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Abstract
Wedescribe a new algorithm for computingWhitney stratifications of complex projec-
tive varieties. Themain ingredients are (a) an algebraic criterion, due toLê andTeissier,
which reformulates Whitney regularity in terms of conormal spaces and maps, and
(b) a new interpretation of this conormal criterion via ideal saturations, which can be
practically implemented on a computer. We show that this algorithm improves upon
the existing state of the art by several orders of magnitude, even for relatively small
input varieties. En route, we introduce related algorithms for efficiently stratifying
affine varieties, flags on a given variety, and algebraic maps.

Keywords Whitney stratification · Conormal variety · Ideal saturation

Mathematics Subject Classification 14B05 · 14Q20 · 32S15 · 32S60

1 Introduction

The quest to define and study singular spaces counts among the most spectacular
success stories of twentieth century mathematics. Much of the underlying motivation
arose from algebraic geometry, where the spaces of interest—namely, the vanishing
loci of polynomials—contain singular points even in the simplest of cases.Without the
benefit of hindsight, it remains a Herculean task to construct good models of singular
spaces that are simultaneously broad enough to include all analytic varieties andnarrow
enough to exclude various pathological spaces which arise as zero sets of arbitrary
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Fig. 1 The Whitney cusp depicted is the hypersurface of R
3 given by y2 + z3 − x2z2 = 0. The entire

x-axis, drawn horizontally, is singular

smooth functions. The standard solution to this conundrum, which we describe below,
was first proposed byWhitney [50] and subsequently refined byThom [43, 44],Mather
[33], Goresky-MacPherson [21–23], Lê-Teissier [31], Fulton [17], Cappell-Shaneson
[7], Weinberger [49] and others.

Whitney’s Condition (B)

As a natural starting point, one can at least require each candidate space X under
consideration to embed in some Euclidean space R

n and to admit a partition into
smooth submanifolds, say

X =
∐

i

Mi ,

with dim Mi = i . An entirely reasonable first attempt at constructing such Mi from
X might proceed as follows. For each dimension 0 ≤ i ≤ n and subset Y ⊂ R

n , let
Ei (Y ) denote the set of points p in Y which admit an open neighborhood Up ⊂ Y
homeomorphic to R

i . Then, recursively define

Mn := En(X), and

Mi := Ei (X − M>i ) for 0 ≤ i < n,

whereM>i denotes the union
⋃

j>i M j . Unfortunately, this recursive strategy does not
produce a desirable partition. Perhaps the simplest way to see the underlying problem
is to try constructing these Mi by hand when X ⊂ R

3 is the singular surface depicted
in Fig. 1.

SinceM3 is empty, one identifiesM2 ⊂ X as the set of points with two-dimensional
Euclidean neighborhoods; and upon removing these, only the x-axis remains. This axis
must therefore equal M1, and we obtain a partition of X into one and two-dimensional
smooth manifolds. The issue here is that the origin has a singularity type which is
different from all other points lying on M1—a small neighborhood in X around the
origin is not homeomorphic to a small neighborhood around any other point lying on
the x-axis. More precisely, let G be the group of homeomorphisms f : X → X so
that f is isotopic to the identity and its restriction to each Mi is a diffeomorphism.
It turns out that G acts transitively on the two connected components of M1 − {0}
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Fig. 2 Sequences of points {xi } ⊂ M2 and {yi } ⊂ M1 which both converge to the origin. The limiting
tangent plane T of the xi ’s is horizontal, while the limiting secant line � of the [xi , yi ]’s is vertical. Thus,
Condition (B) would be violated if the origin was included in M1

while fixing 0 itself. Thus, our recursive strategy must be amended so that the Mi are
G-equisingular in this sense, which would automatically separate 0 from M1 into a
separate stratum.

Whitney’s ingenious approach from [50] was to consider the behavior of limiting
tangent spaces as one approaches a point in someY := Mi in two differentways: one in
a tangential direction alongY itself, and another in a normal direction along some other
X := Mj for j > i . Let {xi } and {yi } be sequences of points in X and Y , respectively,
which both converge to the same y in Y . Write Ti for the tangent space of X at xi and
�i for the secant line [xi , yi ] joining each xi to the corresponding yi in the ambient
R
n . The pair (X ,Y ) is said to satisfy Whitney’s Condition (B) if the limiting tangent

space T = lim Ti contains the limiting secant line � = lim �i whenever both limits
exist. In our example, one can find sequences of points in X := M2 and Y := M1,
both limiting to the problematic point 0, for which � �⊂ T—these are illustrated in
Fig. 2.

It is a foundational result in stratification theory that equisingularity is satisfied
by any decomposition X = ∐

i Mi for which all pairs (Mj , Mi ) satisfy Whitney’s
Condition (B)—see [33] or [23, Part I Ch 1.5]. Since their very inception, suchWhitney
stratifications have been used to define and compute myriad important algebraic-
topological invariants of singular spaces and related structures, even in cases where the
invariants do not ultimately depend on the chosen stratification. Prominent examples
include intersectionhomologygroups [21, 22], stratifiedvector fields [6], characteristic
varieties [18], Euler obstructions [20, 42] and Chern classes [32], to name but a few.

Conormal Spaces

Given a k-dimensional projective variety X ⊂ P
n , let Xreg be the smooth locus of X

and note that there is a well-defined tangent space Tx Xreg at each point x in Xreg. This
tangent space naturally resides in the Grassmannian Gr(k, n + 1) of k-dimensional
subspaces of C

n+1; let us consider the map

τ : Xreg → X × Gr(k, n + 1)

that sends each x to the pair (x, Tx Xreg). Thus, τ ’s image is the graph of the Gauss map
of X ; taking the closure of this image creates a new (usually singular) space N(X),
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Fig. 3 Fibers of the Nash blowup are depicted over a smooth (red) and singular (blue) point of an underlying
curve

called the Nash blowup of X (see [50, Sec 16] or [32]). The fiber over each point
x ∈ X of the evident projection map N(X) � X catalogues all the limiting tangent
spaces at x ; two such fibers are illustrated in Fig. 3.

From the perspective of analyzing limiting tangent spaces, the Nash blowup is an
optimal object. However, the geometry of the Grassmannian is rather intricate, and
this makes it difficult to explicitly compute defining equations of N(X) from those
of X . One remedy is to systematically replace Gr(k, n + 1) with the dual projective
space (Pn)∗ in the construction described above. With this modification in place, we
consider the set of all hyperplanes in P

n—or equivalently, points in the dual projective
space (Pn)∗—that contain the tangent space at each x in Xreg. Passing to the closure
in X × (Pn)∗ produces the conormal space Con(X) of X , and the natural projection
κX : Con(X) � X is called the conormal map. The conormal space retains essential
information about limiting tangents; and crucially,Con(X) is also a projective variety
whose defining equations can be easily extracted from those of X .

This Paper

Here, we introduce an algorithm for building Whitney stratifications of complex pro-
jective varieties. The main reason for restricting our focus to such varieties rather
than the far more general class of real semialgebraic sets (which are equally easy
to represent on a computer) is that the ingredients required to implement our algo-
rithm are only available in the complex algebraic setting. In any event, the immediate
obstacle is that it appears hopeless to try verifying Condition (B) directly for a pair
of smooth quasiprojective varieties, since this would require computation of limiting
tangent planes and secant lines over arbitrary pairs of infinite sequences. Attempting
to bypass this problem by constructing the Nash blowup also appears to be a daunting
task. Thus, we turn to the conormal space Con(X) of the given input variety X .

The good news comes in the form of a result by Lê and Teissier, which provides
a complete characterisation of Condition (B) for projective varieties in terms of their
conormal spaces [31, Proposition 1.3.8]. This criterion asserts that for any projective
variety X ⊂ P

n and smooth quasiprojective subvariety Y ⊂ X , the pair (Xreg,Y )

satisfies Condition (B) if and only if the ideal sheaf of Con(X) ∩ Con(Y ) lies in the
integral closure of the ideal sheaf of κ−1

X (Y ). There are now two caveats to consider—
first, as remarked above, we are not aware of any analogous criterion for pairs of
smooth real (semi)algebraic sets. Second, and more serious from our perspective, is
the fact that even the most basic algorithmic tasks involving integral closures are
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computationally prohibitive [46, Sec 9.3]. Our main result circumvents the latter issue
by making use of ideal saturations. (In its statement below, IZ indicates the defining
homogeneous ideal of a given projective variety Z .)

Theorem Let X ⊂ P
n be a pure-dimensional projective variety and Y ⊂ X a

nonempty irreducible subvariety of its singular locus Xsing. Let J be defined as the
ideal saturation

J := I
κ−1
X (Y )

: (
ICon(X)∩Con(Y )

)∞
,

and write V(J ) for the corresponding projective variety. Then, the difference

Y ′ := Yreg − κX (V(J ))

is dense in Y , and moreover, the pair (Xreg,Y ′) satisfies Condition (B).

Computing ideal saturations (such as J from the statement above) reduces to a
standard Gröbner basis calculation [10, Chapter 4.4, Theorem 14], so this result
directly leads to our recursive algorithm for stratifying complex projective varieties.
Before describing the details, we highlight three relevant features. First, given a k-
dimensional input variety X ⊂ P

n , the output Whitney stratification is produced in
the form of (defining equations for) a nested sequence X• of subvarieties

X0 ⊂ X1 ⊂ · · · ⊂ Xk = X ,

so that the desired manifold partition X = ∐
i Mi is given by Mi := Xi − Xi−1.

Second, this algorithm can easily be used to produce Whitney stratifications of affine
complex varieties as well—first pass to the projective closure X , build its Whitney
stratification X•, then dehomogenize the resulting Xi ’s. And third, given any flag F•
of projective subvarieties:

F0X ⊂ F1X ⊂ · · · ⊂ F�X = X ,

our algorithm can be adapted so that its output is subordinate to this flag. In other
words, we can guarantee that each connected component of a given Mi lies in a single
successive difference F j X −F j−1X (see Sect. 6). As a consequence, we are also able
in Sect. 7 to stratify generic morphisms of projective varieties by availing of their
Thom-Boardman flags [5, 43].

