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Abstract
Relations between moments and cumulants play a central role in both classical and
non-commutative probability theory. The latter allows for several distinct families
of cumulants corresponding to different types of independences: free, Boolean and
monotone. Relations among those cumulants have been studied recently. In this work,
we focus on the problem of expressing with a closed formula multivariate monotone
cumulants in terms of free andBoolean cumulants. In the process, we introduce various
constructions and statistics on non-crossing partitions. Our approach is based on a
pre-Lie algebra structure on cumulant functionals. Relations among cumulants are
described in terms of the pre-Lie Magnus expansion combined with results on the
continuous Baker–Campbell–Hausdorff formula due to A. Murua.
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1 Introduction

Relations between moments and cumulants have been intensively studied in both
classical and non-commutative probability theory. The latter, contrary to the classical
theory, allows for several distinct families of cumulants corresponding to different
types of independences: free, Boolean and monotone. It is natural to compare those
cumulants. Arizmendi et al. [3] have studied in detail relations among classical, free,
Boolean and monotone cumulants using the common approach based on Möbius
inversion in the various corresponding lattices of set partitions and other combinatorial
and algebraic techniques.

In a series of recent papers, two of us developed an alternative approach based on
non-commutative shuffle algebra combinedwith group andLie algebra theory [15–19].
More precisely, these works explore the group of characters and its corresponding Lie
algebra of infinitesimal characters on a non-commutative combinatorial Hopf algebra
H constructed from the data provided by a non-commutative probability space (A, ϕ).
Concretely, H is defined to be the double tensor algebra over the latter. In this context,
the linear functional ϕ : A → K, which defines the moments of non-commutative
random variables, is interpreted as an algebra map from H to the ground field K

(usually the complex numbers). The various families of cumulants (free, Boolean
and monotone), usually seen as multilinear functions over (A, ϕ), enter naturally this
picture as infinitesimal characters, i.e., linear forms on H that vanish on the algebra
unit as well as on products of non-unital elements in the augmentation ideal of H .
This approach leads in particular to the definition of a pre-Lie algebra structure on
the space of infinitesimal characters, which results naturally from the formalism of
shuffle algebras.

The pivotal aim of the work at hand is to employ the aforementioned pre-Lie
algebra structure on the level of cumulants, now seen as multilinear maps on the non-
commutative probability space. This approach is self-contained and does not require
using shuffle or Hopf algebras. In fact, it will be shown that the notion of pre-Lie alge-
bra provides an adequate setting for a concise theoretical presentation of multivariate
cumulant–cumulant relations. In particular, it is tailored to describe precisely multi-
variate monotone–free and monotone–Boolean cumulant–cumulant relations in terms
of the pre-Lie Magnus map and its inverse, the so-called pre-Lie exponential. Both
of them are familiar in various domains of applied mathematics such as numerical
analysis of differential equations and geometric control theory [2,5,23]. This is under-
lined by the fact that we use combinatorial constructions and formulas introduced
by A. Murua [28] in the study of the expansion of the continuous Baker–Campbell–
Hausdorff formula in a Hall basis. In the process, still inspired by Murua’s seminal
work, we introduce operations on non-crossing partitions together with the notion
of quasi-monotone partitions. These turn out to be related to other partitions previ-
ously considered in the context of free probability, see Remark 5. As we are interested
in obtaining explicit formulas, we enhance this new point of view by focusing on
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the combinatorics of non-planar rooted forests naturally associated with non-crossing
partitions.

