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Abstract
Rate distortion theory is concernedwith optimally encoding signals fromagiven signal
class S using a budget of R bits, as R → ∞. We say that S can be compressed at rate
s if we can achieve an error of at mostO(R−s) for encoding the given signal class; the
supremal compression rate is denoted by s∗(S). Given a fixed coding scheme, there
usually are some elements of S that are compressed at a higher rate than s∗(S) by the
given coding scheme; in this paper, we study the size of this set of signals.We show that
for certain “nice” signal classesS, a phase transition occurs:We construct a probability
measure P on S such that for every coding scheme C and any s > s∗(S), the set of
signals encoded with error O(R−s) by C forms a P-null-set. In particular, our results
apply to all unit balls in Besov and Sobolev spaces that embed compactly into L2(Ω)

for a bounded Lipschitz domain Ω . As an application, we show that several existing
sharpness results concerning function approximation using deep neural networks are
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in fact generically sharp. In addition, we provide quantitative and non-asymptotic
bounds on the probability that a random f ∈ S can be encoded to within accuracy
ε using R bits. This result is subsequently applied to the problem of approximately
representing f ∈ S to within accuracy ε by a (quantized) neural network with at most
W nonzero weights.We show that for any s > s∗(S) there are constants c,C such that,
no matter what kind of “learning” procedure is used to produce such a network, the
probability of success is bounded from above by min

{
1, 2C ·W�log2(1+W )�2−c·ε−1/s }

.

Keywords Rate distortion theory · Phase transition · Approximation rates · Sobolev
spaces · Besov spaces · Neural network approximation

Mathematics Subject Classification 41A46 · 28C20 · 68P30 · 68T07

1 Introduction

LetS be a signal class, that is, a relatively compact subset of aBanach space (X, ‖·‖X).
Rate distortion theory is concerned with the question of how well the elements of S
can be encoded using a prescribed number R of bits. In many cases of interest, the
best achievable coding error scales like R−s∗ , where s∗ is the optimal compression
rate of the signal class S. We show that a phase transition occurs: the set of elements
x ∈ S that can be encoded using a strictly larger exponent than s∗ is thin; precisely,
it is a null-set with respect to a suitable probability measure P. Crucially, the measure
P is independent of the chosen coding scheme.

In order to rigorously formulate these results, we first review the needed notions of
rate-distortion theory, see also [3,4,13,15]. For later use, we state the definitions here
in the setting of general Banach spaces, although our main results only focus on the
Hilbert space L2(Ω).

1.1 A Crash Course in Rate Distortion Theory

To formalize the notion of encoding a signal class S ⊂ X, we define the set EncR
S,X

of encoding/decoding pairs (E, D) of code-length R ∈ N as

EncR
S,X :=

{
(E, D) : E : S → {0, 1}R and D : {0, 1}R → X

}
.

We are interested in choosing (E, D) ∈ EncR
S,X such as to minimize the (maximal)

distortion δS,X(E, D) := supx∈S ‖x − D(E(x))‖X .
The intuition behind these definitions is that the encoder E converts any signal

x ∈ S into a bitstream of code-length R (i.e., consisting of R bits), while the decoder
D produces from a given bitstream b ∈ {0, 1}R a signal D(b) ∈ X. The goal of
rate distortion theory is to determine the minimal distortion that can be achieved
by any encoder/decoder pair of code-length R ∈ N. Typical results concerning the
relation between code-length and distortion are formulated in an asymptotic sense:One
assumes that for every code-length R ∈ N, one is given an encoding/decoding pair
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(ER, DR) ∈ EncR
S,X and then, studies the asymptotic behavior of the corresponding

distortion δS,X(ER, DR) as R → ∞.
We refer to a sequence

(
(ER, DR)

)
R∈N of encoding/decoding pairs as a codec, so

that the set of all codecs is

CodecsS,X :=
ą

R∈N
EncR

S,X .

For a given signal class S in a Banach space X, it is of great interest to find an
asymptotically optimal codec; that is, a sequence

(
(ER, DR)

)
R∈N ∈ CodecsS,X such

that the asymptotic decay of
(
δS,X(ER, DR)

)
R∈N is, in a sense, maximal. To formalize

this, for each s ∈ [0,∞) define the class of subsets of X that admit compression rate
s as

Comps
X := {

S ⊂ X : ∃ (
(ER, DR)

)
R∈N ∈ CodecsS,X : δS,X(ER, DR) � R−s} .

For a given (bounded) signal class S ⊂ X, we aim to determine the optimal compres-
sion rate for S in X, that is

s∗X (S) := sup
{
s ∈ [0,∞) : S ∈ Comps

X

} ∈ [0,∞]. (1.1)

Although the calculation of the quantity s∗X (S) may appear daunting for a given
signal class S, there exists in fact a large body of literature addressing this topic. A
landmark result in this area states that the JPEG2000 compression standard represents
an optimal codec for the compression of piecewise smooth signals [26]. This optimality
is typically stated more generally for the signal class S = Ball

(
0, 1; Bα

p,q(Ω)
)
, the

unit ball in the Besov space Bα
p,q(Ω), considered as a subset of X = H = L2(Ω), for

“sufficiently nice” bounded domains Ω ⊂ R
d ; see [10].

For a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,X, instead of considering themaximal

distortion of C over the entire signal class S, one can also measure the approximation
rate that the codec C achieves for each individual x ∈ S. Precisely, the class of elements
with compression rate s under C is

As
S,X(C) :=

{
x ∈ S : sup

R∈N
[
Rs · ∥∥x − DR(ER(x))

∥∥
X

]
< ∞

}
. (1.2)

If the signal classS is “sufficiently regular”—for instance ifS is compact and convex—
then one can prove (see Proposition 3) that the following dichotomy is valid:

s < s∗X (S) �⇒ ∃ C ∈ CodecsS,X ∀ x ∈ S : x ∈ As
S,X(C),

s > s∗X (S) �⇒ ∀ C ∈ CodecsS,X ∃ x∗ ∈ S : x∗ /∈ As
S,X(C).

(1.3)

Thus, all signals in S can be approximated at any compression rate lower than the opti-
mal rate forS using a common codec. Furthermore, for any approximation rate s larger
than the optimal rate for S, and for any codec C, there exists some x∗ = x∗(s, C) ∈ S
that is not compressed at rate s by C.
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Remark 1 (Encoding/decoding schemes vs. discretization maps) As the above con-
siderations suggest, the crucial objects for our investigations are not the encod-
ing/decoding pairs (E, D) ∈ EncR

S,X, but the distortion they cause for each x ∈ S.
Therefore, we could equally well restrict our attention to the discretization map
D ◦ E : S → X, which has the crucial property |range(D ◦ E)| ≤ 2R . Con-
versely, given any (discretization) map Δ : S → X with |range(Δ)| ≤ 2R , one
can construct an encoding/decoding pair (E, D) ∈ EncR

S,X, by choosing a surjection

D : {0, 1}R → range(Δ), and then setting

E : S → {0, 1}R, x �→ argminc∈{0,1}R ‖x − D(c)‖X ,

which ensures that ‖x − D(E(x))‖X ≤ ‖x − Δ(x)‖X for all x ∈ S. Thus, all our
results could be rephrased in terms of such discretization maps rather than in terms of
encoding/decoding pairs. For more details on this connection, see also Lemma 10. �

1.2 Our Contributions

1.2.1 Phase Transition

We improve on the dichotomy (1.3) by measuring the size of the class As
S,X(C) of

elements with compression rate s under the codec C. Then, a phase transition occurs:
the class of elements that cannot be encoded at a “larger than optimal” rate is generic.
We prove this when the signal class is a ball in a Besov- or Sobolev space, as long as
this ball forms a compact subset of L2(Ω) for a bounded Lipschitz domain Ω ⊂ R

d .
More precisely, for each such signal class S, we construct a probability measure

P on S such that the compressibility exhibits a phase transition as in the following
definition.

Definition 1 ABorel probabilitymeasureP on a subsetS of a Banach spaceX exhibits
a compressibility phase transition if it satisfies the following:

if s < s∗X (S) then ∃ C ∈ CodecsS,X : P
(
As
S,X(C)

) = 1;
if s > s∗X (S) then ∀ C ∈ CodecsS,X : P

∗(As
S,X(C)

) = 0.
(1.4)

In this definition, since the setAs
S,X(C) is not necessarilymeasurable for s > s∗X (S),

instead of the measure P, we use the associated outer measure P
∗. Generally, given

a measure space (S,A , μ) the outer measure μ∗ : 2S → [0,∞] induced by μ is
defined as

μ∗(M) := inf
{ ∞∑

n=1

μ(Mn) : (Mn)n∈N ⊂ A with M ⊂
∞⋃

n=1

Mn

}
. (1.5)

In general,μ∗ is not a measure, but it is always σ -subadditive, meaning that it satisfies
μ∗(

⋃∞
n=1 Mn) ≤ ∑∞

n=1 μ
∗(Mn) for arbitrary Mn ⊂ S; see [14, Section 1.4]. Further-
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more, it is easy to see for M ∈ A that μ∗(M) = μ(M); that is, μ∗ is an extension of
μ.

As seen in (1.4), we are mostly interested in μ∗-null-sets; that is, subsets N ⊂ S
satisfying μ∗(N ) = 0. This holds if and only if there is N ′ ∈ A satisfying N ⊂ N ′
and μ(N ′) = 0. Directly from the σ -subadditivity of μ∗, it follows that a countable
union of μ∗-null-sets is again a μ∗-null-set.

We note that the first implication in (1.4) is always satisfied, as a consequence of
(1.3). The second part of (1.4) states that for any s > s∗X (S) and any codec C, almost
every x ∈ S cannot be compressed by C at rate s. In other words, whenever P exhibits
a compressibility phase transition on S, the property of not being compressible at a
“larger than optimal” rate is a generic property.

Remark 2 (i) We emphasize that the measure P in Definition 1 is required to satisfy
the second property in (1.4) universally for any choice of codec C.
In fact, if P would be allowed to depend on C, one could simply choose P = δx,
where x = x(C, s) ∈ S is a single element that is not approximated at rate s
by C; for s > s∗X (S) such an element exists under mild assumptions on S; see
Proposition 3.

(ii) Any measure P satisfying (1.4) also satisfies P
∗({x}) = 0 (and hence P({x}) =

0) for each x ∈ S, as can be seen by taking C = (
(ER, DR)

)
R∈N with DR :

{0, 1}R → S, c �→ x, so thatAs
S,X(C) = {x} for all s > 0. Thus, any probability

measure P exhibiting a compressibility phase transition is atom free.
(iii) Measures satisfying (1.4) are quite special—in fact, Proposition 4 shows under

mild assumptions on S that the set of measures not satisfying (1.4) is generic in
the set of atom-free probability measures. �

Our first main result establishes the existence of critical measures for all Sobolev-
and Besov balls (denoted by Ball(0, 1; W k,p(Ω;R)), respectively Ball(0, 1; Bτ

p,q

(Ω;R)); see Appendix C) that are compact subsets of L2(Ω):

Theorem 1 Let ∅ �= Ω ⊂ R
d be a bounded Lipschitz domain. Consider either of the

following two settings:

• S := Ball
(
0,1;Bτ

p,q(Ω;R)
)

and s∗ := τ
d , where p, q ∈ (0,∞] and τ ∈ R with

τ > d · ( 1p − 1
2 )+, or

• S := Ball
(
0, 1; W k,p(Ω)

)
and s∗ := k

d , where p ∈ [1,∞] and k ∈ N with
k > d · ( 1p − 1

2 )+.

In either case, s∗
L2(Ω)

(S) = s∗, and there exists a Borel probability measure P on
S that exhibits a compressibility phase transition as in Definition 1.

Proof This follows from Theorems 7, 8, and 4. ��
Since Remark 2 shows that the measure P from the preceding theorem satisfies

P(M) = 0 for each countable set M ⊂ S, we get the following strengthening of the
dichotomy (1.3).
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Corollary 1 Suppose the assumptions of Theorem 1 are satisfied. Then, given any codec
C ∈ CodecsS,L2(Ω) the set S \ ⋃

s>s∗ As
S,L2(Ω)

(C), which consists of all signals that

cannot be encoded by C at compression rate s for some s > s∗, is uncountable.

In words, Corollary 1 states that for every codec the set of signals inS that cannot be
approximated at any compression rate larger than the optimal rate forS is uncountable.
In contrast, previous results (such as Proposition 3) only state the existence of a single
such “badly approximable” signal.

1.2.2 Quantitative Lower Bounds

The statement of Theorem 1 is purely qualitative; it shows that the set of elements
that are approximable at a “better than optimal rate” forms a null-set with respect
to the measure P. In fact, the measure P constructed in (the proof of) Theorem 1
satisfies a stronger, quantitative condition: If one randomly draws a function f ∼ P

using the probability measure P, one can precisely bound the probability that a given
encoding/decoding pair (ER, DR) of code-length R achieves a given error ε for f . To
underline this probabilistic interpretation, we define, for any property Q of elements
f ∈ S,

Pr( f satisfies Q) := P
∗({ f ∈ S : f satisfies Q}), (1.6)

where P
∗ denotes the outer measure induced by P.

Theorem 2 Let S and s∗ as in Theorem 1. Let the probability measure P on S as
constructed in (the proof of) Theorem 1, and let us use the notation from Eq. (1.6).

Then, for any s > s∗ there exist c, ε0 > 0 (depending onS, s) such that for arbitrary
R ∈ N and (ER, DR) ∈ EncR

S,L2(Ω)
it holds that

Pr
(‖ f − DR(ER( f ))‖L2(Ω) ≤ ε

) ≤ 2R−c·ε−1/s ∀ ε ∈ (0, ε0).

Proof This follows from Theorem 4 and (the proof of) Theorem 1. ��
Theorem 2 is interesting due to its nonasymptotic nature. Indeed, given a fixed

budget of R bits and a desired accuracy ε, it provides a partial answer to the question:

How likely is one to succeed in describing a random f ∈ S to within accuracy
ε using R bits?

Figure 1 provides an illustration of the phase transition behavior in dependence of ε
and R; it graphically shows that the transition is quite sharp.

1.2.3 Lower Bounds for Neural Network Approximation

As an application, we draw a connection between the previously described results
and the approximation properties of neural networks. In a nutshell, a neural network
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Fig. 1 For S a Sobolev or Besov ball, Theorem 2 provides bounds on the probability of being able to
describe a random function f ∈ S to within accuracy ε using R bits. This probability is, for every s >

s∗ and ε ∈ (0, ε0) (s∗ denoting the optimal compression rate of S), upper bounded by Es (R, ε) :=
min

{
1, 2R−c·ε−1/s }

. In this figure, we show two plots of the function Es over the (R, 1/ε)-plane. Both
grayscale plots show Es for s = 2.002 > s∗ = 2 and c = 1, while the red curve indicates the critical
region where R = (1/ε)1/s∗ . We see that a sharp phase transition occurs in the sense that above and slightly
below the critical curve R = ε−1/2 (white area) the upper bound Es does not rule out the possibility that it
is always possible to describe f ∈ S to within accuracy ε using R bits; but even slightly below the critical
curve (dark area) the bound Es shows that such a compression is almost impossible. The sharpness of the
phase transition is more clearly shown in the zoomed part of the figure. The bottom plot further illustrates the
quantitative behavior by using a logarithmic colormap. Note that in the bottom plot two different colormaps
are used for the range [−100, 0] and the remaining range [−1000,−100)
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alternatingly applies affine-linear maps and a so-called activation function 	 : R → R

that acts componentwise on vectors, meaning 	
(
(x1, . . . , xm)

) = (
	(x1), . . . , 	(xm)

)
.

More precisely, we will use the following mathematical formalization of (fully con-
nected, feed forward) neural networks [29].

Definition 2 Let d, L ∈ N and N = (N0, . . . , NL) ⊂ N with N0 = d. We say that N
is a network architecture, where L describes the number of layers of the network and
N
 is the number of neurons in the 
-th layer.

A neural network (NN) with architecture N is a tuple

Φ = (
(A1, b1), . . . , (AL , bL)

)

of matrices A
 ∈ R
N
×N
−1 and bias vectors b
 ∈ R

N
 . Given a function 	 : R → R,
called the activation function, the mapping computed by the network Φ is defined as

R	Φ : R
d → R

NL , R	Φ = TL ◦ (	 ◦ TL−1) ◦ · · · ◦ (	 ◦ T1),

where T
 x = A
 x + b
.

Here, we use the convention 	((x1, . . . , xm)) = (	(x1), . . . , 	(xm)), i.e., 	 acts com-
ponentwise on vectors.

The complexity of Φ is mainly described by the number L(Φ) := L of layers,
the number W (Φ) := ∑L


=1

(‖A
‖
0 + ‖b
‖
0
)
of weights (or connections), and the

number N (Φ) := ∑L

=0 N
 of neurons ofΦ. Here, for a matrix or vector A, we denote

by ‖A‖
0 the number of nonzero entries of A. Furthermore, we set din(Φ) := N0 and
dout(Φ) := NL .

In addition to the number of layers, neurons, and weights of a network, we will also
be interested in the complexity of the individual weights and biases of the network,
i.e., of the entries of the (weight) matrices A
 and the bias vectors b
. Thus, define

Gσ,W := [−W σ�log2 W�, W σ�log2 W�] ∩ 2−σ�log2 W�2
Z for σ, W ∈ N. (1.7)

We say that Φ is (σ, W )-quantized if all entries of the matrices A
 and the vectors b


belong to Gσ,W .

The set Gσ,W in (1.7) contains all real numbers that belong to the grid 2−σ�log2 W�2
Z

and simultaneously to the interval
[−W σ�log2 W�, W σ�log2 W�]; thus, the grid gets arbi-

trarily fine and the interval gets arbitrarily large as W → ∞, where the parameter σ
determines how fast this happens. We note that in applications one necessarily deals
with quantized NNs due to the necessity to store and process the weights on a digital
computer. Regarding function approximation by such quantized neural networks, we
have the following result:

Theorem 3 Let 	 : R → R be measurable and let d, σ ∈ N. For W ∈ N, define

NN σ,	

d,W :=
{

R	Φ : Φ is a (σ, W )-quantized NN
and W (Φ) ≤ W , din(Φ) = d, dout(Φ) = 1

}
.
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Let S, s∗, and P as in Theorem 1. Then, using the notation (1.6), the following hold:

1. There exists C = C(d, σ ) ∈ N such that for each s > s∗ there are c, ε0 > 0
satisfying

Pr
(

min
g∈NN σ,	

d,W

‖ f − g‖L2(Ω) ≤ ε
)
≤ 2C ·W �log2(1+W )�2−c·ε−1/s ∀ ε ∈ (0, ε0).(1.8)

In fact, one can choose C = 4+ 4�log2(4ed)� + 8σ .
2. If we define Wσ,	( f ; ε) ∈ N ∪ {∞} by

Wσ,	( f ; ε) := inf
{

W ∈ N : ∃ g ∈ NN σ,	

d,W such that ‖ f − g‖L2(Ω) ≤ ε
}

and furthermore set

A∗
NN ,	 :=

{
f ∈ S : ∃ τ ∈ (0, 1

s∗ ), σ ∈ N,C > 0
∀ ε ∈ (0, 1) : Wσ,	( f ; ε) ≤ C · ε−τ

}
,

then P
∗(A∗

NN ,	
) = 0.

Proof The proof of this theorem is deferred to Appendix F. ��
In a nutshell, Eq. (1.8) states the following: If one draws a random function f

from P, then with probability at least 1−2C ·W �log2(1+W )�2−c·ε−1/s
, the function f will

have L2 distance at least ε to every network from the class NN σ,	

d,W . Consequently,

Eq. (1.8) implies that the network size W has to scale at least like W � ε−1/s∗ (up
to log factors) to succeed with high probability if S is a Sobolev- or Besov ball with
optimal exponent s∗ = s∗

L2(Ω)
(S). In particular, if one uses any learning procedure

Learn : S → NN σ,	

d,W—not necessarily a typical algorithm like (stochastic) gradient
descent— and hopes to achieve ‖ f − Learn( f )‖L2(Ω) ≤ ε, then Eq. (1.8) provides
an upper bound on the probability of success.

Remark 3 (Further discussion of Theorem 3) It might seem peculiar at first sight that
the depth of the approximating networks does not seem to play a role in Theorem 3,
even though deeper networks should intuitively have better approximation proper-
ties. To understand how this can be, note that the theorem only provides a hardness
result: it gives a lower bound on how well arbitrarily deep (quantized) networks can
approximate functions from the class S.

Whether this lower bound is sharp (i.e., whether the critical rate s∗ can be attained
using suitable networks) then depends on the chosen activation function and the
network depth. For instance, for approximating Ck functions, a result by Mhaskar
[27] shows that shallow networks with smooth, non-polynomial activation functions
already attain the optimal rates. For networks with the (non-smooth) ReLU activa-
tion function 	(x) = max{0, x}, on the other hand, it is known that (somewhat) deep
networks are necessary to attain the optimal rates;more precisely, one needsReLUnet-
works of depthO(1+ k

d ) to achieve the optimal approximation rates for Ck functions
on [0, 1]d ; see [29, Theorem C.6] and [31,32].
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In fact, the optimal rates predicted by Theorem 3 are attained (up to log factors)
by sufficiently deep ReLU networks and domain Ω = [0, 1]d . Precisely, there exist
C = C(S) > 0 and σ = σ(S) ∈ N such that

∀ f ∈ S ∀ ε ∈ (0, 1
2 ) : Wσ,	( f ; ε) ≤ C · ε−1/s∗ · log2(1/ε) � ε−τ ,

where τ ∈ (0, 1
s∗ ) is arbitrary. This follows from results in [13,34]. Since the details

are mainly technical, the proof is deferred to Appendix F. We remark that by similar
arguments as in [13,34], one can also prove the sharpness for other activation functions
than the ReLU and other domains than [0, 1]d . �

1.3 Related Literature and Concepts

1.3.1 Minimax Optimality in Approximation Theory

Many (optimality) results in approximation theory are formulated in a minimax sense,
meaning that one precisely characterizes the asymptotic decay of

dX(S, Mn) = sup
f ∈S

inf
g∈Mn

‖ f − g‖X,

where S ⊂ X is the class of signals to be approximated, and Mn ⊂ X contains all
functions “of complexity n,” for example polynomials of degree n or shallow neural
networks with n neurons, etc. As recent examples of such results related to neural
networks, we mention [4,29,41].

A minimax lower bound of the form dX(S, Mn) � n−s∗ , however, only makes
a claim about the possible worst case of approximating elements f ∈ S. In other
words, such an estimate in general only guarantees that there is at least one “hard to
approximate” function f ∗ ∈ S satisfying infg∈Mn ‖ f ∗ − g‖X � n−s for each s > s∗,
but nothing is known about how “massive” this set of “hard to approximate” functions
is, or about the “average case.”

1.3.2 Results Quantifying the “mass” of Hard-To-Approximate Functions

The first paper to address this question—and one of the main sources of inspiration
for the present paper—is [24]. In that paper, Maiorov, Meir, and Ratsaby consider
essentially the “L2-Besov-space type” signal class S = Sr of functions f ∈ L2(Bd)

(with Bd = {x ∈ R
d : ‖x‖2 ≤ 1}) that satisfy

distL2( f ,P2N ) ≤ 2−r N ,

where PK = span
{

xα : α ∈ N
d
0 with |α| ≤ K

}
denotes the space of d-variate poly-

nomials of degree at most K . On this signal class, they construct a probability measure
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P such that given the subset of functions

Mn =
{

x �→
n∑

i=1

gi (〈ai , x〉) : ai ∈ S
d−1 and gi ∈ L2([−1, 1])

}
,

one obtains the minimax asymptotic dL2(Sr , Mn) � n−r/(d−1), but furthermore there
exists c > 0 such that

P

({
f ∈ Sr : distL2( f , Mn) ≥ c · n−r/(d−1)

})
≥ 1− e−c·nd/(d−1)

.

In other words, the measure of the set of functions for which the minimax asymptotic
is sharp tends to 1 for n → ∞. In this context, we would also like to mention the
recent article [23], in which the results of [24] are extended to cover more general
signal classes and approximation in stronger norms than the L2 norm.