RelatedWork

The current state of the art in this area appears to be the recent work of Ðinh and
Jelonek [30]. To the best of our knowledge, given a complex algebraic variety X
embedded in n-dimensional affine or projective space, all prior stratification methods
(such as [37, 40] for instance) require quantifier elimination in approximately 4n
real variables. While critical points-based algorithms for quantifier elimination, such
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as that of Grigoriev and Vorobjov [25], have existed in the theoretical literature for
many years, these remain unimplemented (see the discussion in Sect. 8.3). Therefore,
quantifier elimination is generally accomplished using some version of the cylindrical
algebraic decomposition algorithm of Collins [1, 4, 9], which is known to be extremely
difficult in practice. For stratifications of real varieties given by unions of transversely
intersecting smooth subvarieties, the theoretical complexity of quantifier elimination
can be somewhat improved [47].As far aswe are aware, no implementation of any such
quantifier elimination-basedWhitney stratification algorithms has ever been produced.

The work of -Dinh and Jelonek [30] improves upon such cylindrical algebraic
decomposition (CAD) approaches by requiring only Gröbner basis (GB) computa-
tions in approximately 4n complex variables. The advantage enjoyed by GB methods
over their CAD counterparts in practice has been well-documented [14, 51]. In fact,
it is remarked in [14, III.D] that

“Although like CAD the calculation of GB is doubly exponential in the worst
case, GB computation is now mostly trivial for any problem on which CAD
construction is tractable".

In fairness, it should be noted that cylindrical algebraic decompositions apply to a
much wider class of singular spaces (i.e., real semialgebraic sets), where Gröbner
basis methods are entirely unavailable.

Our algorithm further reduces the Whitney stratification problem to Gröbner basis-
type computations in approximately 2n complex variables, and additionally, is able to
preserve the sparsity structure of the input in ways that make a significant difference to
real-world performance. By contrast, the algorithm of [30] requires various choices of
generic linear forms, which end up removing a lot of sparsity from the systems being
considered. As an added bonus our algorithm is deterministic, while the algorithm of
[30] is probabilistic.Wehave implemented both algorithms, andprovide a performance
comparison in the final Section of this paper.

Outline

In Sects. 2 and 3, we briefly review conormal spaces and Whitney stratifications,
respectively, with a view toward describing the Lê-Teissier criterion for Whitney’s
Condition (B). Section 4, which is focused on the ideal saturation approach to this
criterion, forms the technical heart of this paper and contains a proof of our main
result. We describe our recursive algorithm for constructing Whitney stratifications
of complex projective varieties in Sect. 5 and verify its correctness. In Sect. 6, we
modify this algorithm to produce flag-subordinate stratifications, which are then used
to stratify projective morphisms in Sect. 7. Finally, Sect. 8 provides both complexity
estimates and empirical evidence that the algorithmdescribed here readily outperforms
the existing state of the art.
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2 Conormal Spaces

For each pair of positive integers n and k with n + 1 ≥ k, let Gr(k, n + 1) denote
the complex Grassmannian whose points correspond to all the k-dimensional linear
subspaces of (n + 1)-dimensional affine space C

n+1. The usual projective space P
n

equals Gr(1, n + 1) while its dual (Pn)∗ is Gr(n, n + 1). Let X ⊂ P
n be a connected

k-dimensional complex analytic space whose regular and singular loci will be written
Xreg and Xsing := (X − Xreg) respectively. Recall that the tangent space to the smooth
manifold Xreg at a given point x is a subspace Tx Xreg in Gr(k, n + 1).

Definition 2.1 The conormal space of X is the subset of P
n × (Pn)∗ determined by

the closure

Con(X) = {
(x, ξ) | x ∈ Xreg and Tx Xreg ⊂ ξ

}
.

Thus, a point (x, ξ) in P
n × (Pn)∗ lies inCon(X) if and only if there exists a sequence

of points {xi } ⊂ Xreg which converge to x in P
n and a sequence of hyperplanes

{ξi } ⊂ (Pn)∗ which converge to ξ in (Pn)∗ so that Txi Xreg ⊂ ξi holds for all i � 1.

The map κX : Con(X) → X induced by the evident projection (x, ξ) 
→ x is
called the conormal map of X ; the fiber κ−1

X (x) of κX over a point x in X is the set
of all hyperplanes in (Pn)∗ which contain a limiting tangent space at x . Conormal
spaces and maps are well-studied classical objects of substantial interest in complex
geometry, with deep connections to polar varieties, Nash blowups, microlocal analysis
and beyond [16]. Here, we will be interested exclusively in conormal maps of complex
projective subvarieties X ⊂ P

n—in this special case, Con(X) is an n-dimensional
complex subvariety of X×(Pn)∗, the conormalmap κX is algebraic, and the dimension
of each fiber κ−1

X (x) is no larger than n (see [16, Proposition 2.9] and references
therein).

Proposition 2.2 Let X ⊂ P
n be a pure dimensional complex variety. If X ′ ⊂ X is any

Zariski-dense subset, then Con(X) = Con(X ′).

Proof Since X ′ is dense in the closed connected algebraic subspace X ⊂ P
n , for any

point (x, ξ) ∈ Con(X), there exists a sequence of points {xi } in X ′
reg converging to x

and an induced sequence of hyperplanes ξi containing Txi X
′
reg which converge to ξ .

Since Con(X) is closed by definition, we have Con(X) = Con(X ′). ��

3 Whitney Stratifications

Let X ,Y ⊂ C
n+1 be smooth complex manifolds with dim(Y ) < dim(X). A point

p in Y is said to satisfy Whitney’s Condition (B) with respect to X if the following
property [50, Sec 19] holds:

for any sequences of points {xi } ⊂ X and {yi } ⊂ Y both converging to p, if
the secant lines �i = [xi , yi ] converge to some limiting line � in P

n and if the
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tangent spaces Txi X converge to some limiting plane T in the Grassmannian
Gr(dim X , n + 1), then � ⊂ T .

More generally,we say that the pair (X ,Y ) satisfiesCondition (B) if the above property
holds for every point p in Y . Note that (X ,Y ) vacuously satisfies Condition (B) if the
closures X and Y do not intersect in C

n+1. The result below is also elementary, and
we have only highlighted it here since we appeal to it rather frequently.

Proposition 3.1 Assume that a pair (X ,Y ) of smooth complex manifolds satisfies
Condition (B). If X ′ ⊂ X is a dense submanifold of X and Y ′ ⊂ Y an arbitrary
submanifold of Y , then (X ′,Y ′) also satisfies Condition (B).

Proof Since X ′ ⊂ X and Y ′ ⊂ Y , every sequence ({xi }, {yi }) ⊂ X ′ × Y ′ is auto-
matically a sequence in X × Y . And since X ′ is dense in X , we have an equality
Txi X

′ = Txi X of tangent planes in the appropriate Grassmannian. Thus, (X ′,Y ′)
satisfies Condition (B) because (X ,Y ) does. ��

Condition (B) serves as a regularity axiomwhich can be used to induce a particularly
well-behaved and useful class of decompositions of analytic spaces into submanifolds.

Definition 3.2 A (k-dimensional) Whitney stratification of a complex analytic sub-
space W ⊂ C

n+1 is a filtration W• by closed subsets

∅ = W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ Wk−1 ⊂ Wk = W ,

where each differenceMi := Wi −Wi−1 is a complex analytic i-dimensional manifold
subject to the following conditions. The connected components of Mi , called the i-
dimensional strata, must obey the following axioms:

(1) local finiteness: every point p inW admits an open neighborhoodwhich intersects
only finitely many strata;

(2) frontier: for each stratum S ⊂ X , the difference (S − S) is a finite union of
lower-dimensional strata; and finally,

(3) condition (B): each pair of strata (regardless of dimension) satisfies Condition
(B).

Whitney showed in [50, Sect. 19] that every variety X admits a Whitney stratifica-
tion X• for which each constituent Xi ⊂ X is a subvariety. His original definition from
that paper contains an additional Condition (A), which is nowknown byMather’swork
to be superfluous [33, Proposition 2.4]. In fact, even the frontier axiom follows from
Condition (B) for locally finite stratifications [33, Corollary 10.5], so Condition (B)
will remain our sole focus in this paper. The inherent difficulty here is that verifying
Condition (B) involves testing the behavior of limiting tangent spaces and secant lines
over arbitrary families of infinite sequences. Fortunately, there is a beautiful alternate
characterization in terms of conormal maps due to Lê and Teissier [31, Proposition
1.3.8], which we describe below. The following notation has been employed in its
statement: for each (open or closed) subscheme Z of P

n , the defining sheaf of ideals
is written I [Z ].
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Proposition 3.3 Let X ⊂ P
n be a projective variety and Y ⊂ X a smooth quasiprojec-

tive variety. Let κX : Con(X) → X be the conormal map of X andI [κ−1(Y )] be the
integral closure of the ideal sheaf I [κ−1(Y )]. The pair (Xreg,Y ) satisfies Whitney’s
Condition (B) if and only if we have a containment

I [Con(X) ∩ Con(Y )] ⊂ I [κ−1
X (Y )]. (1)

We recall for the reader’s convenience that the integral closure of an ideal I in a
commutative ring R is the ideal I consisting of all r in R which happen to be roots of
monic polynomialswith coefficients in I . In general, if we are only given access to a set
of generating elements for I , then various algorithmic operations involving I become
computationally prohibitive even in the relatively benign case R = C[x0, . . . , xn].
These hard tasks include, for instance, extracting a list of defining polynomials for I
and testing whether a given r ∈ R lies inside I (see [45, Sects. 6.6 and 6.7] or [46,
Sect. 9.3]). Thus, its considerable aesthetic appeal notwithstanding, Proposition 3.3
does not furnish an efficient algorithmic mechanism for verifying Condition (B). We
are therefore compelled to employ a Corollary of this Proposition, where the integral
closure has been replaced by a far more tractable object.

Remark 3.4 Before proceeding to the promised Corollary in the next section, it may be
helpful to keep the following facts in mind regarding the ideals which have appeared
in Proposition 3.3. Since Y is a (smooth) subspace of X by assumption, at each point y
of Y , the tangent space TyY is a (dim Y )-dimensional subspace of some (in fact, every)
limiting tangent space T = limi (Txi Xreg) associated with a given sequence {xi } ⊂
Xreg converging to y. Thus, any hyperplane containing T automatically contains TyY
and we have a containment of fibers κ−1

X (y) ⊂ κ−1
Y (y) whenever y lies in Y ⊂ X .

