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Abstract
In this article, we analyze tensor approximation schemes for continuous functions.
We assume that the function to be approximated lies in an isotropic Sobolev space
and discuss the cost when approximating this function in the continuous analogue
of the Tucker tensor format or of the tensor train format. We especially show that
the cost of both approximations are dimension-robust when the Sobolev space under
consideration provides appropriate dimension weights.

Keywords Tensor format · Approximation error · Rank complexity · Sobolev space
with dimension weights

Mathematics Subject Classification 41A46 · 41A63 · 46E35

1 Introduction

The efficient approximate representation of multivariate functions is an important
task in numerical analysis and scientific computing. In this article, we hence consider
the approximation of functions which live on the product of m bounded domains
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Ω1×· · ·×Ωm , each of which satisfiesΩ j ⊂ R
n j . Besides a sparse grid approximation

of the function under consideration, being discussed in [8,17,18,50], one can also
apply a low-rank approximation by means of a tensor approximation scheme, see,
e.g., [15,21,22,34,35] and the references therein.

The low-rank approximation in the situation of the product of m = 2 domains is
well understood. It is related to the singular value decomposition and has been stud-
ied for arbitrary product domains in [19,20], see also [46–48] for the periodic case.
However, the situation is not that clear for the product of m > 2 domains, where
one ends up with tensor decompositions. Such tensor decompositions are generaliza-
tions of the well-known singular value decomposition and the corresponding low-rank
matrix approximation methods of two dimensions to the higher-dimensional setting.
There, besides the curse of dimension, we encounter—due to the nonexistence of an
Eckart–Young–Mirsky theorem—that the concepts of singular value decomposition
and low-rank approximation can be generalized to higher dimensions in more than
one way. Consequently, there exist many generalizations of the singular value decom-
position of a function and of low-rank approximations to tensors. To this end, various
schemes have been developed over the years in different areas of the sciences and
have successfully been applied to various high-dimensional problems ranging from
quantum mechanics and physics via biology and econometrics, computer graphics
and signal processing to numerical analysis. Recently, tensor methods have even been
recognized as special deep neural networks in machine learning and big data analy-
sis [11,28]. As tensor approximation schemes, we have, for example, matrix product
states, DMRG, MERA, PEPS, CP, CANDECOMP, PARAFAC, Tucker, tensor train,
tree tensor networks and hierarchical Tucker, to name a few. Amathematical introduc-
tion into tensor methods is given in the seminal book [21], while a survey on existing
methods and their literature can be found in [16]. Also, various software packages
have been developed for an algebra of operators dealing with tensors.

Tensor methods are usually analyzed as low-rank approximations to a full discrete
tensor of data with respect to the �2-norm or Frobenius norm. In this respective, they
can be seen as compression methods which may avoid the curse of dimensionality,
which is inherent in the full tensor representation. The main tool for studying tensor
compression schemes is the so-called tensor-rank, compare [12,13,21]. Thus, instead
of O(Nn) storage, as less as O(nNr3) or even only O(nNr2) storage is needed,
where N denotes the number of data points in one coordinate direction, n denotes the
dimension of the tensor under consideration, and r denotes the respective tensor rank
of the data. The cost complexity of the various algorithms working with sparse tensor
representations is correspondingly reduced, and working in a sparse tensor format
allows to alleviate or to completely break the curse of dimension for suitable tensor
data classes, i.e., for sufficiently small r .

However, the questionwhere the tensor data stem from and the issue of the accuracy
of the full tensor approximation, i.e., the discretization error of the full tensor itself and
its relation to the error of a subsequent low-rank tensor approximation, are usually not
adequately addressed.1 Instead, only the approximation property of a low-rank tensor
scheme with respect to the full tensor data is considered. But the former question is

1 We are only aware of [2,3,5,39], where this question has been considered so far.
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important since it clearlymakes no sense to derive a tensor approximationwith an error
that is substantially smaller than the error which is already inherent in the full tensor
data due to some discretization process for a continuous high-dimensional function
which stems from some certain function class.

The approximation rates to continuous functions can be determined by a recursive
use of the singular value decomposition, which is successively applied to convert
the function into a specific continuous tensor format. We studied the singular value
decomposition for arbitrary domains in [19,20], and we now can apply these results
to discuss approximation rates of continuous tensor formats. In the present article,
given a function f ∈ Hk(Ω1 × · · · × Ωm), we study the continuous analogues of the
Tucker tensor decomposition and of the tensor train decomposition. We give bounds
on the ranks required to ensure that the tensor decomposition admits a prescribed target
accuracy. Particularly, our analysis takes into account the influence of errors induced
by truncating infinite expansions to finite ones. We therefore study an algorithm that
computes the desired tensor expansion which is in contrast to the question of the
smallest tensor rank. We finally show that (isotropic) Sobolev spaces with dimension
weights help to beat the curse of dimension when the number m of product domains
tends to infinity.