The paper is organised as follows. Section 2 briefly recalls the basics on non-
crossing partitions including the link to non-planar rooted trees encoding the hierarchy
of nested blocks in a non-crossing partition as well as tree factorials. In Sect. 3, we
give a self-contained presentation of the pre-Lie structure on the space of cumulants—
the space g of multilinear maps taking values in the complex numbers, defined on a
non-commutative probability space. We recall the theoretical results on the pre-Lie
Magnus map and its inverse relevant to relations between cumulants. In Sect. 4, we
compute explicitly iterated pre-Lie products in g and, as a first application, show how
the formula can be used to recover the known expression of free and Boolean cumu-
lants in terms of monotone ones [3]. Notice that the proof is different from the one
we used in [17]. In Sect. 5, we use the same strategy to handle the more involved
computation of multivariate monotone cumulants in terms of free (or Boolean) cumu-
lants. It is based on a recursion that has a similar structure than the one defining the
coefficients of the computation of the continuous Baker–Campbell–Hausdorff (BCH)
coefficients ω in a Hall basis described in Murua’s work [28]. This should not come
as a surprise since the BCH coefficients are known to be closely related to the Magnus
formula. However, their appearance in the context of cumulant–cumulant relations in
non-commutative probability theory seems to indicate new perspectives. In the pro-
cess of adapting Murua’s constructions to the context of non-crossing partitions, we
introduce the notion of quasi-monotone partitions. It allows to define a statistics on
non-crossing partitions that leads to the computation of the coefficients of the multi-
variate monotone–free cumulant–cumulant expansion.

2 Non-crossing Partitions and Rooted Trees

Let n be a fixed positive integer. Recall that a partition π = {π1, . . . , πk} of the set
[n] := {1, . . . , n} consists of blocks π1, . . . , πk , which are pairwise disjoint non-
empty subsets of [n] such that π1 ∪ · · · ∪ πk = [n]. An interval block in a partition
π is of the form πs = {i, i + 1, . . . , i + j} for some integers 1 ≤ i < i + j ≤ n.
A partition consisting of interval blocks only is called an interval partition. We call
π a non-crossing partition if for every 1 ≤ i < j < k < l ≤ n such that i, k ∈ πs

and j, l ∈ πt , then it necessarily follows that s = t . We denote by NC(n) the lattice
of non-crossing partitions of the set [n]. Interval partitions are a subset of NC(n) and
form the lattice I(n). Sometimes the obvious extension of the notion of non-crossing
partition of [n] to other finite totally ordered sets X is used. The corresponding set
of non-crossing partitions will then be written NC(X). The number of blocks of a
non-crossing partition, π = {π1, . . . , πm} ∈ NC(n), is denoted by |π | = m. A non-
crossing partition in NC(n) is irreducible if and only if both 1 and n are in the same
block. The set of irreducible non-crossing partitions in NC(n) is denoted by NCirr(n).
The sets of non-crossing and irreducible non-crossing partitions with k blocks are
denoted NCk(n), respectively, NCirr

k (n).
There is a natural partial order on the lattice NC(n) called reversed refinement order

≤. For π, σ ∈ NC(n), we write “π ≤ σ” if every block of σ is a union of blocks of
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π . The maximal element of NC(n) with this order is 1n := {{1, . . . , n}} (the partition
of [n] with only one block), and the minimal element is 0n := {{1}, {2}, . . . , {n}}
(the partition of [n] with n blocks). This order is at play when we refer to the lattice
structure on NC(n).

Remark 1 For π, σ ∈ NC(n), we write “π � σ” for the so-called min–max order
on NC(n), meaning that π ≤ σ and that for every block σi of σ there exists a block
π j of π such that min(σi ),max(σi ) ∈ π j . We refer the reader to [4] for a broader
description of this partial order and its deeper meaning in the context of moments and
cumulants.

Recall that a rooted tree t is a connected and simply connected graph with a dis-
tinguished vertex called the root. The edges are oriented towards the root. Vertices
have exactly one outgoing edge and an arbitrary number of incoming ones, except for
the root which is the only vertex with no outgoing edge. The leaves are the vertices
without incoming edges. A forest is a finite set of rooted trees.

Let T denote the set of non-planar rooted trees

T =
⎧
⎨

⎩
, , , , , , , , . . .

⎫
⎬

⎭
.

For later use, we denote by T� the set of so-called ladder trees

�1 = �2 = �3 = �4 = �5 = · · · . (1)

The degree, |t |, of a rooted tree t ∈ T is defined by its number of vertices and Tn
contains all trees of degree n. The empty tree, ∅, has degree |∅| = 0. Recall also that
if a rooted tree t is obtained by attaching trees t1, . . . , tn on a new common root, the
tree factorial of t is such that t ! := |t |t1! · · · tn !. Together with •! := 1, this identity
defines inductively the so-called tree factorials.