Consequently, the intersection Con(X) ∩ Con(Y ) lies in the inverse image κ−1
X (Y ),

which forces the contravariant containment

I [κ−1
X (Y )] ⊂ I [Con(X) ∩ Con(Y )] (2)

of the associated ideal sheaves. It follows from Proposition 3.3 that the pair (Xreg,Y )

satisfies Condition (B) whenever I [Con(X) ∩ Con(Y )] is sandwiched between
I [κ−1

X (Y )] and its integral closure.

4 Saturations

Our quest to render Proposition 3.3 algorithmically effective begins with a reminder
that if I and J are any two homogeneous ideals of a commutative ring R, then the
saturation of I with respect to J , written I : J∞, is defined to be

I : J∞ =
{
r ∈ R | there is some N ≥ 0 satisfying r J N ⊂ I

}
.

This saturation [10, Chapter 4, Definition 8] is itself a homogeneous ideal of
C[x0, . . . , xn], and satisfies the following crucial property—writing V (I ) ⊂ P

n for
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the subscheme defined by the ideal I � C[x0, . . . , xn] and so forth, we have

V (I : J∞) = V (I ) − V (J ), (3)

see [10, Chapter 4, Theorem 10] for details. We will reserve the notationV(I ) for the
projective variety (the zero set rather than the scheme) corresponding to an ideal I ;
equivalently V(I ) is the reduced scheme associated with the radical

√
I , i.e., V(I ) =

V (I )red. Also note that all varieties will be assumed to be reduced, but not necessarily
irreducible.

We now return to the setting of Proposition 3.3, where X ⊂ P
n is a projective

variety with Y ⊂ X a smooth quasiprojective subvariety, and κX : Con(X) → X
is the conormal map of X . Throughout the remainder of this section, we will write
coordinates of P

n as {x0, . . . , xn} and denote this choice as P
n
x . Similarly, the choice

of coordinates for (Pn)∗ will be {ξ0, · · · , ξn} and we denote this by writing (Pn)∗ξ . We
denote the coordinate ring of the product P

n
x × (Pn)∗ξ by

C[x, ξ ] := C[x0, . . . , xn, ξ0, . . . , ξn]

and examine some of its relevant ideals. When Y ⊂ X is a subvariety defined by some
ideal

IY = 〈 f1, . . . , fr 〉 � C[x],

then IY is canonically identified with an ideal 〈 f1, . . . , fr 〉 of C[x, ξ ] because the fi
are also polynomials in C[x, ξ ]; in a mild abuse of notation, we will also refer to this
ideal in C[x, ξ ] as IY . Note that both κ−1

X (Y ) and Con(X) ∩Con(Y ) are also defined
by ideals of C[x, ξ ]—the next result provides a convenient relation between these
three ideals.

Proposition 4.1 Let X ⊂ P
n
x be a projective variety with conormal map κX :

Con(X) → X. For any subvariety Y = V( f1, . . . , fr ) ⊂ X, we have

I
κ−1
X (Y )

= ICon(X) + IY

in the polynomial ring C[x, ξ ].
Proof The polynomials { f1, . . . , fr } in C[x] are also polynomials in the ring C[x, ξ ];
set K = 〈 f1, . . . , fr 〉 ⊂ C[x, ξ ]. Let π : P

n
x ×(Pn)∗ξ → P

n
x be the standard coordinate

projection onto the first factor. We have an equality of schemes

κ−1
X (Y ) = Con(X) ∩ π−1(Y ),

and we also have V(K ) = π−1(Y ) by definition. Consequently, there is an equality

κ−1
X (Y ) = Con(X) ∩ V(K )
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of schemes; the desired conclusion now follows since the scheme on the right hand
side is defined by ICon(X) + K . ��

Our next goal, given a candidate stratum-closure Y inside a projective variety X ,
is to identify all those points of Y (if any) which fail to satisfy Condition (B) with
respect to Xreg. The next result constructs an ideal J in C[x, ξ ] and shows that that
these offending points must lie within κX (V(J )); andmoreover, removing these points
leaves us with a Zariski dense (and hence nonempty) subset Y ′ of Y . Here, we restrict
to the case where the variety X is pure-dimensional, meaning that all of its irreducible
components must have the same dimension.

Lemma 4.2 Let X ⊂ P
n
x be a pure dimensional projective variety and Y a nonempty

irreducible subvariety of its singular locus Xsing. If J � C[x, ξ ] is the saturation

J = I
κ−1
X (Y )

: (
ICon(X)∩Con(Y )

)∞
,

andV(J ) ⊂ P
n
x×(Pn)∗ξ the corresponding variety, then, the set Y ′ := Yreg−κX (V(J ))

is Zariski dense in Y .

Proof We seek to show that the Zariski closure of Y ′ equals Y ; and since Y is irre-
ducible, it is enough to establish that Y −κX (V(J )) is nonempty. To this end, let i > j
be the dimensions of X and Y , respectively, and impose a Whitney stratification on
X :

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xi−1 ⊂ Xi = X ,

so that the j-stratum Z = X j − X j−1 intersects Y in a dense subset Z ∩ Y . This
density has three immediate but important consequences:

(i) by Proposition 2.2, we know that Con(Z ∩ Y ) = Con(Y ); also,
(ii) since Y �= ∅ by assumption,Con(Z ∩Y )∩Con(X) = Con(Y )∩Con(X) is also

non-empty; and finally,
(iii) since κX is a projection map, we have dim(κ−1

X (Z ∩ Y )) = dim(κ−1
X (Y )).

Moreover, since Z ⊂ X is aWhitney stratum, the pair (Xreg,Y∩Z) satisfies Condition
(B); so by (1) and (2) we have containments

I [κ−1
X (Y )] ⊂ I [κ−1

X (Y ∩ Z)] ⊂ I [Con(X) ∩ Con(Y )] ⊂ I [κ−1
X (Y ∩ Z)]. (4)

of ideal sheaves. Let us write S and S + to indicate the schemes associated to
I [κ−1

X (Y )] and I [κ−1
X (Y ∩ Z)], respectively. As noted in consequence (iii) above,

dim(κ−1
X (Z ∩ Y )) equals dim(κ−1

X (Y )). Since an ideal sheaf and its integral closure
have the same support (see [29, Remark 1.1.3] for instance), the containments in (4)
guarantee

dim(S ) = dim(κ−1
X (Y )) = dim(κ−1

X (Z ∩ Y )) = dim(Con(X) ∩ Con(Y )) = dim(S +).
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Since by (4) the scheme S contains Con(X) ∩ Con(Y ) and these schemes have the
same dimension, they must agree in at least one irreducible component of maximal
dimension; choose some (x, ξ) in this component, so (x, ξ) does not lie in V(J ).
Finally, since J is defined as a saturation, we know from (3) that

V(J ) = κ−1
X (Y ) − (Con(X) ∩ Con(Y )),

whence x lies in Y − κX (V(J )) as desired. ��

We now arrive at our main result, which establishes that the variety Y ′ constructed
in Lemma 4.2 satisfies Condition (B) with respect to Xreg.

Theorem 4.3 Let Y ⊂ X ⊂ P
n
x and J � C[x, ξ ] be defined as in the statement of

Lemma 4.2; writing Y ′ for the difference Yreg −κX (V(J )), the pair (Xreg,Y ′) satisfies
Condition (B).

Proof By (3) and the definition of Y ′, we have the containment

κ−1
X (Y ′) ⊆ V (IY + ICon(X)) − V (J )

as subschemes of P
n
x × (Pn)∗ξ . By Lemma 4.2 we know that Y ′ is dense in Y , and

therefore Con(Y ′) = Con(Y ) by Proposition 2.2. We will show that κ−1
X (Y ′) and

Con(X) ∩ Con(Y ) are equal. By (2) and Proposition 2.2, we immediately have the
containment

Con(X) ∩ Con(Y ) = Con(X) ∩ Con(Y ′) ⊆ κ−1
X (Y ′).

For the reverse inclusion, note by (3) that V (IY + ICon(X)) − V (J ) equals

V (IY + ICon(X)) − (V (IY + ICon(X)) − (Con(X) ∩ Con(Y ))),

which is evidently a subset of Con(X) ∩ Con(Y ). Therefore, we have

κ−1(Y ′) = Con(X) ∩ Con(Y ) = Con(X) ∩ Con(Y ′)

as schemes. Hence, the conclusion follows by Proposition 3.3 since an ideal is always
contained in its integral closure. ��

In particular all points in Yreg at which Condition (B) fails with respect to X reg are
forced to lie in the closure κX (V(J )). Algebraically, one computes this closure via
elimination, i.e., since κX (V(J )) = V(J ∩ C[x]).
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5 Stratifying Projective Varieties

In this section, we describe a recursive algorithm which uses Theorem 4.3 to compute
Whitney stratifications of pure-dimensional projective varieties. Since each irreducible
component of an arbitrary projective variety can be stratified separately, this is by
no means a severe restriction. And since various intermediate varieties which get
constructed in our algorithm will not satisfy this purity criterion, it will be convenient
to let Pured(Z) denote the set of all the pure d-dimensional irreducible components
of a given projective variety Z . These components can be algorithmically extracted
by computing the minimal associated primes of the defining ideal IZ , and the main
cost is a Gröbner basis computation—see [12].

5.1 Computing Conormal Ideals

In light of Theorem 4.3, we will often be required to compute (the equations which
define) the conormal space Con(Z) of a given projective variety Z ⊂ P

n . The ideal
ICon(Z) � C[x, ξ ] is extracted in practice as follows. First, we let IZ = 〈 f1, . . . , fr 〉
be any defining ideal of Z , and let c be its codimension n − dim(Z). One computes
the Jacobian ideal JacZ of Z which is generated by all the c × c minors of the matrix
of partial derivatives

⎡

⎢⎣

∂ f1/∂x0 · · · ∂ f1/∂xn
...

. . .
...

∂ fr/∂x0 · · · ∂ fr/∂xn

⎤

⎥⎦ ,

see [35, pg. 27–28]. The singular set Zsing ⊂ Z is (by definition) the zero locus of the
Jacobian ideal, namely:

Zsing = V(IZ + JacZ ).

Now if we let Jacξ
Z be the ideal generated by the (c + 1) × (c + 1) minors of the

ξi -augmented Jacobian matrix:

⎡

⎢⎢⎢⎣

ξ0 · · · ξn
∂ f1/∂x0 · · · ∂ f1/∂xn

...
. . .