Besides the simple situation of Ω1 = · · · = Ωm = [0, 1], which is usually consid-
ered in case of tensor decompositions, there are manymore applications of our general
setting. For example, non-Newtonian flow can be modeled by a coupled system which
consists of the Navier–Stokes equation for the flow in a three-dimensional geome-
try described by Ω1 and of the Fokker–Planck equation in a 3(� − 1)-dimensional
configuration space Ω2 × · · · × Ω�, consisting of � − 1 spheres. Here, � denotes
the number of atoms in a chain-like molecule which constitutes the non-Newtonian
behavior of the flow, for details, see [4,29,31,37]. Another example is homogenization.
After unfolding [10], a two-scale homogenization problem gives raise to the product
of the macroscopic physical domain and the periodic microscopic domain of the cell
problem, see [32]. For multiple scales, several periodic microscopic domains appear
which reflect the different separable scales, see, e.g. [27]. Also, the m-th moment of
linear elliptic boundary value problemswith random source terms, i.e., Au(ω) = f (ω)

in Ω , is known to satisfy a deterministic partial differential equation on the m-fold
product domain Ω × · · · × Ω . There, the solution’s m-th momentMu is given by the
equation

(A ⊗ · · · ⊗ A)Mu = M f in Ω × · · · × Ω,

see [40,41]. This approach extends to boundary value problems with random diffusion
and to random domains as well [9,25]. Moreover, we find the product of several
domains in quantummechanics for the Schrödinger equation or the Langevin equation,
where each domain is three-dimensional and corresponds to a single particle. Finally,
we encounter it in uncertainty quantification, where one has the product of the physical
domain Ω1 and of in general infinitely many intervals Ω2 = Ω3 = Ω4 = . . . for the
random input parameter, which reflects its series expansion by the Karhunen–Lòeve
decomposition or the Lévy–Ciesielski decomposition.
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The remainder of this article is organized as follows: In Sect. 2, we give a short
introduction to our results on the singular value decomposition, which are needed to
derive the estimates for the continuous tensor decompositions. Then, in Sect. 3, we
study the continuous Tucker tensor format, computed by means of the higher-order
singular value decomposition. Next, we study the continuous tensor train decomposi-
tion in Sect. 4, computed by means of a repeated use of a vector-valued singular value
decomposition. Finally, Sect. 5 concludes with some final remarks.

Throughout this article, to avoid the repeated use of generic but unspecified con-
stants, we denote by C � D that C is bounded by a multiple of D independently
of parameters which C and D may depend on. Obviously, C � D is defined as
D � C , and C ∼ D as C � D and C � D. Moreover, given a Lipschitz-smooth
domain Ω ⊂ R

n , L2(Ω) means the space of square integrable functions on Ω . For
real numbers k ≥ 0, the associated Sobolev space is denoted by Hk(Ω), where its
norm ‖ · ‖Hk (Ω) is defined in the standard way, compare [33,45]. As usual, we have
H0(Ω) = L2(Ω). The seminorm in Hk(Ω) is denoted by | · |Hk (Ω1)

. Although not
explicitly written, our subsequent analysis covers also the situation of Ω being not a
domain but a (smooth) manifold.

2 Singular Value Decomposition

2.1 Definition and Calculation

Let Ω1 ⊂ R
n1 and Ω2 be Lipschitz-smooth domains. To represent functions f ∈

L2(Ω1 × Ω2) on the tensor product domain Ω1 × Ω2 in an efficient way, we will
consider low-rank approximations which separate the variables x ∈ Ω1 and y ∈ Ω2
in accordance with

f (x, y) ≈ fr (x, y) :=
r∑

α=1

√
λ(α)ϕ(x, α)ψ(α, y). (2.1)

It is well known (see, e.g., [30,38,42]) that the best possible representation (2.1) in
the L2-sense is given by the singular value decomposition, also called Karhunen–
Lòeve expansion.2 Then, the coefficients

√
λ(α) ∈ R are the singular values, and

the ϕ(α) ∈ L2(Ω1) and ψ(α) ∈ L2(Ω2) are the left and right (L2-normalized)
eigenfunctions of the integral operator

S f : L2(Ω1) → L2(Ω2), u �→ (S f u)( y) :=
∫

Ω1

f (x, y)u(x) dx.

This means that

√
λ(α)ψ(α, y) = (S f ϕ(α)

)
( y) and

√
λ(α)ϕ(x, α) = (S	

f ψ(α)
)
(x), (2.2)

2 We refer the reader to [44] for a comprehensive historical overview on the singular value decomposition.
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where

S	
f : L2(Ω2) → L2(Ω1), v �→ (S	

f v)(x) :=
∫

Ω2

f (x, y)v( y) d y.

is the adjoint of S f . Particularly, the left and right eigenfunctions {ϕ(α)}∞α=1 and
{ψ(α)}∞α=1 form orthonormal bases in L2(Ω1) and L2(Ω2), respectively.

In order to compute the singular value decomposition, we need to solve the eigen-
value problem

K f ϕ(α) = λ(α)ϕ(α)

for the integral operator

K f = S	
f S f : L2(Ω1) → L2(Ω1), u �→ (K f u)(x) :=

∫

Ω1

k f (x, x′)u(x′) dx′. (2.3)

Since f ∈ L2(Ω1 × Ω2), the kernel

k f (x, x′) =
∫

Ω2

f (x, y) f (x′, y) d y ∈ L2(Ω1 × Ω1) (2.4)

is a symmetricHilbert–Schmidt kernel.Hence, there exist countablymany eigenvalues

λ(1) ≥ λ(2) ≥ · · · ≥ λ(m)
m→∞−→ 0

and the associated eigenfunctions {ϕ(α)}α∈N constitute an orthonormal basis in
L2(Ω1).

Likewise, to obtain an orthonormal basis of L2(Ω2), we can solve the eigenvalue
problem

K̃ f ψ(α) = λ̃(α)ψ(α)

for the integral operator

K̃ f = S f S	
f : L2(Ω2) → L2(Ω2), u �→ (K̃ f u)( y) :=

∫

Ω2

k̃ f ( y, y′)u( y′) d y′

with symmetric Hilbert–Schmidt kernel

k̃ f ( y, y′) =
∫

Ω1

f (x, y) f (x, y′) dx ∈ L2(Ω2 × Ω2). (2.5)

It holds λ(α) = λ̃(α), and the sequences {ϕ(α)} and {ψ(α)} are related by (2.2).