Lemma 1 [25] Let t ∈ T be a rooted tree. By L−(t) ⊂ T, we denote the multiset of
rooted trees that result from eliminating a leaf together with its outgoing edge from t.
The cardinality of L−(t) equals the number of leaves of t . Then

|t |
t ! =

∑

t ′∈L−(t)

1

t ′! . (2)

Let us compute a few examples:

| |
! = 3

3
= 1

! + 1

! ,
| |

! = 4

8
= 1

3
+ 1

3! = 1

! + 1

! ,
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| |
! = 4

12
= 1

! + 1

! ,
| |

! = 5

10
= 2

1

! + 1

! .

Recall that the blocks of a non-crossing partition π = {π1, . . . , πk} are naturally
ordered: π j < πi if and only if there exist elements x, y in π j such that x < z < y
for any z in πi . A block πi is outer if it is minimal for this order, that is if there do not
exist elements x, y in another block π j such that x < z < y for any z in πi .

To any irreducible non-crossing partition π = {π1, . . . , πk} ∈ NCirr(n), one can
naturally associate a rooted tree t(π) encoding the hierarchy of the nested blocks of
π . We refer to reference [3] for more details. The root is associated with the outer
block, that contains 1, n ∈ [n].

To a non-crossing partition which is not irreducible, one associates similarly a
forest of trees, each tree encoding the hierarchy of one of its irreducible components.
To define the latter, consider the block B1 of π that contains 1 =: i1,min and write
i1,max for its maximal element. The set of blocks ρ1 := {πi |πi ≥ B1} forms an
irreducible non-crossing partition of the set {i1,min, i1,min + 1, . . . , i1,max}. Consider
then the block B2 with minimal element i2,min := i1,max + 1 and write i2,max for its
maximal element. The set of blocks ρ2 := {πi , πi ≥ B2} forms an irreducible non-
crossing partition of {i2,min, . . . , i2,max}. Iterating this construction, π decomposes
uniquely, π = ρ1∪ρ2∪· · ·∪ρl , as a union of irreducible non-crossing partitions. The
partitions ρ1, . . . , ρl are the irreducible components of π . The latter are in bijection
with the outer blocks which, in turn, are associated with the roots of the trees in the
forest. Note that for π ∈ NC(n), |π | = |t(π)|. For instance, consider the following
two non-crossing partitions and the corresponding rooted tree, respectively, forest,
encoding the nesting structures

1 2 4 6

1

24

6
1 2 4 6 7

1

2

4

67
.

(3)

Here, for notational clarity, the nodes of the trees are decorated by the minimal
elements of the corresponding blocks in the partition.

Monotone non-crossing partitions are non-crossing partitions equipped with a total
order on their blocks refining the natural partial order of the blocks.We refer the reader
to [3] for more details on monotone partitions. Choosing such a total order amounts to
reindexing the blocks in such a way that i < j implies πi ≤ π j . Let us writem(π) for
the number of these total orders, that is, the number of monotone partitions associated
with a given non-crossing partition, then

m(π) = |t(π)|!
t(π)! , (4)

wherewe recall that |t(π)| = |π | stands for the number of blocks ofπ . Following [22],
we introduce a random process that generates the set denotedMirr

k (n) of all irreducible
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monotone partitions (monotone partitions of irreducible non-crossing partitions) of
[n] with k blocks. In fact, this construction is adapted from standard arguments on
the construction and enumeration of non-crossing partitions. See, e.g., [29]. We call
interval in a finite subset S of the set of integers any sequence of successive elements
of S for the usual order. We also call interval the associated subset of S. For example,
{4, 8} is an interval in the set {2, 3, 4, 8, 10}.
– To initiate the recursion, choose an interval πk in [n] of length less than or equal
to n − k such that 1, n /∈ πk . Call S2 the complementary subset of πk in [n] and
denote n2 its cardinality (so that n2 ≥ k).

– For i = 2, . . . , k−1, choose an intervalπk−i+1 in Si of length less than ni−k+i−1
such that 1, n /∈ πk−i+1. Call Si+1 the complementary subset of πk−i+1 in Si and
denote ni+1 its cardinality (so that ni+1 ≥ k − i + 1).