...
∂ fr/∂x0 · · · ∂ fr/∂xn

⎤

⎥⎥⎥⎦ ,

then ICon(Z) is given by the saturation (IZ + Jacξ
Z ) : (JacZ )∞, see [13, Eq. (5.1)]

or [28, §2] for instance. Algorithms for computing ideal sums and saturations are
standard fare across computational algebraic geometry, and may be found in [10] for
instance.
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5.2 The Saturation Subroutine

For any pair of projective varieties X ,Y ⊂ P
n with Y ⊂ Xsing, the following sub-

routine, calledDecompose, implements the saturation-based constructions of Lemma
4.2. Althoughwe present the inputs and outputs of all our algorithms as projective vari-
eties, in practice, thesemust be represented on amachine by some choice of generating
polynomials of their defining ideals.

Decompose(Y , X)

Input: Projective varieties Y ⊂ X in P
n , with d := dim Y .

Output: A list of subvarieties Y• of Y .

1 Set Y• := (Yd , Yd−1, . . . , Y0) := (Y , ∅, . . . , ∅)

2 For each irreducible component Z of Y
3 Set J := (ICon(X) + IZ ) : (ICon(X) + ICon(Z))

∞ ⊂ C[x, ξ ]
4 Set K := J ∩ C[x]
5 Set W := Z ∩ V(K )

6 For each irreducible component V of W
7 Add V to Y≥dim(V )

8 Return Y•

The notation in Line 7 is meant to indicate that V is added to Yi for all i ≥ dim V .
This subroutine terminates because the For loops in lines 2 and 6 are indexed over
irreducible components of projective varieties, of which there can only be finitely
many. The following result is a consequence of Lemma 4.2 and Theorem 4.3.

Proposition 5.1 Let Y ⊂ X be a pair of projective varieties in P
n so that Y ⊂ Xsing

and dim Y = d. If Decompose is called with input (Y , X), then:

(1) for all i ∈ {0, . . . , d − 1}, its output varieties satisfy Yi ⊂ Yi+1; also,
(2) Yd−1 is a (possibly empty) subvariety of Y with dim Yd−1 < dim Y ; and finally,
(3) all points of Yreg where Condition (B) fails with respect to Xreg lie in Yd−1, so the

pair (Xreg,Yreg − Yd−1) satisfies Condition (B).

Proof The first assertion holds because of Line 7: whenever an irreducible Z is added
to Ydim Z , it is also added to all the subsequent Yi with i > dim Z . For each irreducible
Z ⊂ Y , the variety W from Line 5 is precisely κX (V(J )), where

J = I
κ−1
X (Z)

: (ICon(X)∩Con(Z))
∞.

(As before, κX is the conormal map of X .) Since Y equals the union
⋃

Z Z as Z
ranges over its irreducible components, the second assertion follows from Lemma
4.2. Finally, by Theorem 4.3, this variety W contains all those points of Zreg where
Condition (B) fails to hold with respect to Xreg. Thus, the third assertion follows from
the containment Yreg ⊆ ⋃

Z Zreg. ��
The output Y• ofDecompose described above need not constitute a Whitney strati-

fication of the input variety Y—Proposition 5.1 does not guarantee that Condition (B)
holds among successive differences of the form Yi − Yi−1.

123



Foundations of Computational Mathematics (2023) 23:1745–1780 1759

5.3 TheMain Algorithm

Let X ⊂ P
n be a pure k-dimensional complex projective variety defined by a radical

homogeneous ideal IX . The algorithmWhitStrat, described below, takes in X as input
and returns a nested sequence of its subvarieties X•. An essential part of this algorithm
is a Merge statement, which accepts two nested sequences of varieties V• and W• of
lengths k and d, with k > d. ToMerge V• with W•, one updates the longer sequence
V• via the following rule:

Vi ← Vi ∪ Wmax(i,d).

The property Vi ⊂ Vi+1 continues to hold after such an operation. The following
algorithmWhitStrat usesDecompose in order to construct Whitney stratifications of
pure-dimensional projective varieties.

WhitStrat(X)

Input: A pure k-dimensional variety X ⊂ P
n .

Output: A list of subvarieties X• of X .

1 Set X• := (Xk , Xk−1, . . . , X0) := (X , ∅, . . . , ∅)

2 Compute Xsing and μ := dim(Xsing)

3 For each irreducible component Z of Xsing
4 Add Z to X≥dim Z
5 For each d in (μ, μ − 1, . . . , 1, 0)
6 Merge X• with Decompose( Pured (Xd ), X)

7 Merge X• with WhitStrat( Pured (Xd ))

8 Return X•

To verify that this algorithm terminates, we note that the For loop on Line 3 runs
once per irreducible component of Xsing, of which there can only be finitely many.
And the For loop on Line 5 will terminate provided that the recursive call on Line 7
terminates; but the dimension of the variety Xd is bounded above by μ < k, i.e., it
is strictly less than the dimension of the input variety. Thus, the recursion terminates
after finitely many steps and produces a nested sequence X• of subvarieties of X . Our
goal in the next section is to establish that X• constitutes a validWhitney stratification
of X .

5.4 Correctness

Let X•(d) denote the nested sequence of varieties X• as they stand at the end of the
d-th iteration of For loop (in Line 5 of WhitStrat) where d = (μ,μ − 1, . . . , 1, 0).
These Xi (d) fit into a (μ+1)×(k+1) grid of projective varieties and inclusion maps:
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Xk(μ) Xk−1(μ) · · · X1(μ) X0(μ)

Xk(μ − 1) Xk−1(μ − 1) · · · X1(μ − 1) X0(μ − 1)

...
...

. . .
...

...

Xk(1) Xk−1(1) · · · X1(1) X0(1)

Xk(0) Xk−1(0) · · · X1(0) X0(0)

(5)

The vertical inclusion maps arise since each X•(d) is obtained from the previous
X•(d +1) by performing twoMerge operations (in Lines 6 and 7, respectively). Note
that each iteration of the For loop in Line 5 moves us from one row to the next, until
at last the bottom row (corresponding to index d = 0) contains the output.

Remark 5.2 Before entering theFor loop of Line 5, the sequence X• contains the input
variety X in the top dimension (i.e., Xk = X ) and irreducible components of Xsing in
lower dimensions. It follows that the columns of our grid (5) come in three flavours,
depending on the index i :

(1) the left-most column (with index i = k) identically equals X , i.e., Xk(d) = X
regardless of the row index d in {0, . . . , k};

(2) the next few columns (with index k > i ≥ μ) are also constant—independent of
the row index d, each Xi (d) in this range equals Xsing; and finally,

(3) the i-th column for μ > i ≥ 0 stabilizes below its (i + 1)-indexed entry:

Xi (d) = Xi (i + 1) for all 0 ≤ d ≤ i < μ. (6)

These three assertions follow from the observation that during the d-indexed iteration
of the For loop in Line 5, the two Merge operations (from Lines 6 and 7) which
produce the row X•(d) are only allowed to merge subvarieties of Xd(d + 1) to the
preceding row X•(d + 1).

Define the successive differences across the rows of the grid (5), i.e.,

Si (d) := Xi (d) − Xi−1(d). (7)

It follows from Lines 2–4 of WhitStrat that we have the containment

Xi (d)Sing ⊂ Xi−1(d) for all d ≤ i,

whence Si (d) is a smooth manifold whenever d ≤ i . Therefore, Si (0) is smooth for
all i . In the remainder of this Section, we will now show that Si (0) constitutes the
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i-strata of a Whitney stratification X•(0) of the input variety X . Here is a first step in
this direction.

Proposition 5.3 The pair (Sk(i), Sd(i)) satisfies Condition (B) for all 0 ≤ i ≤ d ≤ k.
In other words, Xd−1(i) contains all points of Xd(i) reg where Condition (B) fails with
respect to Sk(i).

Proof By Remark 5.2, we may safely restrict to the case 0 ≤ i ≤ d ≤ μ, since we
have

Xμ(d) = Xμ+1(d) = · · · = Xk−1(d)

for all d by Remark 5.2(2). Let V• denote the output of Decompose obtained (in Line
6) during the d-th iteration of theFor loop in Line 5. It follows from Proposition 5.1(3)
that the pair

P := (
Xreg, Xd(d + 1)reg − Vd

)

satisfies Condition (B). By Proposition 5.1(2), we know that Vd is a subvariety of
Xd(d + 1) of dimension strictly smaller than d. Since V• is merged with X•(d + 1)
in Line 6 en route to producing X•(d), we know that Vd must in fact be a subvariety
of Xd−1(d). Now note that

Sk(d) = Xk(d) − Xk−1(d) by 7,

= X − Xk−1(d) by Remark 4.2(1).

Since dim Xk−1(d) < k, we know that Sk(d) is dense in Xreg. Moreover, since Vd is
entirely contained in Xd−1(d), we may apply Proposition 3.1 to the pair P above and
conclude that the new pair

P ′ := (
Sk(d), Xd(d + 1)reg − Xd−1(d)

)

also satisfiesCondition (B).Now letW• be the output of the recursive call toWhitStrat
in Line 7 during the d-th iteration of the For loop in Line 5. From Lines 2–4, we
deduce that Xd(d + 1)sing ⊂ Wd−1, and after the Merge operation of Line 7 we are
also guaranteed Wd−1 ⊂ Xd−1(d). Putting these containments together gives

Xd(d + 1)sing ⊂ Wd−1 ⊂ Xd−1(d).

By (6), we have Xd(d + 1) = Xd(d), whence Xd(d)sing ⊂ Xd−1(d). Therefore,
the difference Sd(d) := Xd(d) − Xd−1(d) in fact equals Xd(d + 1)reg − Xd−1(d).
Using this in the pair P ′ guarantees that the pair (Sk(d), Sd(d)) satisfies Condition (B).
Finally, the conclusion for the pair (Sk(i), Sd(i)) follows since subsequent iterations
of the the For loop (corresponding to lower d values) do not alter X≥d . ��

Next, wewill establish that Condition (B) is satisfied by arbitrary pairs of successive
differences in (5) for sufficiently small row index.
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Proposition 5.4 The pair (S j (i), Si (i)) satisfies Condition (B) for all 0 ≤ i < j ≤ k.

Proof From Remark 5.2, we have S j (i) = S j ( j) since i < j . Let W• be the output of
the recursive call in Line 7 ofWhitStrat during the d = j iteration of the For loop in
Line 5, sowe haveWj = Pure j (X j ( j)). Recall by (7) that S j (i) = X j (i)−X j (i−1);
now any irreducible component Y ⊂ X j (i) with dim Y < j must also lie in X j−1(i),
whence

S j (i) = Pure j (X j ( j)) − X j−1(i)

= Wj − X j−1(i).