123



224 Foundations of Computational Mathematics (2023) 23:219–240

2.2 Regularity of the Eigenfunctions

Now, we consider functions f ∈ Hk(Ω1 × Ω2). In the following, we collect results
from [19,20] concerning the singular value decomposition of such functions.We repeat
the proof whenever needed for having explicit constants. To this end, we define the
mixed Sobolev space Hk,�

mix(Ω1 × Ω2) as a tensor product of Hilbert spaces

Hk,�
mix(Ω1 × Ω2) := Hk(Ω1) ⊗ H �(Ω2),

which we equip with the usual cross-norm

‖ f ‖Hk,�
mix(Ω1×Ω2)

:=
√√√√

∑

|α|≤k

∑

|β|≤�

∥∥∥∥
∂ |α|∂ |β|
∂xα∂yβ

f

∥∥∥∥
2

L2(Ω1×Ω2)

.

Note that

Hk(Ω1 × Ω2) ⊂ Hk,0
mix(Ω1 × Ω2), Hk(Ω1 × Ω2) ⊂ H0,k

mix(Ω1 × Ω2).

Lemma 1 Assume that f ∈ Hk(Ω1 × Ω2) for some fixed k ≥ 0. Then, the operators

S f : L2(Ω1) → Hk(Ω2), S	
f : L2(Ω2) → Hk(Ω1)

are continuous with

∥∥S f
∥∥
L2(Ω1)→Hk(Ω2)

≤ ‖ f ‖H0,k
mix(Ω1×Ω2)

,
∥∥S	

f

∥∥
L2(Ω2)→Hk(Ω1)

≤ ‖ f ‖Hk,0
mix(Ω1×Ω2)

.

Proof From Hk(Ω1 × Ω2) ⊂ H0,k
mix(Ω1 × Ω2), it follows for f ∈ Hk(Ω1 × Ω2) that

f ∈ H0,k
mix(Ω1 × Ω2). Therefore, the operator S f : L2(Ω1) → Hk(Ω2) is continuous

since

∥∥S f u
∥∥
Hk (Ω2)

= sup
‖v‖H−k (Ω2)

=1
(S f u, v)L2(Ω2)

= sup
‖v‖H−k (Ω2)

=1
( f , u ⊗ v)L2(Ω1×Ω2)

≤ sup
‖v‖H−k (Ω2)

=1
‖ f ‖H0,k

mix(Ω1×Ω2)
‖u ⊗ v‖H0,−k

mix (Ω1×Ω2)

≤ ‖ f ‖H0,k
mix(Ω1×Ω2)

‖u‖L2(Ω1)
.

Note that we have used here H0,−k
mix (Ω1 × Ω2) = L2(Ω1) ⊗ H−k(Ω2). Proceeding

likewise for S	
f : L2(Ω2) → Hk(Ω1) completes the proof. ��
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Lemma 2 Assume that f ∈ Hk(Ω1 × Ω2) for some fixed k ≥ 0. Then, it holds
S f ϕ(α) ∈ Hk(Ω2) and S	

f ψ(α) ∈ Hk(Ω1) for all α ∈ N with

‖ϕ(α)‖Hk (Ω1)
≤ 1√

λ(α)
‖ f ‖Hk,0

mix(Ω1×Ω2)
,

‖ψ(α)‖Hk (Ω2)
≤ 1√

λ(α)
‖ f ‖H0,k

mix(Ω1×Ω2)
.

Proof According to (2.2) and Lemma 1, we have

‖ϕ(α)‖Hk (Ω1)
= 1√

λ(α)

∥∥S	
f ψ(α)

∥∥
Hk (Ω1)

≤ 1√
λ(α)

‖ f ‖Hk,0
mix(Ω1×Ω2)

‖ψ(α)‖L2(Ω2)
.

This proves the first assertion. The second assertion follows by duality. ��
As an immediate consequence of Lemma 2, we obtain

r∑

α=1

λ(α)‖ϕ(α)‖2Hk (Ω1)
≤ r‖ f ‖2

Hk,0
mix(Ω1×Ω2)

and

r∑

α=1

λ(α)‖ψ(α)‖2Hk (Ω2)
≤ r‖ f ‖2

H0,k
mix(Ω1×Ω2)

.

We will show later in Lemma 4 how to improve this estimate by sacrificing some
regularity.

2.3 Truncation Error

We next give estimates on the decay rate of the eigenvalues of the integral opera-
tor K f = S	

f S f with kernel (2.4). To this end, we exploit the smoothness in the

function’s first variable and assume hence f ∈ Hk,0
mix(Ω1 × Ω2). We introduce finite

element spaces Ur ⊂ L2(Ω1), which consist of r discontinuous, piecewise polyno-
mial functions of total degree �k� on a quasi-uniform triangulation of Ω1 with mesh
width hr ∼ r−1/n1 . Then, given a functionw ∈ Hk(Ω1), the L2-orthogonal projection
Pr : L2(Ω1) → Ur satisfies

‖(I − Pr )w‖L2(Ω1)
≤ ckr

−k/n1 |w|Hk(Ω1)
(2.6)

uniformly in r due to the Bramble–Hilbert lemma, see, e.g., [6,7].
For the approximation of f (x, y) in the first variable, i.e.,

(
(Pr ⊗ I ) f

)
(x, y), we

obtain the following approximation result for the present choice of Ur , see [20] for
the proof.
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Lemma 3 Assume that f ∈ Hk(Ω1 × Ω2) for some fixed k ≥ 0. Let λ(1) ≥ λ(2) ≥
. . . ≥ 0 be the eigenvalues of the operator K f = S	

f S f and λr (1) ≥ λr (2) ≥ . . . ≥
λr (r) ≥ 0 those of K r

f := PrK f Pr . Then, it holds

‖ f − (Pr ⊗ I ) f ‖2
L2(Ω1×Ω2)

= traceK f − traceK r
f =

r∑

α=1

(
λ(α) − λr (α)

) +
∞∑

α=r+1

λ(α).

