is defined as

We(A) =
⋂

B∈�K

W (A + B), (3.1)

where W (A) = {〈Ax, x〉 : ‖x‖ = 1} is the usual numerical range.11 We recall the
following two theorems.

Theorem 3.8 (Pokrzywa [132]) Let A ∈ B(H) and let {Pn} be a sequence of finite-
dimensional projections converging strongly to the identity. Suppose that S ⊂ We(A).

Then there exists a sequence {Qn} of finite-dimensional projections such that Pn < Qn

(so Qn → I strongly) and

dH(Sp(Pn A|PnH) ∪ S,Sp(Qn A|QnH)) → 0, as n →∞,

where dH denotes the Hausdorff distance.

Theorem 3.9 (Pokrzywa [132]) Let A ∈ B(H) and let {Pn} be a sequence of finite-
dimensional projections converging strongly to the identity. If λ /∈ We(A), then λ ∈
Sp(A) if and only if

dist(λ,Sp(Pn A|PnH)) → 0, as n →∞.

Theorems 3.8 and 3.9 show that spectral pollution is confined to the essential numer-
ical range and can be arbitrarily bad inWe(A)\Sp(A).12 For self-adjoint operators, the

9 Arveson [3–7] andBrown [42–44] pioneered spectral computations from the point of viewofC∗-algebras,
both for the general spectral computation problem and for Schrödinger operators. This combination can be
traced back to the work of Böttcher and Silberman [39]. Arveson also considered spectral computation in
terms of densities, which is related to Szegö’s work [155] on finite section approximations.
10 Even when the finite section method converges, it typically only yields 
A

2 classifications in the SCI
hierarchy [37, 38, 45, 46].
11 If A is hyponormal, then We(A) is the convex hull of the essential spectrum [142].
12 In the non-normal case, it is possible for finite sections to not capture all of the spectrum—parts of
the spectrum may be unattainable. This is distinct from spectral pollution. Theorem 3.8 says that, up to a
different choice of projections, this can be avoided on We(A).
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gaps in the essential spectrum correspond exactly to We(A)\Sp(A). As a result, there
has been considerable attention towards methods that detect gaps in essential spectra
and eigenvalues within these gaps [31, 49, 108, 144], as well as studying the precise
nature of spectral pollution [107, 112, 113, 137].

A consequence of the main result of this section, Theorem 3.10, is that detecting
these gaps is strictly harder in the sense of the SCI hierarchy than computing the
spectrum for self-adjoint operators (which was classified in [18, 60, 64]). We define
the problem function 	we(A) = We(A). For a given non-empty open setU in F (with
F being C or R), let 	F

poll be the decision problem

	F

poll(A,U ) =
{
1, if U ∩ (We(A)\Sp(A)) �= ∅
0, otherwise.

	F

poll decides whether spectral pollution can occur on the closed set U . For the self-
adjoint case and F = R, this is equivalent to asking whether there exists a point in
the open set U that also lies in a gap of the essential spectrum. To incorporate U into
�i , we allow access to a countable number of open balls {Um}m∈N whose union is
U . If F = R, then each Um is of the form (am, bm) with am, bm ∈ Q ∪ {±∞}. If
F = C, then each Um is equal to Drm (zm) (the open ball of radius rm centred at zm)
with rm ∈ Q+ ∪ {∞} and zm ∈ Q+ iQ. We add pointwise evaluations of the relevant
sequences {(am, bm)} or {(rm, zm)} to �i .

Theorem 3.10 (Computation of essential numerical range and whether spectral pol-
lution can occur on a set) Let � = �N,�SA or �B and let i = 1, 2. Then


G
2 �� {	we,�,�i } ∈ �A

2 .

Furthermore, for i = 1, 2 the following classifications hold, valid also if we restrict
to the case U = U1 or to U = U1 = F:


G
3 �� {	R

poll ,�SA,�i } ∈ �A
3 , 
G

3 �� {	C

poll ,�B,�i } ∈ �A
3 .

Remark 3.11 (Computing spectra is easier than algorithmically determining whether
spectral pollution can occur on a set) One can show that {Sp(·),�SA,�1} ∈ �A

2 and
{Sp(·),�SA,�2} ∈ �A

1 . Hence determining 	R

poll is strictly harder than the spectral
computational problem and requires two additional successive limits if� = �2. Even
in the general case, {Sp(·),�B,�2} ∈ �A

2 and hence the spectral problem is strictly
easier in the sense of SCI hierarchy. The proofs also make clear that we get the same
classification of 	F

poll for other classes such as �N, �g etc. 
�
Remark 3.12 (Unboundedoperators) InSect. 7.1,we show that computing the essential
numerical range for closed unbounded operators T on l2(N) (under the condition
that the linear span of the canonical basis forms a core of T ) also lies in �A

2 . The
definition of the essential numerical range for such operators was recently given in
[34]. This paper showed that We(T ) consists precisely of the essential spectrum of
T together with all possible spectral pollution that may arise by applying projection
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methods to approximate the spectrum of T , thus generalising Theorems 3.8 and 3.9.
A computational example is given in Sect. 4.2. 
�

3.5 LebesgueMeasure of Spectra

A basic property of the set Sp(A), also connected to physical applications, is
its Lebesgue measure. Well-studied operators such as the almost Mathieu opera-
tor at critical coupling [11] or the Fibonacci Hamiltonian [154] have spectra with
Lebesgue measure zero. Following [8], there have been many further numerical stud-
ies [157–159]. For further examples of operators with numerical approximations of
the Lebesgue measure, see the references in [10, 24, 147]. Numerical studies typi-
cally look at periodic approximates [134], and computing the Lebesgue measure of
periodic approximates of tridiagonal operators lies in 
A

1 . The tools we develop are
more general and do not assume such structure. Verification of our algorithms for the
almost Mathieu operator is presented in Sect. 4.4.

The Lebesgue measure on C will be denoted by Leb. When considering classes of
self-adjoint operators, we use the Lebesgue measure on R denoted by LebR. We also
define

Ŝpε(A) = {z ∈ C : ‖R(z, A)‖−1 < ε},

whose closure is Spε(A). For a class � ⊂ �B, there are three questions we answer in
this section:

(1) Given A ∈ �, can we compute Leb(Sp(A))?
(2) Given A ∈ � and ε > 0, can we compute Leb(Ŝpε(A))?13

(3) Given A ∈ �, can we determine whether Leb(Sp(A)) = 0?

For the first two questions, we consider the metric space ([0,∞), d) with the
Euclidean metric. For question three, we consider the discrete metric on {0, 1}, where
1 is interpreted as “Yes”, and 0 as “No”. We denote the above problem functions by
	L

1 , 	L
2 and	L

3 , respectively. In analogy to computing spectra and pseudospectra,	L
2

is the easiest to compute and can be done in one limit for a large class of operators. It
also follows from the dominated convergence theorem that

13 We consider the computation of Leb(Ŝpε(A)) instead of Leb(Spε(A)) since it is not clear that the level
sets

Sε(A) := {z ∈ C : ‖R(z, A)‖−1 = ε} (3.2)

always have Lebesgue measure zero (this is currently an open problem for general bounded operators).
This situation is analogous to the case of approximating the pseudospectra of bounded operators, where
one uses the crucial property that pseudospectra cannot jump—the resolvent norm cannot be constant on
open subsets of C\Sp(A) for a bounded operator A acting on a separable Hilbert space [143]. The question
of whether the sets in (3.2) are Lebesgue null is the measure theoretic equivalent. Note, however, that it is
straightforward to show that Sε(A) is null for A ∈ �N through the formula ‖R(z, A)‖−1 = dist(z, Sp(A)).
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lim
ε↓0 Leb(Ŝpε(A)) = Leb(Sp(A)). (3.3)

Theorem 3.13 (Lebesgue measure of spectra) Given the above set-up, we have the
following classifications


G
2 �� {	L

1 ,� f ,�i } ∈ �A
2 , 
G

2 �� {	L
1 ,�D,�i } ∈ �A

2 i = 1, 2,

and for � = �B,�SA, �N or �g,


G
3 �� {	L

1 ,�,�1} ∈ �A
3 , 
G

2 �� {	L
1 ,�,�2} ∈ �A

2 .

The algorithm constructed in the proof of Theorem 3.13 is local and can be adapted
to find the Lebesgue measure of Sp(A) intersected with any compact interval or cube
in one or two dimensions, respectively. Moreover, when considering � f , we do not
need the sequence {cn}, and the algorithm can be restricted to R, where it converges to
LebR(Sp(A)∩R). Our results also hold when considering bounded diagonal operators
(dropping the restriction of self-adjointness) and using Leb instead of LebR.

We now turn to the SCI classification of Leb(Ŝpε(A)), which is useful since it
provides a route to computing Leb(Sp(A)) for any A ∈ �B via (3.3). This is a similar
state of affairs to the computation of the spectrum itself—one can approximate the
spectrum via pseudospectra.

Theorem 3.14 (Lebesguemeasure of pseudospectra) Given the above set-up, we have
the following classifications


G
1 �� {	L

2 ,� f ,�i } ∈ �A
1 , 
G

1 �� {	L
2 ,�D,�i } ∈ �A

1 i = 1, 2,

and for � = �B,�SA, �N or �g,


G
2 �� {	L

2 ,�,�1} ∈ �A
2 , 
G

1 �� {	L
2 ,�,�2} ∈ �A

1 .

Why is 	L
2 easier to compute than 	L

1 ? Heuristically, the pseudospectrum is less
refined than the spectrum, making the measure easier to approximate. Another view-
point is the continuity points of the maps 	L

1 and 	L
2 . For simplicity, consider these

maps restricted to �D and equip these diagonal operators with the operator norm
topology. The following shows that 	L

2 is more stable than 	L
1 , explaining why it is

easier to approximate. Again, this is the same state of affairs as comparing Sp(A) and
Spε(A) as sets.

Proposition 3.15 In the above set-up, the following hold:

(1) 	L
1 is continuous at A ∈ �D if and only if LebR(Sp(A)) = 0.

(2) 	L
2 is continuous at all A ∈ �D.

123



Foundations of Computational Mathematics

Finally, when computing 	L
3 , we let (M, d) be the set {0, 1} endowed with the

discrete topology and consider the problem function

	L
3 (A) =

{
0, if Leb(Sp(A)) > 0

1, otherwise.

It is straightforward to build a family of algorithms that converge in three succes-
sive limits for this problem using the algorithm constructed in Theorem 3.13 and its
monotonicity. The next theorem shows that this is optimal, even for the set of diago-
nal self-adjoint bounded operators. This demonstrates how hard it is to solve decision
problems about the spectrumwith finite amounts of information, particularly when the
problems involve an object that ignores countable sets, such as the Lebesgue measure.

Theorem 3.16 (Is the spectrum Lebesgue null?) Given the above set-up, we have the
following classifications


G
3 �� {	L

3 ,� f ,�i } ∈ �A
3 , 
G

3 �� {	L
3 ,�D,�i } ∈ �A

3 , i = 1, 2,

and for � = �B,�SA, �N or �g,


G
4 �� {	L

3 ,�,�1} ∈ �A
4 , 
G

3 �� {	L
3 ,�,�2} ∈ �A

3 .

Remark 3.17 These are the first examples of computational spectral problems that
require four successive limits to compute in the SCI hierarchy. To prove this, we need
some tools from descriptive set theory in Sect. 5. Note that we prove the lower bounds
for general algorithms, so regardless of the model of computation. 
�

3.6 Fractal Dimensions of Spectra

When considering operators from physical models, such as Schrödinger operators in
quantummechanics, fractal dimensions of spectra are related to important phenomena,
such as the spreading of an initially localised wavepacket [101]. Further applications
and numerical studies are already discussed in Sect. 1. However, estimating the fractal
dimension is extremely difficult. This can be explained by the SCI hierarchy—the
SCI > 1, even for computing the box-counting dimension, the most basic definition
of fractal dimension. The Hausdorff dimension is even worse and has SCI ≥ 3. In this
section, we exclusively treat self-adjoint operators and hence seek fractal dimensions
of Sp(A) ⊂ R.14

14 The proofs for general self-adjoint operators can be adapted with an additional successive limit and the
use of two-dimensional covering boxes to treat the class of general bounded operators. Some care is needed
to deal with the boundaries of covering boxes for the Hausdorff dimension, but we omit the details.
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Box-Counting Dimension: Let F be a bounded set in R and let Nδ(F) be the number
of closed intervals of length δ > 0 required to cover F . We define the upper and lower
box-counting dimensions as

dimB(F) = lim sup
δ↓0

log(Nδ(F))

log(1/δ)
, dimB(F) = lim inf

δ↓0
log(Nδ(F))

log(1/δ)
.

When dimB(F) = dimB(F), we can replace the lim inf and lim sup by lim, and
the common value is the box-counting dimension dimB(F), an example of a fractal
dimension. A possible drawback of the box-counting dimension is its lack of countable
stability. For example, dimB({0, 1, 1/2, 1/3, . . .}) = 1/2. Let�BD

f be the class of self-
adjoint operators in � f (see (2.1)) whose upper and lower box-counting dimensions
of the spectrum agree. Let�BD

SA be the class of self-adjoint operators whose upper and
lower box-counting dimensions of the spectrum agree, and denote by �BD

D the class
of diagonal operators in �BD

SA .

Hausdorff Dimension: A more complicated, yet robust notion of fractal dimension
is related to the Hausdorff measure [71, 114]. Let F ⊂ R

n be a bounded Borel set
and let Cδ(F) denote the class of (countable) δ-covers15 of F . One first defines the
quantities (for d ≥ 0)

Hd
δ (F) = inf

{
∑

i

diam(Ui )
d : {Ui } ∈ Cδ(F)

}

, Hd(F) = lim
δ↓0 H

d
δ (F).

There is a unique d ′ = dimH (F) ≥ 0, the Hausdorff dimension of F , such that
Hd(F) = 0 for d > d ′ and Hd(F) = ∞ for d < d ′. One can prove that

dimH (F) ≤ dimB(F) ≤ dimB(F).

With these definitions in hand, we can now present themain theorem of this section.

Theorem 3.18 (Fractal dimensions of spectra) Let	B(A) = dimB(Sp(A))and	H =
dimH (Sp(A)). Then for i = 1, 2,


G
2 �� {	B,�BD

f ,�i } ∈ �A
2 , 
G

2 �� {	B,�BD
D ,�i } ∈ �A

2


G
3 �� {	H ,� f ∩�SA,�i } ∈ �A

3 , 
G
3 �� {	H ,�D,�i } ∈ �A

3 ,

whereas


G
3 �� {	B,�BD

SA ,�1} ∈ �A
3 , 
G

2 �� {	B,�BD
SA ,�2} ∈ �A

2


G
4 �� {	H ,�SA,�1} ∈ �A

4 , 
G
3 �� {	H ,�SA,�2} ∈ �A

3 .

15 That is, the set of covers {Ui }i∈I with I at most countable and with diam(Ui ) ≤ δ.

123



Foundations of Computational Mathematics

Remark 3.19 (When dimB(Sp(A)) �= dimB(Sp(A)))The algorithms for 	B also con-
verge without the assumption that the upper and lower box-counting dimensions of
Sp(A) agree, to a quantity �(A) with

dimB(Sp(A)) ≤ �(A) ≤ dimB(Sp(A)).

One of the properties that makes the Hausdorff dimension harder to compute than the
box-counting dimension is its countable stability, meaning that if F is countable then
dimH (F) = 0. 
�
Remark 3.20 Some of our results have interpretations for real bounded sequences.
Given such a sequence {ai }i∈N ⊂ R, we can ask the same questions about {a1, a2, . . .}
as we have asked about the spectrum. We can embed these problems as spectral prob-
lems for the class�D of bounded self-adjoint diagonal operators by simply considering
diagonal operators with entries {a1, a2, . . .}. Theorems 3.13, 3.16 and 3.18 immedi-
ately then give the classifications. With regard to fractal dimensions, the key problem
is to try and relate the amount of data that has been seen to the resolution obtained
from the data (as highlighted in the computational example below). Once we have the
framework of the SCI, we can immediately see why the problem is so difficult—the
computational problem requires three successive limits for the Hausdorff dimension.
�

Finally, the following lemma is used in the construction of the tower of algorithms
for computing the Hausdorff dimension but is interesting in its own right so is listed
here.

Lemma 3.21 Let (a, b) ⊂ R be a finite open interval and let A ∈ � f ∩ �SA. Then
determining whether Sp(A) ∩ (a, b) �= ∅ using �i is a problem with SCIA = 1.
Furthermore, we can design an algorithm that halts if and only the answer is “Yes”,
that is, the problem lies in �A

1 . Similarly, the problem lies in �A
2 when considering

�SA with �1 (or �A
1 when we allow access to �2).

4 Computational Examples

In this section, we demonstrate that the SCI-sharp algorithms constructed in this paper
can be efficiently implemented for large-scale computations.Moreover, the algorithms
have desirable convergence properties, converging monotonically or being eventually
constant, as captured by the �/� classification. Generically, this monotonicity holds
in all of the successive limits, and not just the final limit; many of the towers of algo-
rithms undergo oscillation phenomena where each subsequent limit is monotone but
in the opposite sense/direction than the limit beforehand. We can take advantage of
this when analysing the algorithms numerically. The algorithms also highlight suit-
able information that lowers the SCI classification to �1/�1. Other advantages of
the algorithms based on approximating the resolvent norm include locality, numerical
stability and speed/parallelisation. In the examples that follow, we remind the reader
what each parameter nk intuitively does in the relevant algorithm and simplified rou-
tines for many of the algorithms can be found in “Appendix B”. Finally, we point the
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Fig. 2 Left: Output of the algorithm for computing the spectral radius. Right: Pseudospectrum computed
using the method of [64] (the colour scale corresponds to the resolvent norm ‖(A− z I )−1‖) which provides
error control. We have shown the output of �103,104 (A) via the green dashed circle (Color figure online)

reader to Remark 5.12—all of the algorithms can be implemented rigorously using
arithmetic operations over the rationals or with methods such as interval arithmetic.

4.1 Spectral Radius

We begin with the spectral radius and consider the upper-triangular non-normal oper-
ator on l2(Z) defined by its action on the canonical basis via

Ae j = e j−2 + i j e j−1.

In this case, the operator norm of A is 2 and the approximation of the spectrum
by finite section is {0}. Hence, to compute the spectral radius, one must resort to
the techniques used in our algorithms based on rectangular truncations. Recall that
the SCI classification for computing the spectral radius of such operators (where the
dispersion is known) is �A

2 (see Theorem 3.3 for further classifications). The first
parameter, n1, controls the size of the rectangular truncation16 (as well as the grid
resolution), whereas the second, n2, controls the resolvent norm cut-off (ε = 1/n2).

Figure 2 (left) shows the output of �n2,n1(A) for computing the spectral radius.
We see the expected monotonicity; �n2,n1(A) is increasing in n1 but decreasing in n2.
It appears that limn1→∞ �102,n1(A) ≈ limn1→∞ �103,n1(A) ≈ 1.4149. The fact that
these twovalues for different n2 are similar suggests thatwe have reached convergence.
Though, of course, the proof that the problem does not lie in 
G

2 shows that we can
never apply a choice of subsequences to gain convergence in one limit over the whole
class � f . Nevertheless, the approximate value of 1.4149 is confirmed in Fig. 2 (right)
where we have shown pseudospectra, computed using the algorithm in [64].