While we draw heavily on the ideas from [24] for the construction of the measure P

in Theorem 1, it should be noted that we are interested in phase transitions for general
encoding/decoding schemes, while [23,24] exclusively focus on approximation using
the ridge function classes Mn .

1.3.3 Baire Category

Extending the scale of Ck spaces (k ∈ N0) to the scale of Hölder-spaces Cβ , β ≥ 0,
it is well-known that Cβ is of first category (or meager) in Cη if β > η. Similarly,
under mild regularity conditions on the signal class S ⊂ X, one can show for every
codec C ∈ CodecsS,X that the set

⋃
s>s∗ As

S,X(C) of signals x ∈ S that are encodable

by C at a “better than optimal” rate s > s∗ = s∗X
(
S

)
is meager in S; for instance, this

holds if S is compact and convex; see Proposition 3.
Thus, if one could construct a Borel probabilitymeasureP onS satisfyingP

∗(M) =
0 for every set M ⊂ S that is meager in S, then P would automatically satisfy the
phase transition (1.4). In most cases, however, it turns out that no such measure exists.

Indeed, assuming that such a measure exists and that S has no isolated points, every
singleton {x} ⊂ S is meager in S, so that P({x}) = 0 for every x ∈ S. Therefore,
if S, equipped with the topology induced by ‖ · ‖X, has a base whose cardinal has
measure zero (see below for details), then [28, Theorem 16.5] shows that one can
write S = N ∪ M , where M ⊂ S is meager and N ⊂ S satisfies P(N ) = 0, leading
to 1 = P(S) ≤ P

∗(N ) + P
∗(M) = 0, a contradiction. Regarding the assumption on

the existence of a base whose cardinal has measure zero, note that if S is relatively
compact (which always holds if s∗X

(
S

)
> 0), then S is separable and hence has a

countable base, whose cardinal thus has measure zero; see [28, Page 63]. In summary,
if S ⊂ X is relatively compact and has no isolated points, then there does not exist a
Borel probability measure P on S satisfying P

∗(M) = 0 for every set M ⊂ S of first
category.

One could further ask how “special” measures satisfying the phase transition (1.4)
are; more precisely: Is the set of probability measures P satisfying (1.4) generic in the
set of (atom-free) probability measures? This is not the case; in fact, Proposition 4
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shows under very mild assumptions that if one equips the set of atom-free probability
measures on S with the total variation metric, then the set of measures satisfying (1.4)
ismeager. In other words, the set of measures not satisfying (1.4) is generic as a subset
of all atom-free Borel probability measures on S.

1.3.4 Small ball probabilities and Gaussian measures

An important notion that we introduce and study in this article are measures of loga-
rithmic growth order s0, which are measures satisfying a certain small ball condition;
see Eq. (1.9) below. Such small ball conditions have been extensively studied in the
theory of Gaussian measures; see for instance [21,22]. An important result in that
area of research shows that the small ball probability of a Gaussian measure μ is
closely related to the behavior of the entropy numbers of the unit ball Kμ of a certain
reproducing kernel Hilbert space Hμ associated with μ.

In seeming similarity, we are concerned with constructing a probability measure P

supported on a given set S such that P satisfies a certain small ball property, depending
on the optimal exponent s∗H

(
S

)
of S, which is intimately related to the behavior

of the entropy numbers of S. As far as we can tell, however, the similarity is only
superficial, meaning that the main similarity is simply that both results are concerned
with measures satisfying small ball properties and the relation to entropy numbers.

To see that the questions considered in [21,22] are different from the ones studied
here, note that the Gaussian measures considered in [21,22] are not supported on
Kμ and furthermore that the entropy numbers of Kμ always satisfy H(Kμ, ε) ∈
o(ε−2) as ε → 0, a property that is in general not shared by the signal classes S =
Ball

(
0,1;Bτ

p,q(Ω;R)
)
and S := Ball

(
0, 1; W k,p(Ω)

)
that we consider.

Finally, we mention that a (non-trivial) modification of our proof shows that the
measure P constructed in Theorem 1 can be chosen to be (the restriction of) a suitable
centered Gaussian measure.

1.3.5 Optimality Results for Neural Network Approximation

We emphasize that our lower bounds for neural network approximation consider net-
works with quantized weights, as in [4,29]. The main reason is that without such an
assumption, even networks with two hidden layers and a fixed number of neurons can
approximate any function arbitrarily well if the activation function is chosen suitably;
see [25, Theorem 4] and [40]. Moreover, even if one considers the popular ReLU
activation function, it was recently observed that the optimal approximation rates for
networks with quantized weights can in fact be doubled by using arbitrarily deep
ReLU networks with highly complex (non-quantized) weights [41].

1.4 Structure of the Paper and Proof Ideas

In Sect. 2, we introduce and study a class of probability measures with a certain growth
behavior. More precisely, we say that P is of logarithmic growth order s0 on S ⊂ X
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if for each s > s0 there exist ε0 = ε0(s) > 0 and c = c(s) > 0 satisfying

P
(
S ∩ Ball(x, ε;X)

) ≤ 2−c·ε−1/s ∀ x ∈ X and ε ∈ (0, ε0). (1.9)

Here, as in the rest of the paper, Ball(x, ε;X) is the closed ball around x of radius
ε with respect to ‖ · ‖X. A probability measure has critical growth if its logarithmic
growth order equals the optimal compression rate s∗X (S). We show in particular that
every critical probability measure exhibits a compressibility phase transition as in
Definition 1, and we show how critical probability measures can be transported from
one set to another.

Intuitively, the natural way to construct a probability measure P satisfying (1.9) is
to make the measure “as uniform as possible,” so that each ball Ball(x, ε;X) contains
roughly the same (small) volume. At first sight, it is thus natural to choose P to be
translation invariant. It is well-known, however, (see, e.g., [17, Page 218]) that there
does not exist any non-trivial locally finite, translation invariant measure on an infinite-
dimensional, separable Banach space.

Therefore, we construct a measure P satisfying (1.9) in the setting of certain
sequence spaces, where we can exploit the product structure of the signal class S
to make the measure as uniform as possible—this technique was pioneered in [24].
More precisely, in Sect. 3,we study the sequence spaces 
p,q

P,α
, which are essentially the

coefficient spaces associated with Besov spaces. By modifying the construction given
in [24], we construct probability measures of critical growth on the unit balls S p,q

P,α

of the spaces 
p,q
P,α

, for the range of parameters for which the embedding 

p,q
P,α

↪→ 
2

is compact. For the case q = ∞, we directly use the product structure of the spaces
to construct the measure; the construction for the case q < ∞ uses the measure from
the case q = ∞, combined with a technical trick (namely, introducing an additional
weight).

The construction of critical measures on the unit balls of Besov and Sobolev spaces
is then accomplished in Sect. 4, by using wavelet systems to transfer the critical
measure from the sequence spaces to the function spaces. This makes heavy use of
the transfer results established in Sect. 2.

A host of more technical proofs are deferred to the appendices.

1.5 Notation

We write N := {1, 2, 3, . . . } for the set of natural numbers, and N0 := {0} ∪ N for
the natural numbers including zero. The number of elements of a set M is denoted
by |M | ∈ N0 ∪ {∞}. For n ∈ N0, we define [n] := {k ∈ N : k ≤ n}; in particular,
[0] = ∅.

For x ∈ R, we write x+ := max{0, x} and x− := (−x)+ = max{0,−x}.
We assume all vector spaces to be over R, unless explicitly stated otherwise.
For a given (quasi)-normed vector space (X, ‖ · ‖), we denote the closed ball of

radius r ≥ 0 around x ∈ X by

Ball(x, r) := Ball(x, r;X) := {
y ∈ X : ‖y− x‖ ≤ r

}
.
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If we want to emphasize the quasi-norm (for example, if multiple quasi-norms are
considered on the same space X), we write Ball(x, r; ‖ · ‖) instead.

We say that a subset S of a topological space X is relatively compact, if the closure
S of S inX is compact. IfX is a complete metric space with metric d, then this holds if
and only if S is totally bounded, meaning that for every ε > 0 there exist finitely many
x1, . . . , xN ∈ X satisfying S ⊂ ⋃N

i=1{x ∈ X : d(x, xi ) ≤ ε}; see [14, Theorem 0.25].
For an index set I and an integrability exponent p ∈ (0,∞], the sequence space


p(I) ⊂ R
I is


p(I) = {
x = (xi )i∈I ∈ R

I : ‖x‖
p < ∞}
,

where ‖x‖
p := (∑
i∈I |xi |p

)1/p if p < ∞, while ‖x‖
∞ := supi∈I |xi |.
A Comment onMeasurability: Given a (not necessarily measurable) subset M ⊂ X
of a Banach space X, we will always equip M with the trace σ -algebra

M � BX := {M ∩ B : B ∈ BX}
of the Borel σ -algebra BX. A Borel measure on M is then a measure defined on
M � BX.

Note that if (Ω,A ) is any measurable space, then Φ : Ω → M is measurable if
and only if it is measurable considered as a map Φ : Ω → (X,BX).

2 General Results on Phase Transitions in Banach Spaces

In this section, we establish an abstract version of the phase transition considered in
(1.4) for signal classes in general Banach spaces and a class of measures that satisfy
a uniform growth property that we term “critical” (see Definition 3). We will show in
Sect. 2.1 that such critical measures automatically induce a phase transition behavior.
We furthermore show in Sect. 2.2 that criticality is preserved under pushforward by
“nice” mappings. The existence of critical measures is by no means trivial; quite the
opposite, their construction for a class of sequence spaces in Sect. 3—and for Besov
and Sobolev spaces on domains in Sect. 4—constitutes an essential part of the present
article.

2.1 Measures of Logarithmic Growth

Definition 3 Let S �= ∅ be a subset of a Banach space X, and let s0 ∈ [0,∞).
A Borel probability measureP on S has (logarithmic) growth order s0 (with respect

to X) if for every s > s0, there are constants ε0, c > 0 (depending on s, s0,P,S,X)
such that

P
(
S ∩ Ball(x, ε;X)

) ≤ 2−c·ε−1/s ∀ x ∈ X and ε ∈ (0, ε0). (2.1)

We say that P is critical for S (with respect to X) if P has logarithmic growth order
s∗X (S), with the optimal compression rate s∗X (S) as defined in Eq. (1.1).
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Remark (1) If P has growth order s0, then P also has growth order σ , for arbitrary
σ > s0.

(2) Instead of Property (2.1), one could equivalently only require that the measure
of balls centered at points of S decays rapidly. More precisely, (2.1) is valid for
certain ε0, c > 0 (depending on s, s0,P,S,X) if and only if there exist ε1, ω > 0
(depending on s, s0,P,S,X) satisfying

P
(
S ∩ Ball(x, ε;X)

) ≤ 2−ω·ε−1/s ∀ x ∈ S and ε ∈ (0, ε1). (2.2)

Indeed, if (2.1) holds, then so does (2.2) (with ω = c and ε1 = ε0). Conversely,
suppose (2.2) holds for certain ε1, ω > 0. Set c := ω/21/s > 0 and ε0 := ε1/2 and
let ε ∈ (0, ε0) and x ∈ X be arbitrary. First, if S ∩Ball(x, ε;X) = ∅, then trivially
P
(
S∩Ball(x, ε;X)

) = 0 ≤ 2−c·ε−1/s
. Otherwise, there exists y ∈ S∩Ball(x, ε;X)

and then Ball(x, ε;X) ⊂ Ball(y, 2ε;X) and 2ε < ε1. Hence, (2.2) shows

P
(
S ∩ Ball(x, ε;X)

) ≤ P
(
S ∩ Ball(y, 2ε;X)

) ≤ 2−ω·(2ε)−1/s = 2−c·ε−1/s

by our choice of c. �

The motivation for considering the growth order of a measure is that it leads to
bounds regarding the measure of elements x ∈ S that are well-approximated by a
given codec; see Eq. (2.3) below. Furthermore, as we will see in Corollary 2, if P is
a probability measure of growth order s0, then necessarily s0 ≥ s∗X (S), so critical
measures have the minimal possible growth order.

The following theorem summarizes ourmain structural results, showing that critical
measures always exhibit a compressibility phase transition.

Theorem 4 Let the signal class S be a subset of the Banach space X, let P be a Borel
probability measure on S that is critical for S with respect to X, and set s∗ := s∗X (S).
Then, the following hold:

(i) Let s > s∗ and let c = c(s) > 0 and ε0 = ε0(s) as in Eq. (2.1). Then, for any
R ∈ N and (ER, DR) ∈ EncR

S,X, we have

Pr
(‖x − DR(ER(x))‖X ≤ ε

) ≤ 2R−c·ε−1/s ∀ ε ∈ (0, ε0), (2.3)

where we use the notation from Eq. (1.6).
(ii) For every s > s∗ and every codecC ∈ CodecsS,X, the setAs

S,X(C) is a P
∗-null-set:

Pr
(
As
S,X(C)

)
= 0.

(iii) For every 0 ≤ s < s∗, there exists a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,X

with distortion

δS,X(ER, DR) ≤ C · R−s ∀ R ∈ N,
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for a constant C = C(s, C) > 0. In particular, the set of s-compressible signals
As
S,X(C) defined in Eq. (1.2) satisfies As

S,X(C) = S and hence P(As
S,X(C)) = 1.

Remark (1) Note that the theorem does not make any statement about the case s = s∗.
In this case, the behavior depends on the specific choices of S and P.

(2) As noted above, the question of the existence of a critical probability measure P

is nontrivial. �

The proof of Theorem 4 is divided into several auxiliary results. Part (i) is contained
in the following lemma.

Lemma 1 Let S �= ∅ be a subset of a Banach space X, and let P be a Borel probability
measure on S that is of logarithmic growth order s0 ≥ 0 with respect to X.

Let s > s0 and let c = c(s) > 0 and ε0 = ε0(s) as in Eq. (2.1). Then, for any
R ∈ N and (ER, DR) ∈ EncR

S,X, we have

P
∗({x ∈ S : ‖x − DR(ER(x))‖X ≤ ε}) ≤ 2R−c·ε−1/s ∀ ε ∈ (0, ε0).

Further, for any given s > s0 and K > 0 there exists a minimal code-length
R0 = R0(s, s0, K ,P,S,X) ∈ N such that every C = (

(ER, DR)
)

R∈N ∈ CodecsS,X
satisfies

P
∗({x ∈ S : ‖x − DR(ER(x))‖X ≤ K · R−s}) ≤ 2−R ∀ R ≥ R0. (2.4)

Remark The lemma states that the measure of the subset of points x ∈ S with approx-
imation error ER(x) := ‖x − DR(ER(x))‖X satisfying ER(x) ≤ K · R−s for some
s > s0 decreases exponentially with R. In fact, the proof shows that the approximation
error is decreasing asymptotically superexponentially. �

Proof Let s > s0 and let c, ε0 as in Eq. (2.1). For R ∈ N and ε ∈ (0, ε0), define
A(R, ε) := {x ∈ S : ‖x − DR(ER(x))‖X ≤ ε}. By definition,

A(R, ε) ⊂
⋃

y∈range(DR)

[
S ∩ Ball(y, ε;X)

]
.

Since P is of growth order s0 and because of |range(DR)| ≤ 2R , we can apply (2.1)
and the definition of the outer measure P

∗ (see Eq. (1.5)) to deduce

P
∗(A(R, ε)

) ≤
∑

y∈range(DR)

P
(
S ∩ Ball(y, ε;X)

) ≤ 2R · 2−c·ε−1/s
.

This proves the first part of the lemma.
To prove the second part, let s > s0, and choose σ = s+s0

2 , noting that σ ∈ (s0, s).
Therefore, the first part of the lemma, applied with σ instead of s, yields c, ε0 > 0
such that P

∗({x ∈ S : ‖x − DR(ER(x))‖X ≤ ε}) ≤ 2R−c·ε−1/σ
for all R ∈ N and

ε ∈ (0, ε0).
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Note that ε := K · R−s ≤ ε0
2 < ε0 holds as soon as R ≥ ⌈

(2K/ε0)
1/s

⌉ =: R1.
Finally, since s/σ > 1 we can find a code-length R2 = R2(s, s0, ε0, K ) ∈ N such
that

R − c · ε−1/σ = R − c · K−1/σ · Rs/σ ≤ −R for R ≥ R2 .

Overall, we thus see that (2.4) holds, with R0 := max{R1, R2}. ��
Proposition 1 Let S �= ∅ be a subset of the Banach space X. If P is a Borel probability
measure on S that is of growth order s0 ∈ [0,∞), then, for every s > s0 and every
codec C = (

(ER, DR)
)

R∈N ∈ CodecsS,X, we have

P
∗(As

S,X(C)
) = 0 .

Proof First, note that

As
S,X(C) =

⋃

K∈N

{
x ∈ S : ∀ R ∈ N : ‖x − DR(ER(x))‖X ≤ K · R−s}

=
⋃

K∈N

⋂

R∈N
A(s)

K ,R,

where A(s)
K ,R := {x ∈ S : ‖x − DR(ER(x))‖X ≤ K · R−s}.

By σ -subadditivity of P
∗, it is thus enough to show P

∗(⋂
R∈N A(s)

K ,R

) = 0 for each
K ∈ N. To see that this holds, note that Lemma 1 shows

0 ≤ P
∗
( ⋂

R∈N
A(s)

K ,R

)
≤ P

∗(A(s)
K ,R

) ≤ 2−R ∀ R ≥ R0(s, s0, K ,P,S,X).

This easily implies P
∗(⋂

R∈N A(s)
K ,R

) = 0. ��
The proof of Theorem 4 merely consists of combining the preceding lemmas.

Proof of Theorem 4 Proof of (i): This is contained in the statement of Lemma 1.
Proof of (ii): This follows from Proposition 1.
Proof of (iii): This follows from the definition of the optimal compression rate: for

0 ≤ s < s∗ there exists a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,X such that

Rs · ‖x − DR(ER(x))‖X ≤ C ∀ R ∈ N,

for a constant C > 0 and all x ∈ S. In particular, this implies As
S,X(C) = S, and

therefore P
(
As
S,X(C)

) = 1. ��
We close this subsection by showing that if P is a probability measure with log-

arithmic growth order s0, then this growth order is at least as large as the optimal
compression rate of the set on which P is defined. This justifies the nomenclature of
“critical measures” as introduced in Definition 3.
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Corollary 2 Let S �= ∅ be a subset of X, and P be a Borel probability measure on S
of growth order s0 ≥ 0. Then, s0 ≥ s∗X (S), with s∗X (S) as defined in Eq. (1.1).

Proof Suppose for a contradiction that 0 ≤ s0 < s∗X (S), and let s ∈ (s0, s∗X (S)).
By definition of s∗X (S), there exists a codec C = (

(ER, DR)
)

R∈N ∈ CodecsS,X
such that As

S,X(C) = S . By Proposition 1, we thus obtain the desired contradiction

1 = P(S) = P(As
S,X(C)) = 0. ��

2.2 Transferring Critical Measures

Our main goal in this paper is to prove a phase transition as in (1.4) for S being
the unit ball of suitable Besov- or Sobolev spaces. To do so, we will first prove (in
Sect. 3) that such a phase-transition occurs for a certain class of sequence spaces and
then, transfer this result to the Besov- and Sobolev spaces, essentially by discretizing
these function spaces using suitable wavelet systems. In the present subsection, we
formulate a general result that allows such a transfer from a phase transition as in (1.4)
from one space to another.

The precise (very general, but slightly technical) transference result reads as fol-
lows:

Theorem 5 Let X,Y,Z be Banach spaces, and let SX ⊂ X, SY ⊂ Y, and S ⊂ Z.
Assume that

1. s∗X (SX) = s∗Y (SY);
2. there exists a Lipschitz continuous map Φ : SX ⊂ X → Z satisfying Φ(SX) ⊃ S;
3. there exists a Borel probability measure P on SY that is critical for SY with respect

to Y;
4. there exists a (not necessarily surjective) measurable map Ψ : SY → S that is

expansive, meaning that there exists κ > 0 satisfying

‖Ψ (x) − Ψ (x′)‖Z ≥ κ · ‖x − x′‖Y ∀ x, x′ ∈ SY.

Then, s∗Z (S) = s∗X (SX), and the push-forward measure P ◦Ψ−1 is a Borel proba-
bility measure on S that is critical for S with respect to Z.

Remark (1) As mentioned in Sect. 1.5, regarding the measurability of Ψ , SY is
equipped with the trace σ -algebra of the Borel σ -algebra on Y, and analogously
for S.

(2) In most practical applications of this theorem, one is given a Lipschitz continuous
map Φ : X → Z and a (not necessarily surjective) measurable, expansive map
Ψ : Y → Z satisfying Φ(SX) ⊃ S and Ψ (SY) ⊂ S. For greater generality, in the
above theorem we only assume thatΦ,Ψ are defined on SX and SY, respectively.

�

Proof The proof is given in Appendix A. ��
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Fig. 2 Geometric intuition behind Theorem 5. Top: An encoder/decoder pair (ER , DR) with distortion
at most δ/(2L) corresponds to a covering of SX by 2R balls of radius δ/(2L), not necessarily centered
inside SX (red centers; also see Lemma 10). By doubling the radius, one can “move the centers inside
SX.” Using the Lipschitz map Φ satisfying Φ(SX) ⊃ S, this yields a covering of S by 2R balls of radius
δ, and hence, an encoder/decoder pair with distortion at most δ. This entails s∗Z

(S) ≥ s∗X
(SX

)
. Bottom:

Since Ψ is expansive, the inverse image under Ψ of a ball of radius ε is contained in a ball of radius 2ε/κ ,
ensuring that the push-forwardmeasureP◦Ψ−1 is of logarithmic growth order s∗Y

(SY
)
onS, which implies

s∗Z
(S) ≤ s∗Y

(SY
)
; see Corollary 2

3 Proof of the Phase Transition in �2(I)

In this section, we provide the proof of the phase transition for a class of sequence
spaces associated with Sobolev- and Besov spaces; these sequence spaces are defined
in Sect. 3.1, where we also formulate the main result (Theorem 6) concerning the
compressibility phase transition for these spaces. Section 3.2 establishes elementary
embedding results for these spaces and provides a lower bound for their optimal
compression rate; the latter essentially follows by adapting results by Leopold [20]
to our setting. The construction of the critical probability measure for the sequence
spaces is presented in Sect. 3.3, while the proof of Theorem 6 is given in Sect. 3.4.

3.1 Main Result

Definition 4 (d-regular partitions) Let I be a countably infinite index set, andP =
(Im)m∈N be a partition of I; that is, I = ⊎∞

m=1 Im , where the union is disjoint. For
d ∈ N, we call P a d-regular partition, if there are 0 < a < A < ∞ satisfying

a · 2dm ≤ |Im | ≤ A · 2dm for all m ∈ N. (3.1)

Convention: We will always assume that I,P and d have this meaning.
Associated with a d-regular partition, we now define the following family of

weighted sequence spaces.
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Definition 5 (Sequence spaces) Let p, q ∈ (0,∞] and α, θ ∈ R. For any sequence
x = (xi )i∈I ∈ R

I , we define

xm := x|Im = (xi )i∈Im

and ‖x‖
p,q
P ,α,θ

:=
∥∥∥
(
2αm · mθ · ∥∥xm

∥∥

p(Im )

)

m∈N

∥∥∥

q (N)

.
(3.2)

The mixed-norm sequence space 

p,q
P,α,θ

is



p,q
P,α,θ

:=
{
x ∈ R

I : ‖x‖
p,q
P ,α,θ

< ∞
}
.

For brevity, we also define 

p,q
P,α

:= 

p,q
P,α,0 and

S p,q
P,α,θ

:= Ball
(
0, 1; 
p,q

P,α,θ

)
, as well as S p,q

P,α
:= S p,q

P,α,0.

In the remainder of this section, we will prove the existence of a critical measure
on each of the sets S p,q

P,α
, provided that α > d · ( 12 − 1

p )+. In the proof, the (otherwise
not really important) spaces 
p,q

P,α,θ
will play an essential role. The main result of this

section is thus the following theorem, the proof of which is given in Sect. 3.4 below.