By combining this lemma with the approximation estimate (2.6) and in view of
λ(α) − λr (α) ≥ 0 for all α ∈ {1, 2, . . . , r} according to the min-max theorem of
Courant–Fischer, see [1], for example, we conclude that the truncation error of the
singular value decomposition can be bounded by

∥∥∥∥ f −
r∑

α=1

√
λ(α)

(
ϕ(α) ⊗ ψ(α)

)∥∥∥∥
L2(Ω1×Ω2)

=
√√√√

∞∑

α=r+1

λ(α)≤ckr
− k

n1 | f |Hk,0
mix(Ω1×Ω2)

.

Since the eigenvalues of the integral operator K f and its adjoint K̃ f are the same,
we can also exploit the smoothness of f in the second coordinate by interchanging the
roles ofΩ1 andΩ2 in the above considerations.We thus obtain the following theorem:

Theorem 1 Let f ∈ Hk(Ω1 × Ω2) for some fixed k ≥ 0, and let

f SVDr =
r∑

α=1

√
λ(α)

(
ϕ(α) ⊗ ψ(α)

)
.

Then, it holds

‖ f − f SVDr ‖L2(Ω1×Ω2)
=

√√√√
∞∑

α=r+1

λ(α) ≤ ckr
− k

min{n1,n2} | f |Hk (Ω1×Ω2)
. (2.7)

Remark 1 Theorem 1 implies that the eigenvalues {λ(α)}α∈N in case of a function
f ∈ Hk(Ω1 × Ω2) decay like

λ(α) � α
− 2k

min{n1,n2} −1
as α → ∞. (2.8)

Having the decay rate of the eigenvalues at hand, we are able to improve the result
of Lemma 2 by sacrificing some regularity. Note that the proof of this result is based
upon an argument from [43].

Lemma 4 Assume that f ∈ Hk+min{n1,n2}(Ω1 × Ω2) for some fixed k ≥ 0. Then, it
holds

∞∑

α=1

λ(α)‖ϕ(α)‖2Hk (Ω1)
= ‖ f ‖2

Hk,0
mix(Ω1×Ω2)
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and

∞∑

α=1

λ(α)‖ψ(α)‖2Hk (Ω2)
= ‖ f ‖2

H0,k
mix(Ω1×Ω2)

.

Proof Without loss of generality, we assume n1≤n2. Then, since f ∈Hk+n1(Ω1×Ω2),
we conclude from (2.8) that

λ(α) � α
− 2(k+n1)

n1
−1

as α → ∞,

where we used that n1 = min{n1, n2}. Moreover, by interpolating between L2(Ω1)

and Hk+n1(Ω1), compare [33,45], for example, we find

‖ϕ(α)‖2Hk (Ω1)
� λ(α)

− k
k+n1 ,

that is

λ(α)‖ϕ(α)‖2Hk (Ω1)
� λ(α)

n1
k+n1 .

As a consequence, we infer that

λ(α)‖ϕ(α)‖2Hk (Ω1)
� α

−(
2(k+n1)

n1
+1)· n1

k+n1 = α−(2+δ)

with δ = n1
k+n1

> 0. Therefore, it holds

∞∑

α=1

α(1+δ′)λ(α)‖ϕ(α)‖2Hk (Ω1)
< ∞

for any δ′ ∈ (0, δ). Hence, the series

A(x) :=
∞∑

α=1

α(1+δ′)λ(α)|∂β
x ϕ(α, x)|2

converges for almost all x ∈ Ω1, provided that |β| ≤ k. Likewise, the series

B( y) :=
∞∑

α=1

α−(1+δ′)|ψ(α, y)|2

converges for almost all y ∈ Ω2. Thus, the series

∞∑

α=1

√
λ(α)|∂β

x ϕ(α, x)||ψ(α, y)| ≤ √
A(x)

√
B( y)
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converges for almost all x ∈ Ω1 and y ∈ Ω2, provided that |β| ≤ k. Because of
Egorov’s theorem, the pointwise absolute convergence almost everywhere implies
uniform convergence. Hence, we can switch differentiation and summation to get

‖ f ‖2
Hk,0
mix(Ω1×Ω2)

=
∑

|β|≤k

∥∥∥∥∂
β
x

∞∑

α=1

√
λ(α)

(
ϕ(α) ⊗ ψ(α)

)∥∥∥∥
2

L2(Ω1×Ω2)

=
∑

|β|≤k

∥∥∥∥
∞∑

α=1

√
λ(α)

(
∂

β
x ϕ(α) ⊗ ψ(α)

)∥∥∥∥
2

L2(Ω1×Ω2)

.

Finally, we exploit the product structure of L2(Ω1 × Ω2) and the orthonormality of
{ψ(α)}α∈N to derive the first assertion, i.e.,

‖ f ‖2
Hk,0
mix(Ω1×Ω2)

=
∞∑

α=1

λ(α)
∑

|β|≤k

∥∥∂
β
x ϕ(α)

∥∥2
L2(Ω1)

‖ψ(α)‖2L2(Ω2)

=
∞∑

α=1

λ(α)‖ϕ(α)‖2Hk (Ω1)
.