Now, Wj−1 lies in X j−1( j) because of the Merge operation in Line 7 of WhitStrat,
and in turn, X j−1( j) is a subvariety of X j−1(i) as described in (5). Since both varieties
Wj−1 ⊂ X j−1(i) have dimension strictly smaller than j , we have that S j (i) is dense
inWj −Wj−1. Thus, it suffices to show that all points inWj ∩ Xi (i) where Condition
(B) fails with respect to S j (i) lie within Wj ∩ Xi−1(i). To confirm this, note that by
construction, Xi (i) is a union of the form Wi ∪ Z , where the subvariety Z ⊂ Xi (i)
has dim(Z) ≤ i . First, we consider the case where Z is empty; in this case, we know
from Proposition 5.4 that the pair

(Wj − Wj−1,Wi − Wi−1)

satisfies Condition (B), so the desired result follows immediately fromProposition 3.1.
On the other hand, if Z is nonempty, we can assume without loss of generality that Z
is not contained inWi . Now any point ofWj ∩ (Xi (i)−Wi ) = Wj ∩ (Z −Wi ) where
Condition (B) fails with respect to Wj must lie in Wj−1 by Proposition 5.3. Thus, no
such point lies in S j (i), and it remains to show that all points inWi ∩Xi (i) = Wi where
Condition (B) fails with respect to S j (i) are contained in Xi−1(i). But since Wi−1 ⊂
Xi−1(i) due to the Merge operation, this follows immediately from Proposition 5.3.

��
We can now confirm that the output of WhitStrat constitutes a valid Whitney

stratification of X .

Theorem 5.5 When called on a pure k-dimensional complex projective variety X ⊂
P
n, the output X• of WhitStrat forms a Whitney stratification of X.

Proof As remarked after (7), each Si (d) is smooth for d ≤ i . The conclusion follows
immediately from Proposition 5.4 since for any pair (S j (i), Si (i))with 0 ≤ i ≤ j ≤ k
we have Si (i) = Si (0) and S j (i) = S j (0) by Remark 5.2. Thus, Condition (B) holds
for every pair (S j (0), Si (0)) with i ≤ j ≤ k. ��

This algorithm can also be used to stratify affine complex varieties via the following
dictionary: for each affine complex variety X ⊂ C

n , we write PX ⊂ P
n for its projec-

tive closure [35, Proposition 2.8], which is constructed as follows. Let { f1, . . . , fr }
be a Gröbner basis for the defining ideal IX � C[x1, . . . , xn]. For each i in {1, . . . , r},
write Fi for the homogenisation of fi inC[x0, x1, . . . , xn]. Then, the projective closure
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PX ⊂ P
n is the complex projective variety given by V(F1, . . . , Fr ). Conversely, one

can recover X from PX by dehomogenizing, i.e., by setting x0 = 1 in each defining
polynomial Fi .

Corollary 5.6 Let X ⊂ C
n be a pure k-dimensional affine complex variety and let

PX ⊂ P
n be its projective closure. If PX• is the output of WhitStrat(PX), then a

validWhitney stratification of X is given by X•, where each Xi is the dehomogenization
of PXi .

Proof Since PX• defines a Whitney stratification of PX , it follows from Proposition
3.1 that intersecting each PXi with a dense subset D ⊂ PX constitutes a Whitney
stratification of D. The conclusion follows by considering D = PX − V(x0). ��

It should be noted that the stratifications produced by WhitStrat may not be min-
imal; and moreover, the stratification of X described in the preceding Corollary may
not be minimal even if the output stratification of PX is minimal.

6 Flag-Subordinate Stratifications

By a flag F• on a variety X , we mean any finite nested set of subvarieties of the form

∅ = F−1X ⊂ F0X ⊂ F1X ⊂ · · · ⊂ F�−1X ⊂ F�X = X .

If X is projective, we implicitly require each Fi X to also be projective. We call �

the length of the flag F•. Aside from these containments, there are no restrictions on
the dimensions of the individual Fi X ; and in particular, we do not require successive
differences Fi X − Fi−1X to be smooth manifolds, let alone satisfy Condition (B).

Definition 6.1 Let X ⊂ P
n be a projective variety and F• a flag on X of length �. A

Whitney stratification X• of X is subordinate to F• if for each stratum S ⊂ X of X•,
there exists some j = j(S) in {0, . . . , �} satisfying S ⊂ (F j X − F j−1X).

It is crucial to note that the number j(S) from the preceding Definition need not equal
dim S, and that one does not require j(S) = j(S′) whenever dim S = dim S′.

Fix a pure-dimensional complex projective variety X ⊂ P
n as well as a flagF• on X

of length � < ∞. The following subroutine accepts as input any (not necessarily pure
dimensional) subvariety W ⊂ X along with the flag F•, and constructs the induced
flag F′• on W defined by

F′
jW := W ∩ F j X

for all j in {0, 1, . . . , �}.
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InducedFlag(W ,F•)

Input: A subvariety W ⊂ X and a flag F• on X of length �.
Output: A flag F′• on W of length �.

1 Set F′•W := (F′
�
W , . . . ,F′

0W ) := (∅, . . . , ∅)

2 For each irreducible component V of W
3 Add V to F′

i W for all F′
i where V ⊂ F′

i
4 For each j with dim(F j X ∩ V ) < dim V
5 Add Vj := (F j X ∩ V ) to F′

i W for all F′
i where Vj ⊂ F′

i
6 Return F′•W

The strategy for producing an F•-subordinate stratification of X is to modify the
algorithms of Sect. 5 as follows: whenever one wishes to Add an irreducible i-
dimensional subvariety W ⊂ X to the output sequence X≥i , one Merges X• with
InducedFlag(W ,F•) instead. For completeness, we have written out the modified
versions of bothDecompose andWhitStrat. (The originals can be found in Sects. 5.2
and 5.3, respectively.)

6.1 Flag-Subordinate Stratification Algorithms

Here is the flag-subordinate avatar of Decompose; as promised, it only differs from
the original in Line 6: the statement whichAdded an irreducible variety to a sequence
has now been replaced with aMerge.

DecomposeFlag(Y , X ,F•)

Input: Proj. varieties Y ⊂ X with d := dim Y and a flag F• on X .
Output: A list of subvarieties Y• ⊂ Y .

1 Set Y• := (Yd , Yd−1, . . . , Y0) := (∅, . . . , ∅)

2 For each irreducible component Z of Y
3 Set J := (ICon(X) + IZ ) : (ICon(X) + ICon(Z))

∞ ⊂ C[x, ξ ]
4 Set K := J ∩ C[x]
5 Set W := Z ∩ V(K )

6 Merge Y• with InducedFlag(W ,F•)

7 Return Y•

And here is the variant ofWhitStrat which produces an F•-subordinate stratifica-
tion of X ⊂ P

n . Again, the only difference occurs in Line 4.
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WhitStratFlag(X ,F•)

Input: A pure k-dimensional variety X ⊂ P
n and a flag F• on X .

Output: A list of subvarieties X• ⊂ X .

1 Set X• := (Xk , Xk−1, . . . , X0) := (X , ∅, . . . , ∅)

2 Compute Xsing and μ := dim(Xsing)

3 Set Xd = Xsing for all d in {μ, μ + 1, . . . , k − 1}
4 Merge X• with InducedFlag(Xsing,F•)
5 For each d in (μ, μ − 1, . . . , 1, 0)
6 Merge X• with DecomposeFlag(Xd , X ,F•)
7 Merge X• with WhitStratFlag(Xd ,F•)

8 Return X•

6.2 Correctness

The following result confirms that WhitStratFlag produces valid flag-subordinate
Whitney stratifications.

Theorem 6.2 Let X ⊂ P
n be a pure dimensional complex projective variety and F• a

flag on X. When called with input (X ,F•), the algorithm WhitStratFlag terminates
and its output X• is an F•-subordinate Whitney stratification of X.

Proof Termination follows for the same reasons as the ones used for WhitStrat, and
since X• is a valid Whitney stratification follows from Theorem 5.5. Thus, it remains
to show that each connected component S of Xi −Xi−1 is contained entirely in a single
F j X − F j−1X . Any such S can be written as Y − Xi−1, where Y is an irreducible
component of Xi . Note that, in particular, this Y will appear as a V in Line 3 of the
InducedFlag subroutine when it is called with first input Xi . Let j be the smallest
index of the flag F• for which Y ⊂ F j X holds. Then, dim(Y ∩ F�X) < i for every
� < j , and so Y� = Y ∩F�X isAdded to X• via Line 5 of the InducedFlag subroutine,
and hence Y� is contained in Xm for some m < i . Since Xm ⊂ Xi , it follows that

S ∩ (Fp X − Fp−1X) = ∅ whenever p < j .

But since S ⊂ F j X and Y is irreducible, we have Y ⊂ F j X , whence Y ⊂ Fp X for
all p ≥ j . Thus, S also has empty intersections with Fp X − Fp−1X for p > j , and
the desired result follows. ��

We note in passing that the algorithms described in this Section can also be used
to produce flag-subordinate stratifications of affine complex varieties. As before, we
will write PX for the projective closure of each affine variety X ; and given a flag F•
on X , we write PF• for the flag on PX defined by

PFi (PX) := P(Fi X).

The following result forms a natural flag-subordinate counterpart to Corollary 5.6.
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Corollary 6.3 Let X ⊂ C
n be a complex variety and let F• be a flag on X. Writ-

ing PX• for the output of WhitStratFlag when called with input (PX , PF•), its
dehomogenization X• constitutes an F•-subordinate Whitney stratification of X•.

Proof This follows immediately from Corollary 5.6 and Theorem 6.2 since the con-
tainment relations between varieties are preserved by both projective closures and
dehomogenizations. ��

Our motivation for computing flag-subordinate Whitney stratifications stems from
the desire to algorithmically stratify algebraic maps between projective varieties.

7 Stratifying Algebraic Maps

A continuous map between topological spaces is called proper if pre-images of com-
pact sets are compact. Reproduced below is the content of [6, Definition 3.5.1], which
highlights a natural class of maps between Whitney stratified spaces; we recall for the
reader’s convenience that the tangent space at each point p on a smooth manifold S is
denoted TpS.

Definition 7.1 Let X and Y be Whitney stratified spaces. A proper map f : X → Y
is called a stratified map if for each stratum S ⊂ X there exists a a stratum R ⊂ Y
so that

(1) the image f (S) is wholly contained in R; and moreover,
(2) at each point x in S, the Jacobian Jx ( f |S) : Tx S → T f (x)R is a surjection.