Theorem 6 Let p, q ∈ (0,∞] and α ∈ R, and assume that α > d · ( 12 − 1
p

)
+. Then,

S p,q
P,α

⊂ 
2(I) is compact and hence, Borel measurable, its optimal compression rate

is given by s∗

2(I)

(
S p,q
P,α

) = α
d − ( 12 − 1

p ), and there exists a Borel probability measure

P
p,q
P,α

on S p,q
P,α

that is critical for S p,q
P,α

with respect to 
2(I). In particular, the phase
transition described in Theorem 4 holds.

Remark Explicitly, the proof shows for any s > s∗ = α
d − ( 12 − 1

p ) that

P
p,q
P,α

(
S ∩ Ball(x, ε; 
2(I))) ≤ 2−c·ε−1/s ∀ ε ∈ (0, ε0),

where ε0 = ε
(0)
0 · (s − s∗)2/q · e−s·(d+1) and c = c(0) ·2−d · (s − s∗)2/(sq) for constants

ε
(0)
0 = ε

(0)
0 (p, q, a, A) > 0 and c(0) = c(0)(s∗, p, q, a, A) > 0 with a, A as in (3.1).

This provides control on how fast c, ε0 deteriorate as s ↓ s∗ or d → ∞. These bounds
are probably not optimal. �

3.2 Embedding Results and a Lower Bound for the Compression Rate

Having introduced the signal classes S p,q
P,α

, we now collect two technical ingredients

needed to construct the measures P
p,q
P,α

on these sets: A lower bound for the optimal

compression rate ofS p,q
P,α

(Proposition 2) and certain elementary embeddings between

the spaces 

p,q
P,α,θ

for different choices of the parameters (Lemma 2).
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Lemma 2 Let p, q, r ∈ (0,∞] and α, θ, ϑ ∈ R. If q > r and ϑ > 1
r − 1

q , then



p,q
P,α,θ+ϑ

↪→ 

p,r
P,α,θ

. More precisely, there exists a constant κ = κ(r , q, ϑ) ≥ 1 such

that ‖x‖
p,r
P ,α,θ

≤ κ · ‖x‖
p,q
P ,α,θ+ϑ

for all x ∈ R
I .

Proof The claim follows by an elementary application of Hölder’s inequality; the
details can be found in Appendix H. ��

The following result shows that the supremal compression rate of the class S p,q
P,α

identified inTheorem6 is realized by a suitable codec—thus, the supremum inEq. (1.1)
is attained in this setting.

Proposition 2 Let p, q ∈ (0,∞] and α ∈ (0,∞), and assume α > d · ( 12 − 1
p )+.

Then, we have 

p,q
P,α

↪→ 
2(I), and the set S p,q
P,α

⊂ 
2(I) is compact with

s∗

2(I)

(
S p,q
P,α

) ≥ α
d − ( 12 − 1

p ).

Furthermore, there exists a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS p,q

P ,α
,
2(I) satis-

fying

δS p,q
P ,α

,
2(I)(ER, DR) � R
−

(
α
d −( 12− 1

p )
)

∀ R ∈ N. (3.3)

Proof In essence, this an entropy estimate for sequence spaces; see [12]. Since the
precise proof mainly consists in translating the results in [20] to our setting, it is
deferred to Appendix B. ��

3.3 Construction of theMeasure

We now come to the technical heart of this section—the construction of the measures
P

p,q
P,α

. We will provide different constructions for q = ∞ and for q < ∞: Since for

q = ∞ the class S p,∞
P,α,θ

has a natural product structure (Lemma 3), we define the
measure as a product measure (Definition 6). We then use the embedding result of
Lemma 2 to transfer the measure on S p,∞

P,α,θ
to the general signal classes S p,q

P,α
; see

Definition 7.
We start with the elementary observation that the balls S p,∞

P,α,θ
can be written as

infinite products of finite-dimensional balls.

Lemma 3 The balls of the mixed-norm sequence spaces 
p,∞
P,α,θ

satisfy (up to canonical
identifications) the factorization

S p,∞
P,α,θ

= Ball
(
0, 1; 
p,∞

P,α,θ

) =
ą

m∈N
Ball

(
0, 2−αm m−θ ; 
p(Im)

)
.

Proof We identify x ∈ R
I with (xm)m∈N ∈ Ś

m∈N R
Im , as defined in Eq. (3.2). Set

wm := mθ ·2αm for m ∈ N. The statement of the lemma then follows by recalling that

‖x‖
p,∞
P ,α,θ

= sup
m∈N

(
wm · ‖xm‖
p(Im )

)
.

��
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With Lemma 3 in hand, we can readily define P
p,∞
P,α,θ

as a product measure.

Definition 6 (Measures for q = ∞) Let P = (Im)m∈N be a d-regular partition
of I. Let Bm be the Borel σ -algebra on R

Im and denote the Lebesgue measure on
(RIm ,Bm) by μm .

For p ∈ (0,∞] and wm > 0 define the probability measure P
p,wm
m on (RIm ,Bm)

by

P
p,wm
m : Bm → [0, 1], A �→ μm

(
A ∩ Ball

(
0, w−1

m ; 
p(Im)
))

μm
(
Ball

(
0, w−1

m ; 
p(Im)
)) . (3.4)

Given p ∈ (0,∞] and α, θ ∈ R define wm := mθ · 2αm , letBI denote the product
σ -algebra on R

I and define P
p,∞
P,α,θ

as the product measure of the family
(
P

p,wm
m

)
m∈N

(see, e.g., [11, Section 8.2]):

P
p,∞
P,α,θ

:=
⊗

m∈N
P

p,wm
m : BI → [0, 1]. (3.5)

With the help of the preceding results, we can now describe the construction of the
measure P

p,q
P,α

on S p,q
P,α

, also for q < ∞. A crucial tool will be the embedding result
from Lemma 2.

Definition 7 (Measures for q < ∞) Let the notation be as in Definition 6.
For given q ∈ (0,∞], choose (according to Lemma 2) a constant κ = κ(q) ≥ 1

(with κ = 1 if q = ∞) such that ‖x‖
p,q
P ,α,0

≤ κ · ‖x‖
p,∞
P ,α,2/q

for all x ∈ R
I , and

define

P
p,q
P,α

: BI → [0, 1], A �→ P
p,∞
P,α,2/q(κ · A).

In the following, we verify that the measures defined according to Definitions 6
and 7 are indeed (Borel) probability measures on the signal classes S p,∞

P,α,θ
and S p,q

P,α
,

respectively. To do so, we first show that the signal classes are measurable with respect
to the product σ -algebra BI , and we compare this σ -algebra to the Borel σ -algebra
on 
2(I).

Lemma 4 Let BI denote the product σ -algebra on R
I and let p, q ∈ (0,∞] and

α, θ ∈ R. Then, the (quasi)-norm ‖ · ‖
p,q
P ,α,θ

: R
I → [0,∞] is measurable with

respect to BI . In particular, S p,q
P,α,θ

∈ BI .

Further, the Borel σ -algebra B
2 on 
2(I) coincides with the trace σ -algebra

2(I)�BI .

Proof The (mainly technical) proof is deferred to Appendix H. ��
Lemma 5 (a) The measure P

p,∞
P,α,θ

is a probability measure on the measurable space
(
S p,∞
P,α,θ

,S p,∞
P,α,θ

�BI
)
.

123



Foundations of Computational Mathematics (2023) 23:329–392 351

(b) If α > d · ( 12 − 1
p )+, then S p,q

P,α
⊂ 
2(I), and the measure P

p,q
P,α

is a probability

measure on
(
S p,q
P,α

,S p,q
P,α

� B
2
)
, where B
2 denotes the Borel σ -algebra on


2(I).

Proof For the first part, Lemma 4 implies that S p,∞
P,α,θ

∈ BI , so that P
p,∞
P,α,θ

is a mea-

sure onS p,∞
P,α,θ

�BI . Furthermore, Lemma3andDefinition 6 showP
p,∞
P,α,θ

(S p,∞
P,α,θ

) =
1.

For the second part, recall from Proposition 2 that S p,q
P,α

⊂ 
2(I), so that Lemma 4

implies S p,q
P,α

� B
2 = S p,q
P,α

� BI , which easily implies that P
p,q
P,α

is a measure on

S p,q
P,α

�B
2 . Finally, observe that S
p,∞
P,α,2/q ⊂ κ ·S p,q

P,α
by choice of κ in Definition 7,

and hence

1 ≥ P
p,q
P,α

(S p,q
P,α

) ≥ P
p,q
P,α

(κ−1 S p,∞
P,α,2/q) = P

p,∞
P,α,2/q(S

p,∞
P,α,2/q) = 1.

��

3.4 Proof of Theorem 6

In this subsection, we prove that the measures P
p,q
P,α

constructed in Definition 7 are

critical, provided that α > d · ( 12 − 1
p )+. An essential ingredient for the proof is the

following estimate for the volumes of balls in 
p([m]).
Lemma 6 Let m ∈ N and p ∈ (0,∞]. The m-dimensional Lebesgue measure of
Ball(0, 1; 
p([m])) is

λm
(
Ball(0, 1; 
p([m]))) = 2m · (Γ (1+ 1

p )
)m

Γ (1+ m
p )

. (3.6)

For every p ∈ (0,∞], there exist constants cp ∈ (0, 1] and C p ∈ [1,∞), such
that

cm
p · m−m( 12− 1

p ) ≤ λm
(
Ball(0, 1; 
2([m])))

λm
(
Ball(0, 1; 
p([m]))) ≤ Cm

p · m−m( 12− 1
p ) ∀m ∈ N. (3.7)

Proof A proof of (3.6) can be found, e.g., in [18, Theorem 5].
For proving (3.7), we use that in [18, Lemma 4] it is shown that for each p ∈ (0,∞)

there are constants ηp, ωp > 0 satisfying

ηp · x1/p ≤
[
Γ

(
1+ x

p

)]1/x ≤ ωp · x1/p ∀ x ∈ [1,∞). (3.8)

It is clear that this remains true also for p = ∞; in fact, since Γ (1) = 1, one can
simply choose η∞ = ω∞ = 1 in this case.
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By (3.6), we see that

λm
(
Ball(0, 1; 
2([m])))

λm
(
Ball(0, 1; 
p([m]))) =

(
Γ (1+ 1

2 )

Γ (1+ 1
p )

)m

· Γ (1+ m
p )

Γ (1+ m
2 )

,

and the estimate (3.8) implies

ηm
p · mm/p

ωm
2 · mm/2 ≤ Γ (1+ m

p )

Γ (1+ m
2 )

≤ ωm
p · mm/p

ηm
2 · mm/2 .

Hence, we can choose C p := max
{
1,

Γ (1+ 1
2 )

Γ (1+ 1
p )

ωp

η2

}
and cp := min

{
1,

Γ (1+ 1
2 )

Γ (1+ 1
p )

ηp

ω2

}
.

��
We are finally equipped to prove Theorem 6.

Proof of Theorem 6 Step 1:We show for s∗ := α
d − ( 12 − 1

p ) and arbitrary θ ∈ [0,∞)

that the measure P
p,∞
P,α,θ

has growth order s∗ with respect to 
2(I).
To this end, let s > s∗ be arbitrary, and let ε ∈ (0, ε0) (for a suitable ε0 > 0 to be

chosen below), and x ∈ 
2(I). We estimate the measure P
p,∞
P,α,θ

(Ball(x, ε; 
2(I))) by
estimating the measure of certain finite-dimensional projections of the ball, exploiting
the product structure of the measure: Recall the identification x = (xm)m∈N, where
xm = x|Im . Set wm := mθ · 2αm for m ∈ N, as in Definition 6. For arbitrary m ∈ N,
we have

Ball(x, ε; 
2(I)) ⊂
m−1ą

t=1

R
It × Ball(xm, ε; 
2(Im)) ×

∞ą

t=m+1

R
It .

Using the product structure of P
p,∞
P,α,θ

(cf. Eq. (3.5)) and the constant C p ≥ 1 from
Lemma 6, we thus see for each m ∈ N that

P
p,∞
P,α,θ

(
Ball(x, ε; 
2(I)))

≤ P
p,wm
m

(
Ball

(
xm, ε; 
2(Im)

))

≤ μm
(
Ball

(
xm, ε; 
2(Im)

))

μm

(
Ball

(
0, w−1

m ; 
p(Im)
)) by Equation (3.4) ,

= εnm wnm
m · λnm

(
Ball(0, 1; 
2(Im))

)

λnm (Ball(0, 1; 
p(Im)))
for nm := |Im |,

≤
(

C p · ε wm · n
−( 12− 1

p )

m

)nm
by Lemma 6.

From (3.1), we see that nm = 2dm ηm for a certain ηm ∈ [a, A] and hence η
−( 12− 1

p )

m ≤
K (0)
1 = K (0)

1 (a, A, p). Furthermore, a straightforward curve discussion of the function
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x �→ xθ · e−δx for δ = (s − s∗) · ln 2 shows that xθ ≤ (
θ

e·ln 2·(s−s∗)
)θ · 2x(s−s∗) for

all x > 0, with the convention 00 = 1. Combining these observations, we see for
K (1)
1 := (θ/(e ln 2))θ that

wm n
−( 12− 1

p )

m = mθ 2αm 2−md( 12− 1
p )

η
−( 12− 1

p )

m

= mθ 2mds∗ η
−( 12− 1

p )

m

≤ K (0)
1 K (1)

1 · (s − s∗)−θ · 2m(s−s∗)2dms∗

≤ K1 · (s − s∗)−θ · 2md(s−s∗)2dms∗

= K1 · (s − s∗)−θ · 2mds,

where K1 = K1(θ, p, a, A) ≥ 1.
For K (0)

2 := C p K1 ≥ 1 and K2 := K (0)
2 /(s − s∗)θ , we thus see that K (0)

2 =
K (0)
2 (θ, p, a, A) and

P
p,∞
P,α,θ

(
Ball(x, ε; 
2(I))) ≤ (

K2 · ε · 2mds)2mdηm ∀m ∈ N. (3.9)

A good candidate for an upper bound for P
p,∞
P,α,θ

(Ball(x, ε; 
2(I))) is associated
with a positive integer close to

m̃(ε) := argmin
m∈R

(
K2 · ε · 2msd)2md = − log2(K2 · ε)

ds
− log2 e

d
.

Choose a positive ε0 > 0 so small that m̃(ε) > 1 for all ε ∈ (0, ε0). An easy calculation
shows that one can choose ε0 = 1/(K2 · es(d+1)) = ε

(0)
0 · (s − s∗)θ · e−s(d+1), where

ε
(0)
0 = ε

(0)
0 (θ, p, a, A) > 0.

Setm0 := �m̃(ε) ∈ N. Note that 2ds·m̃(ε) = e−s/(K2 ·ε), and hence K2 ε 2ds·m0 ≤
e−s < 1. For the exponent in (3.9), observe that

2d m0 ηm0 ≥ a · 2d·(m̃(ε)−1) = a

2d
· (2dsm̃(ε)

)1/s = a

2d · e · K 1/s
2

· ε−1/s ≥ K3 · ε−1/s,

where K3 = K (0)
3 · 2−d · (s − s∗)θ/s and K (0)

3 = K (0)
3 (s∗, θ, p, a, A) > 0 is given by

K (0)
3 = a

/(
e · (K (0)

2 )1/s∗). Now, (3.9) can be estimated further, yielding

P
p,∞
P,α,θ

(
Ball(x, ε; 
2(I))) ≤ (

K2 · ε · 2m0 ds)K3·ε−1/s ≤ e−K3·s·ε−1/s ≤ 2−K4·ε−1/s
,

for K4 := s∗ · K3, so that K4 = K (0)
4 · 2−d · (s − s∗)θ/s for a suitable constant

K (0)
4 = K (0)

4 (s∗, θ, p, a, A) > 0. Since s > s∗ was arbitrary, this shows that P
p,∞
P,α,θ

is of logarithmic growth order s∗; see Definition 3.
Step 2: We show that P

p,q
P,α

is of growth order s∗ with respect to 
2(I) on S p,q
P,α

.
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To see this, let s > s∗ be arbitrary and choose (by virtue of Step 1) ε0, c > 0 such
that P

p,∞
P,α,2/q

(
Ball(x, ε; 
2(I))) ≤ 2−c ·ε−1/s

for all x ∈ 
2(I) and ε ∈ (0, ε0). From

the explicit formulas given in Step 2, we see that ε0 = ε
(0)
0 · (s − s∗)2/q · e−s(d+1) for

ε
(0)
0 = ε

(0)
0 (p, q, a, A) > 0, and furthermore that c = c(0)·2−d ·(s−s∗)2/(sq) for c(0) =

c(0)(s∗, p, q, a, A) > 0. Recall from Definition 7 that P
p,q
P,α

(M) = P
p,∞
P,α,2/q(κM)

for a suitable κ = κ(q) ≥ 1. Define ε′0 := ε0/κ and c′ := c · κ−1/s∗ .
Now, if ε ∈ (0, ε′0), then κε ∈ (0, ε0) and hence

P
p,q
P,α

(
Ball(x, ε; 
2(I))) = P

p,∞
P,α,2/q

(
κ Ball(x, ε; 
2(I)))

= P
p,∞
P,α,2/q

(
Ball(κx, κε; 
2(I)))

≤ 2−c·(κε)−1/s ≤ 2−c′·ε−1/s
,

where the last step used that κ ≥ 1 and s > s∗. Overall, we have shown that P
p,q
P,α

is

of growth order s∗ with respect to 
2(I).
Step 3: (Completing the proof): By Proposition 2, S p,q

P,α
⊂ 
2(I) is compact with

s∗

2(I)

(
S p,q
P,α

) ≥ s∗. By Step 2 and Lemma 5, P
p,q
P,α

is a Borel probability mea-

sure on S p,q
P,α

of growth order s∗ with respect to 
2(I). Thus, Lemma 9 shows that

s∗

2(I)

(
S p,q
P,α

) = s∗ and that P
p,q
P,α

is critical for S p,q
P,α

with respect to 
2(I). ��
Remark The proof borrows its main idea (using the product measure structure of
P

p,∞
P,α,θ

to work on finite dimensional projections) from [24]. �

4 Examples

4.1 Besov Spaces on Bounded Open Sets˝ ⊂ R
d

For Besov spaces on bounded domains, we obtain the following consequence of The-
orem 6, by using suitable wavelet bases to transport the measures P

p,q
P,α

to the Besov

spaces. For a review of the definition of Besov spaces (on R
d and on domains), and

the characterization of these spaces by wavelets, we refer to Appendices C.1 and C.2 .

Theorem 7 Let ∅ �= Ω ⊂ R
d be open and bounded, let p, q ∈ (0,∞], and τ ∈ R

with τ > d · ( 1p − 1
2 )+.

Then,

(i) S := Ball
(
0, 1; Bτ

p,q(Ω;R)
)

is a compact subset of L2(Ω), with optimal com-
pression rate given by s∗

L2(Ω)
(S) = τ

d ;
(ii) there exists a Borel probability measure P on S that is critical for S with respect

to L2(Ω);
(iii) there exists a codec C = (

(ER, DR)
)

R∈N ∈ CodecsS,L2(Ω) satisfying
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δS,L2(Ω)(ER, DR) � R− τ
d .

Remark In the discussion following Theorem 4, we observed that the existence of a
critical measure in general leaves open what happens for s = s∗. In the case of Besov
spaces, the above theorem shows that the compression rate s = s∗ = τ

d is actually
achieved by a suitable codec. �

Proof Define α := τ + d · ( 12 − 1
p ), noting that

α > d · [( 1p − 1
2 )+ + ( 12 − 1

p )
] = d · ( 12 − 1

p )+ ,

so that α satisfies the assumptions of Theorem 6.
Using the wavelet characterization of Besov spaces, it is shown in Appendix C.3 1

that there are countably infinite index sets J ext, J int with associatedd-regular partitions
Pext = (

Iext
m

)
m∈N and P int = (

I int
m

)
m∈N and such that there are linear maps

Qint : 
p,q
P int,α

→ Bτ
p,q(Ω;R) and Qext : 
p,q

Pext,α
→ Bτ

p,q(Ω;R)

with the following properties:

1. 

p,q
P int,α

↪→ 
2(J int) and 

p,q
Pext,α

↪→ 
2(J ext); this follows from Proposition 2.
2. There is some γ > 0 such that ‖Qint c‖L2(Ω) = γ · ‖c‖
2 < ∞ and furthermore

‖Qint c‖Bτ
p,q (Ω) ≤ ‖c‖
p,q

P int ,α
for all c ∈ 


p,q
P int,α

.

3. There is 	 > 0 such that ‖Qext c‖L2(Ω) ≤ 	 · ‖c‖
2 < ∞ for all c ∈ 

p,q
Pext,α

, and

Ball
(
0, 1; Bτ

p,q(Ω;R)
) ⊂ Qext

(
Ball

(
0, 1; 
p,q

Pext,α

)) ⊂ L2(Ω). (4.1)

Furthermore, Theorem 6 shows that

s∗

2(J int)

(
S p,q
P int,α

)
= s∗


2(J ext)

(
S p,q
Pext,α

)
= α

d − ( 1
2 − 1

p

) = τ
d

and that there exists aBorel probabilitymeasureP0 onBall(0, 1; 
p,q
P int,α

) that is critical

for Ball(0, 1; 
p,q
P int,α

) with respect to 
2(J int). Therefore, we can apply Theorem 5

with the choices X = 
2(J ext), Y = 
2(J int) and Z = L2(Ω) as well as

SX = Ball
(
0, 1; 
p,q

Pext,α

)
, SY = Ball

(
0, 1; 
p,q

P int,α

)
,

and S = Ball
(
0, 1; Bτ

p,q(Ω;R)
)
, and finally Φ = Qext, Ψ = Qint, and κ = γ . This

theorem then shows s∗
L2(Ω)

(S) = τ
d > 0 (in particular, S ⊂ L2(Ω) is totally bounded

1 Precisely, this follows by combining Lemmas 11 and 12 and by taking Qint = Tint ◦ ιint and
Qext = Text ◦ ιext .
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and hence compact, since S ⊂ L2(Ω) is closed by Lemma 14) and that P := P0◦Q−1
int

is a Borel probability measure on S that is critical for S with respect to L2(Ω).
Finally, Proposition 2 yields a codec C∗ = (

(E∗
R, D∗

R)
)

R∈N ∈ CodecsSX,
2(J ext) sat-

isfying δSX,
2(J ext)(E∗
R, D∗

R) � R− τ
d . Furthermore, Qext is Lipschitz (with respect to

‖ · ‖
2 and ‖·‖L2 ) and satisfies (4.1). Thus, Lemma 8 shows that δS,L2(Ω)(ER, DR) �
R− τ

d for some codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,L2(Ω). ��

4.2 Sobolev Spaces on Lipschitz Domains˝ ⊂ R
d

Let ∅ �= Ω ⊂ R
d be an open bounded Lipschitz domain (precisely, we require Ω to

satisfy the conditions in [33, Chapter VI, Section 3.3]). We consider the usual Sobolev
spaces W k,p(Ω) (k ∈ N and p ∈ [1,∞]) and prove that also for the unit balls of these
spaces, the phase transition phenomenon holds. To be completely explicit, we endow
the space W k,p(Ω) with the following norm:

‖ f ‖W k,p(Ω) := max|α|≤k
‖∂α f ‖L p(Ω). (4.2)

Our phase-transition result reads as follows:

Theorem 8 Let ∅ �= Ω ⊂ R
d be an open bounded Lipschitz domain. Let k ∈ N and

p ∈ [1,∞], and define S := Ball
(
0, 1; W k,p(Ω)

)
. If k > d · ( 1p − 1

2 )+, then

(i) S ⊂ L2(Ω) is bounded and Borel measurable and satisfies s∗
L2(Ω)

(S) = k
d ;

(ii) there is a Borel probability measure P on S that is critical for S with respect to
L2(Ω);

(iii) there exists a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,L2(Ω) satisfying

δS,L2(Ω)(ER, DR) � R− k
d .