16 For this example and other operators on l2(Z) below, we reorder the basis so that the operator A acts on
l2(N).
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Fig. 3 Left: The boundaries ∂W (A) and ∂�2×104,500(A). We have also shown the essential spectrum of A
(whose convex hull, in this example, corresponds toWe(A)) and the output of finite section for a 200×200
truncation. Right: Pseudospectrum computed using the method of [64] (the colour scale corresponds to
the resolvent norm ‖(A− z I )−1‖) which provides error control. This confirms that eigenvalues, computed
using finite section, outside ∂�2×104,500(A) are accurate and, in this example, indicates that the other
eigenvalues correspond to spectral pollution (Color figure online)

4.2 Essential Numerical Range

To demonstrate the algorithm for computing the essential numerical range, we first
consider the Laurent operator A0 acting on l2(Z) with the symbol

a(t) = t4 + t−1

2
.

In this case, Sp(A0) = Spess(A0) = {a(z) : |z| = 1}. We consider the operator
A = A0 + E where the compact perturbation E is given by

Ee j = − 3i

1+ | j |e j−1.

Recall that the SCI classification for computing the essential numerical range is
�A

2 (see Theorem 3.10). The first parameter, n1, controls the size of the trunca-
tion, whereas the second, n2, controls how far along the matrix the truncations
(I − Pn2)Pn1+n2 A|Pn1+n2 (I−Pn2 )H are taken with respect to the canonical basis.

Figure 3 (left) shows the output of the algorithm �n2,n1(A) to compute the essential
numerical range for n2 = 20,000 and n1 = 500. We show the boundary ∂�n2,n1(A)

since the essential numerical range is convex. In this example,We(A) is the convex hull
of Spess(A0), which allows us to verify the output of the algorithm. We also show 200
eigenvalues of finite section (computed using extended precision to avoid numerical
instabilities associated with non-normal truncations), the majority of which are due
to truncation and provide an example of spectral pollution. This is confirmed when
we compare to the pseudospectrum, also shown in Fig. 3 (right), computed using the
algorithm in [64]. However, eigenvalues outsideWe(A) correspond to true eigenvalues
of A (see Theorem 3.9).
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Fig. 4 The output of the algorithm for computing the essential numerical range of closed operators, applied
to the complex Schrödinger operator T in (4.1)

The algorithm can also be extended to unbounded operators, as outlined in Sect. 7.1.
For example, we consider the complex Schrödinger operator

T = − d2

dx2
+ (2i + 1) cos(x). (4.1)

By using a Gabor basis, we can represent T as a closed operator on l2(N) such that
the linear span of the canonical basis (corresponding to the Gabor basis) forms a
core. This allows us to use Corollary 7.5, where we can compute the matrix elements
(corresponding to inner products with the basis functions) with error control using
quadrature. Figure4 shows the output for n2 = 104 and various n1.We see the expected
monotonicity as n1 increases and the output for n1 = 2000 has converged to visible
accuracy in the plot.

4.3 Capacity

We now consider a transport Hamiltonian on a Penrose tile for which few analytical
results are known. Quasicrystals were discovered in 1982 by Shechtman [145] who
was awarded the Nobel prize in 2011 for his discovery. Over the past 30 years, there
has been considerable interest in their often exotic properties [67, 151]. The Penrose
tile is the standard two-dimensional model [69, 165], and a finite portion of the tiling is
shown in Fig. 5 (left). However, unlike one-dimensional models, very little is known
about the spectral properties of two-dimensional quasicrystals. Let G be the graph
consisting of the vertices, V (G), of the Penrose tiling and E(G) the set of edges. If
there is an edge connecting two vertices x and y, we write x ∼ y. The (negative)
Laplacian, H , acts on ψ ∈ l2(V (G)) ∼= l2(N) by

(Hψ)(x) =
∑

y∼x
(ψ(y)− ψ(x)) . (4.2)
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Fig. 5 Left: Finite portion of the Penrose tiling showing a fivefold rotational symmetry. Right: Output of
the algorithm for computing the capacity of Sp(H), where H is the operator in (4.2)

By choosing a suitable ordering of the vertices, we can represent H as an operator
acting on l2(N) of bounded dispersion with f (n)− n ∼ O(

√
n). Recall that the SCI

classification for computing the capacity of the spectrum of such operators is �A
2 (see

Theorem 3.7 for further classifications). The first parameter, n1, controls the size of the
truncation used to test if intervals intersect the spectrum via Lemma 3.21, whereas the
second, n2, controls the spacings of the interval coverings (which have width 2−n2 ).
In this example, we used the conformal mapping method of [109] to accurately and
rapidly compute the capacity of finite unions of intervals in R (see also Remark 6.4).

Figure 5 (right) shows the output of �n2,n1(H), and we see the expected mono-
tonicity; the output is increasing in n1 but decreasing in n2. By comparing the outputs
for n1 = 104 and n1 = 105, it appears we have convergence up to around n2 = 8. This
suggests an upper bound (since the output is non-increasing in n2) of approximately
2.26 for the capacity of Sp(H) (Sp(H) is shown in Fig. 6).

4.4 LebesgueMeasure

First, we consider the almost Mathieu operator, which is related to a wealth of mathe-
matical and physical problems such as the Ten Martini Problem [9]. The operator acts
on l2(Z) via

(Hαx)n = xn−1 + xn+1 + 2λ cos(2πnα)xn . (4.3)

The choice of λ = 1 was studied in Hofstadter’s classic paper [92], giving rise to the
famous Hofstadter butterfly. In this case, the Hamiltonian represents a crystal electron
in a uniformmagnetic field and the spectrum can be interpreted as the allowed energies
of the system. For irrational α, we have [11]

LebR(Sp(Hα)) = 4 |1− |λ|| (4.4)
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Fig. 6 Left: Output of the algorithm LebSpec to compute LebR(Sp(Hα)) as well as the algorithm
LebPseudoSpec for LebR(Spε(Hα)) (which converges to LebR(Sp(Hα)) as ε ↓ 0). These were com-
puted using n1 = 104 and n2 = 7. Right: Estimates for LebR(Sp(H)∩(−∞, x]), where H is the Laplacian
on a Penrose tiling in (4.2), obtained by letting n1 = 105 and selecting different n2. The estimate above
−3 appears to be well resolved, suggesting a region of Lebesgue measure 0

and we consider the case α = (
√
5− 1)/2. Recall that the SCI classification for com-

puting the Lebesgue measure of the spectrum of such operators (where the dispersion
is known) is �A

2 , whereas the SCI classification of computing the Lebesgue measure
of the pseudospectrum is�A

1 (see Theorems 3.13, 3.14 and 3.16 for the further classifi-
cations). For computing the Lebesgue measure of the spectrum, the first parameter, n1,
controls the size of the truncation used to compute the approximation of the resolvent
norm, whereas the second, n2, controls the grid refinement (the spacings are 2−n2 ).
For the pseudospectrum, n1 controls the size of the truncations and the grid spacings.

Figure 6 (left) shows the output of the algorithms computing LebR(Sp(Hα))

(LebSpec) and also LebR(Spε(Hα)) (LebPseudoSpec) for a range of values of
ε. We chose values of n1 = 104 and a grid spacing of 1/128 (n2 = 7). One can
clearly see that the estimates for LebR(Spε(Hα)) are decreasing to the true value of
LebR(Sp(Hα)), which is well approximated by LebSpec.

Next,we consider the operator H in (4.2), forwhich theLebesguemeasure of Sp(H)

is unknown. We set n1 = 105 and look at the average estimated error of the output
via DistSpec (see “Appendix A”). This was of the order 10−3, so we consider grid
refinements of spacing 1/32, 1/64, . . . , 1/1024 corresponding to n2 = 5, 6, . . . , 10.
Figure6 (right) shows the output as a cumulativeLebesguemeasure, that is, an estimate
of LebR(Sp(A)∩(−∞, x]) for a given x , alongwith the computed spectrum (for a grid
spacing of 10−5). The figure provides strong evidence that the part of the spectrum
closest to 0 is resolved by the algorithm and has Lebesgue measure zero. We shall see
more evidence for this in Sect. 4.5.

4.5 Fractal Dimension

For this example, we again consider the operator H in (4.2), for which the fractal
dimension of Sp(H) is unknown. In Fig. 7, we plot N1/n2(�̃105(H)∩[−3,∞)) against
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n2 (recall that Nδ(F) is the number of closed intervals of length δ > 0 required to
cover F). This corresponds to a rectangular truncation with n1 = 105 columns. Recall
that �̃n denotes the algorithm that converges to the spectrum with error control, in
particular avoiding spectral pollution (see “Appendix A”). We also show a linear fit
of slope 0.8. The error control provided by the algorithm �̃n allows us to deduce the
region where the fit holds, corresponding to a reliable resolution of the spectrum (this
is at least as large as the region shown in the plot). In other words, we can ensure
that n2 is not too large so that the spacings of the coverings are not smaller than the
numerically resolved spectrum. As expected, when n2 is too large we see the effect of
the grid spacing and the unresolved spectrum (by choosing larger n1, we can take n2
larger). The figure suggests that the spectrum above −3 is fractal with box-counting
dimension≈ 0.8 and hence has Lebesguemeasure zero, in agreementwith the findings
in Fig. 6.

Figure 7 also showswhat happens when one performs the same experiment but with
a finite section replacing �̃n (now using a square 105× 105 truncation). There are two
noticeable features. First, for small n2, using a finite section produces an overestimate
of the size of the covering and the corresponding slope of the graph due to spectral
pollution. In other words, finite section prevents us from detecting the fractal spectrum.
Second, the covering estimate via finite section breaks down at smaller n2 and it is
impossible to predict suitable values of n2 so that the spacings of the coverings do not
go beyond the resolution of the computed spectrum. Together, these issues highlight
why the finite section method is unsuitable in general17 for approximating fractal
dimensions and why the new algorithms in this paper (which are proven to converge)
are needed.

17 There do exist examples of operators, typically with a lot of structure, where one can use periodic
versions of finite section.
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Fig. 7 A plot of N1/n2 (�̃105 (H) ∩ [−3,∞)) against n2. We found a scaling region with estimated box-

counting dimension ≈ 0.80. Note that for large n2 � 5000, scalings are not resolved by �̃105 (we can

predict when this happens using the�A
1 property of �̃n ). We have also shown the approximation using finite

sections (square 105 × 105 matrix truncations), as a dashed line, which overestimate the size of coverings,
cannot detect the fractal structure, and break down for smaller n2

5 Mathematical Preliminaries and Combinatorial Problems in the SCI
Hierarchy

In this section, we begin by providing formal definitions of the SCI hierarchy. We then
link the SCI hierarchy, in a certain specific case, to the Baire hierarchy on a suitable
topological space. As well as being interesting in its own right, this provides a useful
method of providing canonical problems high up in the SCI hierarchy. In particular,
the results we prove hold for towers of general algorithms (see Definition 5.1) without
the restrictions of arithmetic operations or notions of recursivity etc. This will be used
extensively in the proofs of lower bounds for spectral problems that have SCI > 2,
where we typically reduce the problems discussed here to the given spectral prob-
lem. It should be stressed that such links to existing hierarchies only exist in special
cases when � and M are particularly well-behaved. Even when such a link does
exist, the induced topology on � is often too complicated, unnatural or strong to be
useful from a computational viewpoint. We also take the view that, for problems of
scientific interest, the mappings � and metric space M are often given to us apriori
from the corresponding applications and are typically not compatible with topological
viewpoints of computation.

5.1 The SCI Hierarchy

We begin by defining the solvability complexity index (SCI) hierarchy, allowing us to
show that our algorithms realise the boundary of what computers can achieve.We have
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already presented the definition of a computational problem {	,�,M,�} in §2.1.
Recall that the goal is to find algorithms that approximate the function 	. More gen-
erally, the main pillar of our framework is the concept of a tower of algorithms, which
is needed to describe problems that need several successive limits in the computation.
However, first one needs the definition of a general algorithm.

Definition 5.1 (General Algorithm) Given a computational problem {	,�,M,�}, a
general algorithm is a mapping � : � →M such that for each A ∈ �

(i) there exists a (non-empty) finite subset of evaluations ��(A) ⊂ �,
(ii) the action of � on A only depends on {A f } f ∈��(A) where A f := f (A),

(iii) for every B ∈ � such that B f = A f for every f ∈ ��(A), it holds that
��(B) = ��(A).

The definition of a general algorithm is more general than the definition of a Turing
machine [164] or a BSS machine [28]. A general algorithm has no restrictions on
the operations allowed. The only restriction is that it can only take a finite amount of
information, though it is allowed to adaptively choose the finite amount of information
it reads depending on the input. Condition (iii) ensures that the algorithm consistently
reads the information. With a definition of a general algorithm, we can define the
concept of towers of algorithms.

Definition 5.2 (Tower of Algorithms) Given a computational problem {	,�,M,�},
a tower of algorithms of height k for {	,�,M,�} is a family of sequences of func-
tions

�nk : � →M, �nk ,nk−1 : � →M, . . . , �nk ,...,n1 : � →M,

where nk, . . . , n1 ∈ N and the functions �nk ,...,n1 at the lowest level of the tower are
general algorithms in the sense of Definition 5.1. Moreover, for every A ∈ �,

	(A) = lim
nk→∞

�nk (A), �nk ,...,n j+1(A) = lim
n j→∞

�nk ,...,n j (A) j = k − 1, . . . , 1.

In addition to a general tower of algorithms, we focus on arithmetic towers.

Definition 5.3 (Arithmetic Tower) Given a computational problem {	,�,M,�},
where � is countable, we define the following: An arithmetic tower of algorithms
of height k for {	,�,M,�} is a tower of algorithms where the lowest functions
� = �nk ,...,n1 : � → M satisfy the following: For each A ∈ � the mapping
(nk, . . . , n1) �→ �nk ,...,n1(A) = �nk ,...,n1({A f } f ∈�) is recursive, and �nk ,...,n1(A) is
a finite string of complex numbers that can be identified with an element in M. For
arithmetic towers, we let α = A.

Remark 5.4 By recursive we mean the following. If f (A) ∈ Q (or Q + iQ) for all
f ∈ �, A ∈ �, and � is countable, then �nk ,...,n1({A f } f ∈�) can be executed by a
Turing machine [164], that takes (nk, . . . , n1) as input, and that has an oracle tape
consisting of {A f } f ∈�. If f (A) ∈ R (or C) for all f ∈ �, then �nk ,...,n1({A f } f ∈�)

can be executed by a BSS machine [28] that takes (nk, . . . , n1), as input, and that has
an oracle that can access any A f for f ∈ �. 
�
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Given the definitions above we can now define the key concept, namely the solv-
ability complexity index:

Definition 5.5 (SolvabilityComplexity Index)Acomputational problem {	,�,M,�}
is said to have solvability complexity index SCI(	,�,M,�)α = k, with respect
to a tower of algorithms of type α, if k is the smallest integer for which there
exists a tower of algorithms of type α of height k. If no such tower exists, then
SCI(	,�,M,�)α = ∞. If there exists a tower {�n}n∈N of type α and height one
such that 	 = �n1 for some n1 < ∞, then we define SCI(	,�,M,�)α = 0.
The type α may be General, or Arithmetic, denoted, respectively, G and A. We may
sometimes write SCI(	,�)α to simplify notation when M and � are obvious.

We will let SCI(	,�)A and SCI(	,�)G denote the SCI with respect to an arith-
metic tower and a general tower, respectively. Note that a general tower means just a
tower of algorithms as in Definition 5.2, where there are no restrictions on the math-
ematical operations. Thus, clearly SCI(	,�)A ≥ SCI(	,�)G. The definition of the
SCI immediately induces the SCI hierarchy:

Definition 5.6 (The Solvability Complexity Index Hierarchy) Consider a collection C
of computational problems and let T be the collection of all towers of algorithms of
type α for the computational problems in C. Define


α
0 := {{	,�} ∈ C | SCI(	,�)α = 0}


α
m+1 := {{	,�} ∈ C | SCI(	,�)α ≤ m}, m ∈ N,

as well as


α
1 := {{	,�} ∈ C | ∃ {�n}n∈N ∈ T s.t. ∀A d(�n(A),	(A)) ≤ 2−n}.

When there is additional structure on the metric space, such as in the spectral case
when one considers the Attouch–Wets or the Hausdorff metric, one can extend the SCI
hierarchy. For non-empty closed sets, we consider the Attouch–Wets metric defined
by

dAW(C1,C2) =
∞∑

n=1
2−n min

{

1, sup
|x |≤n

|dist(x,C1)− dist(x,C2)|
}

, (5.1)

for C1,C2 ∈ Cl(C), where Cl(C) denotes the set of closed non-empty subsets of C.
This generalises the familiar Hausdorff metric to unbounded closed sets and corre-
sponds to local uniform converge on compact subsets of C.

Definition 5.7 (The SCI Hierarchy (Attouch–Wets/Hausdorff metric)) Given the set-
up in Definition 5.6, and suppose in addition that (M, d) has the Attouch–Wets or the
Hausdorff metric induced by another metric space (M′, d ′), define, for m ∈ N,

�α
0 = �α

0 = 
α
0 ,

�α
1 = {{	,�} ∈ 
α

2 | ∃ {�n} ∈ T , {Xn(A)} ⊂M s.t. �n(A) ⊂
M′

Xn(A),
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lim
n→∞�n(A) = 	(A), d(Xn(A),	(A)) ≤ 2−n ∀A ∈ �},

�α
1 = {{	,�} ∈ 
α

2 | ∃ {�n} ∈ T , {Xn(A)} ⊂M s.t. 	(A) ⊂
M′

Xn(A),

lim
n→∞�n(A) = 	(A), d(Xn(A), �n(A)) ≤ 2−n ∀A ∈ �},

where⊂M′ means inclusion in the metric spaceM′, and {Xn(A)} is a sequence where
Xn(A) ∈M depends on A. Moreover,

�α
m+1 = {{	,�} ∈ 
α

m+2 | ∃ {�nm+1,...,n1} ∈ T ,

{Xnm+1(A)} ⊂M s.t. �nm+1(A) ⊂
M′

Xnm+1(A),

lim
nm+1→∞

�nm+1(A) = 	(A), d(Xnm+1(A),	(A)) ≤ 2−nm+1 ∀A ∈ �},
�α

m+1 = {{	,�} ∈ 
α
m+2 | ∃ {�nm+1,...,n1} ∈ T ,

{Xnm+1(A)} ⊂M s.t. 	(A) ⊂
M′

Xnm+1(A),

lim
nm+1→∞

�nm+1(A) = 	(A), d(Xnm+1(A), �nm+1(A)) ≤ 2−nm+1 ∀A ∈ �},

where d can be either dH or dAW.

Note that to build a �1 algorithm, it is enough (by taking subsequences of n) to
construct�n(A) such that�n(A) ⊂ NEn(A)(	(A))with some computable En(A) that
converges to zero. The same idea can be applied to the real line with the usual metric,
or {0, 1} with the discrete metric (we interpret 1 as “Yes”).