We refer to any pair (X•,Y•) of Whitney stratifications of X and Y which satisfy
the above requirements as a stratification of f . It follows from Thom’s first isotopy
lemma [33, Proposition 11.1] that if f : X → Y is a stratified map in the sense of this
definition, then for each stratum R ⊂ Y , the restriction

f | f −1(R) : f −1(R) → R

has the structure of a fibration (with possibly singular fibers).
Our aim here is to algorithmically construct stratifications tailored to algebraic

maps between projective varieties. We describe these maps in terms of the coordinate
ring C[x] := C[x0, . . . , xn] of P

n .

Definition 7.2 A projective morphism f : X → P
m consists of an (m + 1)-tuple of

homogeneous polynomials fi in C[x], i.e.,

f (x) = ( f0(x), . . . , fm(x)) ,

where d := deg( fi ) is constant for all i and where X ∩ V( f0, . . . , fm) = ∅.
Projective morphisms as defined above are always proper [27, Ch II, Thm 4.9], so
at least that requirement of Definition 7.1 holds automatically. We will restrict to the
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case where X is pure dimensional; and for each projective morphism f : X → P
m as

defined above, we can always consider some pure-dimensional projective variety Y ⊂
P
m which contains the image f (X), whence f constitutes an algebraic map X → Y .

We now seek to describe an algorithm which will produce a stratification (X•,Y•) for
any generic triple (X ,Y , f ). Both the genericity condition and the algorithm itself
make essential use of the Thom-Boardman flag of f , which is described below.

7.1 The Thom-Boardman Flag

Let f : X → P
m be a projective morphism and consider its Jacobian operator

J f :=
⎡

⎢⎣

∂ f0/∂x0 · · · ∂ f0/∂xn
...

. . .
...

∂ fm/∂x0 · · · ∂ fm/∂xn

⎤

⎥⎦ .

This matrix of polynomials is not well-defined on P
n in the sense that its evaluation

Jx f need not equal Jy f for a pair of projectively equivalent points x ∼ y in C
n+1.

However, we always have rank Jx f = rank Jy f in this case. For each p ∈ P
n , we will

denote by rank Jp f the rank of Jx f for any (necessarily nonzero) x ∈ C
n+1 which

maps to p under the canonical surjection (Cn+1 − {0}) � P
n .

Let k ≤ min(n + 1,m + 1) be the largest rank attained by Jp f as p ranges
over P

n and consider, for each i in {0, . . . , k + 1}, the homogeneous ideal Jaci f of
C[x] generated by all i × i minors of J f . It follows by cofactor expansion that these
ideals fit into a descending sequence, and so the corresponding projective varieties
T+
i P

n := V( Jaci f ) form a flag of length k + 1 on P
n . By construction, we have

T+
i P

n = {
p ∈ P

n | rank Jp f ≤ i − 1
}

(8)

for 0 ≤ i ≤ k + 1. We call T+• the the Thom-Boardman flag [5, 43] of f on P
n . Our

main focus here is not on the flag T+• , but rather on the flag induced by T+• on the
domain variety X ⊂ P

n . The desired genericity condition on f is described below.

Definition 7.3 The projective morphism f : X → P
m is generic if the varieties X

and T+
i P

n intersect transversely in P
n for each i in {0, . . . , k + 1}.

Although we will not require this fact here, it is known that for a dense subset of
algebraic morphisms, each T+

i P
n is a subvariety of P

n of dimension

dimT+
k′+1−iP

n = (n + 1) − i · (i + |m − n|),

with k′ := min(n+ 1,m + 1). A complete derivation of this dimension formula along
with other properties of Thom-Boardman singularities can be found in [19, Chapter
VI, Part I, §1].

Definition 7.4 The Thom-Boardman flag of f on X , denoted T•, is defined for all
0 ≤ i ≤ k + 1 via the intersection Ti X := T+

i P
n ∩ X . Equivalently, Ti X :=

V(IX + Jaci f ), where IX � C[x] is the defining ideal of X .
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Applying f to the T• produces a flag on f (X) which extends to a flag on Y .

Definition 7.5 Given the Thom-Boardman flag T• on X , its image is the flag B• of
length k + 2 on Y defined by setting

Bi Y :=
{
f (Ti X) i ≤ k + 1,

Y i = k + 2.

(Note that by assumption Bk+1Y := f (X) is a subvariety of Bk+2Y := Y .)

7.2 Computing Images and Pre-Images

To compute the flagB• in practice,we require amechanism for producing equations for
f (X ′)where X ′ ⊂ X is a subvariety of X—note that this image f (X ′) is Zariski closed
in P

m because X is projective (see [35, Theorem 4.22]). This can be accomplished
using elimination. To this end, consider the ideal

J := 〈y0 − u f0(x), . . . , ym − u fm(x)〉

in the ringC[u, x0, . . . , xn, y0, . . . , ym] and set J� := J ∩C[x, y]. Let�(X ′) ⊂ P
n ×

P
m be the graph of the restricted map f |X ′ , which is defined by the bi-homogeneous

ideal

I�(X ′) := IX ′ + J�.

Now, f (X ′) ⊂ P
m is given by the elimination ideal

I f (X ′) := I�(X ′) ∩ C[y].

Wewill also require the dual operation to implement our algorithm, i.e., given some
subvariety Y ′ ⊂ Y , we wish to algebraically compute its pre-image f −1(Y ′) within
X . Let γ be the natural map X → P

n × P
m sending each x to the pair (x, f (x)), so

the image of γ coincides with the graph �(X). Consider the coordinate projections
πx and πy

�(X)

πx πy

P
n

P
m

onto the first and second factor, respectively. By construction, for each point x in
X , we have the equality f (x) = πy ◦ γ (x); and since all spaces and maps in sight
are projective, the images of closed sets remain closed. Now, consider a subvariety
Y ′ ⊂ f (X) and note that its pre-image under f is

f −1(Y ′) := πx

(
�(X) ∩ π−1

y (Y ′)
)

.
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Treating IY ′ � C[y] as an ideal in C[x, y], the desired pre-image f −1(Y ′) may be
computed algebraically as the intersection

I f −1(Y ′) := C[x] ∩ (
I�(X) + IY ′

)
.

7.3 Algorithm

Assume that f : X → Y is a generic projective morphism in the sense of Definition
7.3, where X ⊂ P

n and Y ⊂ P
m are pure dimensional projective varieties with

f (X) ⊂ Y , and let k ≤ min(n + 1,m + 1) as in Sect. 7.1. The following algorithm
relies on WhitStratFlag (from Sec 6.1) to build Whitney stratifications X ′• of X and
Y ′• of Y via the following basic strategy. First, we construct the image B• of the Thom-
Boardman flag T• as described in Definition 7.5. Next, we create a B•-subordinate
stratification Y• of the codomain Y and pull it back across f to obtain a flag F• on the
domain X . Finally, we create an F•-subordinate stratification X ′• of X .

WhitStratMap(X , Y , f )
Input: Pure dimensional varieties X , Y and a generic morphism f : X → Y .
Output: Lists of subvarieties X• ⊂ X and Y• ⊂ Y .

1 Set T•X := (Tk+1X , . . . ,T0X) := (X , ∅, . . . , ∅)

2 Set B•Y := (Bk+2Y , . . . ,B0Y ) := (Y , ∅, . . . , ∅)

3 For each j in (0, 1, . . . , k)
4 Set T j X := V(IX + Jac j f )
5 Set B j Y := f (T j X)

6 Set Bk+1Y := f (X)

7 Set Y ′• := WhitStratFlag(Y ,B•)
8 For each i in (0, 1, . . . , dim Y )

9 Set Fi X := f −1(Y ′
i )

10 Set X ′• := WhitStratFlag(X ,F•)

11 Set (X•, Y•) := Refine(X ′•, Y ′•, f )
12 Return (X•, Y•)

As we have not described theRefine subroutine invoked in the penultimate line, we
are not yet able to check whether this algorithm terminates, and whether it returns a
correct stratification of f in the sense of Definition 7.1. The next result, which involves
the Whitney stratifications X ′• and Y ′• produced in Lines 10 and 7, respectively, will
explain why this additional subroutine is needed.

Proposition 7.6 For each stratum S of X ′•, there exists a unique stratum R of Y ′•
satisfying f (S) ⊂ R. Moreover, at each point x in S, the Jacobian Jx f |S : Tx S →
T f (x)R of the restricted map f |S : S → R has full rank, i.e.,

rank (Jx f |S) = min (dim S, dim R)

Proof Noting that of X ′• is subordinate to the flag F• by Line 10, we know that for
each stratum S of X ′• there is a number i := i(S) satisfying S ⊂ (Fi X −Fi−1X). Now
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by Line 9, for any such stratum, we have f (S) ⊂ (Y ′
i − Y ′

i−1). By Definition 3.2, we
know that S is connected, and so its image under the continuous map f must also be
connected; thus there is a unique stratum R ⊂ (Y ′

i −Y ′
i−1) of Y

′• satisfying f (S) ⊂ R.
Since Y ′• is B•-subordinate by Line 7, there exists a number j := j(R) satisfying
R ⊂ (B j Y −B j−1Y ). By Definition 7.5, we have f −1(R) ⊂ (T j X −T j−1X), where
T• is the Thom-Boardman flag of f from Definition 7.4. In particular, this gives
S ⊂ (T j X − T j−1X) and it follows that X ′• is subordinate to T•. Consequently, for
each x ∈ S, we know that rank Jx f = ( j − 1). Consider the commuting diagram of
vector spaces

Tx S
Jx ( f |S)

T f (x)R

C
n+1

Jx f
C
m+1

Here, the vertical arrows depict inclusions of tangent spaces, e.g., on the left we have
the natural inclusion of Tx S in TxPn � C

n+1. Since S ⊂ (T j X − T j−1X), we know
from (8) that the rank of Jx f is precisely ( j − 1) at every x ∈ S; and by genericity of
f it follows that the subspaces Tx S and ker Jx f , whose intersection equals ker Jx f |S ,
meet transversely inside C

n+1. Thus, we obtain

dim ker(Jx f |S) = dim ker Jx f + dim Tx S − (n + 1) by transversality

= [(n + 1) − ( j − 1)] + dim S − (n + 1) by rank/nullity

= dim S − ( j − 1).