– Set π1 := Sk (so that 1, n ∈ π1).

Then the ordered sequence (π1, . . . , πk) is an irreducible monotone partition of
[n]. The process creates (randomly) all irreducible monotone partitions of [n] with k
blocks.

As an example, we consider the case n = 10 and k = 4, i.e., an irreducible mono-
tone non-crossing partition of [10] with 4 blocks. The initial step consists of choosing
the interval block, π4, of length, say, |π4| = 2, π4 = {6, 7}. The complementary
subset S2 = {1, 2, 3, 4, 5, 8, 9, 10} has |S2| = 8 elements. Then, we choose π3 = {2}
of size |π3| = 1 resulting in the complementary subset S3 = {1, 3, 4, 5, 8, 9, 10}.
The next interval we choose to be π2 = {4, 5, 8}, S4 = {1, 3, 9, 10}. The final
interval is the outer block π1 = {1, 3, 9, 10}. The resulting sequence of blocks is
({1, 3, 9, 10}, {4, 5, 8}, {2}, {6, 7}) and corresponds to the irreducible monotone par-
tition on the left of (3).

From this construction, we obtain the following result.

Corollary 1 Non-trivial irreducible monotone partitions of [n] are in bijection with
pairs (α, π ′) where α is an interval of [n] that does not contain {1, n} (as πk above)
and π ′ runs over all irreducible monotone partitions of [n]\α.

In fact, this corollary is all we will need. It follows easily from the definitions, but
we find the description of the generating process of irreducible monotone partitions
illuminating in view of our forthcoming developments.

3 Pre-Lie Algebra and Cumulants

In this section, we outline themathematical setting in which wewill express monotone
cumulants in terms of free and Boolean cumulants and vice versa.

In the following, the pair (A, ϕ) denotes a non-commutative probability space.
Its unital linear map ϕ : A → K sends elements from an arbitrary unital associative
algebra of random variables into the ground field of characteristic zero.We remark that
in the context of the present paper any additional assumptions such as positivity on
the map ϕ are not necessary. We assume some familiarity with the basic combinatorial
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notions and constructions related to free probability and non-crossing partitions. On
these topics, the reader is referred to [29].

The starting point is the non-unital tensor algebra T+(A) := ⊕
n>0 A

⊗n . Elements
w ∈ T+(A) are denoted as words, i.e., w = a1 · · · ak := a1 ⊗ · · · ⊗ ak ∈ A⊗k . The
length of a word is defined by its number of letters and will be denoted deg(w) = k. If
π = {i1, . . . , im} is a subset of [k] = {1, . . . , k}, wπ stands for the word ai1 · · · aim ∈
T+(A). The following notation is put in place for linear forms α ∈ g := T+(A)	

απ (w) :=
∏

πi∈π

α(wπi ), (5)

where π = {π1, . . . , πk} ∈ NC(n). Starting from the functional ϕ : A → K of the
non-commutative probability space (A, ϕ), we create the map φ : T+(A) → K giving
the nth multivariate moment

φ(w) := ϕ(a1 ·A · · · ·A an)

for w = a1 · · · an ∈ T+(A). Here, ·A denotes the product in the algebra A that we
distinguish notationally from the concatenation product of words in the tensor algebra.

Free, Boolean and monotone cumulants form, respectively, the families of multi-
linear functionals {rn : A⊗n → K}n≥1, {bn : A⊗n → K}n≥1, {hn : A⊗n → K}n≥1.
These families can be viewed equivalently as linear forms κ, β, ρ : T+(A) → K,
i.e., κ(a1 · · · an) := rn(a1, . . . , an) and analogously for the Boolean and monotone
cumulants. Free [29], Boolean [30] and monotone [22] cumulants are defined in terms
of the corresponding moment–cumulant relations. If w = a1 · · · an ∈ T+(A), then

φ(w) =
∑

π∈NC(n)

∏

πi∈π

κ(wπi ) (6)

=
∑

π∈I(n)

∏

πi∈π

β(wπi ) (7)

=
∑

π∈NC(n)

1

t(π)!
∏

πi∈π

ρ(wπi ). (8)

The following proposition is central to the approach used in this paper. It defines a
(left) pre-Lie algebra structure on cumulants, seen as linear forms over T+(A).