The second assertion follows in complete analogy. ��

2.4 Vector-Valued Functions

In addition to the aforementioned results, we will also need the following result which
concerns the approximation of vector-valued functions. Here and in the sequel, the
vector-valued function w = [w(α)]mα=1 is an element of [L2(Ω)]m and [Hk(Ω)]m for
some domain Ω ⊂ R

n , respectively, if the norms

‖w‖[L2(Ω)]m =
√√√√

m∑

α=1

‖w(α)‖2
L2(Ω)

, ‖w‖[Hk (Ω)]m =
√√√√

m∑

α=1

‖w(α)‖2
Hk (Ω)

are finite. Likewise, the seminorm is defined in [Hk(Ω)]m .
Consider now a vector-valued function w ∈ [Hk(Ω1)]m of dimension m. Then,

instead of (2.6), we find

‖(I − Pr )w‖[L2(Ω1)]m ≤ ck

(
r

m

)−k/n1
|w|[Hk (Ω1)]m ,

since w consists of m components and we thus need m-times as many ansatz func-
tions for our approximation argument. Hence, in case of a vector-valued function
f ∈ [Hk,0

mix(Ω1 × Ω2)]m � [Hk(Ω1)]m ⊗ L2(Ω2), we conclude by exploiting the
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smoothness in the first variable3 that the truncation error of the singular value decom-
position can be estimated by

∥∥∥∥ f −
r∑

α=1

√
λ(α)

(
ϕ(α) ⊗ ψ(α)

)∥∥∥∥
[L2(Ω1×Ω2)]m

≤ ck

(
r

m

)−k/n1
| f |[Hk,0

mix(Ω1×Ω2)]m .

(2.9)

Hence, the decay rate of the singular values is considerably reduced. Finally, we like
to remark that Lemma 4 holds also in the vector case, i.e.,

∞∑

α=1

λ(α)‖ϕ(α)‖2[Hk (Ω1)]m = ‖ f ‖2[Hk,0
mix(Ω1×Ω2)]m

and

∞∑

α=1

λ(α)‖ψ(α)‖2Hk (Ω2)
= ‖ f ‖2[H0,k

mix(Ω1×Ω2)]m , (2.10)

provided that f has extra regularity in terms of f ∈ [Hk+n1(Ω1 × Ω2)]m . Here,
analogously to above, [H0,k

mix(Ω1 × Ω2)]m � [L2(Ω1)]m ⊗ Hk(Ω2).
After these preparations, we now introduce and analyze two types of continuous

analogues of tensor formats, namely of the Tucker format [26,49] and of the tensor
train format [34,36], and discuss their approximation properties for functions f ∈
Hk(Ω1 × · · · × Ωm).

3 Tucker Tensor Format

3.1 Tucker Decomposition

Weshall consider fromnowon a product domainwhich consists ofm different domains
Ω j ⊂ R

n j , j = 1, . . . ,m. For given f ∈ L2(Ω1 × · · · × Ωm) and j ∈ {1, 2, . . . ,m},
we apply the singular value decomposition to separate the variables x j ∈ Ω j and
(x1, . . . , x j−1, x j+1, . . . , xm) ∈ Ω1 × · · · × Ω j−1 × Ω j+1 × · · · × Ωm . We hence
get

f (x1, . . . , x j−1, x j , x j+1, . . . , xm)

=
∞∑

α j=1

√
λ j (α j )ϕ j (x j , α j )ψ j (α j , x1, . . . , x j−1, x j+1, . . . , xm),

(3.1)

3 Note that the kernel function of S	
f S f is matrix-valued, while the kernel function of S f S	

f is scalar-
valued.
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where the left eigenfunctions {ϕ j (α j )}α j∈N form an orthonormal basis in L2(Ω j ).
Consequently, if we iterate over all j ∈ {1, 2, . . . ,m}, this yields an orthonormal
basis {ϕ1(α1) ⊗ · · · ⊗ ϕm(αm)}α∈Nm of L2(Ω1 × · · · × Ωm), and we arrive at the
representation

f (x1, . . . , xm) =
∞∑

|α|=1

ω(α)ϕ1(α1, x1) · · · ϕm(αm, xm). (3.2)

Herein, the tensor
[
ω(α)

]
α∈Nm is the core tensor, where a single coefficient is given

by

ω(α1, . . . , αm)=
∫

Ω1×···×Ωm

f (x1, . . . , xm)ϕ1(α1, x1) · · · ϕm(αm, xm) d(x1, . . . , xm).

3.2 Truncation Error

If we intend to truncate the singular value decomposition (3.1) after r j terms such that
the truncation error is bounded by ε, we have to choose

√√√√
∞∑

α j=r j+1

λ j (α j ) � r
−k/n j
j | f |Hk(Ω1×···×Ωm)

!
� ε �⇒ r j = ε−n j /k (3.3)

according to Theorem 1. Doing so for all j ∈ {1, 2, . . . ,m}, we obtain the approxi-
mation

f TFr1,...,rm (x1, . . . , xm) =
r1∑

α1=1

· · ·
rm∑

αm=1

ω(α1, . . . , αm)ϕ1(α1, x1) · · · ϕm(αm, xm).