There are now two cases to consider—either dim S < ( j − 1), or dim S ≥ ( j − 1). In
the first case, Jx f |S is injective and hence already has full rank. In the latter case, we
have R ⊂ f (
 j )where
 j := (T j X−T j−1X). Thus, dim Y ≤ dim f (
 j ); but since
the rank of f on 
 j is ( j − 1) by (8), the implicit function theorem guarantees that
dim f (
 j ) = ( j − 1). So, we have dim R ≤ ( j − 1), and combining this inequality
with our calculation of dim ker(Jx f |S) above gives

dim ker(Jx f |S) ≤ dim S − dim R.

Since we have assumed dim S ≥ dim R, the kernel of Jx f |S can not have dimension
smaller than the codimension dim S − dim R, so the above inequality is an equality
in this case and Jx f |S has full rank, as desired. ��

When comparing the requirements of Definition 7.1 to the properties guaranteed
by the preceding result, we note that the stratifications X ′• and Y ′• are insufficient for
our purposes. While every stratum S of X ′• does indeed have a unique stratum R of Y ′•
containing f (S), the crucial Jacobian-surjectivity requirement is not satisfied. Instead,
wemight have dim S < dim R with the Jacobian Jx f |S being injective at every point x
in S. TheRefine subroutine invoked in Line 13 ofWhitStratMap, which we describe
in the next Section, has been designed to rectify this defect.
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7.4 Refinement and Correctness

Before Line 13 of WhitStrat has been executed, we have stratifications X ′• and Y ′•
of X and Y respectively. In light of Proposition 7.6, consider the set of problematic
strata-pairsP = P(X ′•,Y ′•) given by:

P := {(S, R) | f (S) ⊂ R with dim S < dim R}.

The purpose of theRefine subroutine described here is to modify the stratifications X ′•
and Y ′• until this problematic setP becomes empty. By Proposition 7.6, each stratum
S of X ′• can appear in a pair of P with at most one stratum R of Y ′•. However, the
converse need not hold—a given stratum R of Y ′• might be paired with several different
strata of X ′• within P . Recalling that X ′• is F•-subordinate, for each index � we will
use S� = S�(X ′•) to denote the set of all strata S of X ′• which lie in the difference
F�+1X − F�X .

Refine(X ′•, Y ′•, f )
Input: Stratifications X ′•, Y ′• of pure dimensional varieties X and Y
and a generic morphism f : X → Y so that Prop. 7.6 holds.
Output: Lists of subvarieties X• ⊂ X and Y• ⊂ Y .

1 For each (S, R) ∈ P(X ′•, Y ′•) with dim R maximal
2 Set Y+• := Y ′•
3 Set d := dim f (S)

4 Add f (S) to Y+
≥d

5 Merge Y+• with WhitStrat( Pured (Y ′
d ))

6 For each � = (d, d − 1, . . . , 1, 0)

7 For each irreducible W ⊂ Y+
�

− Y ′
�
and S′ ∈ S�(X

′•)

8 If Z ∩ S′ �= ∅ for an irreducible Z ⊂ f −1(W )

9 Set r := dim Z
10 Add Z to X ′≥r
11 Merge X ′• with WhitStrat(Purer (X ′

r ))

12 Set Y ′• = Y+•
13 Recompute P(X ′•, Y ′•)

14 Return (X ′•, Y ′•)

This subroutine processes the problematic strata-pairs (S, R) fromP(X ′•,Y ′•) one
at a time, in descending order of dim R. For each such pair, Lines 2–5 further partition
R by forcing the closure of the image f (S) to form (one or more) new strata. As a
result of subdividing R along f (S), some of the strata S′ of X ′• satisfying f (S′) ⊂ R
no longer have their images contained in a single stratum. Lines 6–11 are designed to
correct this problem by finding and further subdividing all such S′ appropriately.

Proposition 7.7 TheRefine subroutine terminates, and its output (X•,Y•) constitutes
a valid stratification (as in Definition 7.1) of the generic projective morphism f :
X → Y .
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Proof IfP is empty, then the algorithm terminates immediately with a correct stratifi-
cation, so let (S, R) be a strata-pair inP with R of maximal dimension; thus, we have
dim S < dim R. In Lines 2–5,WhitStratMap constructs a newWhitney stratification
Y+• of Y by subdividing the closure of R into finitely many new strata

R =
∐

i

Ri

so that all points lying in the (closure of the) immersed image f (S) ⊂ R lie within
strata of dimension no larger than dim S. Thus, for each point x ∈ S, there is a unique
index i(x) for which f (x) ∈ Ri(x). Moreover, we have

dim Ri(x) ≤ dim S < dim R.

Since Ri(x) ⊂ R, we know by Proposition 7.6 that the Jacobian Jx f : Tx S →
T f (x)Ri(x) is surjective for all x ∈ S as desired. Unfortunately, the act of partitioning
R into smaller strata might violate the other property required by Definition 7.1,
i.e., we may have strata S′ of X ′• whose images f (S′) were entirely contained in R,
but which now intersect several new Ri ’s. Therefore, in Lines 6–11, the algorithm
paritions all such S′ along their intersections with f −1(Ri ) for all i—this creates new
Whitney strata and hence refines X ′•. Finally, in Line 12, we also update Y ′• to the
new stratification Y+• . After this update, there might be several new problematic strata
pairs in P; but the key observation here is that none of these new pairs (S∗, R∗) can
have dim R∗ > dim R since all of the new strata R∗ of Y ′• have dimension bounded
above by dim R. Moreover, even when dim R∗ = dim R, it is impossible to have any
(S∗, R∗) in P where S∗ ⊂ S is a newly created stratum of X ′•—any such S′ must
have its image f (S′) entirely contained in a stratum of dimension < dim R. Thus,
WhitStratMap eventually terminates and outputs a valid stratification of f : X → Y .

��

Remark 7.8 An analogous algorithm for stratifying proper algebraic maps between
affine varieties can be produced by making a few standard modifications to Whit-
StratMap. Implicit in (the proofs of) Corollaries 5.6 and 6.3 are routines which
would compute (flag-subordinate)Whitney stratifications of a complex affine algebraic
variety. These routines accept as input affine equations, homogenize the associated
Gröbner basis, run the projective stratification algorithms described here, and then
dehomogenize the output to produce the final result. Let WhitStratAff and Whit-
StratFlagAff be the resulting algorithms. If X ⊂ C

n and Y ⊂ C
m are affine varieties

and f : X → Y is a proper morphism, then an analogous definition of the map being
generic and of a Thom-Boardman flag on X may be given. To obtain a stratification
of the generic proper morphism f : X → Y in the sense of Definition 7.1, one
simply replaces each occurence of WhitStrat and WhitStratFlag by WhitStratAff
and WhitStratFlagAff, respectively in the WhitStratMap and Refine algorithms
described above.
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8 Performance and Complexity

In this section, we briefly describe the real-life performance as well as the computa-
tional complexity of the basic algorithm WhitStrat from §5. Our implementation is
in Macaulay2 [24], and can be found along with documentation at the link below:

http://martin-helmer.com/Software/WhitStrat

8.1 Performance

As remarked in the Introduction, the state of the art for Whitney stratification algo-
rithms appears to be the recent algorithm of -Dinh and Jelonek [30, §2]. We are not
aware of any existing implementations of earlier algorithms based on quantifier elim-
ination, and in any event, since implemented quantifier elimination methods rely on
cylindrical algebraic decomposition we would expect their performance to be slower
than that of [30] overall. Since the authors of [30] did not provide an implementation of
their algorithm, we have implemented it ourselves inMacaulay2. This implementation
can be found at:

http://martin-helmer.com/Software/WhitStrat/DCG.m2.

In Table 1, we show the run time of theWhitStrat on several examples; on all of the
examples listed here, the algorithm of [30] did not finish after 8 hours of calculation
time.

The variety in the first entry of this table is (the projective analogue of) theWhitney
umbrella, which was one of the earliest examples of singular spaces used to illustrate
the need for Condition (B). We ran the algorithm of [30] on this variety for over 29
hours. In this time, it was unable to find strata of codimension > 1, i.e., the strata
lying below the singular locus. All computations involving this algorithm used at least
27 GB of RAM during their 8 hour run. In sharp contrast, WhitStrat used between
0.0005 and 0.347 GB of RAM, with all but the last entry in the table requiring no more
than 0.016 GB. While it is certainly possible that a more optimized implementation

Table 1 Run times of our WhitStrat implementation in Macaulay2 when working over Q on an Intel
i7-8700 CPU with 64 GB of RAM

INPUT Run time

V
(
x0x

2
1 − x21 x2

)
⊂ P

3 0.2s

V
(
x41 x2 − x50 − x40 x3 − x40 x4

)
⊂ P

4 0.4s

V
(
x33 − x1x

2
2 − x20 x3 + x20 x4 − x3x

2
4

)
⊂ P

4 0.5s

V
(
x26 − x1x2 + x0x4, x

2
0 − x0x3 − x25

)
⊂ P

6 0.9s

V
(
x20 x4 − x1x

2
2 + x33 , x20 − x1x4

)
⊂ P

4 1.6s

V
(
x4x7 − x1x2 + x27 , x20 − x0x5 − x27 , x3x7 − x26

)
⊂ P

7 242.5s
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of [30] than ours could be produced, in our view, it is unlikely to significantly alter
these general trends.

8.2 Complexity

By far the biggest computational burden incurred when running WhitStrat comes
from various intermediate Gröbner basis calculations. In particular, these are required
when running theDecompose subroutine inLine 3 (computing ideal saturation), Line 4
(computing elimination ideals) and Line 6 (computing all irreducible components), for
more on how these tasks are accomplished via Gröbner basis see [11, 12]. Throughout
the remainder of this section, we writeGB(n, δ) to denote the complexity of perform-
ing Gröbner basis computation on an ideal consisting of polynomials in n variables of
degree at most δ, in the worst case this bound is approximately O(δ2

n
), as described

for instance in [34, 36]. However, more recent analysis [2, 15] has revealed that this
worst case bound tends to be overly pessimistic in general.

The bulk of our complexity estimates will be provided in terms of the following
input parameters: we assume that the defining radical ideal IX of our input variety X
has been given in terms of a finite generating set of homogeneous polynomials in n
complex variables with maximal degree δ. To avoid trivialities, we assume δ ≥ 2 and
n ≥ 2. Let k be the dimension of X , let c = n−k be the codimension of X , andμ < k
the dimension of the singular locus Xsing.