Definition 5.8 (The SCI Hierarchy (totally ordered set)) Given the set-up in Defini-
tion 5.6 and suppose in addition that M is a totally ordered set. Define

�α
0 = �α

0 = 
α
0 ,

�α
1 = {{	,�} ∈ 
α

2 | ∃ {�n} ∈ T s.t. �n(A) ↗ 	(A) ∀A ∈ �},
�α

1 = {{	,�} ∈ 
α
2 | ∃ {�n} ∈ T s.t. �n(A) ↘ 	(A) ∀A ∈ �},

where↗ and↘ denotes convergence from below and above, respectively, as well as,
for m ∈ N,

�α
m+1 = {{	,�} ∈ 
α

m+2 | ∃ {�nm+1,...,n1} ∈ T s.t. �nm+1(A) ↗ 	(A) ∀A ∈ �},
�α

m+1 = {{	,�} ∈ 
α
m+2 | ∃ {�nm+1,...,n1} ∈ T s.t. �nm+1(A) ↘ 	(A) ∀A ∈ �}.

Remark 5.9 (
α
1 � �α

1 � 
α
2 ) Note that the inclusions are strict. For example, if �K

consists of the set of compact infinite matrices acting on l2(N) and 	(A) = Sp(A)

(the spectrum of A) then {	,�K } ∈ 
α
2 but not in �α

1 ∪ �α
1 for α representing

either towers of arithmetical or general type (see [18] for a proof). Moreover, as was
demonstrated in [64], if �̃ is the set of discrete Schrödinger operators on l2(Z), then
{	, �̃} ∈ �α

1 but not in 
α
1 . 
�
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Suppose we are given a computational problem {	,�,M,�}, and that � =
{ f j } j∈β , where β is some index set that can be finite or infinite. Obtaining f j may
be a computational task on its own, which is exactly the problem in most areas of
computational mathematics. In particular, for A ∈ �, f j (A) could be the number e

π
j i

for example. Hence, we cannot access f j (A), but rather f j,n(A) where f j,n(A) →
f j (A) as n → ∞. Or, just as for problems that are high up in the SCI hierarchy, it
could be that we need several successive limits, in particular one may need mappings
f j,nm ,...,n1 : � → D+ iD, where D denotes the dyadic rational numbers, such that

lim
nm→∞

. . . lim
n1→∞

‖ f j,nm ,...,n1(A)− f j (A)‖∞ = 0 ∀ j ∈ β,∀A ∈ �. (5.2)

In particular, we may view the problem of obtaining f j (A) as a problem in the SCI
hierarchy, where 
1 classification would correspond to the existence of mappings
f j,n : � → D+ iD such that

‖ f j,n(A)− f j (A)‖∞ ≤ 2−n ∀ j ∈ β,∀A ∈ �. (5.3)

This idea is formalised in the following definition.

Definition 5.10 (
m-information) Let {	,�,M,�} be a computational problem.
For m ∈ N, we say that � has 
m+1-information if each f j ∈ � is not available,
however, there aremappings f j,nm ,...,n1 : � → D+iD such that (5.2) holds. Similarly,
for m = 0 there are mappings f j,n : � → D + iD such that (5.3) holds. Finally, if
k ∈ N and �̂ is a collection of such functions described above such that � has 
k-
information, we say that �̂ provides 
k-information for �. Moreover, we denote the
family of all such �̂ by Lk(�).

We want algorithms that can handle all computational problems {	,�,M, �̂}
when �̂ ∈ Lm(�). To formalise this, we define a computational problem with 
m-
information.

Definition 5.11 (Computational problem with 
m-information) Given m ∈ N with
m > 1, a computational problem where � has 
m-information is denoted by
{	,�,M,�}
m := {	̃, �̃,M, �̃}, where

�̃ =
{
Ã = { f j,nm−1,...,n1(A)} j,nm−1,...,n1∈β×Nm−1 | A ∈ �, { f j } j∈β = �,

f j,nm−1,...,n1 satisfy (5.2)
}
.

Moreover, 	̃( Ã) = 	(A), and we have �̃ = { f̃ j,nm−1,...,n1} j,nm−1,...,n1∈β×Nm−1 where

f̃ j,nm−1,...,n1( Ã) = f j,nm−1,...,n1(A). Note that 	̃ is well-defined by Definition 2.1 of
a computational problem. Similarly, we define 
1-information using (5.3).

The SCI and the SCI hierarchy, given 
m-information, are then defined in the
standard obvious way.
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Remark 5.12 (Classifications in this paper) For the problems considered in this paper,
the SCI classifications do not change if we consider arithmetic towers with 
1-
information. This is easy to see through Church’s thesis and an analysis of the stability
of our algorithms. For example, when the input is rational we have been careful
to restrict all relevant operations to Q rather than R, and errors incurred from 
1-
information can be removed in the first limit. Explicitly, for the algorithms based on
DistSpec (see “Appendix A”) it is possible to carry out an error analysis. We can
also bound numerical errors (e.g. using interval arithmetic [163]) and incorporate this
uncertainty for the estimation of ‖R(z, A)‖−1 to gain the same classification of our
problems. Similarly, for other algorithms based on similar functions. In other words,
for the results of this paper, it does not matter which model of computation one uses
for a definition of ‘algorithm’. From a classification point of view, they are equivalent
for these spectral problems. This leads to rigorous�α

k or�α
k type error control suitable

for verifiable numerics. In particular, for �α
1 or �α

1 towers of algorithms, this could
be useful for computer-assisted proofs. 
�

5.2 Recalling Some Results fromDescriptive Set Theory

We briefly recall the definition of the Borel hierarchy as well as some well-known
theorems from descriptive set theory. It is beyond the scope of this paper to provide an
extensive discussion of descriptive set theory, but we refer the reader to [98, Chapter
2] for an excellent introduction that covers the main ideas.

Let X be a metric space and define

�0
1(X) = {U ⊂ X : U is open}, �0

1(X) =∼ �0
1(X) = {F ⊂ X : F is closed},

where for a class U , ∼U denotes the class of complements (in X ) of elements of U .
Inductively define

�0
ξ (X) = {∪n∈NAn : An ∈ �0

ξn
, ξn < ξ}, if ξ > 1,

�0
ξ (X) =∼ �0

ξ (X), 
0
ξ (X) = �0

ξ (X) ∩�0
ξ (X).

The full Borel hierarchy extends to all ξ < ω1 (ω1 being the first uncountable ordinal)
by transfinite induction but we do not need this here.

Definition 5.13 Given a class of subsets, U , of a metric space X and given another
metric space Y , we say that the function f : X → Y is U-measurable if f −1(U ) ∈ U
for every open set U ⊂ Y .

Given metric spaces X and Y , the Baire hierarchy is defined as follows. A function
f : X → Y is of Baire class 1, written f ∈ B1, if it is �0

2(X)-measurable. For
1 < ξ < ω1, a function f : X → Y is of Baire class ξ , written f ∈ Bξ , if it is
the pointwise limit of a sequence of functions fn in Bξn with ξn < ξ . The following
Theorem is well-known [98, Section 24] and provides a useful link between the Borel
and Baire hierarchies.
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Theorem 5.14 (Lebesgue, Hausdorff, Banach) Let X ,Y be metric spaces with Y
separable and 1 ≤ ξ < ω1. Then, f ∈ Bξ if and only if it is �0

ξ+1(X) measurable.
Furthermore, if X is zero-dimensional (Hausdorff with a basis of clopen sets) and
f ∈ B1, then f is the pointwise limit of a sequence of continuous functions.

The assumption that X is zero-dimensional in the last statement is important. With-
out any assumptions, the final statement of the theorem is false, as is easily seen by
considering X = R. Examples of zero-dimensional spaces include products of the
discrete space {0, 1} or the Cantor space. Any such space is necessarily totally dis-
connected, meaning that the connected components in the space are the one-point sets
(the converse is true for locally compact Hausdorff spaces). Our primary interest will
be when Y is equal to {0, 1} or [0, 1], both with their natural topologies.

5.3 Linking the SCI Hierarchy to the Baire Hierarchy in a Special Case

Definition 5.15 Given the triple {�,M,�}, a class of algorithms A is closed under
search with respect to {�,M,�} if whenever
(1) I is an index set,
(2) {ni }i∈I a family of natural numbers,
(3) {�i,l : � →M}i∈I,l≤ni ⊂ A,
(4) {Ui,l}i∈I,l≤ni family of basic open sets in M with ∪i∈I ∩l≤ni �−1i,l (Ui,l) = �,

(5) {ci }i∈I a family of points in some arbitrary dense subset ofM,

then there is some � ∈ A such that for every x ∈ � there exists some i ∈ I with
�(x) = ci and for all l ≤ ni we have �i,l(x) ∈ Ui,l .

Proposition 5.16 Suppose that A is closed under search with respect to {�,M,�},
then there exists a topology T on � such that 
A

1 is precisely the set of continuous
functions from (�, T ) toM.

Proof Let T be the topology generated by {�−1(B) : � ∈ A, B ⊂ M basic open}.
Any � ∈ A is continuous with respect to this topology. Uniform limits of continuous
functions into metric spaces are also continuous, and hence any function in 
A

1 is
continuous with respect to T .

For the other direction, suppose that f : (�, T ) → M is continuous. Choose
{ci }i∈I ⊂ M such that M ⊂ ∪i∈ID(ci , 2−n). Continuity of f implies that
f −1(D(ci , 2−n)) are open. This implies that there is an index set J , natural num-
bers {ni, j } j∈J , a family {�i, j,l}i∈I, j∈J ,l≤ni, j (in A) and a family of basic open sets
{Ui, j,l}i∈I, j∈J ,l≤ni, j with the property that

f −1(D(ci , 2
−n)) =

⋃

j∈J

⋂

l≤ni, j
�−1i, j,l(Ui, j,l).

It follows that

⋃

i∈I, j∈J

⋂

l≤ni, j
�−1i, j,l(Ui, j,l) = �.
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Since A is closed under search, there exists fn ∈ A such that for every x ∈ � there
exists some i ∈ I and j ∈ J with fn(x) = ci and for all l ≤ ni, j , x ∈ �−1i, j,l(Ui, j,l).

But this implies that d( fn(x), f (x)) < 2−n . Since n was arbitrary, we have f ∈ 
A
1 .

�

The generated topology can be very perverse and not every class of algorithms is
closed under search. However, we do have the following useful theorem when � (and
�) is a particularly simple discrete space.

Theorem 5.17 Suppose that � = {0, 1}N = {{ai }i∈N : ai ∈ {0, 1}} with the set of
evaluation functions� equal to the set of pointwise evaluations {λ j (a) := a j : j ∈ N}
and letM be an arbitrary separable metric space with at least two separated points.
Endow� with the product topology, T̃ , induced by the discrete topology on {0, 1} and
consider the Baire hierarchy, {Bξ ((�, T̃ ),M) = Bξ }ξ<ω1 , of functions f : � →M.
Then for any problem function 	 : � →M and m ∈ N,

{	,�,�} ∈ 
G
m+1 ⇔ 	 ∈ Bm . (5.4)

In other words, the SCI corresponds to the Baire hierarchy index.

Remark 5.18 The proof shows that we can replace � by {0, 1}N×N or any other such
product space (induced by a discrete topology) of the form AB with A, B countable,
with � the corresponding component-wise evaluations, as long asM has at least |A|
jointly separated points and is separable. 
�
Proof First we show that general algorithms are closed under search and that the
topology T in Proposition 5.16 is equal to the product topology T̃ . Without loss of
generality, we can assume that I is well-ordered by ≺. Given x ∈ �, let k ∈ N be
minimal such that there exists i ∈ I with x ∈ ∩l≤ni �−1i,l (Ui,l) and ��i,l (x) ⊂ {λ j :
j ≤ k} for l ≤ ni . Let i0 be the ≺-least witness for k and then define �(x) = ci0 . The
well-ordering of I implies that � is a general algorithm, and it clearly satisfies the
requirements in the definition of closed under search. Note that this part of the proof
only uses countability of �.

To equate the topologies, suppose that � ∈ 
G
0 is a general algorithm. For each

a ∈ �, ��(a) is finite and we can assume without loss of generality that it is equal
to {λ j : j ≤ I (a)} for some finite I (a). In particular, there exists an open set Ua such
that any b ∈ Ua has λ j (b) = λ j (a) for j ≤ I (a) and hence �(b) = �(a). Then for
any open set B ⊂M

�−1(B) =
⋃

a∈�−1(B)

Ua

is open. Hence each � is continuous with respect to the product topology on �. It
follows that T ⊂ T̃ . To prove the converse, we must show that each projection map
λ j is continuous with respect to T . Let x1, x2 be separated points inM and consider
f : {0, 1} → M with f (0) = x1 and f (1) = x2. Then the composition f ◦ λ j is a
general algorithm and hence continuous with respect to T . But this implies that λ j is
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continuous. It follows from Proposition 5.16 that {	,�,�} ∈ 
G
1 if and only if 	 is

continuous.
Now the space (�, T ) is zero-dimensional and M is separable, hence by Theo-

rem 5.14, any element of B1 is a limit of continuous functions. The converse holds in
greater generality. It follows that 	 ∈ Bm if and only if there are fnm ,...,n1 ∈ 
G

1 with

	(a) = lim
nm→∞

· · · lim
n1→∞

fnm ,...,n1(a). (5.5)

If this holds, then there exist general algorithms �nm ,...,n1 such that for all a ∈ �,

d(�nm ,...,n1(a), fnm ,...,n1(a)) ≤ 2−n1

and hence

lim
nm→∞

· · · lim
n1→∞

�nm ,...,n1(a) = 	(a)

so that {	,�,�} ∈ 
G
m+1. Conversely if {	,�,�} ∈ 
G

m+1 with tower of algo-
rithms {�nm ,...,n1}, then since each general algorithm is continuous, (5.5) holds with
fnm ,...,n1(a) = �nm ,...,n1 . 
�

5.4 Combinatorial Problems High up in the SCI Hierarchy

We can now combine the results of the previous two subsections and obtain combi-
natorial problems high up in the SCI hierarchy. Let k ∈ N≥2 and let �k denote the
collection of all infinite arrays {am1,...,mk }m1,...,mk∈N with entries am1,...,mk ∈ {0, 1}. As
usual,�k is the set of component-wise evaluations/projections. Consider the formulas

P(a,m1, . . . ,mk−2) =
{
1, if ∃i ∀ j ∃n > j s.t. am1,...,mk−2,n,i = 1

0, otherwise
,

Q(a,m1, . . . ,mk−2) =
{
1, if ∀∞i ∀ j ∃n > j s.t. am1,...,mk−2,n,i = 1

0, otherwise
,

where ∀∞ means “for all but a finite number of”. In words, P decides whether the cor-
responding matrix has a column with infinitely many 1’s, whereas Q decides whether
the matrix has only finitely many columns with only finitely many 1’s. For R = P or
Q, consider the problem function for a ∈ �k

	k,R(a) =
{
∃m1 ∀m2 . . . ∀mk−2R(a,m1, . . . ,mk−2), if k is even

∀m1 ∃m2 . . . ∀mk−2R(a,m1, . . . ,mk−2), otherwise
,

that is, so that all quantifier types alternate.
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Theorem 5.19 LetM be either {0, 1} with the discrete metric or [0, 1] with the usual
metric and consider the above problems {	k,�k,M,�k}. For k ∈ N≥2 and R = P
or Q,


G
k+1 �� {	k,R,�k,M,�k} ∈ 
A

k+2.

In other words, we can solve the problem via a height k + 1 arithmetic tower, but it is
impossible to do so with a height k general tower.

Remark 5.20 Note thatwe allow both discrete and continuous spacesM, whichwill be
important for our reduction arguments when proving lower bounds for classifications
of spectral problems for non-discrete M. The lower bound is a strong result in the
sense that it holds regardless of the model of computation. In other words, it is the
intrinsic combinatorial complexity of the problems that make the problems hard. 
�
Proof We deal with the case of R = P since the case of R = Q is completely
analogous. It is easy to see that {	k,P ,�k,M,�k} ∈ 
A

k+2. First consider the case
k = 2 and set

�n3,n2,n1(a) = max
j≤n3

χ(n2,∞)

(
n1∑

i=1
ai, j

)

,

where χC denotes the indicator function of a set C . This is the decision problem that
decides whether there exists a column with index at most n3 such that there are at least
n2 1’s in the first n1 rows. This is clearly an arithmetic tower and it is straightforward
to show that this converges to 	2,P in M (in either of the {0, 1} and [0, 1] cases).
For k > 2, we simply alternate taking products (which corresponds to minima in this
case) and maxima. Explicitly, we set

�nk+1,...,n1(a)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
m1≤nk+1

nk∏

m2=1
· · ·

n4∏

mk−2=1

{

max
j≤n3

χ(n2,∞)

(
n1∑

i=1
am1,...,mk−2,i, j

)}

, if k is even

nk+1∏

m1=1
max
m2≤nk

· · ·
n4∏

mk−2=1

{

max
j≤n3

χ(n2,∞)

(
n1∑

i=1
am1,...,mk−2,i, j

)}

, otherwise.

Again, this is an arithmetic tower and it is straightforward to show that this con-
verges to 	k,P in M. It also holds that {	k,P ,�k,M,�k} ∈ �A

k+1 if k is even and
{	k,P ,�k,M,�k} ∈ �A

k+1 if k is odd (not to be confused with the notation for the
Borel hierarchy).

Recall the topology T on�k from Theorem 5.17. For the lower bound, we note that
P is �0

3 complete (in the literature it is known as the problem “S3”, see for example
[98, Section 23]). Since (�k, T ) is zero-dimensional, a theorem of Wadge implies
that this means that P is the indicator function of a set, also denoted by P , which
lies in �0

3(�k) but not �0
3(�k). It also follows that 	k,P is �0

k+1(�k) complete if

123



Foundations of Computational Mathematics

k is even and �0
k+1(�k) complete otherwise. Now suppose for a contradiction that

{	k,P ,�k,M,�k} ∈ 
G
k+1. But then Theorem 5.17 implies that	k,P ∈ Bk(�k,M)

and hence by Theorem 5.14, 	k,P is �0
k+1(�k) measurable. 	k,P is the indicator

function of a set, which we denote by 	k,P with an abuse of notation, which is
either �0

k+1(�k) or �0
k+1(�k) complete depending on the parity of k. But 0 and 1

are separated in M and hence since 	k,P is �0
k+1(�k) measurable, 	k,P and its

complement both lie in �0
k+1(�k). It follows that 	k,P ∈ �0

k+1(�k) ∩ �0
k+1(�k),

contradicting the stated completeness. 
�
For our applications to spectral problems, we will use �̃ to denote�k and consider

	̃1 = 	2,P , 	̃2 = 	2,Q,

	̃3 = 	3,P , 	̃4 = 	3,Q .
(5.6)

Theorem 5.19 holds for a muchwider class of decision problems, but these four are the
only ones we shall use in the sequel. The decision problems 	̃1 and 	̃2 were shown to
have SCIG = 3 in [18], but only with regard to the discrete spaceM = {0, 1} and the
proof used a somewhat complicated Baire category argument. Theorem 5.19 is much
more general, can be extended to arbitrarily large SCI, and has a much slicker proof,
making clear a beautiful connection with the Baire hierarchy for well-behaved �.