We have the following result on the Tucker decomposition:

Theorem 2 Let f ∈ Hk(Ω1 × · · · × Ωm) for some fixed k > 0 and 0 < ε < 1. If the
ranks are chosen according to r j = ε−n j /k for all j = 1, . . . ,m, then the truncation
error of the truncated Tucker decomposition is

∥∥ f − f TFr1,...,rm

∥∥
L2(Ω1×···×Ωm)

≤
√√√√

m∑

j=1

∞∑

α j=r j+1

λ j (α j ) �
√
mε,

while the storage cost for the core tensor of f TFr1,...,rm are
∏m

j=1 r j = ε−(n1+···+nm )/k .
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Proof For the approximation of the core tensor, the sets of the univariate eigenfunctions
{ϕ j (α j )}r jα j=1 are used for all j = 1, . . . ,m, cf. (3.2). Due to orthonormality, we find

∥∥ f − f TFr1,...,rm

∥∥2
L2(Ω1×···×Ωm)

=
m∑

j=1

∥∥ f TFr1,...,r j−1,∞,...,∞ − f TFr1,...,r j ,∞,...,∞
∥∥2
L2(Ω1×···×Ωm )

,

where we obtain f TF∞,...,∞ = f in case of j = 1. Since

∥∥ f TFr1,...,r j−1,∞,...,∞ − f TFr1,...,r j ,∞,...,∞
∥∥2
L2(Ω1×···×Ωm )

≤ ∥∥ f TF∞,...,∞ − f TF∞,...,∞,r j ,∞,...,∞
∥∥2
L2(Ω1×···×Ωm)

=
∞∑

α j=r j+1

λ j (α j )

for all j ∈ {1, 2, . . . ,m}, we arrive with (3.3) and the summation over j = 1, . . . ,m at
the desired error estimate. This completes the proof, since the estimate on the number
of coefficients in the core tensor is obvious. ��

3.3 Sobolev Spaces with DimensionWeights

The cost of the core tensor of the Tucker decomposition exhibits the curse of dimension
as the numberm of subdomains increases. This canbe seenmost simply for the example
n j = n. Then, the cost is ε−nm/k , which expresses the curse of dimension as long as
k is not proportional to m. Nonetheless, in case of Sobolev spaces with dimension
weights, the curse of dimension can be beaten.

For f ∈ Hk+n(Ωm), we shall discuss the situation m → ∞ in more detail. To
this end, we assume that all subdomains are identical to a single domain Ω ⊂ R

n

of dimension n and note that the limit m → ∞ only makes sense when weights
are included in the underlying Sobolev spaces which ensure that higher dimensions
become less important. For our proofs, we choose as usual m arbitrary but fixed and
show the existence ofm-independent constants in the convergence and cost estimates.

The Sobolev spaces Hk
γ (Ωm) with dimension weights γ ∈ R

m which we consider

are given by all functions f ∈ Hk(Ωm) such that

∥∥∥∥
∂k f

∂xβ
j

∥∥∥∥
L2(Ωm )

� γ k
j ‖ f ‖Hk (Ωm ) for all |β| = k and j = 1, 2, . . . ,m. (3.4)

The definition in (3.4) means that, given a function f with norm ‖ f ‖Hk (Ωm ) < ∞,
the partial derivatives with respect to x j become less important as the dimension j
increases. Such functions appear, for example, in uncertainty quantification. Let be
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given a Karhunen–Loève expansion

u(x, y) =
m∑

j=1

σ jϕ j (x)y j , y j ∈ [−1/2, 1/2],

and insert it into a function b : R → R of finite smoothness Wk,∞(R). Then, the
functionb

(
u(x, y)

)
satisfies (3.4)with respect to they-variable,whereγ j = σ j . Hence,

the solution of a given partial differential equation would satisfy a decay estimate
similar to (3.4) whenever the stochastic field enters the partial differential equation
through a non-smooth coefficient function b, compare [14,23,24], for example.

It turns out that algebraically decaying weights (3.5) are sufficient to beat the curse
of dimension in case of the Tucker tensor decomposition.4

Theorem 3 Given δ > 0, let f ∈ Hk
γ (Ωm) for some fixed k > 0 with weights (3.4)

that decay like

γ j � j−(1+δ′)/k for some δ′ > δ + k

n
. (3.5)

Then, for all 0 < ε < 1, the error of the continuous Tucker decomposition with ranks

r j = ⌈
γ n
j j

(1+δ)n/kε−n/k⌉ (3.6)

is of order ε, while the storage cost for the core tensor of f TFr1,...,rm is bounded by ε−n/k

independent of the dimension m.

Proof In view of Theorem 1 and (3.4), we deduce by choosing the ranks as in (3.3)
that

√√√√
∞∑

α j=r j+1

λ j (α j ) � r−k/n
j γ k

j ‖ f ‖Hk (Ωm ) � ε

j1+δ
.

Therefore, we reach the desired overall truncation error

m∑

j=1

ε

j1+δ
� ε as m → ∞. (3.7)

When the weights γ j decay as in (3.6), then the cost of the core tensor is

C :=
m∏

j=1

r j ≤
m∏

j=1

(
1 + γ n

j j
(1+δ)n/kε−n/k) �

m∏

j=1

(
1 + j−θ ε−n/k)

4 In Theorem 3, no truncation of the dimension is applied, as it would be required in practice if the number
m of domains tends to infinity. Note that the dimension truncation is indeed here the same as for the tensor
train decomposition later on, see also Theorem 5.
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with θ = (δ′ − δ)n/k > 1. Hence, the cost of the core tensor stays bounded indepen-
dently of m since

logC �
m∑

j=1

log
(
1 + j−θ ε−n/k) ≤ ε−n/k

m∑

j=1

j−θ � ε−n/k as m → ∞.