Remark 1. As for the case of Besov spaces, the theorem shows that the critical rate
s = s∗ = k

d is actually attained by a suitable codec.
2. The condition k > d · ( 1p − 1

2 )+ is equivalent to S ⊂ L2(Ω) being relatively
compact. The sufficiency is a consequence of the Rellich–Kondrachov theorem;
see [1, Theorem6.3]. For the necessity, note that if k ≤ d ·( 1p − 1

2 )+ then necessarily

p < 2 (since k > 0) and thus, k ≤ d
p − d

2 , which implies kp ≤ d − d p
2 < d

and 2 ≥ q := pd
d−kp . However, [1, Example 6.12] shows that the embedding

W k,p(Ω) ↪→ Lq(Ω) is not compact. Since L2(Ω) ↪→ Lq(Ω) (because of 2 ≥ q),
this shows that S is not a relatively compact subset of L2(Ω), since otherwise
W k,p(Ω) ↪→ L2(Ω) ↪→ Lq(Ω) would be a compact embedding. �

Proof of Theorem 8 We present here the proof for the case p ∈ (1,∞), where we will
see that the claim follows from that for the Besov spaces. For the case p ∈ {1,∞},
the proof is more involved and thus, postponed to Appendix D.
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First, the Rellich–Kondrachov compactness theorem (see [1, Theorem 6.3])
shows that W k,p(Ω) embeds compactly into L2(Ω). In particular, the ball S =
Ball(0, 1; W k,p(Ω)) ⊂ L2(Ω) is bounded; in fact, S is also compact (hence Borel
measurable) by reflexivity 2 of W k,p(Ω).

Define p̃ := min{p, 2} and p̂ := max{p, 2}, as well as Ss := Ball
(
0, 1; Bk

p, p̃(Ω)
)

and Sb := Ball
(
0, 1; Bk

p, p̂(Ω)
)
; here, the subscript “s” stands for “small,” while “b”

stands for “big,” since p̃ is the small exponent, while p̂ is the large (or big) exponent.
We will prove below that there are constants C1,C2 > 0 such that

C−1
1 · Ss = Ball

(
0,C−1

1 ; Bk
p, p̃(Ω)

) ⊂ S ⊂ Ball
(
0,C2; Bk

p, p̂(Ω)
) = C2 · Sb.(4.3)

Assuming for the moment that Equation (4.3) holds, recall from Theorem 7 that
s∗

L2(Ω)
(Sb) = s∗

L2(Ω)
(Ss) = k

d and that there exists a Borel probability measure P0

on Ss that is critical for Ss with respect to L2(Ω). Define X := Y := Z := L2(Ω)

and SX := Sb, SY := Ss , as well as

Φ : Sb → L2(Ω), f �→ C2 · f and Ψ : Ss → S, f �→ C−1
1 · f .

Using (4.3), one easily checks that all assumptions of Theorem 5 are satisfied. An
application of that theorem shows that s∗

L2(Ω)
(S) = k

d and that P := P0 ◦ Ψ−1 is a

Borel probability measure on S that is critical for S with respect to L2(Ω).

Finally, Part (iii) of Theorem 7 shows that δSb,L2(Ω)(E∗
R, D∗

R) � R− k
d for a suit-

able codec C∗ = (
(E∗

R, D∗
R)

)
R∈N ∈ CodecsSb,L2(Ω). Next, since Φ is Lipschitz

continuous (with respect to ‖ · ‖L2 ) with S ⊂ Φ(Sb), Lemma 8 provides a codec

C = (
(ER, DR)

)
R∈N ∈ CodecsS,L2(Ω) satisfying δS,L2(Ω)(ER, DR) � R− k

d as well.
This establishes Property (iii) of the current theorem.

It remains to prove (4.3). First, a combination of [36, Theorem in Section 2.5.6] and
[36, Proposition 2 in Section 2.3.2] shows for the so-called Triebel–Lizorkin spaces 3

Fk
p,2(R

d) that

Bk
p, p̃(R

d) ↪→ Fk
p,2(R

d) = W k,p(Rd) ↪→ Bk
p, p̂(R

d).

Hence, there are C3,C4 > 0 satisfying ‖ f ‖W k,p(Rd ) ≤ C3 · ‖ f ‖Bk
p, p̃(R

d ) for all

f ∈ Bk
p, p̃(R

d), and ‖ f ‖Bk
p, p̂(R

d ) ≤ C4 · ‖ f ‖W k,p(Rd ) for all f ∈ W k,p(Rd). Fur-

thermore, since Ω is a Lipschitz domain, [33, Chapter VI, Theorem 5] shows that

2 Indeed, if ( fn)n∈N ⊂ S is arbitrary, then since W k,p(Ω) is reflexive (see [2, Example 8.11]), the closed
unit ball in W k,p(Ω) is weakly sequentially compact (see [2, Theorem 8.10]), so that there is a subsequence

( fn

)
∈N satisfying fn


W k,p(Ω)−−−−−−⇀ f ∈ S (weak convergence in W k,p(Ω)). Again by compactness of the

embedding W k,p(Ω) ↪→ L2(Ω), this implies fn

L2−−→ f ∈ S (see, e.g., [6, Chapter VI, Proposition 3.3]),

showing that S ⊂ L2(Ω) is compact.
3 The precise definition of these spaces is immaterial for us.Wemerely remark that the identity Fk

p,2(R
d ) =

W k,p(Rd ) is only valid for p ∈ (1,∞).
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there is a bounded linear “extension operator” E : W k,p(Ω) → W k,p(Rd) satisfying
(E f )|Ω = f for all f ∈ W k,p(Ω).

It is now easy to prove the inclusion (4.3), withC1 := C3 andC2 := C4 ·‖E ‖. First,
if f ∈ Ss and ε > 0, then (by the definition of Besov spaces on domains; see Eqs. (C.1)
and (C.2)) there exists g ∈ Bk

p, p̃(R
d) satisfying f = g|Ω and ‖g‖Bk

p, p̃(R
d ) ≤ 1 + ε.

Hence,

‖ f ‖W k,p(Ω) = ‖g|Ω‖W k,p(Ω) ≤ ‖g‖W k,p(Rd ) ≤ C3 (1+ ε).

Since this holds for all ε > 0, we see that ‖C−1
1 f ‖W k,p(Ω) ≤ 1; that is, C−1

1 f ∈ S.
Conversely, if f ∈ S, then g := E f ∈ W k,p(Rd) ⊂ Bk

p, p̂(R
d) and f = g|Ω ,

which implies

‖ f ‖Bk
p, p̂(Ω) ≤ ‖g‖Bk

p, p̂(R
d ) ≤ C4 ‖g‖W k,p(Rd ) ≤ C4 ‖E ‖ · ‖ f ‖W k,p(Ω) ≤ C2,

and hence f ∈ C2 · Sb. ��
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A Transferring Approximation Rates andMeasures

In this appendix, we provide the proof of Theorem 5. Along the way, we will show that
expansive maps can be used to transfer measures with a certain growth order from one
set to another, while Lipschitz maps can be used to transfer estimates for the optimal
compression rate from one set to another.

Lemma 7 Let X,Y be Banach spaces and let S ⊂ X and S ′ ⊂ Y. Assume that there
exists a (not necessarily surjective) function Φ : S → S ′ which is measurable (with
respect to the trace σ -algebras of the Borel σ -algebras) and expansive, in the sense
that there exists κ > 0 such that

‖Φ(x) − Φ(x′)‖Y ≥ κ · ‖x − x′‖X ∀ x, x′ ∈ S.
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If s0 ≥ 0 and if P is a Borel probability measure on S of growth order s0, then the
push-forward measure P ◦Φ−1 is a Borel probability measure on S ′ of growth order
s0 as well.

Proof Since Φ : S → S ′ is measurable, ν := P ◦Φ−1 is a Borel probability measure
on S ′.

To prove that ν has growth order s0, let s > s0 be arbitrary. Since P is of growth
order s0, there are ε0, c > 0 such that Eq. (2.1) is satisfied. Define ε′0 := κ

2 · ε0 and

c′ := c · (2 κ−1)−1/s = 2−1/sc ·κ1/s . We claim that ν
(
S ′ ∩Ball(y, ε;Y)

) ≤ 2−c′·ε−1/s

for all y ∈ Y and all ε ∈ (0, ε′0); this will show that ν has growth order s0.
The estimate is trivial ifΦ(S)∩Ball(y, ε;Y) = ∅, since thenΦ−1

(
Ball(y, ε;Y)

) =
∅, and hence ν

(
S ′ ∩ Ball(y, ε;Y)

) = P
(
Φ−1(S ′ ∩ Ball(y, ε;Y))

) = P(∅) = 0.
Therefore, let us assume that ∅ �= Φ(S)∩Ball(y, ε;Y) ! y′; say y′ = Φ(x′) for some
x′ ∈ S. Now, for arbitrary x ∈ Φ−1

(
S ′ ∩ Ball(y, ε;Y)

) ⊂ S, we have

‖x − x′‖X ≤ κ−1 ‖Φ(x) − Φ(x′)‖Y ≤ κ−1 · (‖Φ(x) − y‖Y + ‖y− Φ(x′)‖Y
) ≤ 2 · κ−1 · ε.

We have thus shown Φ−1(S ′ ∩ Ball(y, ε;Y)) ⊂ S ∩ Ball(x′, 2
κ
ε;X). Since 2

κ
ε <

2
κ
ε′0 = ε0, we see by Property (2.1) as claimed that

ν
(
S ′ ∩ Ball(y, ε,Y)

) = P
(
Φ−1(S ′ ∩ Ball(y, ε;Y))

)

≤ P

(
S ∩ Ball

(
x′, 2

κ
ε;X))

≤ 2−c·(2κ−1ε)−1/s = 2−c′·ε−1/s
.

��
As a kind of converse of the previous result, we now show that Lipschitz maps can

be used to obtain bounds for the optimal compression rate s∗X (S) of a signal class
S ⊂ X.

Lemma 8 Let X,Y be Banach spaces, and let S ⊂ X and S ′ ⊂ Y. Assume that
Φ : S → Y is Lipschitz continuous, and that Φ(S) ⊃ S ′. Then, s∗Y

(
S ′) ≥ s∗X (S).

In fact, given a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,X satisfying δS,X(ER, DR)

� R−s for some s ≥ 0, one can construct a modified codec C∗ = (
(E∗

R, D∗
R)

)
R∈N ∈

CodecsS ′,Y satisfying δS ′,Y(E∗
R, D∗

R) � R−s .

Proof The claim is clear if s∗X (S) = 0. Thus, let us assume s∗X (S) > 0, and let
s ∈ [

0, s∗X (S)
)
be arbitrary. Then, there is a codec C = (

(ER, DR)
)

R∈N ∈ CodecsS,X

and a constant C > 0 such that δS,X(ER, DR) ≤ C · R−s for all R ∈ N. Let L > 0
denote a Lipschitz constant for Φ.

Now, for ε > 0 and x ∈ X, choose Ψε(x) ∈ S such that ‖x − Ψε(x)‖X ≤ ε +
dist(x,S), and let

D∗
R : {0, 1}R → Y, c �→ Φ

(
ΨR−s (DR(c))

)
for R ∈ N.
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Now, if y ∈ S ′ ⊂ Φ(S) is arbitrary, then y = Φ(x) for some x ∈ S, and hence

‖y− D∗
R(ER(x))‖Y =

∥∥∥Φ(x) − Φ
(
ΨR−s

(
DR(ER(x))

))∥∥∥
Y

≤ L · ∥∥x − ΨR−s
(
DR(ER(x))

)∥∥
X

≤ L · [‖x − DR(ER(x))‖X + ∥∥DR(ER(x)) − ΨR−s
(
DR(ER(x))

)∥∥
X

]

≤ L · [C · R−s + R−s + dist
(
DR(ER(x)),S

)] ≤ L · (1+ 2C) · R−s ,

since dist
(
DR(ER(x)

)
,S) ≤ ‖DR(ER(x)) − x‖X ≤ C · R−s . Therefore, if for each

y ∈ S ′ and R ∈ Nwechoose cy,R ∈ {0, 1}R with ‖y−D∗
R(cy,R)‖Y = minc∈{0,1}R ‖y−

D∗
R(c)‖Y and define E∗

R : S ′ → {0, 1}R, y �→ cy,R , then ‖y − D∗
R(E∗

R(y))‖Y ≤ L ·
(1+2C) · R−s for all y ∈ S ′ and R ∈ N, and hence s∗Y

(
S ′) ≥ s. Since s ∈ [

0, s∗X (S)
)

was arbitrary, this completes the proof. ��
The following lemma shows that if a signal class S ⊂ X carries a Borel probability

measure of growth order s0 and satisfies s∗X (S) ≥ s0, then in fact s∗X (S) = s0. This is
elementary, but will be used quite frequently, so that we prefer to state it as a lemma.

Lemma 9 Let s0 ∈ [0,∞), let X be a Banach space, and let S ⊂ X. Assume that there
exists a Borel probability measure P of growth order s0 on S and that s∗X (S) ≥ s0.
Then, s∗X (S) = s0 and P is critical for S with respect to X.

Proof Corollary 2 shows that s0 ≥ s∗X (S). Since s0 ≤ s∗X (S) by assumption, the claim
of the lemma follows. ��

We finally provide the proof of Theorem 5.

Proof of Theorem 5 Since Φ : SX → Z is Lipschitz continuous with Φ(SX) ⊃ S,
Lemma 8 shows that s∗Z (S) ≥ s∗X (SX) =: s∗. Furthermore, since Ψ : SY → S is
measurable and expansive and P has growth order s∗Y (SY) = s∗, Lemma 7 shows that
ν := P ◦ Ψ−1 is a Borel probability measure on S of growth order s∗ as well. Now,
Lemma 9 shows that s∗Z

(
S

) = s∗ and that ν is critical for S with respect to Z. ��

B A Lower Bound for the Optimal Compression Rate s∗
�2(I)

(Sp,q
P,˛

)

Our goal in this appendix is to show that the optimal compression rate for the class
S p,q
P,α

satisfies s∗

2(I)

(
S p,q
P,α

) ≥ α
d − ( 12 − 1

p ), assuming that α > d · ( 12 − 1
p )+. Our

proof of this fact relies on an equivalence between the optimal distortion for a set and
the so-called entropy numbers of that set. By combining this equivalence with known
estimates for the entropy numbers of certain embeddings between sequence spaces
(taken from [20]), we will obtain the claim.

First, let us describe the equivalence between the optimal achievable distortion and
the entropy numbers of a set. Following [5,12], given a (quasi)-Banach space X, a set
M ⊂ X, and k ∈ N, the k-th entropy number ek(M) := ek(M;X) of M is defined as

ek(M;X) := inf

{
ε > 0

∣∣∣∣ ∃ x1, . . . , x2k−1 ∈ X : M ⊂
2k−1⋃

i=1

Ball(xi , ε;X)

}
∈ [0,∞],
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(B.1)

with the convention that inf ∅ = ∞. Note that ek(M) is finite if and only if M is
bounded. Furthermore, ek(M) −−−→

k→∞ 0 if and only if M ⊂ X is totally bounded.

Finally, if Y is a further (quasi)-Banach space, and T : Y → X is linear, then the
entropy numbers ek(T ) are defined as ek(T ) := ek

(
T (Ball(0, 1;Y));X)

.
For proving that s∗


2(I)

(
S p,q
P,α

) ≥ α
d − ( 12 − 1

p ), we will use the following folklore
equivalence between entropy numbers and the optimal achievable distortion for a given
set:

Lemma 10 Let X be a Banach space and ∅ �= S ⊂ X. Then,

eR+1(S;X) = inf
{
δS,X(ER, DR) : (ER, DR) ∈ EncR

S,X

}
for all R ∈ N.

Proof The intuition is that a covering of S by 2R balls Ball(xi , ε;X) (i ∈ {1, . . . , 2R})
gives rise to an encoder/decoder pair with R bits achieving distortion ε, by mapping
each u ∈ S to an index iu ∈ {1, . . . , 2R} ∼= {0, 1}R such that u ∈ Ball(xiu , ε;X).
The reconstruction map is of the form i �→ xi . Conversely, any encoder/decoder pair
using R bits and achieving distortion ε induces a covering of S by 2R balls of radius
ε. For more details, we refer to Remark 1 and [13, Section IV]. ��

In addition to this equivalence between entropy numbers and best achievable dis-
tortion, we will use two results from [20] about the asymptotic behavior of the entropy
numbers of certain sequence spaces. The following definition introduces the termi-
nology used in [20].

Definition 8 (see [20, Equations (10), (11), and Definition 1])
A sequence (β j ) j∈N0 ⊂ (0,∞) is called

• an admissible sequence if there exist d0, d1 ∈ (0,∞) such that d0 β j ≤ β j+1 ≤
d1 β j for all j ∈ N0;

• almost strongly increasing if there existsκ ∈ N such that 2β j ≤ βk for all j, k ∈ N0
with k ≥ j + κ .

Given p, q ∈ (0,∞] and sequences β = (β j ) j∈N0 ⊂ (0,∞) andN = (N j ) j∈N0 ⊂
N, define JN := {( j, 
) ∈ N0 × N : 1 ≤ 
 ≤ N j } and

‖x‖

q (β j 


p
N j

)
:=

∥∥∥
(
β j

∥∥(x j,
)
∈{1,...,N j }
∥∥

p

)

j∈N0

∥∥∥

q

∈ [0,∞] for x = (x j,
)( j,
)∈JN ∈ C
JN ,

as well as 
q(β j 

p
N j

) := {
x ∈ C

JN : ‖x‖
q (β j 

p
N j

) < ∞}
. For the case β = (1) j∈N0 ,

we simply write 
q(

p
N j

) instead of 
q(β j 

p
N j

).

Using these notions, Leopold [20] proved the following results:

Theorem 9 (see [20, Theorems 3 and 4])
Let p1, p2, q1, q2 ∈ (0,∞], and letN = (N j ) j∈N0 ⊂ N andβ = (β j ) j∈N0 ⊂ (0,∞)

both be admissible, almost strongly increasing sequences.
Assume that either
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(i) p1 ≤ p2; or

(ii) p2 < p1 and the sequence
(
β j · N

1
p1

− 1
p2

j

)

j∈N0
is almost strongly increasing.

Then, the embedding 
q1(β j 

p1
N j

) ↪→ 
q2(

p2
N j

) holds, and there exist C1,C2 > 0

such that for all L ∈ N, the entropy numbers en
(
id : 
q1(β j 


p1
N j

) → 
q2(

p2
N j

)
)

(see
the discussion around Eq. (B.1)) satisfy

C1 · β−1
L N

−
(

1
p1

− 1
p2

)

L ≤ e2NL

(
id : 
q1(β j 


p1
N j

) → 
q2(

p2
N j

)
) ≤ C2 · β−1

L N
−
(

1
p1

− 1
p2

)

L .

Remark Forwhat follows, only theupper bound inTheorem9willmatter. Even though
Theorem 9 pertain to spaces of complex sequences, this upper bound also holds for the
real-valued case. To see this, note that if we denote by Re x the (componentwise) real
part of the sequence x, then clearly ‖Re x‖
q (β j 


p
N j

) ≤ ‖x‖
q (β j 

p
N j

). Hence, defining

the real-valued version of the space 
q(β j 

p
N j

) as


q(β j 

p
N j

;R) := {
x ∈ R

JN : ‖x‖
q (β j 

p
N j

) < ∞}
,

we see that if Ball
(
0, 1; 
q1(β j 


p1
N j

)
)⊂⋃M

i=1 Ball
(
xi , ε; 
q2(


p2
N j

)
)
for x1, . . . , xM ∈


q2(

p2
N j

), then Ball
(
0, 1; 
q1(β j 


p1
N j

;R)
) ⊂ ⋃M

i=1 Ball
(
Re xi , ε; 
q2(


p2
N j

;R)
)
, and

hence

ek
(
id : 
q1(β j 


p1
N j

;R) → 
q2(

p2
N j

;R)
) ≤ ek

(
id : 
q1(β j 


p1
N j

) → 
q2(

p2
N j

)
) ∀ k ∈ N.

(B.2)

Proof of Proposition 2 Let nm := |Im | and N j := n j+1 form ∈ N and j ∈ N0. Further,
set κ := ⌈

d−1 · (1+ log2(A/a)
)⌉
, wherewe recall fromEq. (3.1) thata, A > 0 satisfy

a · 2dm ≤ nm ≤ A · 2dm . Thus, N j+1 = n j+2 � 2d( j+2) = 2d 2d( j+1) � n j+1 = N j ,

which shows that N = (N j ) j∈N0 is admissible. Furthermore, if k ≥ j + κ , then

Nk = nk+1 ≥ a · 2d(k+1) ≥ a · 2d( j+1)+1+log2(A/a) = 2 · A · 2d( j+1) ≥ 2 n j+1 = 2N j ,

which shows that N is almost strongly increasing.
Next, defineβ j := 2α( j+1) for j ∈ N0, noting thatβ j+1 = 2α β j ,which implies that

(β j ) j∈N0 is admissible. Furthermore, if k ≥ j +�α−1�, then βk ≥ 2 · 2α( j+1) = 2 β j ,

so that (β j ) j∈N0 is also almost strongly increasing. Here, we used that α > 0.
Finally, for each m ∈ N pick a bijection ιm : [Nm−1] → Im (which is possible

since Nm−1 = nm = |Im |) and define

Ψ : R
I → R

JN , x = (xi )i∈I �→ (
xι j+1(
)

)
( j,
)∈JN

.
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It is easy to see that Ψ is a bijection, and that

‖Ψ (x)‖
q (β j 

p
N j

) =
∥∥∥
(
β j

∥∥(xι j+1(
))
∈[N j ]
∥∥

p

)

j∈N0

∥∥∥

q

=
∥∥∥
(
2αm

∥∥xm
∥∥

p(Im )

)

m∈N

∥∥∥

q

= ‖x‖
p,q
P ,α

for arbitrary p, q ∈ (0,∞]. Here, xm = (xi )i∈Im is as defined in Eq. (3.2). In the same
way,we see‖Ψ (x)‖
q (


p
N j

) = ‖x‖
p,q
P ,0

and also ‖Ψ (x)‖
2(
2N j
) = ‖x‖



2,2
P ,0

= ‖x‖
2(I).

Using these identities, it is straightforward to see that 
p,q
P,α

↪→ 
2(I) holds if and
only if 
q(β j 


p
N j

;R) ↪→ 
2(
2N j
;R), and furthermore that

ek(S p,q
P,α

; 
2(I))=ek
(



p,q
P,α

↪→ 
2(I)
)=ek

(

q(β j 


p
N j

;R) ↪→
2(
2N j
;R)

) ∀ k ∈ N.

There are now two cases. First, if p ≤ 2, then Eq. (B.2) and the first part of Theo-
rem 9with p1 = p, q1 = q and p2 = q2 = 2 show that 
q(β j 


p
N j

;R) ↪→ 
2(
2N j
;R),

and yield a constant C1 > 0 such that

e2NL

(
S p,q
P,α

; 
2(I)) = e2NL

(

q(β j 


p
N j

;R) ↪→ 
2(
2N j
;R)

) ≤ C1 · β−1
L · N

−( 1p − 1
2 )

L

for all L ∈ N.
If otherwise p > 2, then 1

2 − 1
p > 0, so that our assumptions concerning α imply

that α > d · ( 12 − 1
p )+ = d · ( 12 − 1

p ), and hence γ := α+ d · ( 1p − 1
2 ) > 0. Therefore,

the sequence (K j ) j∈N0 := (
β j · N

1
p − 1

2
j

)
j∈N0

is almost strongly increasing; indeed,

if k ≥ j + ⌈
γ−1 · (

1 + log2[(a/A)
1
p − 1

2 ])⌉, then we see because of a · 2d( j+1) ≤
N j ≤ A · 2d( j+1) and 1

p − 1
2 < 0 that N

1
p − 1

2
k ≥ A

1
p − 1

2 · 2d(k+1)( 1p − 1
2 ) and N

1
p − 1

2
j ≤

a
1
p − 1

2 · 2d( j+1)( 1p − 1
2 ). Since γ > 0, we thus see

Kk = βk · N
1
p − 1

2
k ≥ A

1
p − 1

2 · 2α(k+1) 2d(k+1)( 1p − 1
2 ) = 2γ A

1
p − 1

2 · 2γ k

≥ 2γ A
1
p − 1

2 · 2γ j · 2 · (a/A)
1
p − 1

2 = 2 a
1
p − 1

2 · 2α( j+1) 2d( j+1)( 1p − 1
2 )

≥ 2 · 2α( j+1) · N
1
p − 1

2
j = 2 K j .