6 Proofs Concerning Spectral Radii, Essential Spectral Radii, Capacity
and Operator Norms

Here we prove the theorems found in Sects. 3.1–3.3. First, we briefly recall �A
1 algo-

rithms for spectral problems presented in [64], that are sharp in the SCI hierarchy. The
algorithms constructed in [64] are shown as pseudocode in “Appendix A”, where we
also refer the reader to a more detailed account. The following was proven in [64] and
was generalised in [60] to unbounded operators:

Theorem 6.1 For each � f and � f ∩ �g, consider the family � consisting of �1,
together with pointwise evaluation of f , {cn} (and evaluation of g at rational points if
considering � f ∩�g). The algorithms presented in “Appendix A” achieve �A

1 error
control. In particular the following classification holds:


G
1 �� {Sp(·),� f ∩�g,�1} ∈ �A

1 , 
G
1 �� {Spε(·),� f ,�1} ∈ �A

1 .

We now turn to the proof of Theorem 3.3, dealing first with the evaluation set �1.
Suppose that {�̃nk ,...,n1} is a �A

k tower of algorithms to compute the spectrum of a
class of operators, where the output is a finite set for each n1, . . . , nk . It is then clear
that

�nk ,...,n1(A) = sup
z∈�̃nk ,...,n1 (A)

|z| + 1

2nk
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provides a�A
k tower of algorithms for the spectral radius. Strictly speaking, the above

may not be an arithmetic tower owing to the absolute value. But it can be approximated
to arbitrary precision (from above say), the error of which can be absorbed in the
first limit. In what follows, we always assume this is done without further comment.
Similarly if {�̃nk ,...,n1} provides a�A

k tower of algorithms for the spectrum (and outputs
a finite set for each n1, . . . , nk),

�nk ,...,n1(A) = sup
z∈�̃nk ,...,n1 (A)

|z| − 1

2nk

provides a �A
k tower of algorithms for the spectral radius. If we only have a height k

tower with no�k or�k type error control for the spectrum, then taking the supremum
of absolute values shows that we get a height k tower for the spectral radius.

The fact that {	r ,�D} ∈ �A
1 , {	r ,� f ∩�g} ∈ �A

1 , {	r ,�g} ∈ �A
2 , {	r ,� f } ∈

�A
2 and {	r ,�B} ∈ �A

3 hence follow from Theorems 6.1 and the results of [18]. It
is clear that {	r ,�D} /∈ 
G

1 and this also shows that {	r ,�N} /∈ 
G
1 and {	r ,� f ∩

�g} /∈ 
G
1 . Hence, we must show the positive result that {	r ,�N} ∈ �A

1 and prove
the lower bounds {	r ,�g} /∈ 
G

2 , {	r ,� f } /∈ 
G
2 and {	r ,�B} /∈ 
G

3 .
Proof of Theorem 3.3 for �1 Throughout this proof, we use the evaluation set �1,
which we drop from the notation for convenience.

Step 1 {	r ,�N} ∈ �A
1 . Recall that the spectral radius of a normal operator A ∈ �B

is equal to its operator norm. Consider the finite section matrices Pn APn ∈ C
n×n . It

is straightforward to show that

‖Pn APn‖ ↑ ‖A‖ as n →∞.

The norm ‖Pn APn‖ is the square root of the largest eigenvalue of the semi-positive
definite self-adjoint matrix (Pn APn)∗(Pn APn). This can be estimated from below to
an accuracy of 1/n using Corollary 6.9 of [60], which then yields a �A

1 algorithm for
{	r ,�N}.

Step 2 {	r ,�g} /∈ 
G
2 . Recall that we assumed the existence of a δ ∈ (0, 1) such

that g(x) ≤ (1− δ)x . Let ε > 0, then it is easy to see that the matrices

S±(ε) =
(

1 0
±ε 1

)

have norm bounded by 1 + ε + ε2 and are clearly inverse of each other. Choose ε

small such that (1 + ε + ε2)2 ≤ 1/(1 − δ). If B ∈ C
2×2 is normal, it follows that

B̂ := S+(ε)BS−(ε) lies in �g and has the same spectrum as B. We choose

B̂ = S+(ε)

(
1 −ε

−ε 0

)
S−(ε) =

(
1+ ε2 −ε

ε3 −ε2

)
.

The crucial property of B̂ is that the first entry 1+ ε2 is strictly greater in magnitude
than the two eigenvalues (1±√1+ 4ε2)/2.
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Now suppose for a contradiction that a height one tower, {�n}, solves the problem.
We will gain a contradiction by showing that �n(A) does not converge for an operator
of the form,

A =
∞⊕

r=1
Alr , Am :=

⎛

⎜⎜⎜⎜⎜
⎝

1+ ε2 −ε

0
. . .

0
ε3 −ε2

⎞

⎟⎟⎟⎟⎟
⎠
∈ C

m×m,

where we only consider lk ≥ 3. Each Am is unitarily equivalent to the matrix B̂⊕ 0 ∈
C
m×m and has spectrum equal to {0, (1±√1+ 4ε2)/2}. Any A of the above form is

unitarily equivalent to a direct sum of an infinite number of B̂’s and the zero operator
and hence lies in �g . Now suppose that l1, . . . , lk have been chosen and consider the
operator

Bk = Al1 ⊕ · · · ⊕ Alk ⊕ C, C = diag{1+ ε2, 0, . . .}.

The spectrum of Bk is {0, (1 ±
√
1+ 4ε2)/2, 1 + ε2}, and hence, there exists η > 0

and n(k) ≥ k such that �n(k)(Bk) > (1 + √1+ 4ε2)/2 + η. But �n(k)(Bk) can
only depend on the evaluations of the matrix entries {Bk}i j = 〈Bke j , ei 〉 with i, j ≤
N (Bk, n(k)) (aswell as evaluations of the function g) into account. Ifwe choose lk+1 >

N (Bk, n(k)) then by the assumptions in Definition 5.1, �n(k)(A) = �n(k)(Bk) >

(1+√1+ 4ε2)/2+η. But�n(A)must converge to (1+√1+ 4ε2)/2, a contradiction.
Step 3 {	r ,� f } /∈ 
G

2 . Suppose for a contradiction that a height one tower, {�n},
solves the problem. We will gain a contradiction by showing that �n(A) does not
converge for an operator of the form

A =
∞⊕

r=1
Clr ⊕ Alr , Am :=

⎛

⎜⎜⎜⎜⎜
⎝

0 1
0 1

. . .
. . .

1
0

⎞

⎟⎟⎟⎟⎟
⎠
∈ C

m×m,

Cm = diag{0, 0, . . . , 0} ∈ C
m×m,

where we assume that lr ≥ r to ensure that the spectrum of A is equal to the unit disc
B1(0). Note that the function f (n) = n + 1 will do for the bounded dispersion with
cn = 0. Now suppose that l1, . . . , lk have been chosen and consider the operator

Bk =
(
Cl1 ⊕ Al1

)⊕ · · · ⊕ (Clk ⊕ Alk

)⊕ C, C = diag{0, 0, . . .}.

The spectrum of Bk is {0} and hence there exist n(k) ≥ k such that �n(k)(Bk) < 1/4.
But �n(k)(Bk) can only depend on the evaluations of the matrix entries {Bk}i j =
〈Bke j , ei 〉 with i, j ≤ N (Bk, n(k)) (as well as evaluations of the function f ) into
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account. If we choose lk+1 > N (Bk, n(k)), then by the assumptions in Definition 5.1,
�n(k)(A) = �n(k)(Bk) < 1/4. But �n(A) must converge to 1, a contradiction.

Step 4 {	r ,�B} /∈ 
G
3 . Suppose for a contradiction that {�n2,n1} is a height two

(general) tower and without loss of generality, assume it to be nonnegative. We use
the results of Sect. 5. Let (M, d) be the space [0, 1] with the usual metric (note in
particular this is not discrete so we use Remark 5.20), let �̃ denote the collection of all
infinite matrices {ai, j }i, j∈N with entries ai, j ∈ {0, 1} and recall the problem function

	̃1({ai, j }) : Does {ai, j } have a column containing infinitely many nonzero entries?

Theorem 5.19 in Sect. 5 shows that SCI(	̃1, �̃)G = 3. We will gain a contradiction
by using the supposed height two tower to solve {	̃1, �̃}.

Without loss of generality, identify �B with B(X) where X = ⊕∞
j=1 X j in the

l2-sense with X j = l2(N). Now let {ai, j } ∈ �̃ and define Bj ∈ B(X j )with the matrix
representation

(Bj )k,i =

⎧
⎪⎨

⎪⎩

1, if k = i and ak, j = 0

1, if k < i and al, j = 0 for k < l < i

0, otherwise 0 ≤ n ≤ 1.

Let I j be the index set of all i where ai, j = 1. Bj acts as a unilateral shift on
span{ek : k ∈ I j } and the identity on its orthogonal complement. It follows that

Sp(Bj ) =

⎧
⎪⎨

⎪⎩

1, if I j = ∅
{0, 1}, if I j is finite and non-empty

D (the unit disc), if I j is infinite.

For the matrix {ai, j } define A ∈ �B by

A =
∞⊕

j=1
(Bj − 1

2
I j ),

where I j denotes the identity operator on C
j× j , then Sp(A) = ∪∞j=1Sp(Bj )− 1

2 .
Hence, we see that

	r (A) =
{

1
2 , if 	̃1({ai, j }) = 0
3
2 , if 	̃1({ai, j }) = 1.

We then set �̃n2,n1({ai, j }) = min{max{�n2,n1(A) − 1/2, 0}, 1}. It is clear that this
defines a generalised algorithm mapping into [0, 1]. In particular, given N we can
evaluate {Ak,l : k, l ≤ N } using only finitely many evaluations of {ai, j }, where we
can use a bijection between canonical bases of l2(N) and

⊕∞
j=1 X j to view A as acting
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on l2(N). But then {�̃n2,n1} provides a height two tower for {	̃1, �̃}, a contradiction.

�

Remark 6.2 The algorithm in step 1 of the above proof works for any operator whose
operator norm is equal to its spectral radius. If, instead, the operator is spectraloid,
meaning the spectral radius is equal to the numerical radius

w(A) := sup{|〈Ax, x〉| : ‖x‖ = 1},

then a similar argument will hold by estimatingw(Pn APn). To do this, we need a way
of computing w(A) to a given accuracy using finitely many arithmetic operations and
comparisons (e.g. Lemma 7.1 below). 
�
Proof of Theorem 3.3 for �2 Here we prove the changes for 	r when we consider
the evaluation set �2. It is clear that the classifications in �A

1 do not change. It is also
easy to use the algorithm in Theorem 6.1 (now using �2 to collapse the first limit and
approximate γn—see “Appendix A”) to prove {	r ,�g,�2} ∈ �A

1 . Similarly we can
use the algorithm for the spectrum of operators in � f for �B using �2 to collapse
the first limit and hence {	r ,�B,�2} ∈ �A

2 . Since � f ⊂ �B, it follows that we
only need to prove {	r ,� f ,�2} /∈ 
G

2 . This can be proven using exactly the same
example and a similar argument to step 3 of the proof of Theorem 3.3 (hence omitted).


�
Proof of Theorem 3.6 We begin by proving the results for �1. For the lower bounds,
it is enough to show that {	er ,�D,�1} /∈ 
G

2 and {	er ,�B,�1} /∈ 
G
3 . For the

upper bounds, we must show that {	er ,� f ,�1} ∈ �A
2 , {	er ,�B,�1} ∈ �A

3 and
{	er ,�N,�1} ∈ �A

2 . The lower bounds for �2 follow from {	er ,�D,�1} /∈ 
G
2

and for the upper bounds it is enough to prove {	er ,�B,�2} ∈ �A
2 .

Step 1 {	er ,�D,�1} /∈ 
G
2 . This is the same argument as in step 3 of the proof of

Theorem 3.3; however, now we replace Am by Am = diag{1, 1, . . . , 1} ∈ C
m×m and

use the fact that	er (Bk) = 0. It follows that given the proposed height one tower {�n}
and the constructed A, 	er (A) = 1 but �n(k)(A) < 1/4, the required contradiction.

Step 2 {	er ,�B,�1} /∈ 
G
3 . This is the same argument as step 4 of the proof of

Theorem 3.3.
Step 3 {	er ,� f ,�1} ∈ �A

2 , {	er ,�B,�1} ∈ �A
3 and {	er ,�B,�2} ∈ �A

2 .{	er ,� f ,�1} ∈ �A
2 follows immediately from the existence of a �A

2 tower of algo-
rithms for the essential spectrum of operators in � f proven in [18]. The output of this
tower is a finite collection of rectangles with complex rational vertices; hence, we can
gain an approximation of the maximum absolute value over this output to any given
precision. This can be used to construct a �A

2 tower for {	er ,� f ,�1}. Similarly,
{	er ,�B,�1} ∈ �A

3 follows from the �A
3 tower of algorithms for {Spess,�B,�1}

constructed in [18]. Finally, we can use �2 to collapse the first limit of the algorithm
for the essential spectrum in [18], giving a�A

2 algorithm, and this can be used to show
{	er ,�B,�2} ∈ �A

2 .
Step 4 {	er ,�N,�1} ∈ �A

2 . A �A
2 tower is constructed in the proof of Theo-

rem 3.10 for the essential numerical range, We(A), of normal operators (using �1),
and this outputs a finite collection of points. For normal operators A, We(A) is the
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convex hull of the essential spectrum and hence supz∈We(A) |z| is equal to 	er (A).
Hence, a �A

2 tower for {	er ,�N,�1} follows by taking the maximum absolute value
over the tower for We(A). 
�
Proof of Theorem 3.7 Note that given a height k arithmetical tower {�̂nk ,...,n1(·, p)}
for 	r ,p and a class �′, we can build a �A

k+1 tower for {	cap,�
′} as follows. Let

p1, p2, . . . be an enumeration of the monic polynomials with rational coefficients and
�̃nk ,...,n1(·, p) be an approximation to |�̂nk ,...,n1(·, p)|1/deg(p) to accuracy 1/n1 using
finitely many arithmetic operations and comparisons. Define

�nk+1,...,n1(A) = min
1≤m≤nk+1

�̃nk ,...,n1(A, pm).

The fact that this is a convergent �A
k+1 tower is clear. This, together with inclusions of

the considered classes of operators, means that to prove the positive results we only
need to prove {	r ,p,� f ,�1} ∈ �A

1 , {	r ,p,�B,�1} ∈ �A
2 and {	r ,p,�B,�2} ∈

�A
1 . Likewise, for the negative results we only need to prove {	cap,�D,�2} /∈ 
G

2
(the fact that {	r ,p,�D,�2} /∈ 
G

1 is obvious), {	cap,�N,�1} /∈ 
G
3 and

{	r ,p,�N,�2} /∈ 
G
2 . We shall prove these results with �N replaced by the class of

self-adjoint bounded operators denoted by �SA.
Step 1 {	r ,p,� f ,�1} ∈ �A

1 . The function f and sequence {cn} allow us to com-
pute the matrix elements of p(A) for any A ∈ � f and polynomial p to arbitrary
accuracy. We can then use the same argument as step 1 of the proof of Theorem 3.3,
approximating ‖Pn p(A)Pn‖ instead of ‖Pn APn‖.

Step 2 {	r ,p,�B,�1} ∈ �A
2 and {	r ,p,�B,�2} ∈ �A

1 . For the first result, we
note that

lim
m→∞‖Pn p(Pm APm)Pn‖ = ‖Pn p(A)Pn‖

and let�n,m(A, p) be an approximation of ‖Pn p(Pm APm)Pn‖ to accuracy 1/m, which
can be computed in finitely many arithmetic operations and comparisons. To prove
{	r ,p,�B,�2} ∈ �A

1 , for any given A ∈ �B we can use �2 to compute a function
f A and sequence {cn(A)} bounding the dispersion such that A ∈ � f A and use step 1.
Step 3 {	cap,�SA,�1} /∈ 
G

3 . Suppose for a contradiction that {�n2,n1} is a height
two (general) tower for the problem and without loss of generality, assume it to be
nonnegative. Our strategy will be as in the proof of Theorem 3.3 (recall also the results
of Sect. 5). Let (M, d) be the space [0, 1] with the usual metric (note in particular
this is not discrete so we use remark 5.20), let �̃ denote the collection of all infinite
matrices {ai, j }i, j∈N with entries ai, j ∈ {0, 1} and consider the problem function

	̃2({ai, j }) : Does {ai, j } have (only) finitely many columns with (only) finitely many 1’s?

Recall that it is shown in Sect. 5 that SCI(	̃2, �̃)G = 3. We will gain a contradiction
by using the supposed height two tower to solve {	̃2, �̃}. Without loss of generality,
identify�SA with self-adjoint operators inB(X)where X =⊕∞

j=1 X j in the l2-sense
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with X j = l2(N). To proceed, we need the following elementary lemma, which will
be useful in constructing examples of spectral pollution.

Lemma 6.3 Let z1, z2, . . . , zk ∈ [−1, 1] and let a j =
√
1− z2j (say positive square

root). Then, the symmetric matrix

B(z1, . . . , zk) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1 0 · · · a1 0 · · ·
0 z2 0 · · · 0 a2 0 · · ·
... 0

. . .
... 0

. . .

...
...

zk ak
a1 0 · · · −z1 0 · · ·
0 a2 0 · · · 0 −z2 0 · · ·
... 0

. . .
... 0

. . .

...
...

ak −zk

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ C
2k×2k

has eigenvalues ±1 (repeated k times).

Proof By a change of basis, the above matrix is equivalent to a block diagonal matrix
with blocks

(
z j a j

a j −z j
)

.

These blocks have eigenvalues {−1, 1}. 
�
Now choose a sequence of rational numbers {z j } j∈N ∈ [−1, 1] that is also dense

in [−1, 1] and let Bj = B(z1, . . . , z j ). For each column of a given {ai, j } ∈ �̃, let the

infinite matrix C ( j) be defined as follows. If k, l < j + 1 then C ( j)
kl = zkδk,l . Let r(i)

denote the row of the i th one of the column {ai, j }i∈N (with r(i) = ∞ if
∑

m am, j < i
and r(0) = 0). If r(i) < ∞ then for k ≤ l define

C ( j)
kl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

apδk,l−(r(i)−r(i−1)−1), p = 1, . . . , j, l = r(i)+ j · (2i − 1)+ p − 1

−z pδk,l , p = 1, . . . , j, l = r(i)+ j · (2i − 1)+ p − 1

z pδk,l , p = 1, . . . , j, l = r(i)+ 2 j · i + p − 1

0, otherwise,

and extend C ( j)
kl below the diagonal to a symmetric matrix. The key property of this

matrix is that if the column {ai, j }i∈N has infinitely many 1s, then its is unitarily
equivalent to an infinite direct sumof infinitelymany Bj togetherwith the zero operator
acting on some subspace (whose dimension is equal to the number of zeros in the
column). In this case Sp(C ( j)) = {−1, 1, 0} or {−1, 1}. On the other hand, if {ai, j }i∈N
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has finitely many 1s, thenC ( j) is unitarily equivalent the direct sum of a finite number
of Bj , the diagonal operator diag{z1, . . . , zk} and the zero operator acting on some
subspace. In this case {z1, . . . , z j } ⊂ Sp(C ( j)). Let A =⊕∞

j=1 C ( j), then it is clear

that if 	̃2({ai, j }) = 1, then Sp(A) is a finite set, otherwise it is the entire interval
[−1, 1].