Proposition 1 Let α, β ∈ g and w ∈ T+(A), then the product � : g ⊗ g → g defined
by

α � β(w) := −
∑

w1w2w3=w
deg(wi )>0

β(w1w3)α(w2) (9)

satisfies the left pre-Lie identity

α � (β � γ ) − (α � β) � γ = β � (α � γ ) − (β � α) � γ. (10)
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Proof Let w be a word in T+(A). In the following formulas, all words and subwords
appearing in summations are non-empty except possibly w13, w31 and w′

3. We then
get:

α � (β � γ )(w) =
∑

w1w2w3=w

( ∑

w11w12w13=w1

γ (w11w13w3)β(w12)α(w2)

+
∑

w11w12=w1
w32w33=w3

γ (w11w33)β(w12w32)α(w2)

+
∑

w31w32w33=w3

γ (w1w31w33)β(w32)α(w2)
)
,

and

(α � β) � γ (w) =
∑

w11w
′
2w33=w

∑

w12w2w32=w′
2

γ (w11w33)β(w12w32)α(w2),

so that

(α � (β � γ ) − (α � β) � γ )(w) =
∑

w1w2w
′
3w4w5=w

γ (w1w
′
3w5)

(
β(w2)α(w4)

+β(w4)α(w2)
)
.

As the expression is symmetric in α and β, the statement follows. �
Remark 2 Recall that pre-Lie algebras are Lie admissible [1,6,27], that is, the pre-Lie
algebra g is a Lie algebra for the commutator bracket [α, γ ] := α � γ − γ � α.

The notion of pre-Lie algebra appeared in different place in mathematics, including
algebra and geometry, but also in control theory, where pre-Lie algebras are known as
chronological algebras [1,6,8,27].

The pre-Lie product (9) may be formulated using irreducible non-crossing parti-
tions. Indeed, we see immediately that for w = a1 · · · an ∈ T+(A)

α � β(w) = −
∑

π∈NCirr
2 (n)

β(wπ1)α(wπ2). (11)

Using the standard pictorial representation, elements inπ = {π1, π2} ∈ NCirr
2 (n) have

the particular form

1 n

. . . . . . . . .

where the outer block π1 contains 1 and n.
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In the univariate case, the explicit computations of pre-Lie products in g give:

α � β(a2) = 0

α � β(a3) = −β(a2)α(a)

α � β(a4) = −2β(a3)α(a) − β(a2)α(a2)

α � β(a5) = −3β(a4)α(a) − 2β(a3)α(a2) − β(a2)α(a3)

α � β(a6) = −4β(a5)α(a) − 3β(a4)α(a2) − 2β(a3)α(a3) − β(a2)α(a4).

This can be summarised in a closed formula based on the fact that there are n − l − 1
intervals of length l contained in {2, . . . , n − 1}:
Corollary 2 Let α, β ∈ g and a ∈ A. Then:

α � β(an) = −
n∑

l=1

(n − l − 1)β(an−l)α(al). (12)

Proposition 1 points at an interesting phenomenon. Forα1, . . . , α4 ∈ g, we note that
in general α1 � α2(w) = 0 if deg(w) < 3 and α1 � (α2 � α3)(w) = 0 if deg(w) < 4,
while (α1 � α2) � α3(w) = 0 if deg(w) < 5 and (α1 � α2) � (α3 � α4)(w) = 0
if deg(w) < 6. We may therefore associate an effective degree with any pre-Lie
monomial in g. It determines the minimal length of words in the support of such
monomials. The effective degree for any pre-Lie monomial P of cumulants is denoted
#(P).