Thus, Part (ii) of Theorem 9 and Eq. (B.2) show that 
q(β j 

p
N j

;R) ↪→ 
2(
2N j
;R),

and that there is a constant C2 > 0 such that

e2NL

(
S p,q
P,α

; 
2(I)) = e2NL

(

q(β j 


p
N j

;R) ↪→ 
2(
2N j
;R)

) ≤ C2 · β−1
L · N

−( 1p − 1
2 )

L

for all L ∈ N.
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DefineC3 := max{C1,C2} and note that the preceding estimates only yield bounds
for the entropy numbers ek(S p,q

P,α
; 
2(I)) in case of k = 2NL for some L ∈ N, not for

general k ∈ N. This, however, suffices to handle the general case. Indeed, let R ∈ N

with R ≥ 2N1 be arbitrary, and let L ∈ N be maximal with 2NL ≤ R + 1; this is
possible since NL → ∞ as L → ∞. Note R ≤ R + 1 < 2 NL+1 = 2 nL+2 ≤
2A 2d(L+2) = 22d+1A 2d L by maximality. Since the sequence of entropy numbers(
ek(S p,q

P,α
; 
2(I)))k∈N is non-increasing, we thus see

eR+1
(
S p,q
P,α

; 
2(I)) ≤ e2NL

(
S p,q
P,α

; 
2(I)) ≤ C3 · β−1
L · N

−( 1p − 1
2 )

L

(since NL=nL+1�2d L) ≤ C4 · 2−αL · 2( 12− 1
p )d L = C4 · (2d L)−( α

d + 1
p − 1

2 )

(since α
d + 1

p − 1
2>0) ≤ C5 · R−( α

d + 1
p − 1

2 ),

for all R ≥ 2N1 and suitable constants C4,C5 > 0 which are independent of R.
Now, since S p,q

P,α
⊂ 
2(I) is bounded (otherwise, all entropy numbers would be

infinite), it is easy to see eR+1(S p,q
P,α

; 
2(I)) ≤ e1(S p,q
P,α

; 
2(I)) � 1 � R−( α
d + 1

p − 1
2 )

for R ∈ N with R < 2N1. With this, the claim s∗

2(I)

(
S p,q
P,α

)
≥ α

d − ( 1
2 − 1

p

)
and

the existence of a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS p,q

P ,α
,
2(I) satisfying (3.3)

follow from the relation between entropy numbers and optimal distortion described
in Lemma 10.

Finally, since eR
(
S p,q
P,α

; 
2(I)) → 0 as R → ∞, it follows that S p,q
P,α

⊂ 
2(I) is
totally bounded. Since S p,q

P,α
⊂ 
2(I) is also easily seen to be closed (this essentially

follows from Fatou’s lemma), we see that S p,q
P,α

⊂ 
2(I) is compact. ��

C A Review of Besov Spaces

In this subsection, we review the relevant properties of Besov spaces on R
d and

on domains, including the characterization of these spaces in terms of wavelets; see
Sect. C.2.

Before we dive into the details, a word of caution is in order. In the literature,
there are two common definitions of Besov spaces: A Fourier analytic definition and a
definition usingmoduli of continuity. Here, we only consider the former definition; the
reader interested in the latter is referred to [9]. It should be mentioned, however, that
the two definitions do not agree in general; see for instance [16]. Nevertheless, in the
regime that we are interested in, the two definitions coincide, as can be deduced from
[36, Theorem in Section 2.5.12]. Since we focus on the Fourier analytic definition
only, we omit the details.
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C.1 The (Fourier-analytic) Definition of Besov Spaces

Our presentation here follows [36, Section 2.3] and [35, Section 1.3]. In this section,
all functions are taken to be complex-valued, unless indicated otherwise. Let S (Rd)

denote the space of Schwartz functions (see, for instance, [14, Section 8.1]), and
S ′(Rd) its topological dual space, the space of tempered distributions (see [14, Section
9.2]). We use the Fourier transform on L1(Rd) with the same normalization as in
[36,39]; that is,

f̂ (ξ) := F f (ξ) := (2π)−d/2
∫

Rd
f (x)e−i〈x,ξ〉 dx for f ∈ L1(Rd) and ξ ∈ R

d ,

where 〈x, ξ 〉 = ∑d
j=1 x jξ j denotes the standard inner product on R

d . With this

normalization, the Fourier transform F : L1(Rd) → C0(R
d) extends to a unitary

operator F : L2(Rd) → L2(Rd) and also to linear homeomorphisms F : S (Rd) →
S (Rd) and F : S ′(Rd) → S ′(Rd), with the latter defined by 〈F f , ϕ〉S ′,S :=
〈 f ,Fϕ〉S ′,S .Here, as in the remainder of the paper, the dual pairing for distributions
is taken to be bilinear. In any case, the inverse Fourier transform is given by (the
extension of) the operator F−1 f (x) = F f (−x). All of the facts listed here can be
found in [30, Chapter 7].

Fix ϕ0 ∈ S (Rd) satisfying ϕ0(ξ) = 1 for all ξ ∈ R
d such that |ξ | ≤ 1, and

ϕ0(ξ) = 0 for all ξ ∈ R
d satisfying |ξ | ≥ 3/2. Define ϕk : R

d → C, ξ �→ ϕ0(2−kξ)−
ϕ0(2−k+1ξ) for k ∈ N, noting that

∑∞
j=0 ϕ j (ξ) ≡ 1 on R

d .

With this, the (inhomogeneous) Besov space Bτ
p,q(R

d)with smoothness τ ∈ R and
integrability exponents p, q ∈ (0,∞] is defined (see [35, Section 1.3, Definition 1.2])
as

Bτ
p,q(R

d) := {
f ∈ S ′(Rd) : ‖ f ‖Bτ

p,q (R
d ) < ∞}

where

‖ f ‖Bτ
p,q (R

d ) :=
∥∥∥
(
2 jτ · ‖F−1(ϕ j · f̂ )‖L p

)
j∈N0

∥∥∥

q

∈ [0,∞] for f ∈ S ′(Rd).

This is well-defined, since ϕ j · f̂ is a tempered distribution with compact support, so
that the Paley–Wiener theorem (see [30, Theorem 7.23]) shows that F−1(ϕ j · f̂ ) is
a smooth function of which one can take the L p norm (which might be infinite). One
can show that the definition of Bτ

p,q(R
d) is independent of the precise choice of the

function ϕ0, with equivalent quasi-norms for different choices; see [36, Proposition
1 in Section 2.3.2]. Furthermore, the spaces Bτ

p,q(R
d) are quasi-Banach spaces that

satisfy Bτ
p,q(R

d) ↪→ S ′(Rd); see [36, Theorem in Section 2.3.3].
Now, let ∅ �= Ω ⊂ R

d be a bounded open set, and let τ ∈ R and p, q ∈ (0,∞].
We will use the space D′(Ω) of distributions on Ω; for more details on these spaces,
we refer to [30, Chapter 6]. Following [35, Definition 1.95], we then define

Bτ
p,q(Ω) := {

f |Ω : f ∈ Bτ
p,q(R

d)
}

(C.1)
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and

‖ f ‖Bτ
p,q (Ω) := inf

{‖g‖Bτ
p,q (R

d ) : g ∈ Bτ
p,q(R

d) and g|Ω = f
}

for f ∈ Bτ
p,q(Ω).

(C.2)

Here, given a tempered distribution f ∈ S ′(Rd), we write f |Ω for the restriction of f
to Ω , given by f |Ω : C∞

c (Ω) → C, ψ �→ f (ψ). It is easy to see that f |Ω ∈ D′(Ω).
The spaces Bτ

p,q(Ω) are quasi-Banach spaces that satisfy Bτ
p,q(Ω) ↪→ D′(Ω); see

[35, Remark 1.96].

C.2 TheWavelet Characterization of Besov Spaces

Wavelets are usually constructed using a so-called multiresolution analysis of L2(R).
A multiresolution analysis (see [39, Definition 2.2] or [8, Section 5.1]) of L2(R) is a
sequence (Vj ) j∈Z of closed subspaces Vj ⊂ L2(R) with the following properties:

1. Vj ⊂ Vj+1 for all j ∈ Z;
2.

⋃
j∈Z Vj is dense in L2(R);

3.
⋂

j∈Z Vj = {0};
4. for f ∈ L2(R), we have f ∈ Vj if and only if f (2− j•) ∈ V0;
5. there exists a function ψF ∈ V0 (called the scaling function or the father wavelet)

such that
(
ψF (• − m)

)
m∈Z is an orthonormal basis of V0.

To each multiresolution analysis, one can associate a (mother) wavelet ψM ∈
L2(R); see [39, Theorem2.20].More precisely, denote byW0 ⊂ L2(R) the orthogonal
complement of V0 as a subset of V1, and define W j := { f (2 j•) : f ∈ W0} for j ∈ N,
so that W j is the orthogonal complement of Vj in Vj+1. We then have L2(R) =
V0 ⊕ ⊕∞

j=0 W j , where the sum is orthogonal.
One can show (see [39, Lemma 2.19]) that there exists ψM ∈ W0 such that the

family
(
ψM (• − k)

)
k∈Z is an orthonormal basis of W0. In this case, we say that ψM

is a mother wavelet associated with the given multiresolution analysis. For each such
ψM , one can show (see [35, Proposition 1.51]) that if we define

ψ j,m : R → C, x �→
{
ψF (x − m), if j = 0

2
j−1
2 · ψM (2 j−1x − m), if j ∈ N

for j ∈ N0 andm ∈ Z, then the inhomogeneous wavelet system (ψ j,m) j∈N0,m∈Z forms
an orthonormal basis of L2(R). Furthermore, the family

(
2 j/2 ψM (2 j • −k)

)
j,k∈Z is

an orthonormal basis of L2(R).
For our purposes, we will need sufficiently regular wavelet systems, as provided

by the following theorem:

Theorem 10 For each k ∈ N, there is a multiresolution analysis (Vj ) j∈Z of L2(R)

with father/mother wavelets ψF , ψM ∈ L2(R) such that the following hold:

1. ψF , ψM are real-valued and have compact support;
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2. ψF , ψM ∈ Ck(R);
3. ψF̂ (0) = (2π)−1/2;
4.

∫
R

x
 · ψM (x) dx = 0 for all 
 ∈ {0, . . . , k} (vanishing moment condition).

Proof The existence of a multi-resolution analysis (Vj ) j∈Z with compactly sup-
ported father/mother wavelets ψF , ψM ∈ Ck(R) is shown in [39, Theorem 4.7]
(while the original proof was given in [7]). It is not stated explicitly, however, that
ψF , ψM are real-valued, but this can be extracted from the proof: The function
Φ := ψF is constructed as Φ = (2π)−1/2 F−1Θ , with Θ(ξ) = ∏∞

j=1 m(2− jξ)

(see [39, Theorem 4.1]), where the trigonometric polynomial m(ξ) = ∑T
k=0 akeikξ

is obtained through [39, Lemma 4.6], so that a0, . . . , aT ∈ R and m(0) = 1. There-
fore, [39, Lemma 4.3] shows that Φ is real-valued. Finally, Ψ := ψM is obtained
from Φ as Ψ (x) = 2

∑T
k=0 ak(−1)kΦ(2x + k + 1); see [39, Equation (4.5)]. Since

a0, . . . , aT ∈ R, this shows that ψM = Ψ is real-valued as well.
The above construction also impliesψF̂ (0) = (2π)−1/2 Θ(0) = (2π)−1/2, because

ofΘ(0) = ∏∞
j=1 m(0) = 1. Finally, the vanishingmoment condition is a consequence

of [39, Proposition 3.1]. ��
Wavelet systems in R

d can be constructed by taking suitable tensor products of
a one-dimensional wavelet system. To describe this, let ψF , ψM be father/mother
wavelets, and let T0 := {F}d and Tj := T := {F, M}d \ T0 for j ∈ N. Now, for
t = (t1, . . . , td) ∈ T and m = (m1, . . . , md) ∈ Z

d , define Ψm : R
d → C and

Ψt,m : R
d → C by

Ψm(x) :=
d∏

j=1

ψF (x j − m j ) and Ψt,m(x) :=
d∏

j=1

ψt j (x j − m j ). (C.3)

Finally, set J := {( j, t, m) : j ∈ N0, t ∈ Tj , m ∈ Z
d}, and

Ψ j,t,m : R
d → C, x �→

⎧
⎪⎨

⎪⎩

Ψm(x) if j = 0, t ∈ T0, and m ∈ Z
d

2( j−1)d/2 Ψt,m(2 j−1x) if j ∈ N, t ∈ Tj , and m ∈ Z
d

(C.4)

Then (see [35, Proposition 1.53]), the system (Ψ j,t,m)( j,t,m)∈J is an orthonormal basis
of L2(Rd).

Finally, we have the following wavelet characterization of the Besov spaces
Bτ

p,q(R
d).

Theorem 11 (consequence of [35, Theorem 1.64])
Let d ∈ N, p, q ∈ (0,∞] and τ ∈ R. For a sequence c = (c j,t,m)( j,t,m)∈J ∈ C

J

define

‖c‖bτ
p,q

:= ‖c‖bτ
p,q (R

d ) :=
∥∥∥
(
2 j(τ+d·( 12− 1

p )) · ‖(c j,t,m)m∈Zd‖
p

)

j∈N0,t∈Tj

∥∥∥

q

∈ [0,∞],
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and bτ
p,q(R

d) := {
c ∈ C

J : ‖c‖bτ
p,q (R

d ) < ∞}
.

Let k ∈ N, and let ψF , ψM as provided by Theorem 10, for this choice of k. Let
the d-dimensional wavelet system (Ψ j,t,m)( j,t,m)∈J be as defined in Eq. (C.4). Finally,
suppose that k > max

{
τ, 2d

p + d
2 − τ

}
. Then, the map

Γ = Γk : bτ
p,q(R

d) → Bτ
p,q(R

d), (c j,t,m)( j,t,m)∈J �→
∑

( j,t,m)∈J

c j,t,m Ψ j,t,m

is well-defined (with unconditional convergence of the series in S ′(Rd)), and an
isomorphism of (quasi)-Banach spaces. The inverse map of Γ will be denoted by

Θ = Θk := Γ −1
k : Bτ

p,q(R
d) → bτ

p,q(R
d), f �→ (

θ j,t,m( f )
)
( j,t,m)∈J .

We will also use the real-valued Besov space

Bτ
p,q(R

d ;R) := Bτ
p,q(R

d) ∩S ′(Rd ;R) equipped with the (quasi)-norm ‖ · ‖Bτ
p,q (R

d ),

where we write S ′(Rd;R) := {
ϕ ∈ S ′(Rd) : ∀ f ∈ S (Rd;R) : 〈ϕ, f 〉S ′,S ∈ R

}

and S (Rd ;R) := { f : R
d → R : f ∈ S (Rd)}. The spaces Bτ

p,q(Ω;R) are defined
similarly. We will also use the space bτ

p,q(R
d;R) := bτ

p,q(R
d) ∩ R

J .

C.3 Wavelets and Besov Spaces on Bounded Domains

Note that Theorem 11 only pertains to the Besov spaces Bτ
p,q(R

d). To describe Besov
spaces on domains, we will use the sequence spaces bτ

p,q(Ωint;R) and bτ
p,q(Ωext;R)

that we now define.

Definition 9 Let p, q ∈ (0,∞] and τ ∈ R, and let k ∈ Nwith k > max{τ, 2d
p + d

2−τ }.
Let ∅ �= Ω ⊂ R

d be a bounded open set. With the father/mother wavelets ψF , ψM as
in Theorem 10 (with the above choice of k) and Ψ j,t,m as in Eq. (C.4), define

J ext :=
⋃

j∈N0

({ j} × J ext
j

)
where J ext

j := {(t, m) ∈ Tj × Z
d : Ω ∩ suppΨ j,t,m �= ∅},

and J int :=
⋃

j∈N0

({ j} × J int
j

)
where J int

j := {(t, m) ∈ Tj × Z
d : suppΨ j,t,m ⊂ Ω}.

Finally, set

bτ
p,q(Ωext;R) := {

(c j,t,m)( j,t,m)∈J ∈ bτ
p,q(R

d;R) : c j,t,m = 0 ∀ ( j, t, m) ∈ J \ J ext},

and define bτ
p,q(Ωint;R) similarly. Both of these spaces are considered as subspaces

of bτ
p,q(R

d;R); they are thus equipped with the (quasi)-norm ‖ · ‖bτ
p,q
.
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Remark Strictly speaking, the spaces bτ
p,q(Ωint;R) and bτ

p,q(Ωext;R) (and the index
sets J ext and J int) depend on the choice of k ∈ N and on the precise choice ofψF , ψM .
We will, however, suppress this dependence. �

The next lemma describes the relation between these sequence spaces and theBesov
spaces Bτ

p,q(Ω;R).

Lemma 11 Let d ∈ N, ∅ �= Ω ⊂ R
d open and bounded, p, q ∈ (0,∞] and τ ∈ R.

Let k ∈ N with k > max{τ, 2d
p + d

2 − τ }. Let bτ
p,q(Ωint;R) and bτ

p,q(Ωext;R) be as
in Definition 9 (for the given choice of k, ψF , ψM ), and J as defined before Eq. (C.4).

Then, there exist continuous linear maps

Tint : bτ
p,q(Ωint;R) → Bτ

p,q(Ω;R) and Text : bτ
p,q(Ωext;R) → Bτ

p,q(Ω;R)

with the following properties:

• There is γ > 0 such that ‖Tintc‖L2(Ω) = γ ·‖c‖
2 for all c ∈ 
2(J )∩bτ
p,q(Ωint;R),

and ‖Tintc‖Bτ
p,q (Ω) ≤ ‖c‖bτ

p,q
for all c ∈ bτ

p,q(Ωint;R).
• There exists 	 > 0 such that ‖Textc‖L2(Ω) ≤ 	 · ‖c‖
2 for all c ∈ bτ

p,q(Ωext;R),
and we have

Ball
(
0, 1; Bτ

p,q(Ω;R)
) ⊂ Text

(
Ball

(
0, 1; bτ

p,q(Ωext;R)
))

. (C.5)

Proof With the operator Γ as in Theorem 11, let γ := (
1+‖Γ ‖bτ

p,q (R
d )→Bτ

p,q (R
d )

)−1,
and define

Tint : bτ
p,q(Ωint;R) → Bτ

p,q(Ω;R), c �→ γ · (Γ c)|Ω.

By definition of the Besov space Bτ
p,q(Ω;R) and its norm (see Eq. (C.2)), we then

see that Tint is a well-defined continuous linear map, with

‖Tint c‖Bτ
p,q (Ω) ≤ γ · ‖Γ c‖Bτ

p,q (R
d ) ≤ ‖c‖bτ

p,q
∀ c ∈ bτ

p,q(Ωint;R).

Next, let c = (c j,t,m)( j,t,m)∈J ∈ 
2(J )∩bτ
p,q(Ωint;R) be arbitrary. By orthonormality

of the family (Ψ j,t,m)( j,t,m)∈J ⊂ L2(Rd), and since c j,t,m = 0 for ( j, t, m) ∈ J \ J int,
while suppΨ j,t,m ⊂ Ω for ( j, t, m) ∈ J int, we see

‖Tint c‖L2(Ω) = γ ·
∥∥∥

∑

( j,t,m)∈J int

c j,t,m Ψ j,t,m

∥∥∥
L2(Ω)

= γ ·
∥∥∥

∑

( j,t,m)∈J int

c j,t,m Ψ j,t,m

∥∥∥
L2(Rd )

= γ · ‖(c j,t,m)( j,t,m)∈J int‖
2 = γ · ‖c‖
2 .

To construct Text, letΘ be as in Theorem11, set	 := 2·(1+‖Θ‖Bτ
p,q (R

d )→bτ
p,q (R

d )

)
,

and define

Text : bτ
p,q(Ωext;R) → Bτ

p,q(Ω;R), c �→ 	 · (Γ c)|Ω.
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Exactly as for Tint, we see that Text is a well-defined continuous linear map. Fur-
thermore, using again that the family (Ψ j,t,m)( j,t,m)∈J ⊂ L2(Rd) is an orthonormal
system, we see

‖Text c‖L2(Ω) ≤ 	 · ‖Γ c‖L2(Rd ) ≤ 	 · ‖c‖
2 ∀ c ∈ bτ
p,q(Ωext;R).

It remains to prove the inclusion (C.5). To this end, let f ∈ Ball
(
0, 1; Bτ

p,q(Ω;R)
)

be arbitrary. By definition, this implies f = g|Ω for some g ∈ Bτ
p,q(R

d) with
‖g‖Bτ

p,q
≤ 2. Let e := Θg ∈ bτ

p,q(R
d), and c = (c j,t,m)( j,t,m)∈J where c j,t,m :=

	−1 · 1J ext (( j, t, m)) · Re(e j,t,m). Clearly, ‖c‖bτ
p,q

≤ 	−1‖e‖bτ
p,q

≤ 2‖Θ‖/	 ≤ 1,

which means c ∈ Ball
(
0, 1; bτ

p,q(Ωext;R)
)
.

Finally, for an arbitrary real-valued test function ϕ ∈ C∞
c (Ω), we have

〈Ψ j,t,m, ϕ〉 ∈ R for all ( j, t, m) ∈ J and 〈Ψ j,t,m, ϕ〉 = 0 if ( j, t, m) /∈ J ext. There-
fore,

〈Text c, ϕ〉 = Re
∑

( j,t,m)∈J ext

(
e j,t,m 〈Ψ j,t,m, ϕ〉) = Re

〈 ∑

( j,t,m)∈J

e j,t,m Ψ j,t,m, ϕ
〉

= Re〈Γ e, ϕ〉 = Re〈Γ (Θg), ϕ〉 = Re〈g, ϕ〉 = Re〈 f , ϕ〉 = 〈 f , ϕ〉,

since Θ = Γ −1 and f = g|Ω and ϕ ∈ C∞
c (Ω), and since f is a real-valued

distribution. Therefore, f = Text c, proving (C.5). ��

Finally, we show that the sequence spaces bτ
p,q (Ωint;R) and bτ

p,q(Ωext;R) are quite
similar to the sequence spaces 
p,q

P,α
introduced in Definition 5. In fact, the following

(seemingly) weak property will be enough for our purposes.

Lemma 12 Let ∅ �= Ω ⊂ R
d be open and bounded. Let p, q ∈ (0,∞] and τ ∈ R,

and define α := τ + d · ( 12 − 1
p ). Let k ∈ N with k > max{τ, 2d

p + d
2 − τ }, and

let bτ
p,q(Ωint;R) and bτ

p,q(Ωext;R) be as in Definition 9 (for the given choice of
k, ψF , ψM ).

Assume that α > d · ( 12 − 1
p )+. Then, the embeddings bτ

p,q(Ωint;R) ↪→ 
2(J int)

and bτ
p,q(Ωext;R) ↪→ 
2(J ext) hold. Furthermore,

(i) There is a d-regular partition P int of J int and some γ > 0 such that if we define

ιint : 

p,q
P int,α

→ bτ
p,q(Ωint;R), c �→ γ · c 

where c ∈ R
J is obtained by extending c ∈ R

J int
by zero, then ‖ιint‖ ≤ 1 and

‖ιint c‖
2 = γ ‖c‖
2 for all c ∈ 

p,q
P int,α

.

(ii) There is a d-regular partition Pext of J ext and some 	 > 0 such that if we define

ιext : 

p,q
Pext,α

→ bτ
p,q(Ωext;R), c �→ 	 · c 
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where c ∈ R
J is obtained by extending c ∈ R

J ext
by zero, then‖ιext c‖
2 = 	 ‖c‖
2

for all c ∈ 

p,q
Pext,α

, and

Ball
(
0, 1; bτ

p,q(Ωext;R)
) ⊂ ιext

(
Ball(0, 1; 
p,q

Pext,α
)
)
.

