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Abstract
Randomized trace estimation is a popular and well-studied technique that approx-
imates the trace of a large-scale matrix B by computing the average of xT Bx for
many samples of a random vector X . Often, B is symmetric positive definite (SPD)
but a number of applications give rise to indefinite B. Most notably, this is the case
for log-determinant estimation, a task that features prominently in statistical learning,
for instance in maximum likelihood estimation for Gaussian process regression. The
analysis of randomized trace estimates, including tail bounds, has mostly focused on
the SPD case. In this work, we derive new tail bounds for randomized trace estimates
applied to indefinite B with Rademacher or Gaussian random vectors. These bounds
significantly improve existing results for indefinite B, reducing the number of required
samples by a factor n or even more, where n is the size of B. Even for an SPD matrix,
our work improves an existing result by Roosta-Khorasani andAscher (FoundComput
Math, 15(5):1187–1212, 2015) for Rademacher vectors. This work also analyzes the
combination of randomized trace estimates with the Lanczos method for approximat-
ing the trace of f (B). Particular attention is paid to the matrix logarithm, which is
needed for log-determinant estimation. We improve and extend an existing result, to
not only cover Rademacher but also Gaussian random vectors.
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1 Introduction

This paper is concerned with approximating the trace of a symmetric matrix B ∈
R
n×n that is accessible only implicitly via matrix-vector products or, more precisely,

(approximate) quadratic forms. If X is a random vector of length n such thatE[X ] = 0
and E[XXT ] = I , then E[XT BX ] = tr(B). Based on this result, a stochastic trace
estimator [27] is obtained from sampling an average of N quadratic forms:

trN (B) := 1

N

N∑

i=1

(X (i))T BX (i), (1)

where X (i), i = 1, . . . , N , are independent copies of X . Themost common choices for
X are standard Gaussian and Rademacher random vectors. The latter are defined by
having i.i.d. entries that take values ±1 with equal probability. We will consider both
choices in this paper and denote the resulting trace estimates by trGN (B) and trRN (B),
respectively.

Hutchinson [27] used trRN (B) to approximate the trace of the influence matrix
of Laplacian smoothing splines. In this setting, B = A−1 for a symmetric positive
definite (SPD) matrix A and, in turn, A is SPD as well. Other applications, such as
spectral density estimation [31], triangle counting in graphs [3,17], and determinant
computation [5], may feature a symmetric but indefinite matrix B. For approximating
the determinant, one exploits the relation

log(det(A)) = tr(log(A)), (2)

where log(A) denotes thematrix logarithm of A. The need for estimating determinants
arises, for instance, in statistical learning [2,18,20], lattice quantum chromodynamics
[39], andMarkov randomfieldsmodels [43]. Certain quantities associated with graphs
can be formulated as determinants, such as the number of spanning trees, and various
negative approximation results exist in this context; see, e.g., [16,35]. Relying on the
Cholesky factorization, the exact computation of the determinant is often infeasible for
a large matrix A. In contrast, the Hutchinson estimator combined with (2) bypasses the
need for factorizing A and instead requires to (approximately) evaluate the quadratic
form xT log(A)x for several vectors x ∈ R

n . Compared to the task of estimating
the trace of A−1, the determinant computation via (2) is complicated by two issues:
(a) Even when A is SPD, the matrix B = log(A) may be indefinite; and (b) the
quadratic forms xT log(A)x themselves are expensive to compute exactly, so they
need to be approximated. We mention in passing that there are other methods to
approximate traces and determinants, including randomized subspace iteration [37]
and block Krylov methods [30], but they only work well in specific cases, e.g., when
A = σ I + C for a matrix C of low numerical rank. The Hutch++ trace estimator,
recently proposed and analyzed for the SPD case in [32], overcomes this limitation via
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a combination with stochastic trace estimation. Although it is not difficult to imagine
that the results presented in this work are useful in extending the analysis from [32] to
the indefinite case, a thorough discussion of this extension is beyond the scope of this
work. Another direction of work on large-scale determinant estimation has explored
the use of spectral sparsifiers for symmetric diagonally dominant matrices [16,26].

Trace Estimation of Indefinite Matrices. By the central limit theorem, estimate (1)
can be expected to become more reliable as N increases; see, e.g., [13, Corollaries
3.3 and 4.3] for such an asymptotic result as N → ∞. Most existing non-asymptotic
results for trace estimation are specific to an SPDmatrix B; see [4,22,36] for examples.
They provide a bound on the estimated number N of probe vectors to ensure a small
relative error with high probability:

P

(∣∣∣∣∣
tr(B) − trG,RN (B)

tr(B)

∣∣∣∣∣ ≥ ε

)
≤ δ; (3)

see Remark 2 for a specific example. As already mentioned, the assumption that B
is SPD is usually not met when computing the determinant of an SPD matrix A via
tr(log(A)) because this would require all eigenvalues of A to be larger than one. For
general indefinite B, it is unrealistic to aim at a bound of form (3) for the relative error,
because tr(B) = 0 does not imply zero error. Ubaru, Chen, and Saad [40] derive a
bound for the absolute error via rescaling, that is, the results from [36] are applied to
thematrixC := − log(λA) for a value of λ > 0 that ensuresC to be SPD. Specifically,
for Rademacher vectors it is shown in [40, Corollary 4.5] that

P

(
| trRN (log(A)) − log det(A)| ≥ ε

)
≤ δ (4)

is satisfied with fixed failure probability δ if the number of samples N grows pro-
portionally to ε−2n2 log(1 + κ(A))2 log 2

δ
where κ(A) denotes the condition number

of A. Unfortunately, this estimated number of samples compares unfavorably with a
much simpler approach; computing the trace from the diagonal elements of log(A)

only requires the evaluation of n quadratic forms, using all n unit vectors of length
n. A more general result for indefinite matrices is shown in [3] and it also features a
worst-case dependence on n2; we refer to Remarks 1 and 5 for a comparison with our
new results.

Approximation of Quadratic Forms. To approximate the quadratic forms xT Bx =
xT log(A)x , a polynomial approximation of the logarithm can be used, see [24,34] for
approximation byChebyshev expansion/interpolation and [6,10,45] for approximation
by Taylor series expansion. Often, a better approximation can be obtained by the
Lanczos method, which is equivalent to applying Gaussian quadrature to the integral∫
log(λ)dμ(λ) on the spectral interval of A, for a suitably definedmeasureμ; see [21].

In this case, upper and lower bounds for the quantity xT log(A)x can be determined
without much additional effort [5]. Moreover, the convergence of Gaussian quadrature
for the quadratic form can be related to the best polynomial approximation of the
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logarithm on the spectral interval of A; see [40, Theorem 4.2]. By combining the
polynomial approximation error with (4), one obtains a total error bound that takes
into account both sources of errors. Such a result is presented in [40, Corollary 4.5]
for Rademacher vectors; the fact that all such vectors have bounded norm is essential
in the analysis.

Contributions. In this paper, we improve the results from [3,40] by first showing
that the number of samples required to achieve (4) is much lower. In particular, we
show for a general symmetric matrix B that

P
(| trG,RN (B) − tr(B)| ≥ ε

) ≤ δ (5)

is satisfied with fixed failure probability δ if the number of samples N grows propor-
tionally with the stable rank ρ(B) := ‖B‖2F/‖B‖22; as ρ(B) ∈ [1, n], the growth is
at most linear in n (instead of quadratic). We derive such a result for both, Gaussian
and Rademacher vectors, and demonstrate that the dependence on n is asymptotically
tight with an explicit example. For SPD matrices B, our bound also improves the
state-of-the-art result [36, Theorem 1] for Rademacher vectors by establishing that
the number of probe vectors is inversely proportional to the stable rank of B1/2.

Specialized to determinant computation, we combine our results with an improved
analysis of the Lanczos method, to get a sharper total error bound for Rademacher
vectors. Finally, we extend this combined error bound to Gaussian vectors, which
requires some additional consideration because of the unboundedness of such vectors.
We remark that some of our results are potentially of wider interest, beyond stochastic
trace and determinant estimation, such as a tail bound for Rademacher chaos (Theo-
rem 2) and an error bound (Corollary 3 combined with Corollary 5) on the polynomial
approximation of the logarithm.

We note in passing that some results of this paper also apply to a non-symmetric
matrix B, because of the relations tr(B) = tr(Bs) and xT Bx = xT Bsx with the
symmetric part Bs = (B + BT )/2.