Lemma 2 Let P = P1 � P2 be a pre-Lie monomial in g, P1, P2 ∈ g. Its effective
degree computes recursively

#(P) = #(P1) + max(2, #(P2)). (13)

We introduce now the fundamental tool for our forthcoming computation of a
formula expressing monotone cumulants in terms of free and Boolean cumulants:
the (pre-Lie) Magnus expansion. The classical Magnus expansion [26] is a well-
known object in applied mathematics [5,23]. In the context of ordinary differential
equations, it computes the logarithm of the solution of a linear matrix-valued initial
value problem. Its pre-Lie content was first uncovered in control theory [1]. It was then
rediscovered and further developed from an algebraic point of view in [12,13]. The
corresponding endomorphism �′ of a pre-Lie algebra satisfying suitable completion
properties appeared in the context of enveloping algebras of pre-Lie algebras in [1],
together with its inverse, denoted W . The Hopf and group-theoretical properties of
�′ and its links with the Mielnik–Plebanskii–Strichartz continuous Baker–Campbell–
Hausdorff formula have been investigated in [9,14]. We refer the reader to [20,24] for
more details, including its range of applications and mathematical properties.

We now introduce general iterated left and right multiplication operators. Given
any bilinear product, denoted by •, we define the left/right multiplication opera-
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tors Lm
α•(β) := Lm−1

α• (α•β), L0
α•(β) = β, respectively, Rm•α(β) := Rm−1•α (β•α),

R0•α(β) = β.
Recall at last the classical generating series for the Bernoulli numbers Bn

z

exp(z) − 1
= 1 +

∑

n>0

Bn

n! z
n

as well as its inverse

exp(z) − 1

z
= 1 +

∑

n>0

1

(n + 1)! z
n .

Definition 1 [9,12] (pre-Lie Magnus expansion) The pre-Lie Magnus expansion
�′ : g → g is defined by

�′(α) := L�′(α)�

eL�′(α)� − 1
(α). (14)

The first few terms in the expansion (14) are given

�′(α) =
∑

n≥0

Bn

n! L
n
�′(α)�(α)

= α − 1

2
α � α + 1

4
(α � α) � α + 1

12
α � (α � α) − 1

8

(
(α � α) � α

)
� α

− 1

24
α �

(
(α � α) � α

) − 1

24
(α � α) � (α � α) − 1

24

(
α � (α � α)

)
� α

− 1

720
α � (α � (α � (α � α))) + · · · .

(15)

The compositional inverse of �′ is W : g → g

W (α) := eLα� − 1

Lα�
(α) (16)

= α +
∑

n>0

1

(n + 1)! L
n
α�(α) = α + 1

2!α � α + 1

3!α � (α � α) + · · · . (17)

Remark 3 By identifying the binary product

(M � N )(t) :=
∫ t

0
ds

∫ s

0
du[Ṁ(s), Ṅ (u)]

as a pre-Lie product on time-dependent operators—seen as elements in a non-unital
algebra A of operators, having suitable regularity properties allowing to compute
derivatives, integrals and so on—one recovers the classical Magnus expansion [1,12].
See [20] for a detailed review.
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The pre-Lie Magnus expansion and its inverse permit to express monotone cumu-
lants in terms of Boolean and free cumulants and vice versa.

Theorem 1 Monotone, free and Boolean cumulants, ρ, κ, β ∈ g are related in terms
of the pre-Lie Magnus expansion (14)

ρ = �′(κ) = −�′(−β). (18)

Proof The proof of (18) follows from a group-theoretical result in the context of Hopf
algebra and requires shuffle algebra arguments. For details, we refer the reader to
[15–19]. �

The above theorem implies that

κ = W (−�′(−β)) β = −W (−�′(κ)), (19)

which can be expressed in more compact form

κ = e−L�′(−β)�(β) β = e−L�′(κ)�(κ). (20)

In [17], it was shown that (20) permits to describe the relations between free and
Boolean cumulants in terms of closed formulas defined via irreducible non-crossing
partitions. These relations were first derived in [4] using Möbius calculus. See also
[3].

Proposition 2 For a word w = a1 · · · an ∈ T+(A)

β(w) =
∑

π∈NCirr(n)

∏

πi∈π

κ(wπi ),

κ(w) =
∑

π∈NCirr(n)

(−1)|π |−1
∏

πi∈π

β(wπi ).

In the forthcoming sections of the article, we will first invert formulas (18) to
describe (known) results of expressing multivariate free and Boolean cumulants in
terms of monotone cumulants using irreducible non-crossing partitions. After that, we
will address the inverse problem of expressing multivariate monotone cumulants in
terms of free and Boolean cumulants using irreducible non-crossing partitions.