Now we use the following facts for bounded self-adjoint operators A. If Sp(A) is
a finite set then 	cap(A) = 0, whereas if Sp(A) = [−1, 1] then 	cap(A) = 1/2
(this can be proven easily using the minimal l∞ norm property of monic Chebyshev
polynomials). We then define �̃n2,n1({ai, j }) = min{max{1− 2�n2,n1(A), 0}, 1}. It is
clear that this defines a generalised algorithm. In particular, given N we can evaluate
{Ak,l : k, l ≤ N } using only finitely many evaluations of {ai, j }, where we can use
a bijection between canonical bases of l2(N) and

⊕∞
j=1 X j to view A as acting on

l2(N). We also have the convergence limn2→∞ limn1→∞ �̃n2,n1({ai, j }) = 	̃2({ai, j }),
a contradiction.

Step 4 {	cap,�D,�2} /∈ 
G
2 . This is the same argument as in step 3 of the proof of

Theorem 3.3. However, we now replace Am by Am = diag{d1, d2, . . . , dm} ∈ C
m×m ,

where {dm} is a dense subsequence of [−1, 1], and use the fact that 	cap(Bk) =
0. It follows that given the proposed height one tower {�n} and the constructed A,
	cap(A) = 1/2 but �n(k)(A) < 1/4, the required contradiction.

Step 5 {	r ,p,�SA,�2} /∈ 
G
2 . Recall that we are given some polynomial p of

degree at least two. We assume without loss of generality that the zeros of p are ±1
and |p(0)| > 1 (the more general case is similar). The argument is similar to step 3
of the proof of Theorem 3.3, but we spell it out since it uses Lemma 6.3. Suppose
for a contradiction that a height one tower, {�n}, solves the problem. We will gain a
contradiction by showing that �n(A) does not converge for an operator of the form,

A =
∞⊕

r=1
B(z1, . . . , zlr ),

and define

C = diag{z1, z2, . . .} ∈ �B.

We assume that lr ≥ r to ensure that the spectrum of A is equal to {−1, 1} and hence
	r ,p(A) = 0. Now suppose that l1, . . . , lk have been chosen and consider the operator

Bk = B(z1)⊕ · · · ⊕ B(z1, . . . , zlk )⊕ C .

The spectrum of Bk is [−1, 1] so that 	r ,p(Bk) > 1 and hence there exists n(k) ≥ k
such that �n(k)(Bk) > 1/4. But �n(k)(Bk) can only depend on the evaluations of the
matrix entries {Bk}i j = 〈Bke j , ei 〉 with i, j ≤ N (Bk, n(k)) (as well as evaluations of
the function f ) into account. Ifwe choose lk+1 > N (Bk, n(k)) then by the assumptions
in Definition 5.1, �n(k)(A) = �n(k)(Bk) > 1/4. But �n(A) must converge to 0, a
contradiction. 
�
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Remark 6.4 (Efficiently computing the capacity) Listing the monic polynomials with
rational coefficients in the above proof is very inefficient. In practice, it is much better
to split the domain of interest into intervals (or squares if in the complex plane, but we
stick to the self-adjoint case in the following discussion). Suppose that each interval
has dyadic endpoints and a diameter of 2−n2 and that our operator is self-adjoint with
known bounded dispersion. One can then apply Lemma 3.21 (denoting the index of
that tower by n1) to obtain an interval covering of the spectrum which will converge
as n1 → ∞, modulo the possibility of isolated points of the spectrum located at
the endpoints of the intervals. Since the capacity of a compact set is unaltered by
adding finitely many points, we do not have to worry about the endpoints—the limit
of the capacity of this covering as n1 →∞ will be the capacity of a covering of the
spectrum. As n2 →∞, we can use the fact that capacity is right-continuous as a set
function (for compact sets En, E with En ↓ E , one has cap(En) ↓ cap(E)) to obtain
a �A

2 algorithm. The point of this is that it reduces the computation of the resulting
tower {�n2,n1} to computing the capacity of finite unions of disjoint closed intervals
in R. In our computational examples, we made use of the method in [109], which uses
conformal mappings and can deal with thousands of intervals. 
�

7 Proofs Concerning Essential Numerical Ranges, Essential Spectra
and Spectral Pollution

Proof of Theorem 3.10 for 	we For the lower bounds, it is enough to note that
{	we,�D,�2} /∈ 
G

2 by the same argument as step 1 of the proof of Theorem 3.6.
The construction is exactly the same but yields dH(�n(k)(A), {0}) ≤ 1/2, whereas
	we(A) = [0, 1]. Hence, the proposed height one tower cannot converge. To con-
struct a �A

2 tower for general operators, we need the following Lemma:

Lemma 7.1 Let B ∈ C
n×n and ε > 0. Then using finitely many arithmetic operations

and comparisons, we can compute points z1, . . . , zk ∈ Q+ iQ such that

dH({z1, . . . , zk},W (B)) ≤ ε.

Proof Recall from step 1 of the proof of Theorem 3.3 that we can compute an
upper bound M ∈ Q+ for ‖B‖ in finitely many arithmetic operations and com-
parisons. Now choose points x1, . . . , xk ∈ Q

n , each of norm at most 1, such that
dH({x1, . . . , xk}, {x ∈ C

n : ‖x‖ = 1}) < ε/(3M). These can be computed in finitely
many arithmetic operations and comparisons using generalised polar coordinates and
approximations of trigonometric identities. It follows that

dH({〈Bx1, x1〉, . . . , 〈Bxk, xk〉},W (B)) ≤ 2ε/3.

We then let each z j ∈ Q + iQ be a ε/4 approximation of 〈Bx j , x j 〉, which can be
computed in finitely many arithmetic operations and comparisons. 
�
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Remark 7.2 (Efficient computation) In practice, there aremuchmore efficientmethods
of computation. For example, the method of Johnson [96], reduces the computation
of W (A) for A ∈ C

n×n to a series of n × n Hermitian eigenvalue problems. 
�
It is well known that for A ∈ �B,

W (Pn A|PnH) ↑ W (A),

W ((I − Pn)A|(I−Pn)H) ↓ We(A).

Given A, let �n2,n1(A) be a finite collection of points produced by the algorithm in
Lemma 7.1 applied to B = (I − Pn2)Pn1+n2+1A|Pn1+n2+1(I−Pn2 )H and ε = 1/n1. The

above limits show that {�n2,n1} provides a �A
2 tower for {	er ,�B,�1}. 
�

Proof of Theorem 3.10 for 	F

poll We will prove that {	R

poll ,�D,�i } /∈ 
G
3 and

{	C

poll ,�B,�1} ∈ �A
3 . The construction of towers for 	R

poll is similar, as are the
arguments for lower bounds.

Step 1 {	C

poll ,�B,�1} ∈ �A
3 . Let {�̃n2,n1} be the �A

2 tower for {	er ,�B,�1}
constructed above. Recall the definition

γn2,n1(z; A) = min{σinf(Pn1(A − z I )|Pn2H), σinf(Pn1(A
∗ − z̄ I )|Pn2H)}

and that this can be approximated to any given accuracy in finitely many arithmetic
operations and comparisons (see also “Appendix A”).We assume that we approximate
from below to an accuracy of 1/n1 and call this approximation γ̃n2,n1 . The function
γn2,n1(z; A) is Lipschitz continuous with Lipschitz constant bounded by 1. Define the
set

Vn1 =
n1⋃

m=1
Um,

where Um are the approximations to the open set U . By taking squares of distances
to ball centres, we can decide whether a point z ∈ Q + iQ has dist(z, Vn1) < η for
any given η ∈ Q+. Let ϒn2,n1(A,U ) be the finite collection of all z ∈ �̃n2,n1(A) with
dist(z, Vn1) < 1/n2 − 1/n1. If ϒn2,n1(A,U ) is empty then set Qn2,n1(A,U ) = 0,
otherwise set

Qn2,n1(A,U ) := sup
z∈ϒn2,n1 (A,U )

γ̃n2,n1(z; A)− 1

n1
.

The above remarks show that this can be computed using finitely many arithmetic
operations and comparisons.

Let Wn2 = W ((I − Pn2)A|(I−Pn2 )H) and Wn2,n1 = W ((I − Pn2)Pn1+n2+1
A|Pn1+n2+1(I−Pn2 )H). We claim that the set ϒn2,n1(A,U ) converges to

ϒn2(A,U ) :=
{
z ∈ Wn2 : dist(z,U ) <

1

n2

}
,
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as n1 →∞, meaning also ifϒn2(A,U ) is empty thenϒn2,n1(A,U ) is empty for large
n1. If z ∈ ϒn2,n1(A,U ), then there exists ẑ ∈ Wn2,n1 ⊂ Wn2 with

∣∣z − ẑ
∣∣ ≤ 1/n1.

Since

dist(z,U ) ≤ dist(z, Vn1) < 1/n2 − 1/n1,

it follows that dist(ẑ,U ) < 1/n2 and hence ϒn2(A,U ) is non-empty. So to prove
convergence, we only need to deal with the caseϒn2(A,U ) �= ∅. The above argument
also shows that any limit point of a subsequence zm( j) ∈ ϒn2,m( j)(A,U ) must lie
in ϒn2(A,U ). Hence to prove the claim, we need to only prove that for any z ∈
ϒn2(A,U ), there exists zn1 that are contained inϒn2,n1(A,U ) for largen1 and converge
to z.

Let z ∈ Wn2 with dist(z,U ) < 1/n2, then there exists ε > 0 and j > 0 such that
dist(z,Uj ) < 1/n2− ε. There also exists zn1 ∈ �̃n2,n1(A) with zn1 → z. It must hold
for n1 > j that

dist(zn1, Vn1) ≤ dist(zn1, Vj ) ≤
∣∣zn1 − z

∣∣+ dist(z,Uj )

<
∣∣zn1 − z

∣∣+ 1

n2
− ε.

This last quantity is smaller than1/n2−1/n1 for largen1 andhence zn1 ∈ ϒn2,n1(A,U )

for large n1. It follows for any z ∈ ϒn2(A,U ), there exists zn1 that are contained in
ϒn2,n1(A,U ) for large n1 and converge to z.

Define

Qn2(A,U ) := sup
z∈ϒn2 (A,U )

γn2(z; A),

where we recall that γn2(z; A) = min{σinf((A − z I )|Pn2H), σinf((A∗ − z̄ I )|Pn2H)}.
If z ∈ ϒn2,n1(A,U ), then the above shows that there exists ẑ ∈ ϒn2(A,U ) with∣∣z − ẑ

∣∣ ≤ 1/n1. It follows that

γ̃n2,n1(z; A)− 1

n1
≤ γn2,n1(z; A)− 1

n1
≤ γn2,n1(ẑ; A) ≤ γn2(z; A),

where we have used the bound on the Lipschitz constant and the fact that γn2,n1
converge up to γn2 (and uniformly on compact subsets of C). It follows that
Qn2,n1(A,U ) ≤ Qn2(A,U ) and this also covers the case that ϒn2(A,U ) = ∅ if
we define the supremum over the empty set to be 0. The set convergence proven above
and uniform convergence of γ̃n2,n1 implies that Qn2,n1(A,U ) converges to Qn2(A,U ).
It is also clear that the ϒn2(A,U ) are nested and converge down to We(A) ∩U since
Wn2 converges down to We(A). The functions γn2 also converge down to

γ (z; A) = ‖R(z, A)‖−1
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uniformly on compact subsets of C and hence Qn2(A,U ) converges down to

Q(A,U ) = sup
z∈We(A)∩U

‖R(z, A)‖−1 .

Define

�n3,n2,n1(A,U ) = 1− χ[0,1/n3](Qn2,n1(A,U )) ∈ {0, 1}.

The above show that

lim
n1→∞

�n3,n2,n1(A,U ) = 1− χ[0,1/n3](Qn2(A,U )) =: �n3,n2(A,U ).

Since χ[0,1/n3] has right limits and Qn2(A,U ) are non-increasing,

lim
n2→∞

�n3,n2(A,U ) = 1− χ[0,1/n3](Q(A,U )±) =: �n3(A,U ),

where ± denotes one of the right or left limits (it is possible to have either). Now
if 	C

poll(A,U ) = 0, then �n3(A,U ) = 0 for all n3. But if 	C

poll(A,U ) = 1, then
for large n3, �n3(A,U ) = 1. Moreover, in this latter case, �n3(A,U ) = 1 signifies
the existence of z ∈ We(A) ∩ U with γ (z; A) > 0 and hence z /∈ Sp(A). Hence,
{�n3,n2,n1} provides a �A

3 tower.
Step 2 {	R

poll ,�D,�2} /∈ 
G
3 . We will argue for the case thatU = U1 = R and the

restricted case is similar. Assume for a contradiction that this is false and that {�̂n2,n1}
is a general height two tower for {	R

poll ,�D,�2}. We follow the same strategy as the
proof of Theorem 3.3 step 4 (recall also the results of Sect. 5). Let (M, d) be discrete
space {0, 1} and �̃ denote the collection of all infinite matrices {ai, j }i, j∈N with entries
ai, j ∈ {0, 1} and consider the problem function

	̃1({ai, j }) : Does {ai, j } have a column containing infinitely many nonzero entries?

For j ∈ N, let {bi, j }i∈N be a dense subset of I j := [1−1/22 j−1, 1−1/22 j ]. Given
a matrix {ai, j }i, j∈N ∈ �̃, construct a matrix {ci, j }i, j∈N by letting ci, j = ai, j br(i, j), j
where

r(i, j) = max

{

1,
i∑

k=1
ak, j

}

.

Now consider any bijection φ : N → N
2 and define the diagonal operator

A = diag(cφ(1), cφ(2), cφ(3), . . .).

The algorithm �̂n2,n1 thus translates to an algorithm �′n2,n1 for {	̃1, �̃}. Namely, set
�′n2,n1({ai, j }i∈N) = �̂n2,n1(A). The fact that φ is a bijection shows that the lowest
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level �′n2,n1 are generalised algorithms (and are consistent). In particular, given N ,
we can find {Ai, j : i, j ≤ N } using finitely many evaluations of the matrix values
{ck,l} (the same is true for A∗A and AA∗ since the operator is diagonal). But for any
given ck,l we can evaluate this entry using only finitely many evaluations of the matrix
values {am,n} by the construction of r . Finally, note that

Sp(A) = {1} ∪
⎛

⎝
⋃

j :{ai, j }i∈N has infinitely many 1s

I j

⎞

⎠ ∪ Q,

where Q lies in the discrete spectrum. The intervals I j are also separated. It follows
that there is a gap in the essential spectrum if and only if there exists a column
{ai, j }i∈N with infinitely many 1s. Otherwise the essential spectrum is {1}. It follows
that 	̃({ai, j }) = 	R

poll(A, R), and hence, we get a contradiction. 
�

7.1 Essential Numerical Range for Unbounded Operators

The essential numerical range (see (3.1)) was first introduced for a bounded operator
A in [152], as the closure of the numerical range of the image of A in the Calkin
algebra:

We(A) =
⋂

B∈�K

W (A + B).

Other equivalent characterisations were then given in [82]. The unbounded case is
significantly different from the bounded case, and definitions that are equivalent in the
bounded case may yield very different sets in the unbounded case. The definition for
unbounded operators appeared in [34] and required the development of several new
ideas and tools. In this section, we let �C denote the set of closed operators T with
domainD(T ) ⊂ l2(N) such that the linear span of the canonical basis forms a core of
T . This latter condition ensures that we can use the usual matrix representation of the
operator T and hence the evaluation functions �1. We follow [34] and define

We(T ) =
{
λ ∈ C : ∃{xn}n∈N ⊂ D(T ), ‖xn‖ = 1, xn

w−→ 0, lim
n→∞〈T xn, xn〉 = λ

}
.

(7.1)

In [34], it was shown that for any T ∈ �C , We(T ) consists precisely of the essential
spectrum of T together with all possible spectral pollution that may arise by applying
projection methods to find the spectrum of T numerically. This result therefore gen-
eralises Theorems 3.8 and 3.9. The set We(T ) is closed and convex, but, unlike the
case when T is bounded, We(T ) may be empty. We first need two simple lemmas.

Lemma 7.3 Let T ∈ �C , then W (PnT |PnH) ↑ W (T ) in the Attouch–Wets topology
as n →∞.
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Proof It is clear that

W (PnT |PnH) ⊂ W (T ) := {〈T x, x〉 : x ∈ D(T ), ‖x‖ = 1},

and that the setsW (PnT |PnH) are increasing with n. Now let λ ∈ W (T ) be arbitrary. It
is enough to show that there existsλn ∈ W (PnT |PnH) such thatλn → λ asn →∞. By
assumption, there exists xn ∈ D(T ) such that ‖xn‖ = 1 and limn→∞〈T xn, xn〉 = λ.
Since the linear span of the canonical basis forms a core of T , we can assume without
loss of generality that each xn has finite support with respect to the canonical basis.
By taking subsequences if necessary, we may assume that Pnxn = xn and hence
〈T xn, xn〉 ∈ W (PnT |PnH). The result now follows. 
�
Lemma 7.4 Let T ∈ �C . If We(T ) �= ∅, then W ((I − Pn)T |(I−Pn)H) ↓ We(T ) in
the Attouch–Wets topology as n → ∞. If We(T ) = ∅, then for any compact set K ,
K ∩W ((I − Pn)T |(I−Pn)H) = ∅ for large n.
Proof We clearly have that W ((I − Pn)T |(I−Pn)H) are non-empty and decreasing in
n. It is enough to show the following two results:

(1) If λ ∈ We(T ), then λ ∈ W ((I − Pn)T |(I−Pn)H) for all n.
(2) If λ /∈ We(T ), then lim infn→∞ dist(λ,W ((I − Pn)T |(I−Pn)H)) > 0.

We first prove (1), so assume that λ ∈ We(T ). Then, since the linear span of the
canonical basis functions form a core of T , we can assume that there exists xn with
‖xn‖ = 1 such that each xn has finite support with respect to the canonical basis,
xn

w−→ 0 and limn→∞〈T xn, xn〉 = λ. It follows that for any fixed m, limn→∞ Pmxn =
0 and hence λ ∈ W ((I − Pm)T |(I−Pm )H).

Finally, to see (2), suppose that this were false for some λ /∈ We(T ). We may then
choose λn ∈ W ((I − Pn)T |(I−Pn)H) such that lim infn→∞ |λ − λn| = 0. By taking
subsequences if necessary, we may assume that λn → λ and that there exists xn with
‖xn‖ = 1, Pnxn = 0 and |〈T xn, xn〉 − λn| → 0. But this implies that xn

w−→ 0 and
limn→∞〈T xn, xn〉 = λ. Therefore, λ ∈ We(T ), the required contradiction. 
�

We have the following corollary, which shows that the SCI classification of com-
putingWe(T ) for T ∈ �C remains�A

2 (one canmake this precise by adding the empty
set to the Attouch–Wets topology, but we omit the details).