2 Tail Bounds for Trace Estimates

In this section we derive tail bounds of the form (5) for the stochastic trace estima-
tor applied to a symmetric, possibly indefinite matrix B ∈ R

n×n . We will analyze
Gaussian and Rademacher vectors separately. In the following, we will frequently use
a spectral decomposition B = Q�QT , where � = diag(λ1, . . . , λn) contains the
eigenvalues of B and Q is an orthogonal matrix.

2.1 Standard Gaussian RandomVectors

The case of Gaussian vectors will be addressed by using a tail bound for sub-Gamma
random variables, which follows from Chernoff bounds; see, e. g., [9].
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Definition 1 Arandomvariable X is called sub-Gammawith variance parameter ν > 0
and scale parameter c > 0 if

E[exp(λX)] ≤ exp

(
νλ2

2(1 − cλ)

)
for all 0 < λ <

1

c
.

Lemma 1 [9, Section 2.4] Let X be a sub-Gamma random variable with parameters
(ν, c). Then, for all ε ≥ 0, we have

P(X ≥ √
2εν + cε) ≤ exp(−ε).

Lemma 2 [42, Proposition 2.10] Let X be a random variable such that E[X ] = 0,
and such that both X and −X are sub-Gamma with parameters (ν, c). Then, for all
ε ≥ 0, we have

P (|X | ≥ ε) ≤ 2 exp

(
− ε2

2(ν + cε)

)
.

Lemma 2 implies the following result for the tail of a single-sample trace estimate.
This result is similar, but not identical, to [9, Example 2.12] and [29, Lemma 1], which
apply to symmetric matrices with zero diagonal and SPD matrices, respectively.

Lemma 3 For a Gaussian vector X of length n we have

P

(
|XT BX − tr(B)| ≥ ε

)
≤ 2 exp

(
− ε2

4‖B‖2F + 4ε‖B‖2

)

for all ε > 0.

Proof We let

Y := XT BX − tr(B) = XT Q�QT X − tr(B) =
n∑

i=1

λi (Z
2
i − 1),

where Zi ∼ N (0, 1) is the i th component of the Gaussian vector QT X . To show that
Y is sub-Gamma, we define for λ ∈ R the function

ψ(λ) := logE[exp(λ(Z2 − 1))], Z ∼ N (0, 1).

By direct computation, it follows that ψ(λ) = −λ − 1
2 log(1 − 2λ) for λ < 1

2 . In

particular, this implies ψ(λ) ≤ λ2

1−2λ for 0 ≤ λ < 1
2 , and ψ(λ) ≤ λ2 ≤ λ2

1+cλ for

− 1
c < λ < 0 for all c > 0. Using the independence of Zi for different i we obtain

logE[exp(λY )] =
n∑

i=1

logE[exp(λλi (Z
2
i − 1))] =

n∑

i=1

ψ(λλi )
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≤
n∑

i=1

λ2i λ
2

1 − 2|λi |λ ≤ ‖B‖2Fλ2

1 − 2‖B‖2λ

for 0 < λ < 1
2‖B‖2 . This shows that Y is sub-Gamma with parameters (ν, c) =

(2‖B‖2F , 2‖B‖2). Moreover, −Y = XT (−B)X − tr(−B) is also sub-Gamma with
the same parameters. Because E[Y ] = 0, Lemma 2 implies the desired result. 
�

A diagonal embedding trick turns Lemma 3 into a tail bound for the stochastic trace
estimator (1).

Theorem 1 Let B ∈ R
n×n be symmetric. Then

P

(
| trGN (B) − tr(B)| ≥ ε

)
≤ 2 exp

(
− Nε2

4‖B‖2F + 4ε‖B‖2

)

for all ε > 0. In particular, for N ≥ 4
ε2

(‖B‖2F+ε‖B‖2) log 2
δ
it holds thatP(| trGN (B)−

tr(B)| ≥ ε) ≤ δ.

Proof We apply Lemma 3 to the matrix

B := diag
(
N−1B, . . . , N−1B

) ∈ R
Nn×Nn, (6)

that is, the block diagonal matrix with the N diagonal blocks containing rescaled
copies of B. In turn, the trace estimate (1) equals XTBX for a Gaussian vector X of
length Nn. Noting that ‖B‖F = N−1/2‖B‖F and ‖B‖2 = N−1‖B‖2, the first part of
the corollary follows from Lemma 3. Setting

δ := 2 exp

(
− ε2

4‖B‖2F + 4ε‖B‖2

)
= 2 exp

(
− Nε2

4‖B‖2F + 4ε‖B‖2

)

we obtain N = 4
ε2

(‖B‖2F + ε‖B‖2
)
log 2

δ
. 
�

Remark 1 The result of Theorem 1 compares favorably with Lemma 4 in [3], which
shows that P(| trGN (B)− tr(B)| ≥ ε) ≤ δ for N ≥ 20

ε2
‖B‖2∗ log 4

δ
. Because of ‖B‖F ≤

‖B‖∗ ≤ √
n‖B‖F , the bound of Theorem 1 is always better for reasonable values of ε,

and it can improve the estimated number of samples N in [3] by a factor proportional
to n.

We recall that the stable rank of B is defined as ρ = ‖B‖2F/‖B‖22 and satisfies
ρ ∈ [1, n]. In particular, ρ(B) = 1 when B has rank one and ρ(B) = n when all
singular values are equal. Intuitively, ρ(B) tends to be large when B has many singular
values not significantly smaller than the largest one. The minimum number of probe
vectors required by Theorem 1 depends on the stable rank of B in the following way:
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4

ε2
(ρ‖B‖22 + ε‖B‖2) log 2

δ
≤ 4

ε2
(n‖B‖22 + ε‖B‖2) log 2

δ
.

The upper bound indicates that N may need to be chosen proportionally with n to
reach a fixed (absolute) accuracy ε with constant success probability, provided that
‖B‖2 remains constant as well. The following lemma shows for a simple matrix B
that such a linear growth of N can actually not be avoided.

Lemma 4 Let n be even and consider the traceless matrix B =
[
I n
2

0
0 −I n

2

]
. Then, for

every ε > 0, it holds that

P(| trGN (B)| ≤ ε) ≤ ε

√
N

πn
.

Proof By the definition of B, the trace estimate takes the form

trGN (B) = 1

N

( nN/2∑

i=1

X2
i −

nN/2∑

j=1

Y 2
j

)

for independent Xi , Y j ∼ N (0, 1). In other words,

N · trGN (B) = X − Y ,

where X ,Y are independent Chi-squared random variables with nN
2 degrees of free-

dom. The probability density function f of Z = X − Y can be expressed as

f (z) = 1

2nN/4
√

π�(nN/4)
|z| nN4 − 1

2 K nN
4 − 1

2
(|z|),

where K nN
4 − 1

2
is a modified Bessel function of the second kind [15]. In particular,

f (0) = 1

4
√

π

�
( nN

4 − 1
2

)

�
( nN

4

) = 1

4
√

π

√
π

2
nN
2 −2

( nN
2 − 2
nN
4 − 1

)
≤ 1

2
√

πnN
,

where we used the duplication formula for Gamma functions and the inequality
1
22k

(2k
k

) ≤ 1√
πk

; see [41].
As f is an autocorrelation function (of the density function of aChi-squared variable

with nN/2 degrees of freedom), its maximum is at 0. We can therefore estimate the
probability of X − Y being in the interval [−Nε, Nε] in the following way:

P(| trGN (B)| ≤ ε) = P(|X − Y | ≤ Nε) ≤ 2Nε f (0) ≤ ε

√
N

πn
.


�
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Fig. 1 Asterisks: Errors | trG10(B) − tr(B)| of 100 samples for each n = 2k with k = 2, . . . , 23, where B
is the matrix from Lemma 4. Blue line: Error bound ε(B, 0.01, 10) from (7)

We can reformulate Theorem 1 in such a way that, given a number N of probe
vectors and a failure probability δ ∈ (0, 1), we have ε = ε(B, N , δ) such that with
probability at least 1 − δ one has trGN (B) ∈ [ tr(B) − ε, tr(B) + ε]. The random
variable XTBX − tr(B), where B is defined as in (6) and X is a Gaussian vector of

length nN , is sub-Gamma with parameters

(
2

‖B‖2F
N , 2 ‖B‖2

N

)
, and the same holds for

−XTBX . By Lemma 1 we have

ε ≡ ε(B, δ, N ) = 2√
N

‖B‖F
√
log

2

δ
+ 2

N
‖B‖2 log 2

δ
≤

(
2

√
n

N
log

2

δ
+ 2

N
log

2

δ

)
‖B‖2. (7)

As the example inLemma4 shows, the potential growth of εwith
√
n cannot be avoided

in general. Figure 1 illustrates this growth. In the case of relative error estimates
for symmetric positive semidefinite (SPSD) matrices, it is shown in [44] that the
dependence on log 2

δ
and 1

ε2
cannot be improved.