Proof The proof is divided into three steps.
Step 1 (Estimating |J int

j | and |J ext
j |): We show that there are j0 ∈ N and a, A > 0

satisfying

|J int
j | ≤ |J ext

j | ≤ A · 2d j ∀ j ∈ N and |J ext
j | ≥ |J int

j | ≥ a · 2d j ∀ j ∈ N≥ j0 .

First of all, we clearly have J int
j ⊂ J ext

j and thus |J int
j | ≤ |J ext

j |. Next, since
Ω ⊂ R

d is bounded and ψF , ψM have compact support, there is R ∈ N such that
Ω ⊂ [−R, R]d and suppψF ∪ suppψM ⊂ [−R, R]. Define A := (8R)d . In view of
Eqs. (C.3) and (C.4), this implies suppΨm ∪ suppΨt,m ⊂ m + [−R, R]d , and hence
suppΨ0,t,m ⊂ m + [−R, R]d for t ∈ T0 and m ∈ Z

d , and finally suppΨ j,t,m ⊂
21− j (m + [−R, R]d) for j ∈ N, t ∈ Tj , and m ∈ Z

d .
Now, it is not hard to see that if∅ �= Ω∩suppΨ0,t,m ⊂ [−R, R]d∩(m+[−R, R]d),

then m ∈ [−2R, 2R]d ∩ Z
d = {−2R, . . . , 2R}d , and thus |J ext

0 | ≤ (1 + 4R)d ≤
A · 2d·0.

Furthermore, if j ∈ N and∅ �= Ω ∩ suppΨ j,t,m ⊂ [−R, R]d ∩ 21− j (m + [−R, R]d),
then 21− j (m + x) = y for certain x, y ∈ [−R, R]d , and hence

m = 2 j−1y − x ∈ Z
d ∩ [−(R + 2 j−1R), R + 2 j−1R]d ⊂ {−2 j R, . . . , 2 j R}d .

Because of |Tj | ≤ 2d , this implies |J ext
j | ≤ |Tj | · (1+2 j+1R)d ≤ (8R)d2 jd ≤ A 2d j .

Regarding the lower bound, recall thatΩ �= ∅ is open, so that there are x0 ∈ R
d and

n ∈ N satisfying x0 + [−r , r ]d ⊂ Ω , where r := 2−n . Choose j0 ∈ N≥n+3 such that
2 j0−1r ≥ 2R, and note 2 j0−3r = 2 j0−3−n ∈ N. Let j ≥ j0. Choosem0 := �2 j−1x0 ∈
Z

d , with the “floor” operation applied componentwise.We have ‖2 j−1x0−m0‖∞ ≤ 1,
and hence

‖2 j−1x0 − (m + m0)‖∞ ≤ 1+ 2 j−3r ≤ 2 j−2r for m ∈ {−2 j−3r , . . . , 2 j−3r}d .

Here, one should observe 2 j−3r = 2 j− j02 j0−3−n ∈ N. Because of R ≤ 2 j0−2r ≤
2 j−2r , the above estimate implies that

21− j · (m + m0 + [−R, R]d) ⊂ 21− j · (2 j−1x0 + [−(R + 2 j−2r), (R + 2 j−2r)]d)

⊂ 21− j · (2 j−1x0 + [−2 j−1r , 2 j−1r ]d) = x0 + [−r , r ]d ⊂ Ω

for all m ∈ {−2 j−3r , . . . , 2 j−3r}d . Because of suppΨ j,t,m+m0 ⊂ 21− j (m + m0 +
[−R, R]d), this implies |J int

j | ≥ (2 j−2r)d = (r/4)d · 2d j , so that we can choose

a = (r/4)d .
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Step 2 (Constructing the partitions P int,Pext and showing ‖c ‖bτ
p,q

� ‖c‖
p,q
P ,α

):

Define I int
1 := ⋃ j0

j=0({ j} × J int
j ) and Iext

1 := ⋃ j0
j=0({ j} × J ext

j ), as well as

I int
m := { j0 + m − 1} × J int

j0+m−1 and Iext
m := { j0 + m − 1} × J ext

j0+m−1

for m ∈ N≥2. As shown in Step 1, we have for m ∈ N≥2 that

a · 2dm ≤ a · 2d( j0+m−1) ≤ |I int
m | ≤ |Iext

m | ≤ A · 2d( j0+m−1) =: A′ · 2dm

and also |Iext
1 | ≥ |I int

1 | ≥ |J int
j0

| ≥ a · 2d j0 ≥
a · 2d . Thus, a · 2dm ≤ |I int

m | ≤ |Iext
m | ≤ A′′ · 2dm for all m ∈ N, where A′′ :=

max{A′, |Iext
1 |}. Furthermore, we have J int = ⊎

m∈N I int
m and J ext = ⊎

m∈N Iext
m , so

that P int := (
I int

m

)
m∈N and Pext := (

Iext
m

)
m∈N are d-regular partitions of J int and

J ext, respectively.
Now, for J0 ⊂ J and c ∈ R

J0 , let c ∈ R
J be the sequence c, extended by zero.

We claim that there are C1,C2 > 0 such that

C1 · ‖c‖
p,q

P int ,α
≤ ‖c ‖bτ

p,q
≤ C2 · ‖c‖
p,q

P int ,α
∀ c ∈ R

J int
, (C.6)

and similarly for Pext and J ext instead of P int and J int. For brevity, we only prove
the claim forP int.

To prove (C.6), let c ∈ R
J int

. For m ∈ N and j ∈ N0, define ζm :=
2αm ‖(cκ)κ∈I int

m
‖
p andω j := 2α j

∥∥(‖(c 
j,t,k)k∈Zd‖
p

)
t∈Tj

∥∥

q ,noting that‖c‖
p,q

P int ,α
=

‖(ζm)m∈N‖
q as well as ‖c ‖bτ
p,q

= ‖(ω j ) j∈N0‖
q . Since |Tj | ≤ 2d for all j ∈ N0, we
have ‖ · ‖
p(Tj ) � ‖ · ‖
q (Tj ) for all j ∈ N0, with implied constant only depending on
d, p, q.

Now, define J int
j,t := {k ∈ Z

d : (t, k) ∈ J int
j } for j ∈ N0 and t ∈ Tj , and note for

m ≥ 2 that I int
m = ⊎

t∈Tj0+m−1

({ j0 + m − 1} × {t} × J int
j0+m−1,t

)
, which implies

ζm = 2αm
∥∥∥
(∥∥(

c j0+m−1,t,k
)

k∈J int
j0+m−1,t

∥∥

p

)

t∈Tj0+m−1

∥∥∥

p

� 2α( j0+m−1)
∥∥∥
(∥∥(

c 
j0+m−1,t,k

)
k∈Zd

∥∥

p

)

t∈Tj0+m−1

∥∥∥

q

= ω j0+m−1,

with implied constants only depending on d, p, q, j0, α. With similar arguments, we
see that

ζ1 = 2α
∥∥∥
(
‖(c j,t,k)k∈J int

j,t
‖
p

)

j∈{0,..., j0},t∈Tj

∥∥∥

p

�
∥∥∥
(∥∥(

2α j ‖(c 
j,t,k)k∈Zd‖
p

)
t∈Tj

∥∥

q

)

j∈{0,..., j0}

∥∥∥

q

= ∥∥(ω j ) j∈{0,..., j0}
∥∥

q .
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Overall, we obtain that

‖c‖
p,q

P int ,α
= ∥∥(

ζm
)

m∈N
∥∥

q � ζ1 + ∥∥(

ζm
)

m∈N≥2

∥∥

q

� ∥∥(
ω j

)
j∈{0,..., j0}

∥∥

q + ∥∥(

ωm+ j0−1
)

m∈N≥2

∥∥

q � ∥∥(

ω j
)

j∈N0

∥∥

q = ‖c ‖bτ

p,q
,

which proves Eq. (C.6).
Step 3 (Completing the proof): Step 2 guarantees the existence of γ > 0 satisfying

‖ιint c‖bτ
p,q

= γ · ‖c ‖bτ
p,q

≤ ‖c‖
p,q

P int ,α
for all c ∈ 


p,q
P int,α

. Furthermore, we clearly

have ‖ιint c‖
2 = γ ‖c‖
2 .
Similarly, Step 2 shows that there is 	 > 0 satisfying ‖c‖
p,q

P ext ,α
≤ 	 ‖c ‖bτ

p,q

for all c ∈ R
J ext

. Now, given b ∈ Ball
(
0, 1; bτ

p,q(Ωext;R)
)
, note that b = (b|J ext ) 

and furthermore ‖b|J ext‖
p,q
P ext ,α

≤ 	 ‖(b|J ext ) ‖bτ
p,q

≤ 	, so that c := 	−1 · b|J ext ∈
Ball

(
0, 1; 
p,q

Pext,α

)
satisfies b = ιextc. It is clear that ‖ιextc‖
2 = 	 ‖c‖
2 for all

c ∈ 

p,q
Pext,α

.

Finally, Proposition 2 shows that 
p,q
P int,α

↪→ 
2(J int) and 

p,q
Pext,α

↪→ 
2(J ext).
Hence, we see for c ∈ bτ

p,q(Ωint;R) that ‖c‖
2 � ‖ιintc‖
2 � ‖ιintc‖
p,q

P int ,α
� ‖c‖bτ

p,q

and hence bτ
p,q(Ωint;R) ↪→ 
2(J int). Similarly, one can show that bτ

p,q(Ωext;R) ↪→

2(J ext). ��

D The Phase Transition for Sobolev Spaces with p ∈ {1, ∞}
In this subsection, we provide the missing proof of Theorem 8 for the cases p = 1
and p = ∞. We begin with the case p = 1.

D.1 The case p = 1

The proof is crucially based on the following embedding.

Lemma 13 For arbitrary k, d ∈ N and 1 ≤ p < ∞, we have W k,p(Rd) ↪→
Bk

p,∞(Rd).

Proof This follows from [1, Section 7.33]. Here, the definition of Besov spaces used
in [1] coincides with our definition, as can be seen by combining [36, Theorem in
Section 2.5.12] with [19, Proposition 17.21 and Theorem 17.24]. ��

Using this embedding, we can now prove Theorem 8 for the case p = 1

Proof of Theorem 8 for p = 1 Let k ∈ N with k > d · ( 11 − 1
2 )+ = d

2 and define S :=
Ball(0, 1; W k,1(Ω)). Our goal is to apply Theorem 5 for X := Y := Z := L2(Ω),
SX := Ball(0, 1; Bk

1,∞(Ω)), and SY := Ball(0, 1; W k,2(Ω)), with suitable choices
of Φ,Ψ ,P.
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To this end, first note that since Ω ⊂ R
d is bounded, there exists κ > 0 satisfying

κ ‖ f ‖W k,1(Ω) ≤ ‖ f ‖W k,2(Ω) for all f ∈ W k,2(Ω). Next, Theorems 7 and 8 (the latter
for p = 2 ∈ (1,∞)) show that SX,SY ⊂ L2(Ω) are bounded with

s∗L2(Ω)
(SX) = s∗L2(Ω)

(SY) = k

d

and that there exists a Borel measure P0 on SY that is critical for SY with respect to
L2(Ω).

Next, we claim that there exists C > 0 satisfying ‖ f ‖Bk
1,∞(Ω) ≤ C ‖ f ‖W k,1(Ω) for

all f ∈ W k,1(Ω). Indeed, [33, Theorem 5 in Chapter VI] shows that there exists a
bounded linear extension operator E : W k,1(Ω) → W k,1(Rd) satisfying (E f )|Ω =
f for all f ∈ W k,1(Ω). Then, Lemma 13 yields C1 > 0 satisfying

‖ f ‖Bk
1,∞(Ω) = ‖(E f )|Ω‖Bk

1,∞(Ω) ≤ ‖E f ‖Bk
1,∞(Rd ) ≤ C1 · ‖E f ‖W k,1(Rd ) ≤ C1‖E ‖ ‖ f ‖W k,1(Ω),

so that we can choose C = C1 · ‖E ‖. In particular, this implies that S ⊂ C · SX ⊂
L2(Ω) is bounded, so that Lemma 16 shows that S = S ∩ L2(Ω) ⊂ L2(Ω) is
measurable.

Overall, we see that if we choose

Φ : SX → L2(Ω), f �→ C · f and Ψ : SY → S, f �→ κ · f ,

then Φ,Ψ are well-defined and satisfy all assumptions of Theorem 5. This theorem
then shows that s∗

L2(Ω)
(S) = k

d and that P := P0 ◦Ψ−1 is a Borel probability measure

on S that is critical for S with respect to L2(Ω).
Finally, Part (iii) of Theorem 7 yields a codec C∗ = (

(E∗
R, D∗

R)
)

R∈N ∈
CodecsSX,L2(Ω) satisfying δSX,L2(Ω)(E∗

R, D∗
R) � R−k/d . Since Φ is Lipschitz with

Φ(SX) ⊃ S, Lemma 8 shows that there exists a codec C = (
(ER, DR)

)
R∈N ∈

CodecsS,L2(Ω) that satisfies the estimate δS,L2(Ω)(ER, DR) � R−k/d , claimed in Part
(iii) of Theorem 8. ��

D.2 The Case p = ∞

Let k ∈ N with k > d · ( 1
∞ − 1

2 )+ = 0 and define S := Ball(0, 1; W k,∞(Ω)).
Note that trivially S ⊂ L∞(Ω) ⊂ L2(Ω) is bounded, so that Lemma 16 implies that
S ⊂ L2(Ω) is Borel measurable. Our goal is to apply Theorem 5 forX := Y := Z :=
L2(Ω), SX := Ball(0, 1; W k,2(Ω)), and SY := Ball(0, 1; Bk∞,1(Ω)), for suitable
choices of Φ,Ψ and P.

To this end, first note that since Ω ⊂ R
d is bounded, there exists C > 0 satisfying

‖ f ‖W k,2(Ω) ≤ C ‖ f ‖W k,∞(Ω) for all f ∈ W k,∞(Ω).
Next, it is well-known (see for instance [38, Example 7.2]) that there is κ > 0

such that κ ‖ f ‖W k,∞(Rd ) ≤ ‖ f ‖Bk∞,1(R
d ) for all f ∈ Bk∞,1(R

d). Now, for f ∈
Bk∞,1(Ω) and ε > 0, by definition of the norm on Bk∞,1(Ω) (see Eq. (C.2)) there
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is some g ∈ Bk∞,1(R
d) with ‖g‖Bk∞,1(R

d ) ≤ (1+ ε)‖ f ‖Bk∞,1(Ω) and f = g|Ω .

Since g ∈ Bk∞,1(R
d) ⊂ W k,∞(Rd), we see f ∈ W k,∞(Ω) and κ‖ f ‖W k,∞(Ω) ≤

κ‖g‖W k,∞(Rd ) ≤ ‖g‖Bk∞,1(R
d ) ≤ (1+ ε) ‖ f ‖Bk∞,1(Ω). We have thus shown

κ ‖ f ‖W k,∞(Ω) ≤ ‖ f ‖Bk∞,1(Ω) ∀ f ∈ Bk∞,1(Ω).

Finally, Theorems 7 and 8 (the latter applied with p = 2 ∈ (1,∞)) show that the
respective optimal compression rates are given by s∗

L2(Ω)
(SX) = s∗

L2(Ω)
(SY) = k

d
and that there exists a Borel probability measure P0 on SY that is critical for SY with
respect to L2(Ω).

Combining these observations, it is not hard to see that all assumptions of Theorem5
are satisfied for

Φ : SX → L2(Ω), f �→ C · f and Ψ : SY → S, f �→ κ · f .

This theorem thus shows that s∗
L2(Ω)

(
S

) = k
d and that P := P0 ◦ Ψ−1 is a Borel

probability measure on S that is critical for S with respect to L2(Ω).
Finally, Theorem8shows that there existsC∗ = (

(E∗
R, D∗

R)
)

R∈N ∈ CodecsSX,L2(Ω)

satisfying δSX,L2(Ω)(E∗
R, D∗

R) � R−k/d . Since Φ is Lipschitz with Φ(SX) ⊃ S,
Lemma 8 shows that there exists a codec C = (

(ER, DR)
)

R∈N ∈ CodecsS,L2(Ω) sat-
isfying the estimate δS,L2(Ω)(ER, DR) � R−k/d , as claimed in Part (iii) of Theorem 8.

��

E Measurability of Besov and Sobolev Balls

In this subsection, we show for the range of parameters considered in Theorems 7
and 8 that the balls Ball

(
0, R; Bτ

p,q(Ω)
)
and Ball

(
0, R; W k,p(Ω)

)
are measurable

subsets of L2(Ω). We remark that for the case where p, q ∈ (1,∞), easier proofs than
the ones given here are possible. Yet, since the proofs for the cases where p ∈ {1,∞}
or q ∈ {1,∞} apply verbatim for a whole range of exponents, we prefer to state and
prove the more general results.

We begin with the case of Besov spaces, for which the balls are in fact closed.

Lemma 14 Let ∅ �= Ω ⊂ R
d be open and bounded and let p, q ∈ (0,∞] and τ ∈ R

with τ > d·( 1p− 1
2 )+. Then, Bτ

p,q(Ω) ↪→ L2(Ω), and the ballsBall(0, R; Bτ
p,q(Ω)) ⊂

L2(Ω) are closed for all R > 0.

Proof Let p0 := max{p, 2}. Then, [38, Example 7.2] shows that Bτ
p,q(R

d) ↪→
L p0(Rd), since p ≤ p0 and since τ > d · ( 1p − 1

p0
) by our assumptions on τ .

This implies Bτ
p,q(Ω) ↪→ L2(Ω), since if f ∈ Bτ

p,q(Ω), then by definition of
this space (see Eqs. (C.1) and (C.2)) there exists some g ∈ Bτ

p,q(R
d) satisfying
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‖g‖Bτ
p,q (R

d ) ≤ 2‖ f ‖Bτ
p,q (Ω) and f = g|Ω , and hence

‖ f ‖L2(Ω) � ‖ f ‖L p0 (Ω) =
∥∥g|Ω

∥∥
L p0 (Ω)

≤ ‖g‖L p0 (Rd ) � ‖g‖Bτ
p,q (R

d ) ≤ 2 ‖ f ‖Bτ
p,q (Ω).

It remains to show that Ball(0, R; Bτ
p,q(Ω)) ⊂ L2(Ω) is closed. To see this, first

note that if (gn)n∈N ⊂ Bτ
p,q(R

d) satisfies gn → g ∈ S ′(Rd) with convergence
in S ′(Rd), then ‖g‖Bτ

p,q (R
d ) ≤ lim infn→∞ ‖gn‖Bτ

p,q (R
d ). Indeed, with the family

(ϕ j ) j∈N0 ⊂ S (Rd) used in the definition of Besov spaces (see Sect. C.1), we have
for f ∈ S ′(Rd) and x ∈ R

d thatF−1(ϕ j · f̂ )(x) = (2π)−d/2 · 〈 f̂ , ei〈x,•〉ϕ j
〉
S ′,S ;

see for instance [30, Theorem 7.23]. From this, we easily see that F−1(ϕ j · ĝn) →
F−1(ϕ j · ĝ), with pointwise convergence as n → ∞. Therefore, Fatou’s lemma shows
that ‖F−1(ϕ j · ĝ)‖L p ≤ lim infn→∞ ‖F−1(ϕ j · ĝn)‖L p . By another application of
Fatou’s lemma, we therefore see

‖g‖Bτ
p,q (R

d ) =
∥∥∥
(
2τ j ‖F−1(ϕ j · ĝ)‖L p

)

j∈N0

∥∥∥

q

≤ lim inf
n→∞

∥∥∥
(
2τ j ‖F−1(ϕ j · ĝn)‖L p

)

j∈N0

∥∥∥

q

= lim inf
n→∞ ‖gn‖Bτ

p,q (R
d ),

as claimed.
Now, we prove the claimed closedness. Let ( fn)n∈N ⊂ Ball(0, R; Bτ

p,q(Ω)) ⊂
L2(Ω) such that fn → f ∈ L2(Ω) with convergence in L2(Ω). By definition of
Bτ

p,q(Ω) (see Eqs. (C.1) and (C.2)), for each n ∈ N there exists gn ∈ Bτ
p,q(R

d)

satisfying fn = gn|Ω and

‖gn‖Bτ
p,q (R

d ) ≤
(
1+ 1

n

) · ‖ fn‖Bτ
p,q (Ω) ≤

(
1+ 1

n

)
R ≤ 2R.

As seen above, Bτ
p,q(R

d) ↪→ L p0(Rd), so that (gn)n∈N ⊂ L p0(Rd) = (L p′
0(Rd))′

is bounded, where p′
0 ≤ 2 < ∞, so that L p′

0(Rd) is separable. Thus, [2, Theorem 8.5]
shows that there is a subsequence (gnk )k∈N and some g ∈ L p0(Rd) such that gnk → g
in the weak-∗-sense in L p0(Rd) = (L p′

0(Rd))′. In particular, gnk → g in S ′(Rd).
By what we showed above, this implies ‖g‖Bτ

p,q (R
d ) ≤ lim infk→∞ ‖gnk‖Bτ

p,q (R
d ) ≤

R. Finally, we have for any ϕ ∈ C∞
c (Ω) that 〈g, ϕ〉 = limk→∞〈gnk , ϕ〉 =

limk→∞〈 fnk , ϕ〉 = 〈 f , ϕ〉, since fnk = gnk |Ω and fnk → f in L2(Ω). Overall,
we thus see that f = g|Ω ∈ Bτ

p,q(Ω) and ‖ f ‖Bτ
p,q (Ω) ≤ ‖g‖Bτ

p,q (R
d ) ≤ R. ��

For the Sobolev spaces W k,p(Ω) with p = 1, the set Ball
(
0, R; W k,1(Ω)

)
is not

closed in L2(Ω). In order to show that this ball is nonetheless Borel measurable, we
begin with the following result on R

d .

Lemma 15 Let d, k ∈ N and p ∈ [1, 2]. Then, L2(Rd) ∩ W k,p(Rd) is a Borel-
measurable subset of L2(Rd).

Proof Let ϕ ∈ C∞
c (Rd) with ϕ ≥ 0 and

∫
Rd ϕ(x) dx = 1 and define ϕn(x) :=

nd · ϕ(nx). It follows from [2, Section 4.13] that if f ∈ L2(Rd), then ϕn ∗ f ∈
L2(Rd) ∩ C∞(Rd) with ∂α(ϕn ∗ f ) = (∂αϕn) ∗ f .
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Step 1: Define S := L2(Rd) ∩ W k,p(Rd). In this step, we show that

S = {
f ∈ L2(Rd) : ∀ |α| ≤ k : (

(∂αϕn) ∗ f
)

n∈N is Cauchy in L p(Rd)
}
.

For “⊂”, note that if f ∈ S, then from the definition of the weak derivative we see

[(∂αϕn) ∗ f ](x) =
∫

Rd
f (y) · (∂αϕn)(x − y) dy = (−1)|α|

∫

Rd
f (y) · ∂α

y [ϕn(x − y)] dy

=
∫

Rd
∂α f (y) · ϕn(x − y) dy = [ϕn ∗ (∂α f )](x),

so that [2, Theorem 4.15] shows that (∂αϕn) ∗ f −−−→
n→∞ ∂α f , with convergence in

L p(Rd). This proves “⊂”.
For “⊃”, let f ∈ L2(Rd) such that

(
(∂αϕn) ∗ f

)
n∈N is Cauchy in L p(Rd) for each

α ∈ N
d
0 with |α| ≤ k. Define gα := limn→∞[(∂αϕn) ∗ f ] ∈ L p(Rd) for |α| ≤ k.