Corollary 7.5 There exists a height two tower of arithmetic algorithms {�n2,n1}, using
�1 (the matrix values with respect to the canonical basis) and 
1−information (see
Definition 5.11), such that for any T ∈ �C , the following hold with respect to the
Attouch–Wets topology:

• �n2,n1(T ) ↑ �n2(T ) ⊂ W (T ) as n1 →∞.
• If We(T ) �= ∅, then �n2(T ) ↓ We(T ) as n2 → ∞. If We(T ) = ∅, then for any
compact set K , K ∩ �n2(T ) = ∅ for large n2.

Proof We simply let �n2,n1(T ) be an approximation of

W
(
(I − Pn2)Pn1+n2+1T |Pn1+n2+1(I−Pn2 )H

)
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that can be computed in finitely many arithmetic operations and comparisons, even
when using inexact input (see Definition 5.11 and Remark 5.12), using the arguments
in Sect. 7. The results now follow from Lemmas 7.3 and 7.4. 
�

8 Proofs Concerning LebesgueMeasure

We use the function DistSpec in “Appendix A”. For ease of notation, we suppress
the dispersion function f in calling DistSpec, but assume that we know {cn} with
D f ,n(A) ≤ cn and cn → 0 as n →∞. However, the proof of convergence also works
when using cn = 0 (which does not necessarily bound D f ,n(A)). The key observation
is the following:

Observation: If A ∈ � f , then the function Fn(z) := DistSpec(A, n, z, f (n))+cn
converges uniformly to ‖R(z, A)‖−1 from above on compact subsets of C. By taking
successive minima, we can assumewithout loss of generality that Fn is non-increasing
in n.

The other ingredient needed is the following proposition

Proposition 8.1 Given a finite union of disks in the complex plane, the Lebesgue mea-
sure of their intersection with the interior of a rectangle can be computed within
arbitrary precision, using finitely many arithmetical operations and comparisons on
the centres and radii of the discs, as well as the position of the rectangle.

Proof Without loss of generality, we assume that the rectangle is {x + iy : x, y ∈
[0, 1]}. Consider dividing the rectangle into n2 subrectangles using the division of
[0, 1] into n equal intervals. Given such a subrectangle, we can easily test via a finite
number of arithmetic operations and comparisons whether the centre is in the union
of the circles. Let r(n) denote the number of subrectangles whose centre lies in the
union. Then, since the boundary of the union of the circles has measure zero, it is easy
to see that r(n)/n2 converges to the desired Lebesgue measure. Moreover, we can
bound the number of subrectangles that intersect the boundary of any of the circles,
and this can be used to obtain any desired precision. 
�
Proof of Theorem 3.13 Step 1 {	L

1 ,� f ,�i }, {	L
1 ,�D,�i } ∈ �A

2 . It is enough to con-
sider �1. We will estimate Leb(Sp(A)) by estimating the Lebesgue measure of the
resolvent set on the closed square [−C,C]2, where ‖A‖ ≤ C . We do not assume C is
known. For n1, n2 ∈ N, let

Grid(n1, n2) =
(

1

2n2
Z+ 1

2n2
iZ

)
∩ [−n1, n1]2.

Letting B(x, r) and D(x, r) denote the closed and open balls of radius r around x ,
respectively,18 in C (or R where appropriate), we define

U (n1, n2, A) = [−n1, n1] × [−n1, n1] ∩ (∪z∈Grid(n1,n2)B(z, Fn1(z))).

18 We set D(x, 0) = ∅.
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Note that Leb(U (n1, n2, A)) can be computed up to arbitrary predetermined precision
using only arithmetic operations and comparisons by Proposition 8.1. Using this, we
can define

�n2,n1(A) = 4n21 − Leb(U (n1, n2, A))

where, without loss of generality, we assume that we have computed the exact value
of the Lebesgue measure (since we can absorb this error in the first limit). �n2,n1 are
arithmetical algorithms using the fact that DistSpec is and the above proposition.
The only non-trivial part is convergence. The algorithm is summarised in the routine
LebSpec in § B.3.

We now show that the algorithm LebSpec converges and realises the �A
2 classi-

fication. There exists a compact set K such that ‖R(z, A)‖−1 > 1 on Kc and without
loss of generality we can make C larger, C ∈ N and take K = [−C,C]2. For n1 ≥ C

U (n1, n2, A) = ([−C,C]2 ∩ (∪z∈Grid(n1,n2)B(z, Fn1(z)))) ∪ ([−n1, n1]2\[−C,C]2),

since Fn(z) ≥ ‖R(z, A)‖−1. It follows that for large n1
�n2,n1(A) = 4C2 − Leb([−C,C]2 ∩ (∪z∈Grid(n1,n2)B(z, Fn1(z)))).

As n1 →∞, [−C,C]2 ∩ (∪z∈Grid(n1,n2)B(z, Fn1(z))) converges to the closed set

K (n2, A) = [−C,C]2 ∩ (∪z∈Grid(C,n2)B(z, ‖R(z, A)‖−1))

from above and hence

lim
n1→∞

�n2,n1(A) = 4C2 − Leb(K (n2, A)),

from below. Consider the relatively open set

V (n2, A) = [−C,C]2 ∩ (∪z∈Grid(C,n2)D(z, ‖R(z, A)‖−1)).

Clearly, Leb(K (n2, A)) = Leb(V (n2, A)) since the sets differ by a finite collection of
circular arcs or points (recall we defined the open ball of radius zero to be the empty
set). Hence, we must show that

lim
n2→∞

Leb(V (n2, A)) = Leb(ρC (A)),

where ρC (A) = [−C,C]2\Sp(A). For z ∈ ρC (A),

dist(z,Sp(A)) ≥ ‖R(z, A)‖−1

and hence we get V (n2, A) ⊂ ρC (A). Since ρC (A) is relatively open, a simple density
argument using the continuity of ‖R(z, A)‖−1 yields V (n2, A) ↑ ρC (A) as n2 →∞
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since the grid refines itself. So we get

Leb(V (n2, A)) ↑ Leb(ρC (A)).

This proves the convergence and also shows that �n2(A) ↓ 	L
1 (A), thus yielding

the �A
2 classification. The same argument works in the one-dimensional case when

considering self-adjoint operators �D and LebR. We simply restrict everything to the
real line and consider the interval [−C,C] rather than a square.

Step 2 {	L
1 ,� f ,�i }, {	L

1 ,�D,�i } /∈ 
G
2 . It is enough to consider �2. We

will only show that SCI(	L
1 ,�D,�2)G ≥ 2 for which we use LebR and the two-

dimensional case is similar. Suppose for a contradiction that there exists a height one
tower {�n}, then ��n (A) is finite for each A ∈ �D. Hence, for every A and n there
exists a finite number N (A, n) ∈ N such that the evaluations from ��n (A) only take
the matrix entries Ai j =

〈
Ae j , ei

〉
with i, j ≤ N (A, n) into account.

Pick any sequence a1, a2, . . . that is dense in the unit interval [0, 1]. Consider the
matrix operators Am = diag{a1, a2, . . . , am} ∈ C

m×m , Bm = diag{0, 0, . . . , 0} ∈
C
m×m and C = diag{0, 0, . . .}. Set A = ⊕∞

m=1(Bkm ⊕ Akm ), where we choose an
increasing sequence km inductively as follows. Set k1 = 1 and suppose that k1, . . . , km
have been chosen. Sp(Bk1 ⊕ Ak1 ⊕ · · ·⊕ Bkm ⊕ Akm ⊕C) = {0, a1, a2, . . . , akm } and
hence Leb(Sp(Bk1 ⊕ Ak1 ⊕ · · ·⊕ Bkm ⊕ Akm ⊕C)) = 0 so there exists some nm ≥ m
such that if n ≥ nm then

�n(Bk1 ⊕ Ak1 ⊕ · · · ⊕ Bkm ⊕ Akm ⊕ C) ≤ 1

2
.

Now let km+1 ≥ max{N (Bk1⊕Ak1⊕· · ·⊕Bkm⊕Akm⊕C, nm), km+1}. Any evaluation
function fi, j ∈ � is simply the (i, j)th matrix entry and hence by construction

fi, j (Bk1 ⊕ Ak1 ⊕ · · · ⊕ Bkm ⊕ Akm ⊕ C) = fi, j (A),

for all fi, j ∈ ��nm
(Bk1 ⊕ Ak1 ⊕ · · · ⊕ Bkm ⊕ Akm ⊕ C). By assumption (iii) in

Definition 5.1, it follows that ��nm
(Bk1 ⊕ Ak1 ⊕ · · · ⊕ Bkm ⊕ Akm ⊕C) = ��nm

(A)

and hence by assumption (ii) in the same definition that �nm (A) = �nm (Bk1 ⊕ Ak1 ⊕
· · · ⊕ Bkm ⊕ Akm ⊕ C) ≤ 1/2. But limn→∞(�n(A)) = Leb({0, a1, a2, . . .}) = 1, a
contradiction.

Step 3 {	L
1 ,�,�1} ∈ �A

3 for � = �B,�SA, �N or �g . We will deal with the
case of �B. The cases of �N and �g then follow via �N ⊂ �g ⊂ �B and the one-
dimensional Lebesgue measure case for�SA is similar. A careful analysis of the proof
in step 1 yields that

• �n2,n1(A) converges to �n2(A) from below as n1 →∞.
• �n2(A) converges to Leb(Sp(A)) monotonically from above as n2 →∞.

We can ensure that the first limit converges from below by always slightly overesti-
mating the Lebesgue measure of U (n1, n2) (with error converging to zero) and using
Proposition 8.1. These observations will be used later to answer question 3. We do
not need to know cn for the above proof to work, but we will need it for the first of
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the above facts. A slight alteration of the proof/algorithm by inserting an additional
successive limit deals with the general case.

Define the function

γn,m(z; A) = min{σinf(Pm(A − z I )|PnH), σinf(Pm(A∗ − z̄ I )|PnH)},

whereσinf denotes the injectionmodulus/smallest singular value (see also “AppendixA”).
One can show that γn,m converges uniformly on compact subsets to

γn(z; A) = min{σinf((A − z I )|PnH), σinf((A
∗ − z̄ I )|PnH)},

asm →∞ and that this converges uniformly down to‖R(z, A)‖−1 on compact subsets
as n → ∞ [91]. With a slight abuse of notation, we can approximate γn,m(z; A) to
within 1/m by DistSpec(A, n, z,m) (where the spacing of the search routine is
1/m, see also “Appendix A”) so that this converges uniformly on compact subsets to
γn(z; A). In exactly the same manner as before, define

U (n1, n2, n3, A) = [−n2, n2]2 ∩ (∪z∈Grid(n2,n3)B(z, γn2,n1(z; A))),

�n3,n2,n1(A) = (2n2)
2 − Leb(U (n1, n2, n3, A)).

The stated uniform convergence means that the argument in step 1 carries through and
we have a height three tower, realising the �A

3 classification.
Step 4 {	L

1 ,�SA,�1} /∈ 
G
3 . The proof is exactly the same argument as the proof of

step 3 of Theorem 3.7. However, in this case to gain the contradiction, we then define
�̃n2,n1({ai, j }) = min{max{1 − �n2,n1(A)/2, 0}, 1} where {�n2,n1} is the supposed
height two tower for {	L

1 ,�SA,�1}.
Step 5 {	L

1 ,�,�1} /∈ 
G
3 for � = �B,�N, or �g . Since �N ⊂ �g ⊂ �B,

we only need to deal with �N. We can use a similar argument as in step 4, but now
replacing each C ( j) by

D( j) =
j⊕

k=1
ihkC

( j),

where h1, h2, . . . is a dense sequence in [0, 1], and these operators act on X j =⊕ j
k=1 l2(N). This ensures that the spectrum of the operator yields a positive two-

dimensional Lebesgue measure if and only if 	̃2({ai, j }) = 0. The rest of the argument
is entirely analogous.

Step 6 
G
2 �� {	L

1 ,�,�2} ∈ �A
2 for � = �B,�SA, �N or �g . The impossibility

result follows by considering diagonal operators. For the existence of �A
2 algorithms,

we can use the construction in step 3, but the knowledge of matrix values of A∗A
allows us to skip the first limit and approximate γn directly. 
�
Proof of Theorem 3.14 Using the convergence

lim
ε↓0 Leb(Ŝpε(A)) = Leb(Sp(A)),
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the lower bounds in Theorem 3.13 immediately imply the lower bounds in Theo-
rem 3.14. Hence, we only need to construct the appropriate algorithms.

Step 1 {	L
2 ,� f ,�1}, {	L

2 ,�D,�1} ∈ �A
1 . Let A ∈ � f and

En = 1

n
(Z+ iZ) ∩ {z ∈ C : Fn(z) ≤ ε} ∩ [−n, n]2.

Clearly, we can compute En with finitely many arithmetic operations and comparisons
and we set

�n(A) = Leb
(∪z∈En D(z,max{0, ε − Fn(z)})

)
.

Proposition 8.1 shows that, without loss of generality, we can assume �n(A) can be
computed exactly using finitely many arithmetic operations and comparisons. The
algorithm is presented in the LebPseudoSpec routine in § B.3 and the following
shows that this algorithm is sharp in the SCI hierarchy.

Suppose that Fn(z) < ε and that |w| < ε − Fn(z). If z ∈ Sp(A), then clearly

‖R(z + w, A)‖−1 ≤ |w| < ε − Fn(z) ≤ ε,

and this holds trivially if z+w ∈ Sp(A). So assume that neither of z, z+w are in the
spectrum. The resolvent identity yields

‖R(z + w, A)‖ ≥ ‖R(z, A)‖ − |w| ‖R(z + w, A)‖ ‖R(z, A)‖ ,

which rearranges to

‖R(z + w, A)‖−1 ≤ ‖R(z, A)‖−1 + |w| < ε.

It follows that ∪z∈En D(z,max{0, ε − Fn(z)}) is in Ŝpε(A) and hence that �n(A) ≤
	L

2 (A). Without loss of generality by taking successive maxima, we can assume that
�n(A) is increasing. Together, these will yield the�A

1 classification once convergence
is shown. Using the uniform convergence of Fn and density of 1/n(Z+iZ)∩[−n, n]2,
we see that pointwise convergence holds:

χ∪z∈En D(z,max{0,ε−Fn(z)}) → χŜpε (A),

where χE denotes the indicator function of a set E . It follows by the dominated
convergence theorem that �n(A) → Leb(Ŝpε(A)). The proof for �D is similar by
restricting everything to the real line.

Step 2 {	L
2 ,�,�1} ∈ �A

2 for � = �B,�SA, �N or �g . To prove this, we simply
replace Fn1 by the functions γn2,n1 and set

�n2,n1(A) = Leb
(
∪z∈En2

D(z,max{0, ε − γn2,n1(z; A)})
)

.
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Step 3 {	L
2 ,�,�2} ∈ �A

1 for � = �B,�SA, �N or �g . The knowledge of
matrix values of A∗A allows us to skip the first limit in the construction of step 2 and
approximate γn directly. 
�
Proof of Proposition 3.15 We begin with the proof of 1. Suppose A ∈ �D has
LebR(Sp(A)) = 0 and let An ∈ �D be such that ‖A − An‖ → 0 as n → ∞.
This implies that Sp(An) → Sp(A) since all our operators are normal. To prove that
LebR(Sp(An)) → 0, it is enough to prove that

Leb(Fn) ↓ 0, (8.1)

where Fn = Sp(A) ∪ (∪m≥nSp(Am)). But Fn decreases to Sp(A) and is bounded
in measure, so (8.1) holds. For the converse, let LebR(Sp(A)) > 0. Without loss of
generality, assume that all of A’s entries lie in [0, 1]. Let Dn denote the set { j/2n}nj=1
and consider the map φn : x ↪→ 2−n $x2n% on [0, 1]. Let An be the diagonal operator
obtained by applying φn to each of A’s entries. We clearly have that ‖A − An‖ → 0
as n → ∞ but note that Sp(An) is finite so has Lebesgue measure 0. Hence 	L

1 is
discontinuous at A.

To prove 2, note that for A ∈ �D, LebR(Sε(A)) = 0. Let An ∈ �D have
‖A − An‖ → 0. Then given some 0 < δ < ε it holds for large n that Spε−δ(A) ⊂
Spε(An) ⊂ Spε+δ(A) and hence that

lim sup
n→∞

LebR(Spε(An)) ≤ LebR(Spε+δ(A))

lim inf
n→∞ LebR(Spε(An)) ≥ LebR(Spε−δ(A)).

Now let δ ↓ 0 and use the fact that 	L
2 is continuous in ε. 
�

Finally, we deal with the question of determining whether the Lebesgue measure
is zero. Recall that for this problem, (M, d) denotes the set {0, 1} endowed with the
discrete topology and we consider the problem function

	L
3 (A) =

{
0, if Leb(Sp(A)) > 0

1, otherwise.

Proof of Theorem 3.16 We will show that {	L
3 ,� f ,�1} ∈ �A

3 and {	L
3 ,�D,�2} /∈


G
3 . The analogous statements {	L

3 ,�D,�1} ∈ �A
3 and {	L

3 ,� f ,�2} /∈ 
G
3 follow

from similar arguments.
The lower bound argument can also be used when considering �2 and � =

�B,�SA, �N or �g . We will also prove the lower bound {	L
3 ,�SA,�1} /∈ 
G

4 .
The remaining lower bounds for �1 follow from a similar argument and construction
as in step 5 of the proof of Theorem3.13 to ensurewe are dealingwith two-dimensional
Lebesgue measure. Finally, we prove that {	L

3 ,�B,�1} ∈ �A
4 . The upper bounds for

� = �SA, �N or �g and �1 follow an almost identical argument. When considering
�2, we can collapse the first limit in the same manner as we did for solving 	L

1 .
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Step 1 {	L
3 ,� f ,�1} ∈ �A

3 . First we use the algorithm used to compute 	L
1 in

Theorem 3.13, which we shall denote by �̃, to build a height 3 tower for {	L
3 ,� f }. As

above,� f denotes the set of bounded operators with the usual assumption of bounded
dispersion (now with known bounds cn). Recall that we observed

• �̃n2,n1(A) converges to �̃n2(A) from below as n1 →∞.
• �̃n2(A) converges to Leb(Sp(A)) monotonically from above as n2 →∞.

We can alter our algorithms, by taking maxima, so that we can assume without loss of
generality that �̃n2,n1(A) converges to �̃n2(A)monotonically from below as n1 →∞.
Now let

�n3,n2,n1(A) = χ[0,1/n3](�̃n2,n1(A)).

Note that χ[0,1/n3] is left continuous on [0,∞)with right limits. Hence by the assumed
monotonicity

lim
n1→∞

�n3,n2,n1(A) = χ[0,1/n3](�̃n2(A)).

It follows that

lim
n2→∞

lim
n1→∞

�n3,n2,n1(A) = χ[0,1/n3](Leb(Sp(A))±),

where ± denotes one of the right or left limits (it is possible to have either). It is then
easy to see that

lim
n3→∞

lim
n2→∞

lim
n1→∞

�n3,n2,n1(A) = 	L
3 (A).