Remark 2 For a nonzero SPSD matrix B, the result of Theorem 1 can be turned into a
relative error estimate. Let μ := ‖B‖2/ tr(B) = ρ(B1/2)−1. Replacing ε by ε · tr(B)

in Theorem 1 and noting that ‖B‖2F/ tr(B)2 ≤ μ, one obtains

P

(
| trGN (B) − tr(B)|

tr(B)
≥ ε

)
≤ δ for N ≥ 4

ε2
(1 + ε)μ log

2

δ
.

State-of-the-art results of a similar form are Theorem 3 in [36], which requires N ≥
8
ε2

μ log 2
δ
, and Corollary 3.3 in [22], which requires N ≥ 2

ε2
μ log 2

δ
and ε ∈ (

0, 1
2

)
.

Compared to [22], our result imposes no restriction on ε at the expense of a somewhat
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larger constant. On the other hand, as ε ≤ 1, our result is always more favorable than
the result from [36] for SPSD matrices.

2.2 Rademacher RandomVectors

The quadratic form XT BX for a Rademacher vector X is called Rademacher chaos
of order 2. We will first consider the homogeneous case, corresponding to a matrix
B with zero diagonal, which has been studied extensively in the literature, see, e.g.,
[9,19,25,28,38]. The non-homogeneous case is easily obtained from the homogeneous
case; see Corollary 1. We make use of the the entropy method [9] to establish the
following tail bound for a single-sample trace estimate.

Theorem 2 Let X be aRademacher vector of length n and let B be anonzero symmetric
matrix such that Bii = 0 for i = 1, . . . , n. Then, for all ε > 0,

P

(
|XT BX | ≥ ε

)
≤ 2 exp

(
− ε2

8‖B‖2F + 8ε‖B‖2

)
. (8)

Proof The proof follows closely [1, Theorem 6] and [9, Theorem 17]; see Remark 3
for a comparison with these results. The main idea of the proof is as follows. Using the
logarithmic Sobolev inequalities discussed in the appendix, a bound on the entropy
of the random variable XT BX is obtained. Using a (modified) Herbst argument, we
derive a bound on the moment generating function (MGF) of XT BX , establishing that
it is sub-Gamma with certain constants, which then allows us to apply Lemma 2.

Without loss of generality, wemay assume ‖B‖2 = 1; the general case follows from
applying the result to B̃ := B/‖B‖2. Let us consider the function f : {−1, 1}n → R

defined as

f (x) = xT Bx =
∑

i �= j

xi x j Bi j .

We want to apply the logarithmic Sobolev inequality (20) from Theorem 6 to f (X).
For this purpose, we let

X̄ (i) = [
X1, . . . , Xi−1,−Xi , Xi+1, . . . , Xn

]T = X − 2Xiei , i = 1, . . . , n,

where ei denotes the i th unit vector. Using that B has zero diagonal entries, we obtain

f (X) − f (X̄ (i)) = 〈BX , X〉 − 〈BX − 2Xi Bei , X − 2Xiei 〉 = 4Xi 〈Bei , X〉.

Therefore, denoting

Y := ‖BX‖22 = 1

16

n∑

i=1

( n∑

j=1

Bi j X j

)2
,
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We denote by H(Z) the entropy1 of a random variable Z . Theorem 6 establishes, for
all λ > 0,

H(exp(λ f (X))) ≤ 2λ2E
[
Y exp(λ f (X))

]
. (9)

The decoupling inequality in [19, Lemma 8.50], which follows from Jensen’s
inequality, gives

λE[Y exp(λ f (X))] ≤ H(exp(λ f (X))) + E[exp(λ f (X))] logE[exp(λY )].

Combined with (9), this implies

H(exp(λ f (X))) ≤ 2λ

1 − 2λ
E[exp(λ f (X))] · logE[exp(λY )] for 0 < λ <

1

2
. (10)

To find an upper bound on the MGF of Y , we use again a logarithmic Sobolev
inequality, then transform the obtained bound on the entropy into a bound on theMGF
by Herbst argument. We do so by applying inequality (19) from Theorem 6 to the
function h : Rn → R defined by h(x) := ‖Bx‖22. For this purpose, note that

h(X) − h(X̄ (i)) = 〈BX , BX〉 − 〈B X̄ (i), B X̄ (i)〉 = 〈B(X − X̄ (i)), B(X + X̄ (i))〉
= 4〈Xi Bei , BX − Xi Bei 〉 ≤ 4Xi 〈Bei , BX〉

and, hence,

n∑

i=1

(
h(X) − h(X̄ (i))

)2
+ ≤ 16

n∑

i=1

〈Bei , BX〉2 = 16‖BT BX‖22 ≤ 16‖BX‖22.

Therefore, Theorem 6 gives

H(exp(λY )) ≤ 4λ2E[Y exp(λY )].

Letting g(λ) := 4E[Y exp(λY )]/E[exp(λY )], we have obtained a bound of form (18),
as required by Lemma 7. Note that g(λ) = 4ψ ′(λ), where ψ(λ) := logE[exp(λY )].
The result of Lemma 7 gives

logE[exp(λY )] ≤ λ

1 − 4λ
‖B‖2F for λ ∈

(
0,

1

4

)
.

Inserting this inequality into (10) gives

H(exp(λ f (X))) ≤ 2λ2‖B‖2F
(1 − 4λ)(1 − 2λ)

E[exp(λ f (X))] for λ ∈
(
0,

1

4

)
.

1 The entropy of Z is defined as H(Z) := E[Z log Z ] − E[Z ] logE[Z ] provided that all expected values
exist.
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The random variable f (X) satisfies (18) for the function g(λ) := 2‖B‖2F
(1−4λ)(1−2λ)

in the
interval [0, 1/4). Recalling that E[ f (X)] = 0, the result of Lemma 7 gives

logE[exp(λ f (X))] ≤ λ‖B‖2F log
1 − 2λ

1 − 4λ
≤ 2‖B‖2Fλ2

1 − 4λ
, λ ∈ [0, 1/4),

where we used log(1 + x) ≤ x in the last inequality.
Replacing f by − f and B by −B, we also obtain

logE[exp(−λ f (X))] ≤ 2‖B‖2Fλ2

1 − 4λ
, λ ∈ [0, 1/4).

Therefore, the random variables f (X) and − f (X) are sub-Gamma with parameters
(4‖B‖2F , 4). Applying Lemma 2 concludes the proof. 
�
Remark 3 The proof of Theorem 2 follows the proof of [1, Theorem 6], which in
turn refines a result from [8, Theorem 17] (see also [9]) by substituting the more
general logarithmic Sobolev inequality from [8, Proposition 10] with the ones from
Theorem 6 specific for Rademacher random variables. However, let us stress that the
results in [1,8] feature larger constants partly because they deal with the more general
Rademacher chaos

f (X) = sup
B∈B

∑

i �= j

Xi X j Bi j , (11)

where B is a set of symmetric matrices with zero diagonal. Restricted to the case B =
{B}, the results stated in [1, Theorem 6] and [9, Exercise 6.9] give P

(|XT BX | ≥ ε
) ≤

2 exp

(
− ε2

16‖B‖2F+16‖B‖2ε

)
and P

(|XT BX | ≥ ε
) ≤ 2 exp

(
− ε2

32‖B‖2F+128‖B‖2ε

)
,

respectively. Proposition 8.13 in [19] states P
(|XT BX | ≥ ε

) ≤ 2

exp

(
−min

{
3ε2

128‖B‖2F
, ε
32‖B‖2

})
.

As for Gaussian vectors, the result of Theorem 2 can be turned into a tail bound for
trRN (B) by block diagonal embedding. In the following, let DB denote the diagonal
matrix containing the diagonal entries of B.

Corollary 1 Let B be a nonzero symmetric matrix. Then

P
(| trRN (B) − tr(B)| ≥ ε

) ≤ 2 exp

(
− Nε2

8‖B − DB‖2F + 8ε‖B − DB‖2

)

for every ε > 0. In particular, for

N ≥ 8

ε2

(
‖B − DB‖2F + ε‖B − DB‖2

)
log

2

δ

it holds that P
(| trRN (B) − tr(B)| ≥ ε

) ≤ δ.
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Proof Let C := B − DB and C := diag
(
N−1C, . . . , N−1C

) ∈ R
Nn×Nn . Then,

trRN (B) − tr(B) = XT CX for a Rademacher vector X of length Nn.
The matrix C has zero diagonal, ‖C‖F = N−1/2‖C‖F , and ‖C‖2 = N−1‖C‖2.