Since [2, Theorem 4.15] shows that ϕn ∗ f → f with convergence in L2, we get
f = g0 ∈ L p(Rd). Furthermore, as seen above, we have ϕn ∗ f ∈ C∞(Rd) with
∂α(ϕn ∗ f ) = (∂αϕn) ∗ f . Therefore, we see for arbitrary ψ ∈ C∞

c (Rd) and α ∈ N
d
0

with |α| ≤ k that
∫

Rd
f · ∂αψ dx = lim

n→∞

∫

Rd
(ϕn ∗ f ) · ∂αψ dx = lim

n→∞(−1)|α|
∫

Rd
[(∂αϕn) ∗ f ] · ψ dx

(since ψ∈C∞
c ⊂L p′ ) = (−1)|α|

∫

Rd
gα · ψ dx,

which shows that gα is the α-th weak derivative of f ; that is, ∂α f = gα ∈ L p(Rd).
Since this holds for all |α| ≤ k, we see that f ∈ W k,p(Rd) and thus f ∈ S.

Step 2: For n, m, M ∈ N, define

Γn,m,M : L2(Rd) → [0,∞), f �→ ∥∥[∂α(ϕn − ϕm) ∗ f ] · 1[−M,M]d
∥∥

L p .

Since p ≤ 2, it is easy to see that Γn,m,M is well-defined and continuous. Furthermore,
‖[(∂αϕn) ∗ f ] − [(∂αϕm) ∗ f ]‖L p = supM∈N Γn,m,M ( f ), which—together with the
result from Step 1—implies that

S =
∞⋂


=1

∞⋃

N=1

∞⋂

n,m=N

∞⋂

M=1

{
f ∈ L2(Rd) : Γn,m,M ( f ) ≤ 1/


}

is a Borel-measurable subset of L2(Rd). ��
We can now prove a similar result on bounded domains. For the convenience of the

reader, we recall that ‖ f ‖W k,p = max|α|≤k ‖∂α f ‖L p ; see Eq. (4.2).

Lemma 16 Let p ∈ [1,∞], k ∈ N, R ∈ (0,∞), and let Ω ⊂ R
d be open and

bounded. In case of p = 1, assume additionally that Ω is a Lipschitz domain.
Then, L2(Ω) ∩ Ball

(
0, R; W k,p(Ω)

)
is a Borel-measurable subset of L2(Ω).
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Proof Step 1: The space Ck(Ω) (with the norm ‖ f ‖Ck (Ω) = max|α|≤k ‖∂α f ‖sup) is
separable; see [2, Section 4.18]. Since subsets of separable spaces are separable, there
exists a sequence (ϕn)n∈N ⊂ C∞

c (Ω) \ {0} that is dense in C∞
c (Ω) \ {0} with respect

to ‖ • ‖Ck (Ω). For n ∈ N, define

γn : L2(Ω) → [0,∞), f �→ max|α|≤k

∣∣∣∣

∫

Ω

f · ∂αϕn dx

∣∣∣∣
/
‖ϕn‖L p′ ,

where p′ ∈ [1,∞] is the conjugate exponent to p. Since ∂αϕn ∈ C∞
c (Ω) ⊂ L2(Ω),

we see that γn is continuous, so that γ : L2(Ω) → [0,∞], f �→ supn∈N γn( f ) is
Borel measurable.

Step 2: We claim that
∣∣∫

Ω
f · ∂αϕ dx

∣∣ ≤ γ ( f ) · ‖ϕ‖L p′ for all f ∈ L2(Ω), ϕ ∈
C∞

c (Ω), and |α| ≤ k. Clearly, we can assume without loss of generality that γ ( f ) <

∞ and ϕ �= 0. Thus, there is a sequence (n
)
∈N ⊂ N such that ‖ϕ−ϕn

‖Ck (Ω) → 0,

which easily implies ‖ϕn

‖L p′ → ‖ϕ‖L p′ and ∂αϕn


→ ∂αϕ with convergence in
L2(Ω) for all |α| ≤ k. Hence,

∣∣∫
Ω

f · ∂αϕ dx
∣∣ = lim
→∞

∣∣∫
Ω

f · ∂αϕn

dx

∣∣ ≤
lim
→∞ γ ( f ) · ‖ϕn


‖L p′ = γ ( f ) · ‖ϕ‖L p′ , as claimed.
Step 3: In this step, we prove for p > 1 that S := L2(Ω) ∩ Ball(0, R; W k,p(Ω))

satisfies S = { f ∈ L2(Ω) : γ ( f ) ≤ R}, which then implies that S is a Borel measur-
able subset of L2(Ω).

First, if f ∈ S, then
∣∣∫

Ω
f ∂αϕn dx

∣∣ = ∣∣∫
Ω

ϕn ∂α f dx
∣∣ ≤ ‖∂α f ‖L p · ‖ϕn‖L p′ ≤

R · ‖ϕn‖L p′ for all |α| ≤ k and n ∈ N, so that γ ( f ) ≤ R.
Conversely, if γ ( f ) ≤ R, then Step 2 shows for arbitrary |α| ≤ k and ϕ ∈ C∞

c (Ω)

that
∣∣∫

Ω
f · ∂αϕ dx

∣∣ ≤ γ ( f ) · ‖ϕ‖L p′ ≤ R · ‖ϕ‖L p′ , so that [2, Section E6.7] implies
that f ∈ W k,p(Ω); this uses our assumption p > 1. Finally, for ϕ ∈ C∞

c (Ω) and
|α| ≤ k, we have

∣∣∫
Ω

ϕ · ∂α f dx
∣∣ = ∣∣∫

Ω
f · ∂αϕ dx

∣∣ ≤ R · ‖ϕ‖L p′ . Therefore, [2,
Corollary 6.13] shows ‖∂α f ‖L p ≤ R for all |α| ≤ k. By our definition of ‖•‖W k,p(Ω)

(see Eq. (4.2)), this implies f ∈ S.
Step 4:We prove the claim for the case p = 1. SinceΩ is a Lipschitz domain, [33,

Theorem 5 in Chapter VI] yields a linear extension operator E : L1(Ω) → L1(Rd)

satisfying (E f )|Ω = f for all f ∈ L1(Ω), and such that for arbitrary 
 ∈ N0 and
q ∈ [1,∞] the restriction E : W 
,q(Ω) → W 
,q(Rd) is well-defined and bounded.

In particular, E : L2(Ω) → L2(Rd) is continuous and hence measurable. By
Lemma 15, this means that Θ := { f ∈ L2(Ω) : E f ∈ W k,1(Rd)} ⊂ L2(Ω) is
measurable. We claim that

(S := L2(Ω) ∩ Ball(0, R; W k,1(Ω)) = Θ ∩ { f ∈ L2(Ω) : γ ( f )≤ R},)

which then implies that S ⊂ L2(Ω) is measurable.
For “⊂”, we see as in Step 3 that γ ( f ) ≤ R if f ∈ S. Furthermore, by the properties

of the extension operator E , we also have f ∈ Θ if f ∈ S. For “⊃”, let f ∈ Θ satisfy
γ ( f ) ≤ R. Since f ∈ Θ , we have f = (E f )|Ω ∈ W k,1(Ω). One can then argue as
at the end of Step 3 (using [2, Corollary 6.13]) to see that f ∈ Ball(0, R; W k,1(Ω))

and thus f ∈ S. ��
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F Proof of the Lower Bounds for Neural Network Approximation

In this appendix, we establish a connection between rate distortion theory and approx-
imation by neural networks. This is based on the observation from [4,29] that one can
use the existence of approximating networks to construct a codec for a function class.
This in turn relies on sharp estimates for the number of functions in the classNN σ,	

d,W
appearing in Theorem 3.

The first ingredient for such a bound is the following “compression lemma,” show-
ing that for each neural network Φ, one can find a “compressed network” Ψ with the
same realization R	Ψ = R	Φ and such that the number of weights, layers, and neu-
rons of Ψ is controlled by the number of weights ofΦ. We remark that a similar result
already appears in [29, LemmaG.1]. However, the proof in [29] proceeds by removing
“dead neurons;” that is, neurons that do not receive input from any other neurons. The
proof then relies on the assumption 	(0) = 0 to ensure that a “dead neuron” has trivial
output. In contrast, our proof relies on removing “ignored neurons,” whose output is
not used in the subsequent layer; this allows us to omit the assumption 	(0) = 0.

Lemma 17 Let d, k ∈ N and Θ ⊂ R with 0 ∈ Θ . Let Φ be a neural network with all
weights/biases contained in Θ and with din(Φ) = d and dout(Φ) = k. Then, there
exists a “compressed” network Ψ with the following properties:

1. din(Ψ ) = d and dout(Ψ ) = k,
2. all weights/biases of Ψ are contained in Θ ,
3. for every 	 : R → R, we have R	Φ = R	Ψ ,
4. W (Ψ ) ≤ W (Φ),
5. L(Ψ ) ≤ W (Ψ ) + 1,
6. N (Ψ ) ≤ k + d + W (Ψ ).

Proof For an arbitrary neural network Φ, define C(Φ) := L(Φ) + N (Φ) ∈ N. Fur-
thermore, define the set of “bad” networks as

B :=
{
Φ : Φ NN with din(Φ) = d, dout(Φ) = k, all weights/biases of Φ belong to Θ,

and �NN Ψ satisfying properties 1-6 from the lemma

}
.

Toward a contradiction, assume that the lemma is false. Then, there exists Φ∗ ∈ B
satisfying C(Φ∗) = minΦ∈B C(Φ). Write Φ∗ = (

(A1, b1), . . . , (AL , bL)
)
with A
 ∈

R
N
×N
−1 and b
 ∈ R

N
 where N0 = d and NL = k. Note that if L = 1, then
L(Φ∗) = 1 ≤ W (Φ∗)+ 1 and N (Φ∗) ≤ k + d ≤ k + d + W (Φ∗), so that properties
1–6 of the lemma are satisfied for Ψ = Φ∗ (and Φ∗ instead of Φ), in contradiction to
Φ∗ ∈ B. Hence, L ≥ 2.

Below, we will show that

¬
(
∃ 
 ∈ {2, . . . , L} ∃ j ∈ [N
−1] ∀ i ∈ [N
] : (A
)i, j = 0

)
. (F.1)

Thus, for every 
 ∈ {2, . . . , L} and j ∈ [N
−1], we have
∑N


i=1 1(A
)i, j �=0 ≥ 1 and

hence W (Φ∗) ≥ ∑L

=2

∑N
−1
j=1

∑N


i=1 1(A
)i, j �=0 ≥ ∑L

=2 N
−1. On the one hand, this
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implies W (Φ∗) ≥ L − 1 and on the other hand

W (Φ∗) ≥
L∑


=2

N
−1 = N (Φ∗) − NL − N0 = N (Φ∗) − k − d.

Thus, choosing Ψ = Φ∗, we see that Ψ satisfies properties 1–6 of the lemma (withΦ

replaced by Φ∗), in contradiction to Φ∗ ∈ B.
It remains to prove Eq. (F.1). Assume toward a contradiction that it is false. Then,

there exist 
∗ ∈ {2, . . . , L} and j∗ ∈ [N
∗−1] satisfying (A
∗)−, j∗ = 0.We distinguish
two cases:

Case 1 (N
∗−1 ≥ 2): In this case, define a new network

Φ := (
(A1, b1), . . . , (A
∗−2, b
∗−2), (A, b), (B, c), (A
∗+1, b
∗+1), . . . , (AL , bL)

)
,

where A ∈ R
(N
∗−1−1)×N
∗−2 and b ∈ R

N
∗−1−1 are obtained from A
∗−1 and b
∗−1,
respectively, by dropping the j∗-th row. Further, we set c := b
∗ ∈ R

N
∗ and we
choose B ∈ R

N
∗×(N
∗−1−1) as the result of dropping the j∗-th column of A
∗ .
Since (A
∗)−, j∗ = 0, it is easy to see R	Φ = R	Φ

∗ for every 	 : R → R. Note that
C(Φ) = C(Φ∗)−1, so thatΦ /∈ B by “minimality” ofΦ∗. Thus, there exists a network
Ψ satisfying properties 1–6 from the statement of the lemma. Note in particular that
R	Φ

∗ = R	Φ = R	Ψ and that W (Ψ ) ≤ W (Φ) ≤ W (Φ∗); hence, Ψ also satisfies
properties 1–6 of the lemma for Φ∗ instead of Φ, in contradiction to Φ∗ ∈ B.

Case 2 (N
∗−1 = 1): Since j∗ ∈ [N
∗−1], this implies j∗ = 1. Furthermore,
since A
∗ ∈ R

N
∗×N
∗−1 = R
N
∗×1 and (A
∗)−,1 = (A
∗)−, j∗ = 0, this implies

A
∗ = 0. Define Φ := (
(0N
∗×d , b
∗), (A
∗+1, b
∗+1), . . . , (AL , bL)

)
and note for

any 	 : R → R and T
 x := A
 x + b
 that T
∗x = b
∗ for all x ∈ R
N
∗−1 , which

implies that

R	Φ
∗(x)

= [
TL ◦ (	 ◦ TL−1) ◦ · · · ◦ (	 ◦ T
∗+1) ◦ 	

]

omit this if 
∗=L

(
T
∗

(
(	 ◦ T
∗−1) ◦ · · · ◦ (	 ◦ T1)(x)

))

= [
TL ◦ (	 ◦ TL−1) ◦ · · · ◦ (	 ◦ T
∗+1) ◦ 	

]

omit this if 
∗=L

(
b
∗

) = R	Φ(x) ∀ x ∈ R
d .

Furthermore, note that all weights/biases of Φ belong to Θ ∪ {0} = Θ and because
of 
∗ ≥ 2 that L(Φ) = L − 
∗ + 1 ≤ L − 1 < L(Φ∗) and N (Φ) ≤ N (Φ∗), so
that C(Φ) < C(Φ∗). Now, since also W (Φ) ≤ W (Φ∗), one obtains a contradiction
exactly as in Case 1. ��

Using the preceding compression result, we can now derive a sharp bound on the
cardinality of the setNN σ,	

d,W of neural network functions that appears in Theorem 3.
We mention that this result is similar to [29, Lemma B.4], but without the assumption
	(0) = 0.
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Lemma 18 Let 	 : R → R and d, σ ∈ N. With NN σ,	

d,W as defined in Theorem 3,
there exists a constant C0 = C0(d, σ ) ∈ N satisfying

∣∣NN σ,	

d,W

∣∣ ≤ 2C0·W ·�log2(1+W )�2 ∀ W ∈ N.

In fact, one can choose C0 = 4+ 4�log2(4ed)� + 8σ .

Proof Fix W ∈ N.
Step 1:Recall the definition of Gσ,W (Eq. (1.7)) and note |Z∩[a, b]| ≤ 1+ (b−a)

for a ≤ b. Thus, noting that log2(1+ W ) ≥ log2(2) = 1, we easily see

|Gσ,W | =
∣∣∣Z ∩ 2σ�log2 W�2[ − W σ�log2 W�, W σ�log2 W�]

∣∣∣

≤ 1+ 2 · W σ�log2 W� 2σ�log2 W�2 ≤ 1+ 2 · 22σ�log2 W�2 ≤ 3 · 22σ�log2(1+W )�2

≤ 24σ�log2(1+W )�2 .

Step 2: Given L ∈ N, define N0 := d and NL := 1 and define the set of all
architectures with L layers and at most W “hidden neurons” as

AL :=
{
N = (N1, . . . , NL−1) ∈ N

L−1 :
L−1∑


=1

N
 ≤ W

}
,

with the understanding that A1 contains a single element, the empty tuple. Next, for
fixed architecture N ∈ AL , define

HN :=
L⋃


=1

({
} × [N
] × [N
−1]
)

and RN :=
L⋃


=1

({
} × [N
]
)
.

Finally, given subsets I ⊂ HN and J ⊂ RN , define

Ω I

,i, j :=

{
{0}, if (
, i, j) /∈ I ,

Gσ,W , otherwise
and Θ J


,k :=
{
{0}, if (
, k) /∈ J ,

Gσ,W , otherwise

for 
, i, j, k ∈ N. Overall, recalling the definition of NN σ,	

d,W and using Lemma 17,
we see

NN σ,	

d,W ⊂
W+1⋃

L=1

⋃

N∈A L

⋃

I⊂HN|I |≤W

⋃

J⊂RN|J |≤W

{
R	Ψ : Ψ ∈

Lą


=1

( ą

(i, j)∈[N
]×[N
−1]
Ω I


,i, j ×
ą

k∈[N
]
Θ J


,k

)}
.

Finally, note that |RN | = ∑L

=1 N
 ≤ W + 1 ≤ 4d · W 2 and

|HN | =
L∑


=1

N
N
−1 ≤
(

max
0≤i≤L−1

Ni

) L∑


=1

N
 ≤ (d + W ) · (W + 1) ≤ 4d · W 2.
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Step 3: We complete the proof by estimating |NN σ,	

d,W | using the inclusion from

Step 2. First, note that if Λ is any non-empty set with |Λ| ≤ 4d · W 2, then a standard
estimate for (sums of) binomial coefficients (see, e.g., [37, Exercise 0.0.5]) shows

∣∣{I ⊂ Λ : |I | ≤ W }∣∣ =
min{W ,|Λ|}∑

k=0

(|Λ|
k

)
≤ (

e|Λ|/min{W , |Λ|})min{W ,|Λ|} ≤ (4edW )W ,

where the overall estimate also holds if Λ = ∅. Furthermore, using the estimate from
Step 1, we see for I ⊂ HN and J ⊂ RN with |I |, |J | ≤ W that

∣∣∣∣

Lą


=1

( ą

(i, j)∈[N
]×[N
−1]
Ω I


,i, j ×
ą

k∈[N
]
Θ J


,k

)∣∣∣∣ =
L∏


=1

( ∏

(i, j)∈[N
]×[N
−1]
|Ω I


,i, j |
∏

k∈[N
]
|Θ J


,k |
)

≤ |Gσ,W ||I |+|J | ≤ |Gσ,W |2W

≤ 28σW�log2(1+W )�2 .

Moreover, each N = (N1, . . . , NL−1) ∈ AL satisfies N
 ≤ W , which implies for L ≤
W + 1 that |AL | ≤ |[W ]L−1| ≤ W W . Overall, combining the preceding observations
with the inclusion from Step 2, we conclude as claimed that

|NN σ,	

d,W | ≤
W+1∑

L=1

∑

N∈A L

|{I ⊂ HN : |I | ≤ W }| · |{J ⊂ RN : |J | ≤ W }| · 28σW�log2(1+W )�2

≤ (W + 1) · W W · (4edW )W · (4edW )W · 28σW�log2(1+W )�2

≤ (4edW )4W · 28σW�log2(1+W )�2 ≤ 2(4+4 log2(4ed)+8σ)·W ·�log2(1+W )�2 .

��
Finally, using the preceding estimate for the cardinality of NN σ,	

d,W , we can now
formulate the precise connection between neural network approximation and rate
distortion theory.

Lemma 19 Let ∅ �= Ω ⊂ R
d be measurable, let 	 : R → R be measurable, and let

σ ∈ N. For f ∈ L2(Ω) and ε ∈ (0, 1), let Wσ,	( f ; ε) ∈ N ∪ {∞} be as defined in
Theorem 3. For τ > 0 define

Aτ
NN ,σ,	 := {

f ∈ L2(Ω) : ∃C > 0 ∀ ε ∈ (0, 1) : Wσ,	( f ; ε) ≤ C · ε−τ
}
.

Then, there exists a codec C = C(σ, 	,Ω) ∈ CodecsL2(Ω),L2(Ω) such that

Aτ
NN ,σ,	 ⊂ A

1
τ
−δ

L2(Ω),L2(Ω)
(C) ∀ τ > 0 and δ ∈ (0, 1

τ
).

Proof Step 1: (Constructing the codec C): Let C0 = C0(d, σ ) ∈ N as in Lemma 18.
For R ∈ N≥C0 , let WR ∈ N be maximal with C0 · WR · �log2(1 + WR)�2 ≤ R. By
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Lemma 18, there exists a surjection DR : {0, 1}R → NN σ,	

d,WR
. For each f ∈ L2(Ω),

choose c(R, f ) ∈ {0, 1}R such that

‖ f − DR(c(R, f ))‖L2(Ω) = min
c∈{0,1}R

‖ f − DR(c)‖L2(Ω) = min
g∈NN σ,	

d,WR

‖ f − g‖L2(Ω),

and define ER : L2(Ω) → {0, 1}R, f �→ c(R, f ).
Finally, for R ∈ N with R < C0, define

ER : L2(Ω) → {0, 1}R, f �→ (0, . . . , 0) and DR : {0, 1}R → L2(Ω), c �→ 0.

Step 2: (Completing the proof ): Let τ > 0, δ ∈ (0, 1
τ
), and f ∈ Aτ

NN ,σ,	
, so that

there is C = C( f ) > 0 satisfying Wσ,	( f ; ε) ≤ C · ε−τ for all ε ∈ (0, 1).
Since the logarithm grows slower than any positive power and since the maximality

of WR implies that R ≤ C0 · (WR + 1) · �log2(WR + 2)�2, it is easy to see that there

exists C1 = C1(τ, δ, d, σ ) > 0 such that R ≤ C1 · W 1/(1−τδ)
R for all R ∈ N≥C0 . Note

that if R is large enough, then ε := C1/τ ·C (1−δτ)/τ
1 · R−( 1

τ
−δ) satisfies ε ∈ (0, 1). For

these R, we thus get

Wσ,	( f ; ε) ≤ C · ε−τ ≤ C−(1−δτ)
1 · R1−δτ ≤ WR .

By definition of Wσ,	( f ; ε) and by choice of DR, ER , we therefore see for all suffi-
ciently large R ∈ N that

∥∥ f − DR(ER( f ))
∥∥

L2(Ω)
= min

g∈NN σ,	

d,WR

‖ f − g‖L2(Ω)

≤ min
g∈NN σ,	

d,Wσ,	( f ;ε)
‖ f − g‖L2(Ω)

≤ ε = C1/τ · C (1−δτ)/τ
1 · R−( 1

τ
−δ),

which easily implies that f ∈ A
1
τ
−δ

L2(Ω),L2(Ω)
(C). Since τ > 0, δ ∈ (0, 1

τ
), and f ∈

Aτ
NN ,σ,	

were arbitrary, we are done. ��
Proof of Theorem 3 Part 1: Let s > s∗. As shown in Theorems 7 and 8, the measure
P from Theorem 1 is critical for S with respect to L2(Ω). Thus (see Eq. (2.1)), there
exist c, ε0 > 0 such that P

(
S ∩ Ball( f , ε; L2(Ω))

) ≤ 2−c·ε−1/s
for all f ∈ L2(Ω)

and ε ∈ (0, ε0). Lemma 18 shows that |NN σ,	

d,W | ≤ 2C0W�log2(1+W )�2 for all W ∈ N

and a suitable C0 = C0(d, σ ); in fact, one can take C0 = 4 + 4�log2(4ed)� + 8σ .
Thus, setting C := C0, we see that

Pr
(

min
g∈NN σ,	

d,W

‖ f − g‖L2(Ω) ≤ ε
)
= P

( ⋃

g∈NN σ,	

d,W

Ball(g, ε; L2(Ω))
)

≤ 2CW�log2(1+W )�22−c·ε−1/s
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for all ε ∈ (0, ε0). This is precisely what is claimed in Part 1 of Theorem 3.
Part 2: For 
, σ ∈ N, define

A
,σ := {
f ∈ S : ∃C > 0 ∀ ε ∈ (0, 1) : Wσ,	( f ; ε) ≤ C · ε−(1− 1

2
 )/s∗}.

It is not hard to see that A∗
NN ,	

⊂ ⋃
σ∈N

⋃

∈NA
,σ , so that it suffices to show

P
∗(A
,σ ) = 0 for all σ, 
 ∈ N. To see this, let C ∈ CodecsL2(Ω),L2(Ω) as in Lemma 19,

and note with the notation of that lemma and with δ := s∗/2
2
−1 and τ = (

1 − 1
2


)/
s∗

that

A
,σ = S ∩A(1− 1
2
 )/s∗

NN ,σ,	
⊂ S ∩A

s∗
1−1/(2
)−δ

L2(Ω),L2(Ω)
(C) = As∗· 2
−1/2

2
−1

S,L2(Ω)
(C),

where Theorem 1 shows that P
∗
(
As∗· 2
−1/2

2
−1

S,L2(Ω)
(C)

)
= 0. ��

We close this section by proving the claim at the end of Remark 3.