It is also clear that the answer to the question is “No” if �n3(A) = 0, which yields the
�A

3 classification.
Step 2 {	L

3 ,�D,�1} /∈ 
G
3 . Assume for a contradiction that this is false and

{�̂n2,n1} is a general height two tower for {	L
3 ,�D}. Let (M, d) be discrete space

{0, 1} and �̃ denote the collection of all infinite matrices {ai, j }i, j∈N with entries
ai, j ∈ {0, 1} and consider the problem function

	̃1({ai, j }) : Does {ai, j } have a column containing infinitely many nonzero entries?

For j ∈ N, let {bi, j }i∈N be a dense subset of I j := [1− 1/2 j−1, 1− 1/2 j ]. Given
a matrix {ai, j }i, j∈N ∈ �̃, construct a matrix {ci, j }i, j∈N by letting ci, j = ai, j br(i, j), j
where

r(i, j) = max

{

1,
i∑

k=1
ak, j

}

.
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Now consider any bijection φ : N → N
2 and define the diagonal operator

A = diag(cφ(1), cφ(2), cφ(3), . . .).

The algorithm �̂n2,n1 thus translates to an algorithm �′n2,n1 for {	̃1, �̃}. Namely, set
�′n2,n1({ai, j }i∈N) = �̂n2,n1(A). The fact that φ is a bijection shows that the lowest
level �′n2,n1 are generalised algorithms (and are consistent). In particular, given N , we
can find {Ai, j : i, j ≤ N } using finitely many evaluations of the matrix values {ck,l}.
But for any given ck,l , we can evaluate this entry using only finitely many evaluations
of the matrix values {am,n} by the construction of r . Finally note that

Sp(A) =
⎛

⎝
⋃

j :∑i ai, j=∞
I j

⎞

⎠ ∪ Q,

where Q is at most countable. Hence,

LebR(Sp(A)) =
∑

j :∑i ai, j=∞

1

2 j
.

It follows that 	̃1({ai, j }) = 	L
3 (A), and hence, we get a contradiction.

Step 3 {	L
3 ,�SA,�1} /∈ 
G

4 . Suppose for a contradiction that {�n3,n2,n1} is a height
three tower of general algorithms for the problem {	L

3 ,�SA,�1}. Let (M, d) be the
space {0, 1} with the discrete metric, let �̃ denote the collection of all infinite arrays
{am,i, j }m,i, j∈N with entries am,i, j ∈ {0, 1} and consider the problem function

	̃4({am,i, j }) : For every m, does {am,i, j }i, j have (only) finitely many columns

with (only) finitely many 1’s?

Recall that it is shown in Sect. 5 that SCI(	̃4, �̃)G = 4. We will gain a contradiction
by using the supposed height three tower to solve {	̃4, �̃}.

The construction follows step 3 of the proof of Theorem 3.7 closely. For fixed m,
recall the construction of the operator Am := A({am,i, j }i, j ) from that proof, the key
property being that if {am,i, j }i, j has (only) finitely many columns with (only) finitely
many 1’s then Sp(Am) is a finite subset of [−1, 1], otherwise it is the whole interval
[−1, 1]. Now consider the intervals Im = [1 − 2m−1, 1 − 2m] and affine maps, αm ,
that act as a bijection from [−1, 1] to Im . Without loss of generality, identify �SA
with self-adjoint operators in B(X) where X =⊕∞

i=1
⊕∞

j=1 Xi, j in the l2-sense with

Xi, j = l2(N). We then consider the operator

T ({am,i, j }m,i, j ) =
∞⊕

m=1
αm(Am).
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The same arguments in the proof of Theorem 3.7 show that the map

�̃n3,n2,n1({am,i, j }m,i, j ) = �n3,n2,n1(T ({am,i, j }m,i, j ))

defines a general tower using the relevant pointwise evaluation functions of the array
{am,i, j }m,i, j . If it holds that 	̃4({am,i, j }) = 1, then Sp(T ({am,i, j }m,i, j )) is countable
and hence 	L

3 (T ({am,i, j }m,i, j )) = 1. On the other hand, if 	̃4({am,i, j }) = 0, then
there exists m with Sp(Am) = [−1, 1], and hence, Im ⊂ Sp(T ({am,i, j }m,i, j )) so that
	L

3 (T ({am,i, j }m,i, j )) = 0. It follows that {�̃n3,n2,n1} provides a height three tower for
{	̃4, �̃}, a contradiction.

Step 4 {	L
3 ,�B,�1} ∈ �A

4 . Recall the tower of algorithms to solve {	L
1 ,�B,�1}

and denote it by �̃. Our strategy will be the same as in step 1 but with an additional
successive limit. It is easy to show that

• �̃n3,n2,n1(A) converges to �̃n3,n2(A) from above as n1 →∞.
• �̃n3,n2(A) converges to �̃n3(A) from below as n2 →∞.
• �̃n3(A) converges to Leb(Sp(A)) from above as n3 →∞.

Again, by taking successive maxima or minima where appropriate, we can assume
that all of these are monotonic. Now let

�n4,n3,n2,n1(A) = χ[0,1/n4](�̃n3,n2,n1(A)).

Note that χ[0,1/n4] is left continuous on [0,∞)with right limits. Hence by the assumed
monotonicity and arguments as in step 1, it is easy to see that

lim
n4→∞

lim
n3→∞

lim
n2→∞

lim
n1→∞

�n4,n3,n2,n1(A) = 	L
3 (A).

It is also clear that the answer to the question is “No” if �n4(A) = 0, which yields the
�A

4 classification. 
�

9 Proofs Concerning Fractal Dimensions

We begin with the box-counting dimension. For the construction of towers of algo-
rithms, it is useful to use a slightly different but equivalent [71] definition of the upper
and lower box-counting dimensions. Let F ⊂ R be bounded and N ′δ(F) denote the
number of δ-mesh intervals that intersect F . A δ-mesh interval is an interval of the
form [mδ, (m + 1)δ] for m ∈ Z. Then

dimB(F) = lim sup
δ↓0

log(N ′δ(F))

log(1/δ)
, dimB(F) = lim inf

δ↓0
log(N ′δ(F))

log(1/δ)
.

Proof of Theorem 3.18 for box-counting dimension Since �D
BD ⊂ �BD

f ⊂ �BD
SA ,

it is enough to prove that {	B,�BD
f ,�1} ∈ �A

2 , {	B,�BD
SA ,�2} ∈ �A

2 ,

{	B,�BD
SA ,�1} ∈ �A

3 , {	B,�BD
SA ,�1} /∈ 
A

3 and {	B,�BD
D ,�2} /∈ 
A

2 .
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Step 1 {	B,�BD
f ,�1} ∈ �A

2 . Recall the existence of a height one tower, {�̃n},
using �1 for Sp(A), A ∈ �BD

f from “Appendix A”. Furthermore, �̃n(A) outputs a
finite collection {z1,n, . . . , zkn ,n} ⊂ Q such that dist(z j,n,Sp(A)) ≤ 2−n . Define the
intervals

I j,n = [z j,n − 2−n, z j,n + 2−n]

and let Im denote the collection of all 2−m-mesh intervals. Let ϒm,n(A) be any union
of finitely many such mesh intervals with minimal length

∣∣ϒm,n(A)
∣∣ (“length” being

the number of intervals ∈ Im that make up ϒm,n(A)) such that

ϒm,n(A) ∩ I j,l �= ∅, for 1 ≤ l ≤ n, 1 ≤ j ≤ kl .

There may be more than one such collection, so we can gain a deterministic algorithm
by enumerating each Im and choosing the first such collection in this enumeration. It
is then clear that

∣∣ϒm,n(A)
∣∣ is increasing in n. Furthermore, to determine ϒm,n(A),

there are only finitely many intervals in Im to consider, namely those that have non-
empty intersection with at least one I j,l with 1 ≤ l ≤ n, 1 ≤ j ≤ kl . It follows that
ϒm,n(A) and hence

∣∣ϒm,n(A)
∣∣ can be computed in finitely may arithmetic operations

and comparisons using �1.
Suppose that I = [a, b] ∈ Im has (a, b)∩Sp(A) �= ∅. Then for large n there exists

z j,n ∈ I such that I j,n ⊂ I and hence I ⊂ ϒm,n(A) for large n. If z ∈ Sp(A)∩2−mZ,
then a similar argument shows that z ⊂ ϒm,n(A) for large n. Since Sp(A) is bounded
and Sp(A) ∩ 2−mZ finite, it follows that Sp(A) ⊂ ϒm,n(A) for large n and hence

N2−m (Sp(A)) ≤ lim inf
n→∞

∣∣ϒm,n(A)
∣∣ .

Let Wm(A) be the union of all intervals in Im that intersect Sp(A). It is clear that
Wm(A)∩ I j,l �= ∅ for 1 ≤ l ≤ n, 1 ≤ j ≤ kl , and hence,

∣∣ϒm,n(A)
∣∣ ≤ N ′2−m (Sp(A)).

It follows that limn→∞
∣∣ϒm,n(A)

∣∣ = δm(A) exists with

N2−m (Sp(A)) ≤ δm(A) ≤ N ′2−m (Sp(A)). (9.1)

For n2 > n1 set �n2,n1(A) = 0, otherwise set

�n2,n1(A) = max
n2≤k≤n1

max
1≤ j≤n1

log(
∣∣ϒk, j (A)

∣∣)
k log(2)

.

The above monotone convergence and (9.1) shows that

lim
n1→∞

�n2,n1(A) = �n2(A) = sup
k≥n2

log(δk(A))

k log(2)
≥ lim sup

k→∞
log(δk(A))

k log(2)
,

lim
n2→∞

�n2(A) = lim sup
k→∞

log(δk(A))

k log(2)
.
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Hence, by the assumption that the box-counting dimension exists, we have constructed
a �A

2 tower.
Step 2 {	B,�BD

SA ,�2} ∈ �A
2 and {	B,�BD

SA ,�1} ∈ �A
3 . The first of these is

exactly as in step 1, using �2 to construct the relevant �A
1 tower for the spectrum.

The proof that {	B,�BD
SA ,�1} ∈ �A

3 uses a height two tower, {�̃n2,n1}, using �1
for Sp(A), A ∈ �BD

SA (or any self-adjoint A) constructed in [18]. This tower has the
property that each �̃n2,n1(A) is a finite subset of Q and, for fixed n2, is constant for
large n1. Moreover, if z ∈ limn1→∞ �̃n2,n1(A), then dist(z,Sp(A)) ≤ 2−n2 . It follows
that we can use the same construction as step 1 with an additional limit at the start to
reach the finite set limn1→∞ �̃n2,n1(A).

Step 3 {	B,�BD
D ,�2} /∈ 
A

2 . This is exactly the same argument as step 2 of the
proof of Theorem 3.13 with Lebesgue measure replaced by box-counting dimension.

Step 4 {	B,�BD
SA ,�1} /∈ 
A

3 . This is exactly the same argument as step 4 of the
proof of Theorem 3.13 with Lebesgue measure replaced by box-counting dimension.


�
We now turn to the Hausdorff dimension. Recall Lemma 3.21 on the problem of

determining whether Sp(A) ∩ (a, b) �= ∅.
Proof of Lemma 3.21 We start with the class � f ∩�SA. We can interpret this problem
as a decision problem and the following algorithm as one that halts on output “Yes”.
Let c = (a + b)/2 and δ = (b − a)/2, then the idea is to simply test whether
DistSpec(A, n, c, f (n)) + cn < δ. If the answer is yes, then we output “Yes”,
otherwise we output “No” and increase n by one. Note that Sp(A) ∩ (a, b) �= ∅ if
and only if ‖R(c, A)‖−1 < δ and hence as DistSpec(A, n, c, f (n))+ cn converges
down to ‖R(c, A)‖−1 we see that this provides a convergent algorithm. For �SA, we
require an additional successive limit by replacing DistSpec(A, n, c, f (n)) + cn
with the function γn2,n1(z; A). If we have access to �2, then this can be avoided in
the usual way. 
�

To build our algorithm for the Hausdorff dimension, we use an alternative, equiva-
lent definition for compact sets. We consider the case of subsets of R. Let ρk denote
the set of all closed binary intervals of the form [2−km, 2−k(m + 1)],m ∈ Z. Set

Ak(F) = {{Ui }i∈I : I is finite , F ⊂ ∪i∈IUi ,Ui ∈ ∪l≥kρl
}

and define

H̃d
k (F) = inf

{
∑

i

diam(Ui )
d : {Ui }i∈I ∈ Ak(F)

}

, H̃d(F) = lim
k→∞ H̃d

k (F).

The following can be found in [81] (Theorem 3.13):

Theorem 9.1 Let F be a bounded subset of R. Then, there exists a unique d ′ =
dimH ′(F) such that H̃d(F) = 0 for d > d ′ and H̃d(F) = ∞ for d < d ′. Furthermore,
d ′ = dimH (F).
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Denoting the dyadic rationals by D, we shall compute dimH (Sp(A)) via approxi-
mating the above applied to F = Sp(A) ∩ D

c and using Lemma 3.21.

Proof of Theorem 3.18 for Hausdorff dimension It is enough to prove the lower bounds
{	H ,�D,�2} /∈ 
G

3 , {	H ,�SA,�1} /∈ 
G
4 and construct the towers of algo-

rithms for the inclusions {	H ,� f ∩ �SA,�1} ∈ �A
3 , {	H ,�SA,�1} ∈ �A

4 and
{	H ,�SA,�2} ∈ �A

3 .
Step 1 {	H ,�D,�2} /∈ 
G

3 . Suppose for a contradiction that a height two tower,
{�n2,n1}, exists for {	H ,�D} (taking values in [0, 1] without loss of generality). We
repeat the argument in the proof of Theorem 3.16. Consider the same problem

	̃1({ai, j }) : Does {ai, j } have a column containing infinitely many nonzero entries?

However, now we consider the above mapping to [0, 1] with the usual metric. We
consider the same operator A = diag(cφ(1), cφ(2), cφ(3), . . .) with

Sp(A) =
⎛

⎝
⋃

j :∑i ai, j=∞
I j

⎞

⎠ ∪ Q,

where Q is at most countable. We use the fact that the Hausdorff dimension satisfies

dimH (∪∞j=1X j ) = sup
j∈N

dimH (X j )

and that dimH (Q) = 0 for any countable Q to note that 	H (A) = 	̃1({ai, j }). We set
�̃n2,n1({ai, j }i, j ) = �n2,n1(A) to provide a height two tower for 	̃1. But this contradicts
Theorem 5.19.

Step 2 {	H ,�SA,�1} /∈ 
G
4 . Suppose for a contradiction that {�n3,n2,n1} is a

height three tower of general algorithms for the problem {	H ,�SA,�1} (taking values
in [0, 1] without loss of generality). Let (M, d) be the space [0, 1] with the usual
metric, let �̃ denote the collection of all infinite arrays {am,i, j }m,i, j∈N with entries
am,i, j ∈ {0, 1} and consider the problem function

	̃4({am,i, j }) : For every m, does {am,i, j }i, j have (only) finitely many columns

with (only) finitely many 1’s?

Recall that it is shown in Sect. 5 that SCI(	̃4, �̃)G = 4.Wewill gain a contradiction by
using the supposedheight three tower to solve {	̃4, �̃}.Weuse the sameconstruction as
in step 3 of the proof of Theorem3.16. If 	̃4({am,i, j }) = 1, thenSp(T ({am,i, j }m,i, j )) is
countable, and hence,	H (T ({am,i, j }m,i, j )) = 0. On the other hand, if 	̃4({am,i, j }) =
0, then there exists m with Sp(Am) = [−1, 1] and hence Im ⊂ Sp(T ({am,i, j }m,i, j ))

so that 	H (T ({am,i, j }m,i, j )) = 1. It follows that �̃n3,n2,n1({am,i, j }m,i, j ) = 1 −
�n3,n2,n1(T ({am,i, j }m,i, j )) provides a height three tower for {	̃4, �̃}, a contradiction.
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Step 3 {	H ,� f ∩ �SA,�1} ∈ �A
3 . To construct a height three tower for A ∈

� f ∩�SA, if n2 < n3 set �n3,n2,n1(A) = 0. Otherwise, consider the set

An3,n2,n1(A) = {{Ui }i∈I : I is finite , Sn1,n2(A) ⊂ ∪i∈IUi ,Ui ∈ ∪n3≤l≤n2ρl
}

where Sn1,n2(A) is the union of all S ∈ ρn2 with S ⊂ [−n1, n1] and such that the
algorithm discussed in Lemma 3.21 outputs “Yes” for the interior of S and input
parameter n1. We then define

hn3,n2,n1(A, d) = inf

{
∑

i

diam(Ui )
d : {Ui } ∈ An3,n2,n1(A)

}

.

If Sn1,n2(A) is empty, then we interpret the infinum as 0. There are only finitely many
sets to check and hence the infinum is a minimisation problem over finitely many
coverings (see § B.4 for a discussion of efficient implementation). It follows that
hn3,n2,n1(A, d) defines a general algorithm computable in finitely many arithmetic
operations and comparisons. Furthermore, it is easy to see that

lim
n1→∞

hn3,n2,n1(A, d) = inf

{
∑

i

diam(Ui )
d : {Ui } ∈ Cn3,n2(A)

}

=: hn3,n2(A, d)

from below (since we are covering larger sets as n1 increases). Here,

Cn3,n2(A) = {{Ui }i∈I : I is finite ,Sp(A) ∩ D
c
n2 ⊂ ∪i∈IUi ,Ui ∈ ∪n3≤l≤n2ρl

}

andDk := 1/2k ·Zdenotes the dyadic rationals of resolution k.Wenowuse the property
that Ak(F) consists of collections of finite coverings. As n2 → ∞, hn3,n2(A, d) is
non-increasing (since we take infinum over a larger class of coverings and the sets
Sp(A) ∩ D

c
n2 decrease) and hence converges to some number. Clearly

lim
n2→∞

hn3,n2(A, d) =: hn3(A, d) ≥ H̃d
n3(Sp(A) ∩ D

c).

For ε > 0, let l ∈ N and {Ui } ∈ An3(Sp(A) ∩ D
c
l )} with

∑

i

diam(Ui )
d ≤ ε + H̃d

n3(Sp(A) ∩ D
c
l ).

For large enough n2, {Ui } ∈ Cn3,n2(A) and hence since ε > 0 was arbitrary,

hn3(A, d) ≤ H̃d
n3(Sp(A) ∩ D

c
l )

for all l. For a fixed A and d, hn3(A, d) is non-decreasing in n3 and hence converges
to a function of d, h(A, d) (possibly taking infinite values). Furthermore,

H̃d(Sp(A) ∩ D
c) ≤ h(A, d) ≤ H̃d(Sp(A) ∩ D

c
l ).
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Since the set Sp(A) ∩ D is countable, its Hausdorff dimension is zero. Using sub-
additivity of Hausdorff dimension and Theorem 9.1,

dimH (Sp(A)) ≤ dimH (Sp(A) ∩ D
c)

≤ dimH (Sp(A) ∩ Dc) = dimH ′(Sp(A) ∩ D
c)

≤ dimH (Sp(A) ∩ D
c
l ) = dimH ′(Sp(A) ∩ D

c
l )

≤ dimH (Sp(A)).