Now, the first part of the corollary directly follows from Theorem 2. Imposing a
failure probability of δ in (8) gives

δ := 2 exp

(
− ε2

8‖C‖2F + 8ε‖C‖2

)
= 2 exp

(
− Nε2

8‖C‖2F + 8ε‖C‖2

)
,

and hence N = 8
ε2

(‖C‖2F + ε‖C‖2
)
log 2

δ
. 
�

Remark 4 It is instructive to compare the result of Corollary 1 to the straightforward
application of Bernstein’s inequality, which gives

P

(
| trRN (B) − tr(B)| ≥ ε

)
≤ 2 exp

(
− Nε2

4‖B − DB‖2F + 4
3nε‖B − DB‖2

)
.

Clearly, a disadvantage of this bound is the explicit dependence of the denominator
on n, which does not appear in Corollary 1.

An alternative expression for the lower bound on N is obtained by noting that
‖B− DB‖F ≤ ‖B‖F and ‖B− DB‖2 ≤ 2‖B‖2 (the factor 2 in the latter inequality is
asymptotically tight, see, e.g., [7]). The result of Corollary 1 thus states that N needs
to be at least in the following way:

8

ε2
(ρ‖B‖22 + 2ε‖B‖2) log 2

δ
≤ 8

ε2
(n‖B‖22 + 2ε‖B‖2) log 2

δ
,

where ρ is the stable rank of B.

Remark 5 In analogy to the Gaussian case (see Remark 1), the result of Corollary 1
compares favorably with Lemma 5 in [3], which shows that P(| trRN (B) − tr(B)| ≥
ε) ≤ δ for N ≥ 6

ε2
‖B‖2∗ log 2·rank(B)

δ
.

In analogy to the Gaussian case, the following lemma shows that a potential linear
dependence of N on n cannot be avoided in general.

Lemma 5 Let n be even and consider the traceless matrix B =

⎡

⎢⎢⎣

1
1

. .
.

1

⎤

⎥⎥⎦. Then

P

(
| trRN (B)| ≤ ε

)
≤ ε

√
N

πn

for every ε > 0.
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Proof We first note that trRN (B) = 2
N

∑nN/2
i=1 Zi with independent Rademacher ran-

dom variables Zi . In turn, P
(| trRN (B)| ≤ ε

) = P

(∣∣∣
∑nN/2

i=1 Zi

∣∣∣ ≤ Nε
2

)
equals the

probability that the number of variables satisfying Zi = 1 is at least n−ε
4 N and at most

n+ε
4 N . Therefore,

P
(| trRN (B)| ≤ ε

) = 1

2nN/2

� n+ε
4 N�∑

i=� n−ε
4 N�

(
nN/2

i

)
≤ Nε

2
· 1

2nN/2 ·
(
nN/2

nN/4

)

≤ Nε

2
· 2√

πnN
= ε

√
N

πn
,

where we used the inequality 1
22k

(2k
k

) ≤ 1√
πk

. 
�

We do not report a figure analogous to Fig. 1 because the observed errors are very
similar to the Gaussian case.

For SPSD matrices, a relative error estimate follows from Corollary 1 similarly
to what has been discussed in Remark 2 for Gaussian vectors. We recall that ρ =
‖B‖2F/‖B‖22 denotes the stable rank of B.
Corollary 2 For a nonzero SPSD matrix B, we have

P

(
| trRN (B) − tr(B)|

tr(B)
≥ ε

)
≤ δ for N ≥ 8

ε2
(1 + ε)μ log

2

δ
, where μ := ‖B‖2

tr(B)
.

Proof First of all, it is immediate that ‖B − DB‖F ≤ ‖B‖F . As shown, e.g., in [7,
Theorem 4.1], the same holds for the spectral normwhen B is SPSD. For convenience,
we provide a short proof: For every y ∈ R

n it holds that

|yT (B − DB)y| ≤ max{yT By, yT DB y} ≤ max{‖B‖2, ‖DB‖2} ≤ ‖B‖2,

where the first inequality uses that both yT By and yT DB y are nonnegative. By taking
the maximumwith respect to all vectors of norm 1 one obtains ‖B− DB‖2 on the left-
hand side, which shows that it is bounded by ‖B‖2. Now, the claimed result follows
from Corollary 1 using the arguments of Remark 2. 
�

Corollary 2 improves the result from [36, Theorem1],which requires N ≥ 6
ε2

log 2
δ
;

a lower bound that does not improve as μ decreases.

3 Lanczos Method to Approximate Quadratic Forms

Let us now consider the problem of estimating the log determinant through
log(det(A)) = tr(log(A)), or more generally the problem of computing the trace
of f (A) for an analytic function f .
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Applying a trace estimator to tr( f (A)) requires the (approximate) computation of
the quadratic forms xT f (A)x for fixed vectors x ∈ R

n . Following [40], we use the
Lanczos method, Algorithm 1, for this purpose.

Algorithm 1 Lanczos method to approximate quadratic form xT f (A)x
Input: Matrix A ∈ R

n×n , nonzero vector x ∈ R
n , number of iterations m

Output: Approximation of xT f (A)x
1: Initialize u1 ← x/‖x‖2 and β0 ← 0
2: for i = 1, . . . ,m do
3: αi ← uTi Aui
4: ri ← Aui − αi ui − βi−1ui−1
5: βi ← ‖ri‖2
6: ui+1 ← ri /βi
7: end for

8: Tm ←
⎡

⎢⎣

α1 β1

β1 α2
. . .

. . .
. . . βm−1

βm−1 αm

⎤

⎥⎦

9: Return ‖x‖22 · eT1 f (Tm )e1

For theoretical considerations, it is helpful to view the quadratic form as an
integral. For this purpose, we consider the spectral decomposition A = Q�QT ,
� = diag(λ1, . . . , λn), with λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax. Then

xT f (A)x = I :=
∫ λmax

λmin

f (λ) dμ(λ),

with the piecewise constant measure

μ(λ) :=
n∑

i=1

z2i χ[λi ,∞)(λ), z := QT x, (12)

where χ denotes the indicator function. It is well-known [21, Theorem 6.2] that the
approximation Im returned by the m-points Gaussian quadrature rule applied to I is
identical to the approximation returned by m steps of the Lanczos method:

Im := ‖x‖22 · eT1 f (Tm)e1.

To bound the error |I − Im |, the analysis in [40] proceeds by using existing results
on the polynomial approximation error of analytic functions. Although our analysis
is along the same lines, it differs in a key technical aspect; we derive and use an
improved error bound for the approximation of the logarithm; see Corollary 4. We
have also noted two minor erratas in [40]; see the proof of Theorem 3 and the remark
after Corollary 3 for details.
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Theorem 3 Let f : [−1, 1] → R admit an analytic continuation to a Bernstein ellipse
Eρ0 with foci ±1 and elliptical radius ρ0. For 1 < ρ < ρ0, let Mρ be the maximum of
| f (z)| on Eρ . Then

|I − Im | ≤ ‖x‖22 · 4Mρ

1 − ρ−1 ρ−2m .

Proof As in [40], this result follows directly from bounds on the polynomial approx-
imation error of analytic functions via Chebyshev expansion, combined with the fact
that m-points Gaussian quadrature is exact for polynomials up to degree 2m − 1.
However, the proof of [40, Theorem 4.2] uses an extra ingredient, which seems to
be wrong. It claims that the integration error for odd-degree Chebyshev polynomials
is zero thanks to symmetry. While this fact is indeed true for the standard Lebesgue
measure, it does not hold for the measure (12). In turn, one obtains the slightly worse
factor 1 − ρ−1 in the denominator, compared to the factor 1 − ρ−2 that would have
been obtained from [40, Theorem 4.2] translated into our setting. 
�

The affine linear transformation

ϕ : [λmin, λmax] → [−1, 1], x �→ 2

λmax − λmin
t − λmax + λmin

λmax − λmin
,

is used to map an interval [λmin, λmax] containing the eigenvalues of A to the interval
[−1, 1] of Theorem 3. Defining g := f ◦ ϕ−1, one has

xT g(ϕ(A))x = xT f (A)x, eT1 g(ϕ(Tm))e1 = eT1 f (Tm)e1. (13)

By its shift and scaling invariance, the Lanczos method with g, ϕ(A), and x returns
the approximation eT1 g(ϕ(Tm))e1. This allows us to apply Theorem 3. Combined with
relations (13), the following result is obtained.