��

4 Tensor Train Format

4.1 Tensor Train Decomposition

For the discussion of the continuous tensor train decomposition, we should assume
that the domains Ω j ⊂ R

n j , j = 1, . . . ,m, are arranged in such a way that it holds
n1 ≤ · · · ≤ nm .5

Now, consider f ∈ Hk(Ω1 × · · · × Ωm) and separate the variables x1 ∈ Ω1 and
(x2, . . . , xm) ∈ Ω2 × · · · × Ωm by the singular value decomposition

f (x1, x2, . . . , xn) =
∞∑

α1=1

√
λ1(α1)ϕ1(x1, α1)ψ1(α1, x2, . . . , xm).

Since

[√
λ1(α1)ψ1(α1)

]∞

α1=1
∈ �2(N) ⊗ L2(Ω2 × · · · × Ωm),

we can separate (α1, x2) ∈ N × Ω2 from (x3, . . . , xm) ∈ Ω3 × · · · × Ωm by means
of a second singular value decomposition and arrive at

[√
λ1(α1)ψ1(α1, x2, . . . , xm)

]∞

α1=1

=
∞∑

α2=1

√
λ2(α2)

[
ϕ2(α1, x2, α2)

]∞

α1=1
ψ2(α2, x3, . . . , xm).

(4.1)

By repeating the last step and successively separating (α j−1, x j ) ∈ N × Ω j from
(x j+1, . . . , xm) ∈ Ω j+1 × · · · × Ωm for j = 3, . . . ,m − 1, we finally arrive at the

5 The considerations in this section are based upon [5]. Nonetheless, the results derived there are not correct.
The authors did not consider the impact of the vector-valued singular value decomposition in a proper way,
which indeed does result in the curse of dimension.
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representation

f (x1, . . . , xm) =
∞∑

α1=1

· · ·
∞∑

αm−1=1

ϕ1(α1, x1)ϕ2(α1, x2, α2)

· · ·ϕm−1(αm−2, xm−1, αm−1)ϕm(αm−1, xm),

where

ϕm(αm−1, xm) = √
λm−1(αm−1)ψm−1(αm−1, xm).

In contrast to the Tucker format, we do not obtain a huge core tensor since each of the
m − 1 singular value decompositions of the tensor train decomposition removes the
actual first spatial domain from the approximant. We just obtain a product of matrix-
valued functions (except for the first and last factor which are vector-valued functions),
each of which is related to a specific domain Ω j . This especially results in onlym − 1
sums in contrast to the m sums for the Tucker format.

4.2 Truncation Error

In practice, we truncate the singular value decomposition in step j after r j terms, thus
arriving at the representation

f TTr1,...,rm−1
(x1, . . . , xm) =

r1∑

α1=1

· · ·
rm−1∑

αm−1=1

ϕ1(α1, x1)ϕ2(α1, x2, α2)

· · · ϕm−1(αm−2, xm−1, αm−1)ϕm(αm−1, xm).

One readily infers by using Pythagoras’ theorem that the truncation error is bounded
by

‖ f − f TTr1,...,rm−1
‖L2(Ω1×···×Ωm) ≤

√√√√√
m−1∑

j=1

∞∑

α j=r j+1

λ j (α j ),

see also [35]. Note that, for j ≥ 2, the singular values {λ j (α)}α∈N in this estimate
do not coincide with the singular values from the original continuous tensor train
decomposition due to the truncation.

We next shall give bounds on the truncation error. In the j-th step of the algorithm,
j = 2, 3, . . . ,m − 1, one needs to approximate the vector-valued function

g j (x j , . . . , xm) :=
[√

λ j−1(α j−1)ψ j−1(α j−1, x j , . . . , xm)

]r j−1

α j−1=1
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by a vector-valued singular value decomposition. This means that we consider the
singular value decomposition (2.9) for a vector-valued function in case of the domains
Ω j and Ω j+1 × · · · × Ωm .

For f ∈ Hk+nm−1(Ω1 × · · · × Ωm), it holds g2 ∈ [Hk+nm−1(Ω2 × · · · × Ωm)]r1
and

|g2|[Hk (Ω2×···×Ωm)]r1 ≤
√√√√

∞∑

α1=1

λ1(α1)|ψ1(α1)|2Hk(Ω2×···×Ωm)

≤ | f |Hk (Ω1×···×Ωm )

according to Lemma 4, precisely in its vectorized version (2.10). It follows g3 ∈
[Hk+nm−1(Ω3 × · · · × Ωm)]r2 and, again by (2.10),

|g3|[Hk (Ω3×···×Ωm)]r2 ≤
√√√√

∞∑

α2=1

λ2(α2)|ψ2(α2)|2Hk (Ω3×···×Ωm)

≤ |g2|[Hk (Ω2×···×Ωm)]r1 .

We hence conclude recursively g j ∈ [Hk+nm−1(Ω j × · · · × Ωm)]r j−1 and

|g j |[Hk (Ω j×···×Ωm)]r j−1 ≤ | f |Hk (Ω1×···×Ωm) for all j = 2, 3, . . . ,m − 1. (4.2)

Estimate (4.2) shows that the Hk-seminorm of the vector-valued functions g j stays
bounded by | f |Hk (Ω1×···×Ωm). But according to (2.9), we have in the j-th step only
the truncation error estimate

∥∥∥∥g j −
r j∑

α j=1

√
λ j (α j )

(
ϕ j (α j ) ⊗ ψ j (α j )

)∥∥∥∥
[L2(Ω j×···×Ωm )]r j−1

�
(

r j
r j−1

)−k/n j

|g j |[Hk(Ω j×···×Ωm )]r j−1 .

Hence, in view of (4.2), to achieve the target accuracy ε per truncation, the truncation
ranks need to be increased in accordance with

r1 = ε−n1/k, r2 = ε−(n1+n2)/k, . . . , rm−1 = ε−(n1+···+nm−1)/k . (4.3)

We summarize our findings in the following theorem, which holds in this form also
if the subdomains Ω j ⊂ Rn j are not ordered in such a way that n1 ≤ · · · ≤ nm .