It follows that h(A, d) = 0 if d > dimH (Sp(A)) and that h(A, d) = ∞ if d <

dimH (Sp(A)). Define

�n3,n2,n1(A) = sup
j=1,...,2n3

{
j

2n3
: hn3,n2,n1(A, k/2n3)+ 1

n2
>

1

2
for k = 1, . . . , j

}
,

where in this case we define the maximum over the empty set to be 0.
Consider n2 ≥ n3. Since hn3,n2,n1(A, d) ↑ hn3,n2(A, d), it is clear that

lim
n1→∞

�n3,n2,n1(A) = sup
j=1,...,2n3

{
j

2n3
: hn3,n2 (A, k/2n3)+ 1

n2
>

1

2
for k = 1, . . . , j

}

=: �n3,n2 (A).

If hn3(A, d) ≥ 1/2, then hn3,n2(A, d)+1/n2 > 1/2 for all n2 otherwise hn3,n2(A, d)+
1/n2 < 1/2 eventually. Hence,

lim
n2→∞

�n3,n2(A) = sup
j=1,...,2n3

{
j

2n3
: hn3(A, k/2n3) ≥ 1

2
for k = 1, . . . , j

}
=: �n3(A).

Using themonotonicity of hn3(A, d) in d and the proven properties of the limit function
h, it follows that

lim
n3→∞

�n3(A) = dimH (Sp(A)).

The fact that hn3 is non-decreasing in n3, the set {1/2n3, 2/2n3 , . . . , 1} refines itself,
and the stated monotonicity collectively shows that convergence is monotonic from
below, and hence, we get the �A

3 classification.
Step 4 {	H ,�SA,�1} ∈ �A

4 and {	H ,�SA,�2} ∈ �A
3 . The first of these can be

proven as in step 3 by replacing (n1, n2, n3) by (n2, n3, n4) and the set Sn2,n1(A) by
the set Sn3,n2,n1(A) given by the union of all S ∈ ρn3 with S ⊂ [−n2, n2] and such that
the �A

2 tower of algorithms discussed in Lemma 3.21 outputs “Yes” for the interior of
S and input parameters (n2, n1). To prove {	H ,�SA,�2} ∈ �A

3 , we use exactly the
same construction as in step 3 now using the �A

1 algorithm (which uses �2) given by
Lemma 3.21. 
�
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Appendix A. Routines for Computing Spectra

We describe the SCI-sharp �A
1 algorithms in [64] and [60], that are used in some

of our proofs. In this section, we consider the problem functions 	1(A) = Sp(A)

and 	2(A) = Spε(A), taking values in the space of non-empty compact subsets of C

equippedwithHausdorffmetric. The definitions of the classes�g and� f can be found
in Sect. 2. As written, the outputs of the algorithms below may be empty for small n
(and hence not lie in the correct metric space). This does not affect the classifications
and can be avoided by computing successive �n(A) and outputting �m(n)(A) where
m(n) ≥ n is minimal with �m(n)(A) �= ∅.

The methods in [64] and [60] use the function f to approximate the function

γn(z; A) = min{σinf((A − z I )|PnH), σinf((A
∗ − z̄ I )|PnH)}, (A.1)

where Pm denotes the orthogonal projection onto the linear span of the first m basis
vectors and σinf denotes the injection modulus. As n → ∞, the functions γn con-
verge uniformly on compact subsets down to the continuous function γ (z; A) =
‖R(z, A)‖−1, which we interpret as zero if the resolvent R(z, A) = (A− z I )−1 does
not exist as a bounded operator. The function f and sequence {cn} allow us to approx-
imate γn to any given precision. To use this to compute the spectrum, we need some
control on how the resolvent norm diverges near the spectrum and this is provided by
the function g satisfying (2.2). At various points in this paper, we have also made use
of the related functions

γn,m(z; A) = min{σinf(Pm(A − z I )|PnH), σinf(Pm(A∗ − z̄ I )|PnH)}. (A.2)
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These can be computed from the rectangular matrices Pm(A− z I )Pn, Pm(A− z I )∗Pn
and converge uniformly on compact subsets of C to γn as m →∞.

Algorithm 1: The subroutine IsPosDef checks whether a matrix is positive
definite and is a standard routine that can be implemented in a myriad of ways. In
practice, thewhile loop inDistSpec is replacedby amuchmore efficient interval
bisection method. An alternative method for sparse matrices (which, however,
does not rigorously guarantee an error bound on the smallest singular values) is
to compute the smallest singular values of the rectangular matrices using iterative
methods. See the supplementarymaterial of [64] for further discussion on efficient
numerical computation. Note also that when evaluating DistSpec for different
z, the computation can be done in parallel.

Function DistSpec(A,n,z, f (n))
Input : n ∈ N, f (n) ∈ N, matrix A, z ∈ C

Output: y ∈ R+, an approximation to the function z �→ ‖R(z, A)‖−1
B = (A − z I )(1 : f (n), 1 : n); C = (A − z I )∗(1 : f (n), 1 : n)

S = B∗B; T = C∗C
ν = 1, l = 0
while ν = 1 do

l = l + 1
p = IsPosDef(S − l2

n2
); q = IsPosDef(T − l2

n2
)

ν = min(p, q)

end
y = l

n
end

Throughout, we use that DistSpec requires only finitely many arithmetic oper-
ations and comparisons, as proven in [60] (one can perform the IsPosDef routine
using incompleteCholeskydecompositions). Furthermore, as outlined inRemark5.12,
we can make all of the algorithms in this paper and those in this appendix work using

1-information and restricting to arithmetical operations over the rationals.
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Algorithm 2: The routine CompSpec computes spectra of bounded operators
(see [60] for extensions to unbounded operators) on l2(N) (or, more generally,
graphs) using the subroutines CompInvg and DistSpec described above, and
provides�A

1 error control (without loss of generality by taking subsequences until
the computed error is below a user specified tolerance).

Function CompInvg(n,y,g)
Input : n ∈ N, y ∈ R+, g : R+ → R+
Output: m ∈ R+, an approximation to g−1(y)
m = min{k/n : k ∈ N, g(k/n) > y}

end

Function CompSpec(A,n,g, f (n),cn)
Input : n ∈ N, f (n) ∈ N, cn ∈ R+ (bound on dispersion), g : R+ → R+, A ∈ � f ∩�g
Output: �n(A) ⊂ C, an approximation to Sp(A), En(A) ∈ R+, the error estimate

G = 1
n (Z+ iZ) ∩ Bn(0)

for z ∈ G do
F(z) = DistSpec(A,n,z, f (n))
if F(z) ≤ (|z|2 + 1)−1 then

for w j ∈ BCompInvg(n,F(z),g)(z) ∩ G = {w1, . . . , wk } do
Fj = DistSpec(A,n,w j , f (n))

end
Mz = {w j : Fj = minq {Fq }}

else
Mz = ∅

end
end
�n(A) = ∪z∈GMz
En(A) = maxz∈�n (A){CompInvg(n,DistSpec(A,n,z, f (n))+cn, g)}

end

Algorithm 3: PseudoSpec computes �n(A) ⊂ Spε(A)with limn→∞ �n(A) =
Spε(A).

Function PseudoSpec(A,n, f (n),cn, ε)
Input : n, f (n) ∈ N, cn ∈ R

N+, A ∈ � f , ε > 0
Output: � ⊂ C, an approximation to Spε(A)

G = Grid(n)
m = min{k ≥ n | ck < ε}
for z ∈ G do

B = (A − z I )(1 : f (m), 1 : m); C = (A − z I )∗(1 : f (m), 1 : m)

S = B∗B; T = C∗C
p = IsPosDef(S − (ε − cm)2); q = IsPosDef(T − (ε − cm)2)

ν(z) = min(p, q)

end
� =⋃{z ∈ G |ν(z) = 0}

end
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Appendix B. Examples of Computational Routines

We provide short and simplified routines for some of the algorithms in this paper. For
example, we have ignored issues like the rigorous approximation of the function γn,m

in (A.2) using arithmetical operations. For brevity, we stick to one domain � and the
evaluation set �1 (matrix values) for each problem function 	. In each case, we have
chosen the non-trivial � with the simplest algorithm. For the different algorithms for
different classes of operators, see the proofs. In general, different classes of operators
and evaluation sets have different SCI classifications and different algorithms for the
same problem function.

B.1. Spectral Radii, Capacity and Operator Norms

For the problem functions in Sects. 3.1–3.3, we consider� f (see (2.1)) and� f ∩�SA
for computing the capacity of the spectrum.

Algorithm4:SpecRad computes the spectral radius of operators in� f using the
algorithm for computing pseudospectra, PseudoSpec, which is parallelisable
and provides �A

1 error control.

Function SpecRad(n1, n2, f (n1), cn1 , A)
Input : n1, n2, f (n1) ∈ N, cn1 ∈ R+, A ∈ � f

Output: �n2,n1 (A), a �A
2 approximation of r(A)

S = PseudoSpec(A, n1, f (n1), cn1 , n
−1
2 ) = {z1, . . . , zm }

�n2,n1 (A) = sup1≤ j≤m |z j |
end

Algorithm 5: EssSpecRad computes the essential spectral radius of operators
in � f using the algorithm for computing essential spectra, EssSpec, from [18].

Function EssSpecRad(n1, n2, f (n1), cn1 , A)
Input : n1, n2, f (n1) ∈ N, cn1 ∈ R+, A ∈ � f

Output: �n2,n1 (A), a �A
2 approximation of 	er (A)

S = EssSpec(A, n1, n2, f (n1), cn1 ) = ∪mj=1R j
NB: R j are rectangles with complex rational vertices.

�n2,n1 (A) = 1
2n2

+ sup1≤ j≤m maxz∈R j |z|
end
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Algorithm 6: PolyNorm computes the operator norm of p(A) for operators
A ∈ � f and polynomials p. The powers of A can be computed through “lazy
evaluation” (when one computes with infinite data structures, but defers the use
of the information until needed) and the function f .

Function PolyNorm(p, n, f (n), cn , A)
Input : polynomial p, n, f (n) ∈ N, cn ∈ R+, A ∈ � f

Output: �n(A), a �A
1 approximation of ‖p(A)‖

Compute B̂n ≈ Bn = Pn p(A)Pn ∈ C
n×n using f to compute matrix entries of powers of A.

Compute an upper bound δn of ‖B̂n − Bn‖.
(Do the above so that δn is bounded by a null sequence.)
�n(A) = ‖B̂n‖ − δn

end

Algorithm 7: CapSpec computes cap(Sp(A)) for operators A ∈ � f ∩ �SA.
The capacity of a finite union of intervals can be computed using conformal
mappings. The computation of In1,n2 requires applications of DistSpec which
can be performed in parallel.

Function CapSpec(n1, n2, f (n1), cn1 , A)
Input : n1, n2, f (n1) ∈ N, cn1 ∈ R+, A ∈ � f ∩�SA

Output: �n2,n1 (A), a �A
2 approximation of the capacity, cap, of Sp(A)

Form a disjoint covering of [−n1, n1] into intervals I n1,n2j , j = 1, . . . , n12n2+1, of length 2−n2
Use Lemma 3.21 with n = n1 to compute In1,n2 ↑ { j : interior(I n1,n2j ) ∩ Sp(A) �= ∅}
�n2,n1 (A) = cap

(
∪ j∈In1,n2

I
n1,n2
j

)

end
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B.2. Essential Numerical Range, Gaps in Essential Spectra and Detecting
Algorithm Failure for Finite Section

For the problems in Sect. 3.4, we consider �B.

Algorithm 8: EssNumRange computes the essential numerical range for oper-
ators A ∈ �B (see §7.1 for unbounded operators). The numerical range of a finite
squarematrix can be approximated to arbitrary accuracy using finitely many arith-
metic operations and comparisons. In practice, one can use the method of Johnson
[96], which reduces the computation of ∂W (B) for B ∈ C

n×n to a series of n× n
Hermitian (extremal) eigenvalue problems.

Function EssNumRange(n1, n2, A)
Input : n1, n2 ∈ N, A ∈ �B
Output: �n2,n1 (A), a �A

2 approximation of We(A)

Bn2,n1 = (I − Pn2 )Pn1+n2 A|Pn1+n2 (I−Pn2 )H ∈ C
n1×n1

�n2,n1 (A) = W (Bn2,n1 )
end

Algorithm 9: SpecPoll computes 	C

poll(A,U ) for operators A ∈ �B and
open sets U (given as a, possibly countably infinite, union of open balls {Um}
with rational radii and centres). The function γn2,n1 is the same as in (A.2).

Function SpecPoll(n1, n2, n3, A,U)
Input : n1, n2, n3,∈ N, A ∈ �B, open set U
Output: �n3,n2,n1 (A,U ), a �A

3 approximation of 	C

poll (A,U )

Sn2,n1 = EssNumRange(n1, n2, A) = {z1, . . . , zm }
NB: We use the version of EssNumRange that outputs a finite collection of points.
Vn1 = ∪n1j=1Uj

ϒn2,n1 = {z ∈ Sn2,n1 : dist(z, Vn1 ) < n−12 − n−11 }
if ϒn2,n1 �= ∅ then

Qn2,n1 = maxz∈ϒn2,n1
γn2,n1 (z; A)− n−11

else
Qn2,n1 = 0

end

if Qn2,n1 ≤ n−13 then
�n3,n2,n1 (A,U ) = 0

else
�n3,n2,n1 (A,U ) = 1

end
end
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B.3. LebesgueMeasure

For the problems in Sect. 3.5, we consider � f .

Algorithm 10: LebSpec computes Leb(Sp(A)) for operators A ∈ � f . It can be
easily adapted to self-adjoint operators and computing the Lebesgue measure of
the spectrum as a subset of the real line, by restricting the rectangles and balls to
intervals. Again, the computation of DistSpec can be performed in parallel.

Function LebSpec(n1, n2, f (n1), cn1 , A)
Input : n1, n2, f (n1) ∈ N, cn1 ∈ R+, A ∈ � f

Output: �n2,n1 (A), a �A
2 approximation of Leb(Sp(A))

G = 1
2n2 (Z+ iZ) ∩ [−n1, n1]2 = {z1, . . . , zm }

for z ∈ G do
Fn1 (z) = DistSpec(A, n1, z, f (n1))+ cn1

end
NB: WLOG we adapt Fn1 to be non-increasing in n1.
U (n2, n1, A) = [−n1, n1]2 ∩ (∪mj=1B(z j , Fn1 (z j )))

�n2,n1 (A) = 4n21 − Leb(U (n2, n1, A))

end

Algorithm11:LebPseudoSpec computes Leb(Spε(A)) for operators A ∈ � f .
It can be easily adapted to self-adjoint operators and computing the Lebesguemea-
sure of the pseudospectrum restricted to the real line, by restricting the rectangles
and balls to intervals. Again, the computation of DistSpec can be performed
in parallel.

Function LebPseudoSpec(n, A, ε)
Input : n ∈ N, A ∈ �L

ε , ε > 0
Output: �n(A), a �A

1 approximation of Leb(Spε(A))

G = 1
n (Z+ iZ) ∩ [−n, n]2 = {z1, . . . , zm }

for z ∈ G do
Fn(z) = DistSpec(A, n, z, f (n))+ cn

end
NB: WLOG we adapt Fn to be non-increasing in n.
S = {z ∈ G : Fn(z) ≤ ε}
�n(A) = Leb(∪z∈S D(z,max{0, ε − Fn(z)})

end
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Algorithm 12: NullLebSpec computes 	3
L(A) (“Is Leb(Sp(A)) = 0?”) for

operators A ∈ � f . It can be easily adapted to self-adjoint operators, where the
Lebesgue measure corresponds to that of the real line, by using the relevant adap-
tation of LebSpec.

Function NullLebSpec(n1, n2, n3, f (n1), cn1 , A)
Input : n1, n2, n3, f (n1) ∈ N, cn1 ∈ R+, A ∈ � f

Output: �n3,n2,n1 (A), a �A
3 approximation of 	3

L (A)

for j = 1, . . . , n1 do
t j = LebSpec( j, n2, f ( j), c j , A)

end

if max1≤ j≤n1 t j ≤ n−13 then
�n3,n2,n1 (A) = 1

else
�n3,n2,n1 (A) = 0

end
end

B.4. Fractal Dimensions

For the problems in Sect. 3.6, we consider �BD
f for the box-counting dimension and

� f ∩�SA for the Hausdorff dimension.
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Algorithm 13: BoxDimSpec computes the box-counting dimension of the spec-
trum for operators A ∈ �BD

f . If we enlarge the class to � f ∩ �SA, the result is
a tower of algorithms that converges to a quantity �(A) with dimB(Sp(A)) ≤
�(A) ≤ dimB(Sp(A)).

Function BoxDim(n1, n2, f (n1), cn1 , A)
Input : n1, n2, f (n1) ∈ N, cn1 ∈ R+, A ∈ �BD

f

Output: �n2,n1 (A), a �A
2 approximation of dimB (Sp(A))

if n1 ≥ n2 then
for l = 1, . . . , n1 do

Sl = CompSpec(A, l, f (l), cl , g : x �→ x) = {z1,l , . . . , zkl ,l }
NB: WLOG we assume that dist(z j ,l ,Sp(A)) ≤ 2−l .
for j = 1, . . . , kl do

I j,l = [z j ,l − 2−l , z j ,l + 2−l ]
end

end
for k ∈ {n2, n2 + 1, . . . , n1}, j ∈ {1, 2, . . . , n1} do

Let ϒk, j be any union of 2
−k−mesh intervals of minimal length |ϒk, j | (where length is

the number of mesh intervals that make up the union) such that
ϒk, j ∩ Ip,q �= ∅, 1 ≤ q ≤ j, 1 ≤ p ≤ kq .

Set ak, j = log(
∣∣ϒk, j (A)

∣∣)
k log(2)

end
�n2,n1 (A) = max{ak, j : n2 ≤ k ≤ n1, 1 ≤ j ≤ n1} (max over empty set is zero).

else
�n2,n1 (A) = 0

end
end

Algorithm 14: HausDimSpec computes the Hausdorff dimension of the spec-
trum for operators A ∈ � f ∩ �SA. An efficient way to compute the minimal
covering is to use binary trees [153].

Function HausDimSpec(n1, n2, n3, A)
Input : n1, n2, n3 ∈ N, A ∈ � f ∩�SA

Output: �n3,n2,n1 (A), a �A
3 approximation of dimH (Sp(A))

Notation: ρk denotes set of all closed intervals of form [2−km, 2−k (m + 1)], m ∈ Z

Sn1,n2 = union of all S ∈ ρn2 with S ⊂ [−n1, n1] and such that the algorithm discussed in
Lemma 3.21 outputs “Yes” for the interior of S and input parameter n1.
An3,n2,n1 =

{{Ui }i∈I : I is finite , Sn1,n2 ⊂ ∪i∈I Ui ,Ui ∈ ∪n3≤l≤n2ρl
}

for m ∈ {1, . . . , 2n3 } do
bm = inf

{∑
i diam(Ui )

m/2n3 : {Ui } ∈ An3,n2,n1

}
+ n−12

end
�n3,n2,n1 (A) = max{m/2n3 : b j > 1/2 for j = 1, . . . ,m} (max over empty set is zero).

end
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