Corollary 3 With the notation introduced above, it holds that

∣∣∣xT f (A)x − ‖x‖22 · eT1 f (Tm)e1
∣∣∣ ≤ ‖x‖22 · 4Mρ

1 − ρ−1 ρ−2m,

Note that Mρ is the maximum of g on Eρ , which is equal to the maximum of f on the
transformed ellipse with foci λmin, λmax, and elliptical radius (λmax − λmin)ρ/2. The
result of Corollary 3 differs from the corresponding result in [40, page 1087], which
features an additional, erroneous factor (λmax(A) − λmin(A))/2.

For the special case of the logarithm, the following result is obtained.

Corollary 4 Let A ∈ R
n×n be SPD with condition number κ(A), f ≡ log and x ∈

R
n\{0}. Then the error of the Lanczos method after m steps satisfies

|xT log(A)x − ‖x‖22 · eT1 log(Tm)e1| ≤ cA‖x‖22
(√

κ(A) + 1 − 1√
κ(A) + 1 + 1

)2m

.
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where cA := 2(
√

κ(A) + 1 + 1) log(2κ(A)).

Proof The proof consists of applying Corollary 3 to a rescaled matrix. More specifi-
cally, we choose B := λA with λ := 1/(2λmin) > 0. The tridiagonal matrix returned
by the Lanczos method with A replaced by B satisfies T B

m = λTm . Together with the
identity log(λA) = log λI + log(A), this implies

xT log(A)x − ‖x‖22 · eT1 log(Tm)e1 = xT log(B)x − ‖x‖22 · eT1 log(T B
m )e1.

Note that the smallest/largest eigenvalues of B are given by 1/2 and κ(A)/2, respec-

tively. Applying Corollary 3 to B with2 ρ :=
√

κ(A)+1+1√
κ(A)+1−1

thus gives

|xT log(A)x − ‖x‖22 · eT1 log(Tm)e1| ≤ ‖x‖22 · 4Mρ

1 − ρ−1 ρ−2m .

The constant Mρ is the maximum absolute value of the logarithm on the ellipse with

foci 1/2 and κ(A)/2 that intersects the real axis at α := 1
2κ(A)

and β := κ(A)2+κ(A)−1
2κ(A)

.
By Corollary 5, Mρ = | log(α)| = log(2κ(A)), where we used α ≤ 1/β ≤ 1. Noting
that

4Mρ

1 − ρ−1 = 2(
√

κ(A) + 1 + 1) log(2κ(A))= cA

concludes the proof. 
�

4 Combined Bounds for Determinant Estimation

Combining randomized trace estimation with the Lanczos method, we obtain the
following (stochastic) estimate for log(det(A)):

estG,RN ,m :=
N∑

i=1

‖X (i)‖22 · eT1 log(T (i)
m )e1,

where X (1), . . . , X (N ) are independent Gaussian or Rademacher random vectors and
T (i)
m is the tridiagonal matrix obtained from the Lanczos method with starting vector
X (i)/‖X (i)‖2. By combining the results obtained so far, we now derive new bounds on
the number of samples andnumber ofLanczos steps needed to ensure an approximation
error of at most ε (with high probability).

4.1 Standard Gaussian RandomVectors

Theorem 4 Suppose that the followingholds for N (numberofGaussianprobe vectors)
and m (number of Lanczos steps per probe vector):

2 In fact, it is possible to choose ρ =
√

κ(A)+ε+1√
κ(A)+ε−1

for arbitrary ε > 0.
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(i) N ≥ 16ε−2(ρlog‖ log(A)‖22 + ε‖ log(A)‖2) log 4
δ
, where ρlog denotes the stable

rank of log(A);

(ii) m ≥
√

κ(A)+1
4 log

(
4ε−1n2(

√
κ(A) + 1 + 1) log(2κ(A))

)
.

If, additionally, n ≥ 2 and N ≤ δ
2 exp

( n2
16

)
then P(| estGN ,m − log det(A)| ≥ ε) ≤ δ.

Proof For a Gaussian vector X , the squared norm ‖X‖22 is a Chi-squared random
variable with n degrees of freedom. Therefore, by [29, Lemma 1] we have

P(‖X‖22 ≥ n + 2
√
nt + 2t) ≤ exp(−t)

for every t > 0. For t = log 2N
δ
, the additional assumptions of the theorem imply

n + 2
√
nt + 2t ≤ n + 2

√
n · n

4
+ 2 · n

2

16
< n2,

and therefore P(‖X‖22 ≥ n2) ≤ δ
2N . By the union bound, it holds that

P

(
exists i ∈ {1, . . . , N } s.t. ‖X (i)‖22 ≥ n2

)
≤ δ

2
. (14)

Corollary 4, together with condition (ii) and (14) imply that | estGN ,m − trGN (log(A))| ≤
ε
2 holds with probability at least 1− δ/2, where we also used that log

(√
κ(A)+1+1√
κ(A)+1−1

)
≥

2√
κ(A)+1

.

Applying Theorem 1 to thematrix log(A), for which ‖ log(A)‖2F = ρlog‖ log(A)‖22,
we find that | trGN (log(A)) − log det(A)| ≤ ε

2 holds with probability at least 1 − δ/2.
The proof is concluded by applying the triangle inequality. 
�

4.2 Rademacher RandomVectors

Theorem 5 Suppose that the following holds for N (number of Rademacher probe
vectors) and m (number of Lanczos steps per probe vector):

(i) N ≥ 32ε−2
(
ρlogd‖ log(A) − Dlog(A)‖22 + ε

2‖ log(A) − Dlog(A)‖2
)
log 2

δ
, where

ρlogd denotes the stable rank of log(A) − Dlog(A) and Dlog(A) is the diagonal
matrix containing the diagonal entries of log(A);

(ii) m ≥
√

κ(A)+1
4 log

(
4ε−1n(

√
κ(A) + 1 + 1) log(2κ(A))

)
.

Then P(| estRN ,m − log det(A)| ≥ ε) ≤ δ.

Proof Using Corollary 3 and the fact that Rademacher random vectors have norm
√
n,

the bound
∣∣ estRN ,m − trRN (log(A))

∣∣ ≤ ε
2 holds if

m ≥ 1

2
log

(
4ε−1n(

√
κ(A) + 1 + 1) log(2κ(A))

)/
log

(√
κ(A) + 1 + 1√
κ(A) + 1 − 1

)
.
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Because of log
(√

κ(A)+1+1√
κ(A)+1−1

)
≥ 2√

κ(A)+1
, condition (ii) ensures that this inequality is

satisfied.
Applying Corollary 1 to log(A) and with ε replaced by ε/2, immediately shows

| trRN (log(A)) − log det(A)| ≤ ε

2
(15)

with probability at least 1 − δ if condition (i) is satisfied. The proof is concluded by
applying the triangle inequality. 
�
Comparison with existing result. To compare Theorem 5 with an existing result from
[40], it is helpful to first derive a simpler (but usually stronger) condition on N .

Lemma 6 The statement of Theorem 5 holds with condition (i) replaced by N ≥
8ε−2

(
n log2 κ(A) + 2ε log κ(A)

)
log 2

δ
.

Proof We set B := λA with λ := 1/
√

λmin(A)λmax(A) and note that

trRN (log(A)) − log det(A) = trRN (log(λA)) − log det(λA).

Using λmax(B) = √
κ(A), λmin(B) = 1/

√
κ(A), and κ(B) = κ(A), we obtain

‖ log(B) − Dlog(B)‖2 ≤ 2‖ log(B)‖2 = log κ(A);

‖ log(B) − Dlog(B)‖2F ≤ ‖ log(B)‖2F = ρ(log(B))
log2 κ(A)

4
≤ n

4
log2 κ(A).