Theorem 4 Let f ∈ Hk+max{n1,...,nm }(Ω1 × · · · × Ωm) for some fixed k > 0 and
0 < ε < 1. Then, the overall truncation error of the tensor train decomposition with
truncation ranks (4.3) is

‖ f − f TTr1,...,rm−1
‖L2(Ω1×···×Ωm ) �

√
mε.
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The storage cost for f TTr1,...,rm−1
is given by

r1 +
m−1∑

j=2

r j−1r j = ε−n1/k + ε−(2n1+n2)/k + · · · + ε−(2n1+···+2nm−2+nm−1)/k (4.4)

and hence is bounded by O(ε−(2m−1)max{n1,...,nm−1}/k).

Remark 2 If n := n1 = · · · = nm , then the cost of the tensor train decomposition
is O(ε−(2m−1)n/k). Thus, the cost is quadratic compared to the cost of the Tucker
decomposition. However, in practice, one performsm/2 forward steps andm/2 back-
ward steps. This means one computes m/2 steps as described above to successively
separate x1, x2, . . . , xm/2 from the other variables. Then, one performs the algorithm
in the opposite direction, i.e., one successively separates xm, xm−1, . . . , xm/2+1 from
the other variables. This way, the overall cost is reduced to the order O(ε−mn/k).6

4.3 Sobolev Spaces with DimensionWeights

Like for the Tucker decomposition, the cost of the tensor train decomposition suffers
from the curse of dimension as the number m of subdomains increases. We therefore
discuss again appropriate Sobolev spaces with dimension weights, where we assume
for reasons of simplicity that all subdomains are identical to a single domain Ω ⊂ R

n

of dimension n.

Theorem 5 Given δ > 0, let f ∈ Hk+n
γ (Ωm) for some fixed k > 0 with weights (3.4)

that decay like (3.5). For 0 < ε < 1, choose the ranks successively in accordance
with

r j = ⌈
r j−1γ

n
j j

(1+δ)n/kε−n/k⌉ (4.5)

if j ≤ M and r j = 0 if j > M. Here, M is given by

M = ε−1/(1+δ′). (4.6)

Then, the error of the continuous tensor train decomposition is of order ε, while the
storage cost of f TTr1,...,rm stays bounded by M exp(ε−n/k)2 independent of the dimension
m.

Proof The combination of Theorem 1, (3.4) and (4.5) implies

√√√√
∞∑

α j=r j+1

λ j (α j ) �
(

r j
r j−1

)−k/n

γ k
j ‖ f ‖Hk (Ωm) � ε

j1+δ
, j = 1, 2, . . . , M,

6 If the spatial dimensions n j , j = 1, . . . ,m, of the subdomains are different, one can balance the number
of forward and backward steps in a better way to reduce the cost further.
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and

√√√√
∞∑

αM+1=1

λM+1(αM+1) � γ k
M+1‖ f ‖Hk (Ωm ) � ε‖ f ‖Hk (Ωm ).

Hence, as in the proof of Theorem 3, the approximation error of the continuous tensor
train decomposition is bounded by a multiple of ε independent of m.

Next, we observe for all j ≤ M that

r j �
⌈
r j−1γ

n
j j

(1+δ)n/kε−n/k⌉ � r j−1γ
n
j j

(1+δ)n/kε−n/k + 1.

This recursively yields

r j − 1 �
j∑

p=1

j∏

q=p

γ n
q q

(1+δ)n/kε−n/k

�
j∑

p=1

ε(p− j−1)n/k
j∏

q=p

q−θ

=
j∑

p=1

ε(p− j−1)n/k
(

(p − 1)!
j !

)θ

=
j∑

p=1

ε−pn/k
(

( j − p)!
j !

)θ

.

Hence, by using that θ = (δ′ − δ)n/k > 1, we obtain

r j �
j∑

p=0

ε−pn/k ( j − p)!
j ! ≤

j∑

p=0

ε−pn/k

p! ≤ exp(ε−n/k).

Therefore, the cost (4.4) is

r1 +
M∑

j=2

r j−1r j ≤
M∑

j=1

r2j � M exp(ε−n/k)2

and is hence bounded independently of m in view of (4.6). ��

5 Discussion and Conclusion

In the present article, we considered the continuous versions of the Tucker tensor
format and of the tensor train format for the approximation of functions which live
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on an m-fold product of arbitrary subdomains. By considering (isotropic) Sobolev
smoothness, we derived estimates on the ranks to be chosen in order to realize a
prescribed target accuracy. These estimates exhibit the curse of dimension.

Both tensor formats have in common that always only the variable with respect
to a single domain is separated from the other variables by means of the singular
value decomposition. This enables cheaper storage schemes, while the influence of
the overall dimension of the product domain is reduced to a minimum.

We also examined the situation of Sobolev spaces with dimension weights. Having
sufficiently fast decaying weights helps to beat the curse of dimension as the number
of subdomains tends to infinity. It turned out that algebraically decaying weights are
appropriate for both, the Tucker tensor format and the tensor train format.

We finally remark that we considered here only the ranks of the tensor decomposi-
tion in the continuous case, i.e., for functions and not for tensors of discrete data. Of
course, an additional projection step onto suitable finite-dimensional trial spaces on
the individual domains would be necessary to arrive at a fully discrete approximation
scheme that can really be used in computer simulations. This would impose a further
error of discretization type which needs to be balanced with the truncation error of the
particular continuous tensor format.
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