Proof of Remark 3 Case 1 (Besov spaces): Here, S = Ball(0, 1; Bτ
p,q(Ω;R)) and

s∗ = τ/d, where τ > d · ( 1p − 1
2 )+. By definition of the space Bτ

p,q(Ω;R) (see

Eqs. (C.1) and (C.2)), each f ∈ S extends to a function f̃ ∈ Bτ
p,q(R

d;R) satisfying

‖ f̃ ‖Bτ
p,q (R

d ;R) ≤ 2. Thanks to [36, Theorem in Section 2.5.12], this implies for a
suitable C1 = C1(d, p, q, τ ) > 0 that ‖ f ‖Bτ,∗

p,q (Ω) ≤ C1, where ‖ · ‖Bτ,∗
p,q (Ω) is the

norm on the Besov space used in [34].
Now, [34, Proposition 1] yields C2,C3, N0, θ ∈ N≥2 (all depending only on

d, p, q, τ ) such that for every f ∈ S and N ≥ N0, there exists a network
Φ = Φ( f , N ) satisfying ‖ f − R	(Φ)‖L2(Ω) ≤ C2

2 · N−s∗ as well as L(Φ) ≤
C3 · log2 N and W (Φ) ≤ C3 · N · log2 N , and such that all weights ofΦ have absolute
value at most C3 · N θ . This almost implies the desired estimate; the main issue is that
the weights are merely bounded, but not necessarily quantized. To fix this, we will use
[13, Lemma VI.8].

To make this formal, let us assume in what follows that ε ∈ (0, 1
2 )∩ (0,C2 · N−s∗

0 );
it is easy to see that this implies the claim of Remark 3 for general ε ∈ (0, 1

2 ). Let
N ∈ N be minimal with C2 · N−s∗ ≤ ε, noting that this entails N ≥ N0 ≥ 2 as well as
ε ≤ C2 · (N − 1)−s∗ ≤ 2s∗C2 · N−s∗ , and therefore N ≤ 2C1/s∗

2 ε−1/s∗ . Now, given
f ∈ S, choose Φ = Φ( f , N ) as above and note that ‖ f − R	(Φ)‖L2(Ω) ≤ ε

2 .
Define W := �C3 ·N · log2 N� ≥ N and choose k = k(p, q, d, τ ) ∈ Nwith k ≥ θ

s∗

so large that C3 · (2C1/s∗
2

)2 ≤ C3 · (2C1/s∗
2

)θ ≤ 2k .

Since log2 N ≤ N , we then see that W ≤ C3N 2 ≤ C3 ·
(
2C1/s∗

2 ε−1/s∗)2 ≤ ( ε
2 )

−k

and C3 · N θ ≤ C3 ·
(
2C1/s∗

2 ε−1/s∗)θ ≤ ( ε
2 )

−k . Therefore, [13, Lemma VI.8] produces
a networkΦ ′ satisfying W (Φ ′) ≤ W (Φ) ≤ W and ‖R	(Φ) − R	(Φ

′)‖L∞([0,1]d ) ≤ ε
2

and such that

all weights of Φ ′ belong to [−( ε
2 )

−σ0 , ( ε
2 )

−σ0 ] ∩ 2−σ0�log2(2/ε)�Z, where σ0 := 3kL(Φ).
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To see that this implies the claim, first note that ‖ f − R	(Φ
′)‖L2(Ω) ≤ ε and that

W (Φ ′) ≤ W ≤ 2C3 N log2 N ≤ 4C
1

s∗
2 C3 · ε− 1

s∗ · log2
(
2C

1
s∗
2 ε−

1
s∗

) ≤ C4 · ε− 1
s∗ log2(1/ε)

for a suitable constant C4 = C4(d, p, q, τ ). Regarding the quantization, first define
σ1 := 3kC3, so that σ0 = 3kL(Φ) ≤ 3kC3 · log2 N ≤ σ1�log2 W�. Next, note
that 2

ε
≤ C2

ε
≤ N s∗ ≤ W s∗ , meaning (ε/2)−σ0 ≤ (W s∗)σ0 ≤ W σ�log2 W� with

σ := σ1 �s∗�. Furthermore, we have log2(2/ε) ≤ log2(W
s∗) ≤ �s∗� �log2 W�, which

easily implies that

2−σ0�log2(2/ε)�Z ⊂ 2−σ0�s∗��log2 W�
Z ⊂ 2−σ�log2 W�2

Z.

Overall, this shows that Φ ′ is (σ, W )-quantized, so that R	Φ
′ ∈ NN σ,	

d,W . Because of

‖ f − R	(Φ
′)‖L2(Ω) ≤ ε, this implies that Wσ,	( f ; ε) ≤ W ≤ C4 · ε−1/s∗ log2(1/ε),

which is what we wanted to show.
Case 2 (Sobolev spaces): Set p1 := min{p, 2} and note S ⊂ S ′ :=

Ball(0, 1; W k,p1(Ω)). Since Ω = [0, 1]d is a Lipschitz domain, [33, Chapter VI,
Theorem 5] shows that each f ∈ S ′ extends to a function f̃ ∈ W k,p1(Rd) with
‖ f̃ ‖W k,p1 (Rd ) ≤ C1, where C1 = C1(d, p, k). Now, Lemma 13 shows that f̃ ∈
Bk

p1,∞(Rd) with ‖ f̃ ‖Bk
p1,∞(Rd ) ≤ C2 where C2 = C2(d, p, k). Overall, this easily

implies S ⊂ Ball(0,C2; Bk
p1,∞(Ω;R)), so that the claim follows from that for the

Besov spaces. Here, we implicitly used that the condition k > d · ( 1p − 1
2 )+ holds if

and only if k > d · ( 1
p1

− 1
2 )+, since k ∈ N. ��

G Optimal Compression Rate and Baire Category

In Sect. 1.3.3, it was claimed that if S ⊂ X satisfies some mild assumptions and
s∗ = s∗X (S), then the set

⋃
s>s∗ As

S,X(C) is of first category in S, for every codec
C. In this appendix, we provide a proof of this fact. In particular, we will see (thanks
to the Baire category theorem) that this implies existence of a “badly encodable”
x = x(C) ∈ S \⋃

s>s∗ As
S,X(C), meaning that x is not encoded at any rate s > s∗X (S)

by the codec C.

Proposition 3 Let X be a Banach space and let ∅ �= S ⊂ X. Assume that at least one
of the following two conditions is satisfied:

1. S is closed, bounded, and convex; or
2. S = {x ∈ X : ‖x‖∗ ≤ r} for some r ∈ (0,∞) and a map ‖ · ‖∗ : X → [0,∞]

with the following properties:

(a) ‖ · ‖∗ is a quasi-norm; that is, there exists κ ≥ 1 such that ‖α x‖∗ = |α| · ‖x‖∗
and ‖x + y‖∗ ≤ κ · (‖x‖∗ + ‖y‖∗) for all α ∈ R and x, y ∈ X;

(b) there exists C ≥ 1 satisfying ‖x‖X ≤ C · ‖x‖∗ for all x ∈ X;
(c) S ⊂ X is closed;
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(d) ‖ · ‖∗ is “continuous with respect to itself,” meaning that ‖x‖∗ → ‖x0‖∗
whenever ‖x − x0‖∗ → 0.

Set s∗ := s∗X (S) and assume s∗ < ∞. Then, for any codec C = (
(ER, DR)

)
R∈N ∈

CodecsS,X, the set
⋃

s>s∗ As
S,X(C) is of first category in S. Moreover, there exists

x = x(C) ∈ S such that for each 
 ∈ N, we have

∥∥x − DR(ER(x))
∥∥
X ≥ R−(s∗+ 1



) for infinitely many R ∈ N. (G.1)

Remark (1) It is not hard to see that if x satisfies (G.1), then x ∈ S \⋃
s>s∗ As

S,X(C).
(2) The assumptions on the quasi-norm ‖ · ‖∗ might appear quite technical, but they

are usually satisfied. Indeed, the condition ‖x‖X ≤ C · ‖x‖∗ is equivalent to
S ⊂ X being bounded, which is necessary for having s∗X (S) > 0. Next, most
naturally appearing quasi-norms are q-norms for some q ∈ (0, 1], meaning that
‖x + y‖q∗ ≤ ‖x‖q∗ + ‖y‖q∗ . In this case, it is not hard to see

∣∣‖x‖q∗ − ‖y‖q∗
∣∣ ≤

‖x − y‖q∗ , which implies that ‖ · ‖∗ is “continuous with respect to itself.” Finally,
most natural quasi-norms satisfy the Fatou property, meaning that if xn → x in
X, then ‖x‖∗ ≤ lim infn→∞ ‖xn‖∗. If this is the case, then S ⊂ X is closed.

Proof For R ∈ N, define MR := range(DR) ⊂ X. Furthermore, for N , 
 ∈ N, let

GN ,
 := {
x ∈ S : ∀ R ∈ N : distX(x, MR) ≤ N · R−(s∗+ 1



)
}
.

Since distX(·, MR) is continuous, it is not hard to see that each set GN ,
 ⊂ S is closed.
Denote by G◦

N ,
 the (relative) interior of GN ,
 in S.
Step 1: (If G◦

N ,
 �= ∅, then there exist x′0 ∈ X and t > 0 such that x′0+ tS ⊂ GN ,
).
Choose x0 ∈ G◦

N ,
 ⊂ S and note that S ∩ Ball(x0, ε;X) ⊂ GN ,
 for a suitable
ε ∈ (0, 1). We distinguish the two cases regarding the assumptions on S.

Case 1: S is convex. Note that S ⊂ Ball(0,C;X) for a suitable C ≥ 1, since S is
bounded. Define t := ε

2C ∈ (0, 1) and x′0 := (1 − t)x0 ∈ X. With these choices, we
see for arbitrary x ∈ S that x′0 + tx ∈ S by convexity, and furthermore

∥∥x0 − (
x′0 + t x

)∥∥
X = t · ‖x0 − x‖X ≤ 2tC = ε.

Thus, x′0 + tS ⊂ S ∩ Ball(x0, ε;X) ⊂ GN ,
.
Case 2: S = {x ∈ X : ‖x‖∗ ≤ r} for some r ∈ (0,∞).
With C, κ ≥ 1 as in Part 2 of the assumptions of the proposition, let 0 < σ <
ε

2κC(1+r) < ε < 1 and define x′0 := (1− σ) x0, noting that ‖x′0‖∗ < r . By continuity

of ‖·‖∗ with respect to itself, we can choose 0 < δ <
ε·min{1,r}

2κC such that ‖x′0+y‖∗ < r
for all y ∈ X satisfying ‖y‖∗ ≤ δ. Define t := δ

r . For arbitrary y ∈ S, we then have
‖t y‖∗ ≤ tr = δ, and hence, x′0 + t y ∈ S. Furthermore, ‖(x′0 + t y) − x0‖X ≤
C · ‖ − σx0 + t y‖∗ ≤ κσCr + κCδ ≤ ε. Overall, we have shown that x′0 + tS ⊂
S ∩ Ball(x0, ε;X) ⊂ GN ,
, as desired.

Step 2: (We have G◦
N ,
 = ∅ for all N , 
 ∈ N). Assume toward a contradiction that

G◦
N ,
 �= ∅. By Step 1, there then exist x′0 ∈ X and t > 0 satisfying x′0 + tS ⊂ GN ,
.
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Thus, for each x ∈ S, we have x′0 + t x ∈ GN ,
, and therefore distX
(
x′0 + t x, MR

) ≤
N · R−(s∗+ 1



) for all R ∈ N. Because of MR = range(DR), this implies that there

exists cx,R ∈ {0, 1}R satisfying ‖(x′0 + tx) − DR(cx,R)‖X ≤ N · R−(s∗+ 1


).

Now, we define a new codec C̃ = (
(ẼR, D̃R)

)
R∈N ∈ CodecsS,X by

ẼR : S → {0, 1}R, x �→ cx,R and D̃R : {0, 1}R → X, c �→ t−1 · (DR(c) − x′0
)
.

For arbitrary x ∈ S, we then see

∥∥x − D̃R
(
ẼR(x)

)∥∥
X = t−1 · ∥∥t x − (

DR(cx,R) − x′0
)∥∥

X

= t−1 · ∥∥(x′0 + t x) − DR(cx,R)
∥∥
X ≤ N

t
· R−(s∗+ 1



)

for all R ∈ N. By definition of the optimal exponent, this implies s∗ = s∗X (S) ≥ s∗+ 1


,

which is the desired contradiction. Hence, G◦
N ,
 = ∅ for all N , 
 ∈ N.

Step 3: (Completing the proof ). It is easy to see
⋃

s>s∗ As
S,X(C) ⊂

⋃
N ,
∈N GN ,
;

see Eq. (1.2). We saw in the beginning of the proof that each GN ,
 is closed, and in
Step 2 that each GN ,
 has empty interior (in S) and is hence nowhere dense in S.
By definition, this shows that

⋃
N ,
∈N GN ,
— and hence also

⋃
s>s∗ As

S,X—is of first
category in S.

Finally, we prove the existence of x ∈ S satisfying Eq. (G.1). Assume toward a
contradiction that no such x exists. Then for each x ∈ S there exist nx, 
x ∈ N such

that for every R ≥ nx, we have ‖x − DR(ER(x))‖X < R−(s∗+ 1

x

). Thus, it is not hard
to see that

distX(x, MR) ≤ ‖x − DR(ER(x))‖X ≤ Nx · R−(s∗+ 1

x

) ∀ R ∈ N,

where we defined Nx := 1+max
{
ks∗+ 1


x · ‖x − Dk(Ek(x))‖X : 1 ≤ k ≤ nx
}
.

Since x ∈ S was arbitrary, this easily implies S = ⋃
N ,
∈N GN ,
. Because S ⊂ X

is a closed set, and hence a complete metric space (equipped with the metric induced
by ‖·‖X), the Baire category theorem ( [14, Theorem 5.9]) shows that there are certain
N , 
 ∈ N such that G◦

N ,
 �= ∅, in contradiction to Step 2. ��

As the second result in this appendix, we show that the preceding property does
not hold for general compact sets S ⊂ X, even if X = H is a Hilbert space. In other
words, some additional regularity assumption beyond compactness—like convexity—
is necessary to ensure the property stated in Proposition 3.

Example 1 We consider the Hilbert spaceH := 
2(N), where we denote the standard
orthonormal basis of this space by (en)n∈N. Fix s > 0, define x0 := 0 ∈ 
2(N) and
xn := (log2(n + 1))−s · en ∈ 
2(N) for n ∈ N, and finally set

S := {xn : n ∈ N0}.
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We claim that s∗H (S) = s, but that there is a codec C = (
(ER, DR)

)
R∈N ∈ CodecsS,H

such that Aσ
S,H(C) = S for every σ > 0; that is, every element x ∈ S is compressed

by C with arbitrary rate σ > 0.
To prove s∗H (S) ≤ s, let R ∈ N and (E, D) ∈ EncR

S,H. By the pigeonhole-

principle, there are n, m ∈ {1, . . . , 2R + 1} satisfying n �= m but E(xn) = E(xm). By
symmetry, we can assume that n < m, so that n + 1 ≤ 2R + 1 ≤ 2R+1. Therefore,

2−s · R−s ≤ (R + 1)−s ≤ (log2(n + 1))−s ≤ ‖xn − xm‖
2
≤ ‖xn − D(E(xn))‖
2 + ‖D(E(xm)) − xm‖
2 ≤ 2 δS,H(E, D).

Since this holds for any encoder/decoder pair (E, D) ∈ EncR
S,H and arbitrary R ∈ N,

we see s∗H (S) ≤ s.
Next, we construct the codec C mentioned above. To do so, for each n ∈ N, fix a

bijection κn : {0, . . . , 2n − 1} → {0, 1}n and define

En : S → {0, 1}n, xm �→
{
κn(m), if m ≤ 2n − 1,

κn(0), otherwise,

Dn : {0, 1}n → S, θ �→ x
κ−1

n (θ)
.

For m ∈ N0 with m ≤ 2n − 1, we then have Dn(En(xm)) = x
κ−1

n (κn(m))
= xm , while

if m ≥ 2n , then Dn(En(xm)) = x
κ−1

n (κn(0))
= x0 = 0, and hence

‖xm − Dn(En(xm))‖
2 = ‖xm‖
2 = (
log2(m + 1)

)−s ≤ n−s .

Therefore, ‖x − Dn(En(x))‖
2 ≤ n−s for all x ∈ S, and thus δS,H(En, Dn) ≤ n−s ,
so that s∗H (S) ≥ s.

We have now proved that s∗H (S) = s. Finally, it is easy to see that given arbitrary
σ > 0, the codec C = (

(ER, DR)
)

R∈N constructed above approximates each fixed
x ∈ S with rate σ . Indeed, for m ∈ N and x = xm , we have

‖x − Dn(En(x))‖
2 =
{(

log2(m + 1)
)−s

, if n < log2(m + 1),

0, if n ≥ log2(m + 1)

≤ (
log2(m + 1)

)σ · n−σ =: Cx,σ · n−σ

for all n ∈ N, while for x = x0 we have ‖x − Dn(En(x))‖
2 = 0 for all n ∈ N. �

Finally, we show (under suitable assumptions on S) that the set of probability
measures satisfying the phase transition (1.4) is meager in the set of all atom-free
probability measures; this was claimed in Sect. 1.3.3.

Proposition 4 Let X be a Banach space and let ∅ �= S ⊂ X with s∗ := s∗X (S) < ∞.
Assume that there exist x0, y0 ∈ X satisfying x0 �= y0 and

[x0, y0] :=
{
(1− t)x0 + t y0 : t ∈ [0, 1]} ⊂ S.
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Denote by Paf the set of all atom-free Borel probability measures P on S (i.e.,
satisfying P({x}) = 0 for all x ∈ S). Furthermore, denote by G the set of all P ∈ Paf
satisfying the phase transition (1.4). Then, equipping Paf with the metric dT V given
by dT V (μ, ν) := supA⊂S Borel set |μ(A) − ν(A)|, the set G ⊂ Paf is closed and has
empty interior; in particular, G is meager in Paf .

Proof G is closed: Let (Pn)n∈N ⊂ G satisfy dT V (Pn,P) → 0. Let s > s∗ and
C ∈ CodecsS,X be arbitrary. Then, we have P

∗
n(As

S,X(C)) = 0 for each n ∈ N, so that
there exists a Borel set Nn ⊃ As

S,X(C) satisfyingPn(Nn) = 0. Define N := ⋂∞
n=1 Nn ,

noting that N is a Borel set satisfying N ⊃ As
S,X(C).

We then see 0 ≤ P(N ) = limm→∞ Pm(N ) ≤ limm→∞ Pm(Nm) = 0. Overall, this
shows P ∈ G, so that G is closed.

G has empty interior in Paf : Assume toward a contradiction that there exists P ∈
G◦; thus, there exists ε > 0 such that P̃ ∈ G whenever P̃ ∈ Paf with dT V (P, P̃) ≤ ε.
Let M := [x0, y0) = {(1− t)x0 + t y0 : t ∈ [0, 1)}. It is easy to see that

P
 (A) :=

∫ 1

0
1A

(
x0 + t(y0 − x0)

)
dt, A ∈ BS

defines an atom-freeBorel probabilitymeasure onS satisfyingP
 (M) = 1. This easily

implies P̃ := (1 − ε)P + ε P
 ∈ Paf with dT V (P, P̃) ≤ ε. Therefore, by choice of P

and ε, we get P̃ ∈ G. Finally, it is easy to see 4 that there exists a codec C ∈ CodecsS,X
satisfying M ⊂ ⋂

s>0 As
S,X(C). By definition of G and since s∗ < ∞, this implies

P̃(M) = 0. However, P̃(M) ≥ ε P
 (M) = ε > 0, which is the desired contradiction.

��

H Technical Results Concerning Sequence Spaces

Proof of Lemma 2 Let x ∈ R
I . Set um := mθ+ϑ · 2αm · ‖xm‖
p(Im ) and vm := m−ϑ ,

and observe that ‖(um)m∈N‖
q = ‖x‖
p,q
P ,α,θ+ϑ

and ‖(vm · um)m∈N‖
r = ‖x‖
p,r
P ,α,θ

.

Let us first consider the case q < ∞. In this case, q
r ∈ (1,∞) and q

q−r ∈ (1,∞)

are conjugate exponents, so that Hölder’s inequality shows

∥∥(vm · um)m∈N
∥∥

r = ∥∥(vr

m · ur
m)m∈N

∥∥1/r

1

≤
(∥∥(vr

m)m∈N
∥∥

q/(q−r) ·

∥∥(ur
m)m∈N

∥∥

q/r

)1/r

= ∥∥(vm)m∈N
∥∥

rq/(q−r) ·

∥∥(um)m∈N
∥∥

q .

4 To prove this, fix a bijection ιR : [2R ] → {0, 1}R and define E(0)
R : [0, 1) → {0, 1}R by E(0)

R (t) :=
ιR(k), where k = k(t) is the unique k ∈ [2R ] with t ∈ [ k−1

2R , k
2R

)
. Furthermore, define ER : S → {0, 1}R

by setting ER(x) := E(0)
R (t) if x ∈ S is of the form x = x0 + t(y0 − x0) for some t ∈ [0, 1), and

ER(x) := E(0)
R (0) otherwise. Finally, define DR : {0, 1}R → S, c �→ x0 + 2−R · ι−1

R (c) · (y0 − x0).

It is then easy to see ‖x − DR(ER(x))‖X ≤ 2−R‖x0 − y0‖X �s R−s for arbitrary s > 0 and all
x ∈ M = [x0, y0).
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Here,wenoteϑ · rq
q−r = ϑ

1
r − 1

q
> 1andvm =m−ϑ , so thatκ :=max{1, ‖(vm)m∈N‖
rq/(q−r)}

is finite.
Finally, in case of q = ∞, simply note that

∥∥(vm um)m∈N
∥∥

r ≤ ∥∥(m−ϑ)m∈N

∥∥

r · ∥∥(um)m∈N

∥∥

q ,

where now κ := max
{
1, ‖(m−ϑ)m∈N‖
r

}
is finite, since ϑ > 1

r − 1
q = 1

r . ��
Proof of Lemma 4 Bydefinitionof theproductσ -algebra, eachof thefinite-dimensional
projections πm : R

I → R
Im , x �→ xm is measurable. Since ‖ · ‖
p(Im ) is continuous

on R
Im and hence Borel measurable, qm : R

I → [0,∞), x �→ 2αm mθ ‖xm‖
p(Im ) is
BI -measurable for each m ∈ N.

In case of q < ∞, this implies that the map

R
I → [0,∞], x �→ ‖x‖q



p,q
P ,α,θ

=
∞∑

m=1

[qm(x)]q

is BI -measurable as a countable series of measurable, non-negative functions, and
hence so is x �→ ‖x‖
p,q

P ,α,θ
. If q = ∞, the (quasi) norm ‖ · ‖
p,∞

P ,α,θ
= supm∈N qm is

BI -measurable as a countable supremum ofBI -measurable, non-negative functions.
For proving the final claim, let uswriteT := 
2(I)�BI for brevity. By the first part

of the lemma, ‖ · ‖
2 = ‖ · ‖


2,2
P ,0,0

: R
I → [0,∞] is BI -measurable. Furthermore,

for arbitrary x ∈ R
I the translation R

I → R
I , y �→ y+ x isBI -measurable. These

two observations imply that the norm ‖ · ‖
2 : 
2(I) → [0,∞) and the translation
operator 
2(I) → 
2(I), y �→ y + x are T -measurable for any x ∈ 
2(I). This
implies that the openball {y ∈ 
2(I) : ‖y+(−x)‖
2 < r} isT -measurable.But 
2(I) is
separable, so that every open set is a countable union of open balls; therefore, it follows
thatB
2 ⊂ T . Conversely,T is generated by sets of the form {x ∈ 
2(I) : pi (x) ∈ M},
where M ⊂ R is a Borel set and pi : R

I → R, (x j ) j∈I �→ xi . Since pi |
2(I) :

2(I) → R is continuous with respect to ‖ · ‖
2(I), we see that each generating set of
T also belongs toB
2 , which completes the proof. ��
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