An application of Corollary 1 to log(B) therefore yields (15) with probability at least
1 − δ for N ≥ 8ε−2

(
n log2 κ(A) + 2ε log κ(A)

)
log 2

δ
. 
�

Correcting for the twominor erratas explained above, the result from [40, Corollary
4.5] states that P(| estRN ,m − tr(log(A))| ≥ ε) ≤ δ holds if

N ≥ 24ε−2n2 (log(1 + κ(A)))2 log
2

δ
(16)

and

m ≥
√
3κ(A)

4
log

(
20ε−1n

(√
2κ(A) + 1 + 1

)
log(2κ(A) + 2)

)
. (17)

Compared to (16), Lemma 6 reduces the explicit dependence on the matrix size from
n2 to n, while the dependence of the bounds on κ(A) is comparable. Let us stress that
even a dependence on n does not compare favorably to simply computing the diagonal
elements, but the bound from condition (i) of Theorem 5 can often be expected to
be significantly better than the simplified bound of Lemma 6. Below we describe a
situation in which the former only depends logarithmically on n. Condition (ii) of
Theorem 5 improves (17) clearly but less drastically, roughly by a factor

√
3.
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Fig. 2 Estimation of tr(A3) with Gaussian and Rademacher vectors for the matrix from Example 1. Error
bounds from Theorem 1, Corollary 1, and [3] for failure probability δ = 0.05 compared with the observed
error

Implications of Low Stable Rank. Let us consider a family of matrices {An} of increas-
ing dimension, a fixed failure probability δ, and a fixed accuracy ε; the number of
probe vectors required to get P(| trG,RN (log(An)) − tr(log(An))| ≥ ε) ≤ δ is pro-
portional to O(ρn‖ log(An)‖22), where ρn is the stable rank of log(An). In certain
applications, including regularized kernel matrices (see, e.g., [12,20]), the stable rank
grows slowly when the matrix size increases. For such situations, our bounds lead to
favorable implications. To illustrate this, let us consider matrices An := I +Bn , where
the eigenvalues satisfy λi (Bn) ≤ nCαi for some constants C > 0 and 0 < α < 1,
for all i ≤ n, such as in the discretization of a radial basis function kernel on a fixed
domain [20]. In this case, ρn = O(log n). As a second example, if Bn comes from a
discretization of a Matérn kernel on a regular grid in a fixed domain, its eigenvalues
satisfy λi (Bn) ≤ nCi−β for some constants C > 0 and β > 1, for all i ≤ n [12]; the
stable rank of log(An) = log(I + Bn) is bounded by ρn = O(n1/β).

To apply Theorems 4 and 5 one also needs to take into account that, for both our
examples, ‖ log(An)‖2 and κ(An) grow proportionally to log(n) and n, respectively.
Finally, note that in practice one would consider An = σ I +Bn with the regularization
parameter σ chosen adaptively; see, e.g., [11].

5 Numerical Experiments

In this section, we report on a number of numerical experiments illustrating the bounds
obtained in this work. All numerical experiments have been performed in Matlab,
version 9.9 (R2020b).

Example 1 To compare the estimates from Theorem 1 and Corollary 1 with the con-
vergence of randomized trace estimation using Gaussian and Rademacher vectors, we
use an example from [3,32]. The number of triangles in an undirected graph is equal to
1
6 tr(A

3) where A is the (usually indefinite) adjacency matrix. Note that the quadratic
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Fig. 3 Number of samples needed to attain error ε = 1
10 tr(A3) with failure probability 5% for Example 1.

Empirical failure probability vs. bounds from Theorem 1 and Corollary 1

forms XT A3X can be evaluated exactly using two matrix-vector multiplications. The
results for an arXiv collaboration networkwith n = 5 242 nodes and 48 260 triangles.3

We estimate tr(A3) using N = 2, 22, 23, . . . , 211 samples. For each value of N
we performed 1000 experiments and discarded the 5% worst approximations in order
to estimate an error bound that holds with probability 95%. The obtained results are
represented by the shaded regions in Fig. 2 and match the obtained bounds fairly well,
especially for Gaussian vectors.

Figure 3 shows the empirical failure probability P(| trG,RN (A3) − tr(A3)| ≥ ε) with
ε = 1

10 tr(A
3) using 1000 experiments for N = 2, 22, 23, . . . , 211 (blue and red lines).

The vertical purple and yellow lines are the estimated number of samples needed to
achieve failure probability δ = 0.05 from Theorem 1 and Corollary 1, respectively.

Example 2 To compare the results of Theorems 4 and 5 with the number of sample
vectors N and Lanczos steps m (per sample) required to reach a fixed accuracy, we
consider the matrices listed in Table 1. The matrix thermomec_TC is contained in
the University of Florida sparse matrix collection [14] and has been considered, for
instance, in [10,18,40]. The matrix lowrank is defined in [30,37] as

A =
40∑

j=1

10

j2
x j x

T
j +

300∑

j=41

1

j2
x j x

T
j ,

where each x j is a sparse vector of length 20,000 with approximately 2.5% uniformly
distributed nonzero entries, generated with the Matlab command sprand. The
matrix precip is a two-dimensional Gaussian kernel matrix with length parameter
γ = 64 and regularization parameter λ = 0.008 taken from [32], involving precip-
itation data from Slovakia [33]. As the matrices thermomec_TC and lowrank
are too large for log(A) to be computed explicitly, the quantities ‖ log(A)‖F and

3 See https://snap.stanford.edu/data/ca-GrQc.html.
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Fig. 4 Results for matrix thermomec_TC from [14]
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Fig. 5 Results for matrix lowrank from [30]

‖ log(A) − Dlog(A)‖F are approximated by randomized trace estimation combined
with the Lanczos method to estimate the diagonal elements of log(A).

For quadratic forms involving the logarithm, there is a relatively inexpensive way
to obtain an upper bound on the error of the Lanczos method. As discussed in [5],
Gauss quadrature always yields an upper bound for xT log(A)x , while Gauss-Lobatto
quadrature always yields a lower bound. We fix δ = 0.1 and for several values of
ε we investigate how many samples and Lanczos iterations are needed in practice.
When approximating quadratic forms while aiming at accuracy ε, we stop the Lanczos
method when the difference between upper and lower bound is less than ε/2. Starting
from N = 1, we compute the empirical failure probability P(|estN ,m − log det(A)| ≥
ε); if this probability is larger than δ, we double the number of samples N and repeat.

The results for the three matrices from Table 1 are reported in Figs. 4, 5, and 6.
The left plots show, for the considered values of ε (which have been normalized by
dividing them by the true | log det(A)|), the number of samples required to attain 90%
success probability over 30 runs of the algorithm, versus the number of samples given

123



Foundations of Computational Mathematics (2022) 22:875–903 897

10 -3 10 -2 10 -1

relative accuracy

10 0

10 1

10 2

10 3

10 4
nu

m
be

r o
f s

am
pl

es
 N

Number of samples versus accuracy
Estimated N for Gaussian vectors
Computed N for Gaussian vectors
Estimated N for Rademacher vectors
Computed N for Rademacher vectors

10 -3 10 -2 10 -1

relative accuracy

10 2

Av
er

ag
e 

nu
m

be
r o

f L
an

cz
os

 s
te

ps
 m

Number of samples versus Lanczos steps

Estimated m for Gaussian vectors
Computed m for Gaussian vectors
Estimated m for Rademacher vectors
Computed m for Rademacher vectors

Fig. 6 Results for matrix precip from [32]

by Theorems 4 and 5. The plots on the right show, for the same (normalized) values
of ε, the average number of Lanczos steps required to reach accuracy ε/2 versus the
number of Lanczos steps predicted by Theorems 4 and 5.

For thermomec_TC, the diagonal of log(A) is large relative to the rest of the
matrix: ‖ log(A) − Dlog(A)‖F/‖ log(A)‖F ≈ 0.07. Therefore, our bounds predict
that Rademacher vectors perform much better than Gaussian vectors; this is indeed
confirmed by Fig. 4. Thematrix A is well-conditioned and, hence, the bounds correctly
predict that the Lanczos method only needs relatively few iterations to attain good
accuracy.

For lowrank, Fig. 5 shows that Rademacher and Gaussian vectors perform sim-
ilarly. Although the condition number of A is κ(A) ≈ 1560, the eigenvalues have a
strong decay, and hence its adaptivity lets the Lanczos method perform much better
than predicted by our bounds, see, e.g., [23] for a discussion.

For precip, the ratio ‖ log(A) − Dlog(A)‖F/‖ log(A)‖F ≈ 0.44 is reflected in
Fig. 6, showing that Rademacher vectors attain somewhat better accuracy. The condi-
tion number of A is high and there is no strong decay or gaps in the singular values; a
relatively large number of Lanczos steps is necessary to obtain the desired accuracy
when approximating the quadratic forms.

Acknowledgements We thank Radosław Adamczak, Rasmus Kyng, and Shashanka Ubaru for helpful
discussions on topics related to this work. We also thank the referees for providing valuable feedback.