Proposition 8.1 Thedegree of Xsing is no larger than δn. If Z ⊂ Xsing is any irreducible
μ-dimensional subvariety, then the degree of the affine subvariety Vμ ⊂ C

n × C
n

defined by the ideal sum ICon(X) + IZ is bounded as

deg(Vμ) ≤ δ3n
2
.

Proof We begin with the observation that deg(Xsing) is bounded from above by the
degree of anyμ-dimensional complete intersection that contains Xsing—such complete
intersections may be generated as zero sets of an appropriate number of random linear
combinations of the defining polynomials of Xsing (see [17, Example 8.4.12] or [48,
§A.9]), after choosing a set of generators all having the same degree (which can always
be done for homogeneous ideals [26, Remark 2.3]). Recall that the Jacobian minors
which generate Xsing in the coordinate ring of X have degree atmost δ−1. ByBézout’s
theorem [17, Theorem 12.3] and the discussion above, we have

deg(Xsing) ≤ deg(X) · (δ − 1)k,

since the singular locus can have codimension at most k in X . Again using Bezout’s
theorem, the expression on the right may be bounded above by δn−k · δk , which
equals δn as desired. Turning now to Vμ, note that the minors of the augmented
Jacobian which generate Con(X) have bidegree no larger than ((δ − 1)n−k, 1) inside
P
n × (Pn)∗, while those which generate Z have degree no larger than δn inside P

n by
our bound on deg(Xsing) given above. Thus, (δn, 1) bounds from above the bidegree
for the generating polynomials of Vμ. Passing to affine charts, Vμ may be generated
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by polynomials of degree at most δn +1 as a subvariety of C
2n . Appealing once again

to a complete intersection which contains Vμ and has the same dimension, we obtain
the following degree bound by Bézout’s theorem:

deg(Vμ) ≤ (δn + 1)codim Vμ < (δn + 1)2n ≤ (2δn)2n ≤ (δn+1)2n .

Since the right side is bounded from above by δ3n
2
, the argument is complete. ��

The degree of Vμ estimated above bounds several quantities of interest from above
when Decompose is first invoked fromWhitStrat.

Proposition 8.2 The following quantities are bounded by δ3n
2
when Decompose is

called from WhitStrat during the d = μ iteration of its For loop:

(1) the number of irreducible components of Y ;
(2) the number of irreducible components of the varieties V(J ), V(K ), and W; and,
(3) the degrees of the generating polynomials of J , K and IW .

Proof Since Y consists of the pureμ-dimensional components of Xsing whenDecom-
pose is invoked fromWhitStrat for the first time, we have deg(Y ) ≤ deg(Xsing). The
first assertion now follows from our estimate deg(Xsing) ≤ δn which was derived in
Proposition 8.1.

Let pμ be the number of irreducible components of Vμ. Ideal saturation is only
allowed to remove components by equation (3), so the number of irreducible com-
ponents of V(J ) is bounded above by pμ. Moreover, the projection of an irreducible
variety is irreducible,1 and so pμ also bounds from above the number of irreducible
components of W . Since each irreducible component of a variety contributes at least
one to its degree, we further have pμ ≤ deg(Vμ). Combining this fact with the estimate
of deg(Vμ) from Proposition 8.1 establishes the second assertion.

The third assertion follows from the classical result of Mumford [39, page 32–33],
which states that we can take the degree of a variety (or a scheme) as a bound on the
degree of its generators. ��
Proposition 8.3 The following quantities are bounded by δ2

μ+2·nμ+2
whenDecompose

is called from WhitStrat during the any step of the algorithm:

(1) the number of irreducible components of Y ;
(2) the number of irreducible components of the varieties V(J ), V(K ), and W; and,
(3) the degrees of the generating polynomials of J , K and IW .

Proof We have from Proposition 8.1 that deg(Vμ) is bounded by δ3n
2
. For all d in

{μ − 1, . . . , 0}, we similarly let Vd be the variety generated by ICon(X) + IZ in Line
3 of Decompose when it is called during the (μ − d + 1)-st iteration of the For loop
of WhitStrat. Thus, when d = μ − 1, the variety represented by X in Line 3 of
Decompose is μ-dimensional and lives in the singular locus of the original input vari-
ety, whereas Z ⊂ X has dimension at mostμ−1. Using the arguments of Proposition

1 Equivalently, the elimination ideal of a prime ideal is always prime, see [35, Theorem 4.2].
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8.1 verbatim, we may bound

deg(Vμ−1) ≤ (δ3n
2 + 1)2n−(μ−1) < δ7n

3
.

Iterating this argument, we obtain a sequence (a0, a1, . . .) := (3, 7, . . .) so that

deg(Vd) < δaμ−d ·nμ−d+2

for all d in {0, . . . , μ}. Recognising that a j = 2 j+2 − 1 for all j ≥ 0, we obtain

deg(V0) ≤ δ(2μ+2−1)·nμ+2
< δ2

μ+2·nμ+2
.

A very similar argument shows that this quantity also bounds the degrees of varieties
arising in Decompose from the recursive calls in Line 7 ofWhitStrat. ��

In order to give fully describe WhitStrat’s complexity, we require the following
additional runtimeparameters.Assume, for eachd ∈ {μ,μ − 1, . . . , 1, 0}, that rd ≥ 0
is the largest number of generators encountered among the ideals J , K , and IW in Lines
3–6 ofDecomposewhen extracting the d-dimensional strata of X .We have introduced
these secondary rd parameters because we are unaware of any sufficiently general and
reasonably tight bounds on the number of generators of J , K or IW in terms of the
primal quantities n, δ and the number of generating polynomials for the input variety
X . Any such bound must account for pathological cases and hence be at least doubly
exponential in n, see for instance [8]. Such estimates do not accurately reflect the vast
majority of inputs.

If a given ideal IZ has r generating polynomials in n variables, then the number of
minors in the generating ideal of Con(Z) equals

(
r + 1

n − dim(Z)

)
·
(

n + 1

n − dim(Z)

)
≤ (16rn)n−dim(Z) < (16rn)n .

We will assume henceforth that (16rdn)n is in O(δ2
μ+2·nμ+2

) for all d, so that the
cost of computing the required minors to obtain the ideals of conormal varieties is
dominated by the cost of subsequent Gröbner basis calculations. With this assumption
in place, the estimates in Proposition 8.3 give us the desired complexity bounds.

Theorem 8.4 Let X be a complex projective subvariety of P
n whose defining poly-

nomials have degree at most δ and whose singular locus has dimension μ. The time
complexity of running WhitStrat on X is bounded in

O
(
(μ + 2)2 · D2(μ+2)2 · GB(n, D)

)
,

where D = δ2
μ+2·nμ+2

and GB(n, D) is the cost of computing Gröbner bases for an
ideal generated by polynomials in n variables of degree at most D.
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Proof Taking into account the recursive call in Line 7 of WhitStrat, the subroutine
Decompose can be called at most (μ + 1) + (μ) + · · · + 1 = (μ+1)(μ+2)

2 times.
Each iteration of the For loop in line 2 of Decompose adds at most D irreducible
components, and the total number of iterations of this loop is bounded by the num-
ber of irreducible components added either in previous calls to Decompose or from
the singular locus of X . Therefore, during the first call to Decompose at most D2

irreducible components may be added. If all these lie in the variety Y which forms
the input during the second call, then we may have up to D2 · D components added
in this call. Continuing in this fashion, during the (μ+1)(μ+2)

2 -th call to Decompose,

we have a bound of D
(μ+1)(μ+2)

2 +1 irreducible components of the input Y . Irreducible
decomposition occurs in Lines 2 and 7 of Decompose, and its complexity, along with
the complexity of the two Gröbner basis calculations at lines 3 and 4 of Decompose,
are bounded in O(GB(n, D)). This gives a total bound of

O
(

(μ + 1)(μ + 2)

2

(
GB(n, D) + 3D

(μ+1)(μ+2)
2 +1GB(n, D) + D

(μ+1)(μ+2)
2 +2

))
.

Here, the first term in the parenthetical sum comes from Line 2 of Decompose, the
second from Lines 3, 4, and 6, and the third from Line 7. Finally, we note that the
above bound lies within O((μ + 2)2D2(μ+2)2GB(n, D)), as desired. ��

The practical efficiency of WhitStrat comes from the fact that the parameter D
from the above theorem lies in O(deg(X)) for typical input varieties X , rather than
scaling super-exponentially with δ. For the purposes of describing theoretical com-
plexity, we are forced to increment the power of n in the exponent each time the For
loop of WhitStrat iterates, as this is the only way to guarantee that the worst-case
degree bounds hold. In practice, however, we have observed that the degrees of the
intermediate varieties stay roughly constant and even reduce as the For loop iterates
from d = μ down to d = 0.

8.3 Comparison with Quantifier-Elimination-based StratificationMethods

We are aware of one other approach for computingWhitney stratifications which does
not use Gröbner basis calculation, namely the algorithm of [38, 40]. This method has
complexity bounds derived from the asymptotically fast critical points based quantifier
elimination methods of Grigoriev–Vorobjov [25] and Renegar [41]. Although these
critical point methods were first introduced over three decades ago and have been
extensively studied thereafter, to the best of our knowledge, there is no software imple-
mentation for general polynomial systems. All general purpose quantifier-elimination
software we are aware of uses some form of cylindrical algebraic decomposition, [1,
4, 9], which has complexity bounds doubly exponential in the number of variables.
Quantifier-elimination algorithms based on critical points are described in [4, Chapter
14]; on page 7 of this text, the authors state that:
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“For most of the algorithms presented in Chapter 13 to 16 there is no implemen-
tation at all. The reason for that is that the methods developed are well adapted
to complexity results but are not adapted to efficient implementation."

Nevertheless, had an implementation of the critical points-based quantifier-
elimination methods of Grigoriev–Vorobjov [25] and Renegar [41] existed, then an
implementation of the stratification algorithm of [38, 40] based on this would achieve
a complexity bound of the form

δO(n)6� ,

where � is the length of the canonical (i.e., coarsest) Whitney stratification of the
input variety, see, for example, [38, page 289]. For high-dimensional inputs which
admit strata in all dimensions, this bound is asymptotically quite similar to those
from Gröbner basis-based methods. However, it has been suggested that the O(n) in
the exponent conceals a rather large constant that is likely to make these quantifier-
elimination methods infeasible in practice [3, Remark 2.28].
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