Funding Open Access funding provided by EPFL Lausanne.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


898 Foundations of Computational Mathematics (2022) 22:875–903

A Auxiliary Results

A.1 Herbst Argument and Logarithmic Sobolev Inequalities

This section contains auxiliary results used in the proof of Theorem 2. We recall that
the entropy of a random variable Z is defined as

H(Z) := E[Z log Z ] − E[Z ] logE[Z ],

provided that all the involved expected values exist.
The Herbst argument (see, e.g., [9, page 11], [19, pages 239–240], and [42, Section

3.1.2]) turns a bound on the entropy of a random variable into a bound on the moment
generating function. By Chernoff’s bound, the latter implies a bound on the tail of the
random variable. Specifically, we use the following (modified) Herbst argument.

Lemma 7 Let Z be a random variable and g : [0, a) → R such that

H(exp(λZ)) ≤ λ2g(λ)E[exp(λZ)]. (18)

Then for all λ ∈ [0, a) it holds

logE[exp(λZ)] ≤ λE[Z ] + λ

∫ λ

0
g(ξ)dξ.

Proof Forψ(λ) := logE[exp(λZ)], it holds thatψ ′(λ) = E[Z exp(λZ)]/E[exp(λZ)].
Recalling the definition of entropy, this allows us to rewrite (18) as

λψ ′(λ) exp(ψ(λ)) − ψ(λ) exp(ψ(λ)) ≤ λ2g(λ) exp(ψ(λ)),

which is equivalent to

d

dλ

(
ψ(λ)

λ

)
≤ f (λ).

Integration on the interval [0, λ] gives

ψ(λ)

λ
− lim

λ→0+
ψ(λ)

λ
≤

∫ λ

0
f (ξ)dξ.

We conclude by noting that limλ→0+ ψ
λ

= E[Z ]. 
�
For deriving bounds on the entropy, we need the following two variations of Gross’

logarithmic Sobolev inequality.
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Theorem 6 Let f : {−1, 1}n → R and let X be a Rademacher vector with com-
ponents X1, . . . , Xn. Define f (X̄ (i)) := f (X1, . . . , Xi−1,−Xi , Xi+1, . . . , Xn) for
i = 1, . . . , n. Then for all λ > 0 we have

H(exp(λ f (X))) ≤ λ2

4
E

[
exp(λ f (X))

n∑

i=1

(
f (X) − f (X̄ (i))

)2
+

]
(19)

and

H(exp(λ f (X))) ≤ λ2

8
E

[
exp(λ f (X))

n∑

i=1

(
f (X) − f (X̄ (i))

)2
]

. (20)

Proof Inequality (19) is a standard result and can be found, e.g., in [9, page 122].
Inequality (20) is a variation of the same argument; see also [9, Exercise 5.5] for a
related (but not identical) result. Inequality (20) can, in fact, be found in a Master’s
thesis [1, Theorem 5]. For convenience of the reader, we provide a proof of (20) based
on the textbook [9].

In [9, page 122] it is proven that

H(exp(λ f (X))) ≤ 1

2
E

[
n∑

i=1

(
exp(λ f (X)/2) − exp(λ f (X̄ (i))/2)

)2
]

. (21)

For a ≥ b we have

exp
(a
2

)
− exp

(
b

2

)
=

∫ a/2

b/2
exp(t)dt ≤ a − b

2
· exp

( a
2

) + exp
( b
2

)

2

≤ a − b

2

√
exp(a) + exp(b)

2
,

where the first inequality follows from the concavity of the exponential and the
Hermite–Hadamard inequality. Therefore, for all a, b ∈ R we have

(exp(a/2) − exp(b/2))2 ≤ 1

8
(a − b)2(exp(a) + exp(b)). (22)

Applying (22) to each summand in Eq.21) one obtains

H(exp(λ f (X))) ≤ λ2

16

n∑

i=1

E

[
( f (X) − f (X̄ (i)))2

(
exp(λ f (X)) + exp(λ f (X̄ (i)))

)]

= λ2

16

n∑

i=1

E

[
( f (X) − f (X̄ (i)))2 exp(λ f (X))

]

+ λ2

16

n∑

i=1

E

[
( f (X) − f (X̄ (i)))2 exp(λ f (X̄ (i)))

]
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= λ2

8
E

[
exp(λ f (X))

n∑

i=1

(
f (X) − f (X̄ (i))

)2
]

,

where the last equality follows from the fact that f (X) and f (X̄ (i)) have the same
distribution and changing the sign of the i th entry of X̄ (i) gives X again. 
�

A. 2 Bounds on the Complex Logarithm

The following two elementary results on the complex logarithm are needed in the
convergence proofs of the Lanczos method in Sect. 3.

Lemma 8 Consider a circle in the complex plane with center a ∈ R
+, a > 1 and

radius b such that b2 = a2 − 1. Then the maximum absolute value of the logarithm
on this circle is attained on the real axis.

Proof By symmetry, we can restrict ourselves to the upper half of the circle. For fixed
θ ∈ [0, arctan(b)] the line reiθ for r > 0 intersects the circumference when (r cos θ −
a)2 + r2 sin2 θ = b2. Clearly, this equality holds for r± = a cos θ ± √

a2 cos2 θ − 1.
Note that these points parametrize the entire upper semi-circle and we have r− = 1

r+ ,
so

| log(r−eiθ )| = | log(r−) + iθ | = | − log(r+) + iθ | = | log(r+) + iθ | = | log(r+eiθ )|.

Therefore, to prove the lemma it is sufficient to show that the function g :
[0, arctan(b)] → R given by g(θ) := | f (θ)|2, where f (θ) = log(r+eiθ ), attains
its maximum for θ = 0. We will establish this fact by showing that g decreases
monotonically. We have

f (θ) = log
((
a cos θ +

√
a2 cos2 θ − 1

)
eiθ

)
= arcsinh

(√
a2 cos2 θ − 1

) + iθ;

f ′(θ) = −a2 cos θ sin θ

a cos θ
√
a2 cos2 θ − 1

+ i = − a sin θ√
a2 cos2 θ − 1

+ i,

and therefore

g′(θ) = 2Re
(
f ′(t) · f (t)

) = −2
a sin θ · arcsinh(√a2 cos2 θ − 1

)
√
a2 cos2 θ − 1

+ 2θ.

For θ ∈ (0, arctan(b)) we have that

g′(θ) ≤ 0 ⇔ θ

a sin θ
≤

arcsinh
(√

a2 cos2 θ − 1
)

√
a2 cos2 θ − 1

.
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Using the facts that x �→ x
sin(x) is increasing for x ∈ [0, π ], arctan(x) < arcsinh(x)

for x > 0, and x �→ arcsinh(x)
x is decreasing for x > 0, one obtains

θ

a sin θ
≤ arctan(b)

b
<

arcsinh(b)

b
≤

arcsinh
(√

a2 cos2 θ − 1
)

√
a2 cos2 θ − 1

,

for every θ ∈ (0, arctan(b)). In particular, this shows g′(θ) < 0 for θ ∈ (0, arctan(b))
and hence g is decreasing. 
�
Corollary 5 Consider an ellipse E in the open right-half complex plane, with foci on
the real axis. Then the maximum absolute value of the logarithm on this ellipse is
attained on the real axis.

Proof Let 0 < α < β be the two intersections of the ellipse with the real axis. If
| logα| ≥ | logβ| then E is contained in the circle C1 of center a := 1

2

( 1
α

+ α
)
and

radiusb := 1
2

( 1
α

− α
) = √

a2 − 1, andE is tangent toC1 inα; otherwiseE is contained

in the circle C2 of center a := 1
2

(
β + 1

β

)
and radius b := 1

2

(
β − 1

β

)
= √

a2 − 1,

and E is tangent to C2 in β. In both cases, the result follows from Lemma 8. 
�

References

1. R. Adamczak. The entropy method and concentration of measure in product spaces. Master’s thesis,
University of Warsaw and Vrije Universiteit van Amsterdam, 2003. Available at http://duch.mimuw.
edu.pl/radamcz/Old/Papers/master.pdf.

2. R. H. Affandi, E. Fox, R. Adams, andB. Taskar. Learning the parameters of determinantal point process
kernels. In International Conference on Machine Learning, pages 1224–1232, 2014.

3. H. Avron. Counting triangles in large graphs using randomized matrix trace estimation. In Workshop
on Large-scale Data Mining: Theory and Applications, volume 10, pages 10–9, 2010.

4. H. Avron and S. Toledo. Randomized algorithms for estimating the trace of an implicit symmetric
positive semi-definite matrix. J. ACM, 58(2):Art. 8, 17, 2011.

5. Z. Bai, M. Fahey, and G. Golub. Some large-scale matrix computation problems. J. Comput. Appl.
Math., 74(1-2):71–89, 1996.

6. R. P. Barry and R. K. Pace. Monte Carlo estimates of the log determinant of large sparse matrices.
Linear Algebra Appl., 289(1-3):41–54, 1999.

7. R. Bhatia, M. D. Choi, and C. Davis. Comparing a matrix to its off-diagonal part. In The Gohberg
anniversary collection, Vol. I (Calgary, AB, 1988), volume 40 of Oper. Theory Adv. Appl., pages
151–164. Birkhäuser, Basel, 1989.

8. S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities using the entropy method. Ann.
Probab., 31(3):1583–1614, 2003.

9. S. Boucheron, G. Lugosi, and P.Massart.Concentration inequalities. Oxford University Press, Oxford,
2013. A nonasymptotic theory of independence, With a foreword by Michel Ledoux.

10. C. Boutsidis, P. Drineas, P. Kambadur, E.-M. Kontopoulou, and A. Zouzias. A randomized algorithm
for approximating the log determinant of a symmetric positive definite matrix. Linear Algebra Appl.,
533:95–117, 2017.

11. A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Found.
Comput. Math., 7(3):331–368, 2007.

12. J. Chen. On the use of discrete Laplace operator for preconditioning kernel matrices. SIAM J. Sci.
Comput., 35(2):A577–A602, 2013.

13. J. Chen. How accurately should I compute implicit matrix-vector products when applying the Hutchin-
son trace estimator? SIAM J. Sci. Comput., 38(6):A3515–A3539, 2016.

123

http://duch.mimuw.edu.pl/radamcz/Old/Papers/master.pdf
http://duch.mimuw.edu.pl/radamcz/Old/Papers/master.pdf


902 Foundations of Computational Mathematics (2022) 22:875–903

14. T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACMTrans. Math. Software,
38(1):Art. 1, 25, 2011.

15. Distribution of difference of chi-squared variables. https://math.stackexchange.com/questions/85249/
distribution-of-difference-of-chi-squared-variables. Accessed: 06/03/2020.

16. D. Durfee, J. Peebles, R. Peng, and A. B. Rao. Determinant-preserving sparsification of SDDMmatri-
ces. SIAM J. Comput., 49(4):350–408, 2020.

17. T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting triangles in sublinear time. SIAM
J. Comput., 46(5):1603–1646, 2017.

18. J. Fitzsimons, D. Granziol, K. Cutajar, M. Osborne, M. Filippone, and S. Roberts. Entropic trace
estimates for log determinants. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 323–338. Springer, 2017.

19. S. Foucart andH. Rauhut.Amathematical introduction to compressive sensing. Applied andNumerical
Harmonic Analysis. Birkhäuser/Springer, New York, 2013.

20. J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. GPyTorch: Blackbox
matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural Informa-
tion Processing Systems, volume 2018-December, pages 7576–7586, 2018.

21. G. H. Golub and G. Meurant. Matrices, moments and quadrature with applications. Princeton Series
in Applied Mathematics. Princeton University Press, Princeton, NJ, 2010.

22. S. Gratton and D. Titley-Peloquin. Improved bounds for small-sample estimation. SIAM J. Matrix
Anal. Appl., 39(2):922–931, 2018.

23. S. Güttel, D. Kressner, and K. Lund. Limited-memory polynomial methods for large-scale matrix
functions. GAMM-Mitt., 43(3):e202000019, 19, 2020.

24. I. Han, D.Malioutov, H. Avron, and J. Shin. Approximating spectral sums of large-scale matrices using
stochastic Chebyshev approximations. SIAM J. Sci. Comput., 39(4):A1558–A1585, 2017.

25. D. L. Hanson and F. T.Wright. A bound on tail probabilities for quadratic forms in independent random
variables. Ann. Math. Statist., 42:1079–1083, 1971.

26. T. Hunter, A. E. Alaoui, and A. M. Bayen. Computing the log-determinant of symmetric, diagonally
dominant matrices in near-linear time. CoRR, abs/1408.1693, 2014.

27. M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Comm. Statist. Simulation Comput., 18(3):1059–1076, 1989.

28. F. Krahmer and R. Ward. New and improved Johnson-Lindenstrauss embeddings via the restricted
isometry property. SIAM J. Math. Anal., 43(3):1269–1281, 2011.

29. B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Ann.
Statist., 28(5):1302–1338, 2000.

30. H. Li and Y. Zhu. Randomized block Krylov space methods for trace and log-determinant estimators.
arXiv preprint arXiv:2003.00212, 2020.

31. L. Lin, Y. Saad, and C. Yang. Approximating spectral densities of large matrices. SIAMRev., 58(1):34–
65, 2016.

32. R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff. Hutch++: Optimal stochastic trace estimation.
In Symposium on Simplicity in Algorithms (SOSA), pages 142–155. SIAM, 2021.

33. M. Neteler and H. Mitasova.Open source GIS: a GRASS GIS approach, volume 689. Springer Science
& Business Media, 2013.

34. R. K. Pace and J. P. LeSage. Chebyshev approximation of log-determinants of spatial weight matrices.
Comput. Statist. Data Anal., 45(2):179–196, 2004.

35. W. Peng and H. Wang. A general scheme for log-determinant computation of matrices via stochastic
polynomial approximation. Comput. Math. Appl., 75(4):1259–1271, 2018.

36. F. Roosta-Khorasani and U. Ascher. Improved bounds on sample size for implicit matrix trace estima-
tors. Found. Comput. Math., 15(5):1187–1212, 2015.

37. A. K. Saibaba, A. Alexanderian, and I. C. F. Ipsen. Randomized matrix-free trace and log-determinant
estimators. Numer. Math., 137(2):353–395, 2017.

38. M. Talagrand. New concentration inequalities in product spaces. Invent. Math., 126(3):505–563, 1996.
39. C. Thron, S. J. Dong, K. F. Liu, and H. P. Ying. Padé-Z2 estimator of determinants. Physical Review

D - Particles, Fields, Gravitation and Cosmology, 57(3):1642–1653, 1998.
40. S. Ubaru, J. Chen, and Y. Saad. Fast estimation of tr( f (A)) via stochastic Lanczos quadrature. SIAM

J. Matrix Anal. Appl., 38(4):1075–1099, 2017.
41. Upper limit on the central binomial coefficient. https://mathoverflow.net/questions/133732/upper-

limit-on-the-central-binomial-coefficient. Accessed: 23/03/2020.

123

https://math.stackexchange.com/questions/85249/distribution-of-difference-of-chi-squared-variables
https://math.stackexchange.com/questions/85249/distribution-of-difference-of-chi-squared-variables
http://arxiv.org/abs/2003.00212
https://mathoverflow.net/questions/133732/upper-limit-on-the-central-binomial-coefficient
https://mathoverflow.net/questions/133732/upper-limit-on-the-central-binomial-coefficient


Foundations of Computational Mathematics (2022) 22:875–903 903

42. M. J.Wainwright.High-dimensional statistics, volume 48 ofCambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press, Cambridge, 2019. A non-asymptotic viewpoint.

43. M. J. Wainwright and M. I. Jordan. Log-determinant relaxation for approximate inference in discrete
Markov random fields. IEEE Trans. Signal Process., 54(6):2099–2109, 2006.

44. K. Wimmer, Y. Wu, and P. Zhang. Optimal query complexity for estimating the trace of a matrix. In
International Colloquium on Automata, Languages, and Programming, pages 1051–1062. Springer,
2014.

45. Y. Zhang andW. E. Leithead. Approximate implementation of the logarithm of the matrix determinant
in Gaussian process regression. J. Stat. Comput. Simul., 77(3-4):329–348, 2007.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	On Randomized Trace Estimates for Indefinite Matrices  with an Application to Determinants
	Abstract
	1 Introduction
	2 Tail Bounds for Trace Estimates
	2.1 Standard Gaussian Random Vectors
	2.2 Rademacher Random Vectors

	3 Lanczos Method to Approximate Quadratic Forms
	4 Combined Bounds for Determinant Estimation
	4.1 Standard Gaussian Random Vectors
	4.2 Rademacher Random Vectors

	5 Numerical Experiments
	Acknowledgements
	A Auxiliary Results
	A.1 Herbst Argument and Logarithmic Sobolev Inequalities
	A. 2 Bounds on the Complex Logarithm

	References