4 Iterated Pre-Lie Products and Rooted Trees

In this section, we compute iterated pre-Lie products in g and apply the results to
describe cumulant–cumulant relations.

Observe that for a word w = a1 · · · am ∈ T+(A) of length deg(w) = m > 4 and
α, β, γ ∈ g, we have
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(α � γ ) � β(w) =
∑

w1w2w3=w
deg(wi )>0

−β(w1w3)(α � γ )(w2) (21)

=
∑

w1w2w3=w
deg(wi )>0

∑

w21w22w23=w2
deg(w2i )>0

β(w1w3)γ (w21w23)α(w22) (22)

=
∑

π∈NCirr
3 (m)

π1≤π2≤π3

β(wπ1)γ (wπ2)α(wπ3). (23)

For α = β = γ , this simplifies to

R2
�γ (γ )(w) = (γ � γ ) � γ (w) =

∑

π∈NCirr
3 (m)

t(π)=�3

3∏

i=1

γ (wπi ),

where we expressed the constraint π1 ≤ π2 ≤ π3 on the blocks of π ∈ NCirr
3 (m) in

terms of the corresponding hierarchy tree, which in this case is the ladder tree with
three vertices, see (1).More generally, we have thatπ = {π1, . . . , πn+1} ∈ NCirr

n+1(m)

with π1 ≤ · · · ≤ πn+1 corresponds to t(π) = �n+1. The next proposition covers the
general case.

Proposition 3 Let γ1, . . . , γn+1 ∈ g and w = a1 · · · am ∈ T+(A) a word of length
deg(w) = m ≥ 2n + 1, n > 0. Then

(· · · (γ1 � γ2) � · · · ) � γn+1(w) =
∑

π∈NCirr
n+1(m)

t(π)=�n+1

(−1)nγn+1(wπ1) · · · γ1(wπn+1). (24)

In the univariate case, this simplifies to

Rn
�γ (γ )(w) =

∑

π∈NCirr
n+1(m)

t(π)=�n+1

(−1)n
n+1∏

i=1

γ (wπi ). (25)

Proof For notational simplicity, we give the proof in the univariate case, the general
case follows by the same computation. We proceed by induction on n. In the base
case, n = 1, we have that R1

�γ (γ ) = γ � γ and the formula reduces to (11). The
process to obtain n = 2 from the case n = 1 is given in Eq. (23). In general, for the
inductive step, recall that by definition Rn+1

�γ (γ ) := Rn
�γ (γ ) � γ , then we have for

w = a1 · · · am ∈ T+(A) that

Rn+1
�γ (γ )(w) = Rn

�γ (γ ) � γ (w)
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=
∑

w1w2w3=w
deg(wi )>0

−γ (w1w3)R
n
�γ (γ )(w2)

=
∑

w1w2w3=w
deg(wi )>0

−γ (w1w3)
∑

π ′∈NCirr
n+1(deg(w2))

t(π ′)=�n+1

(−1)n
n+1∏

i=1

γ (w2π ′
i
).

=
∑

π∈NCirr
n+2(m)

t(π)=�n+2

(−1)n+1
n+2∏

i=1

γ (wπi ),

where the second equality is just the definition of the pre-Lie product, �. In the
third equality we used the induction hypothesis. The last equality follows from
Corollary 1 by observing that partitions π = {π1, . . . , πn+2} ∈ NCirr

n+2(m) with
t(π) = �n+2, namely π1 ≤ · · · ≤ πn+2, are in bijection with pairs (π1, π

′),
where π1 = {1, . . . , d1} ∪ {m − d3 + 1, . . . ,m} ⊂ [m] is the subset of [m] cor-
responding to the smallest block, in this case d1 = deg(w1) and d3 = deg(w3),
and π ′ = {π2, . . . , πn+2} ∈ NCirr

n+1(deg(w2)) with t(π ′) = �n+1, is the partition
containing all blocks but the smallest. �

Let us now turn to left iteration of the pre-Lie product on cumulants. In degree
three, we have for a word w = a1 · · · am ∈ T+(A)

α � (γ � β)(w) =
∑

w1w2w3=w

deg(wi )>0

− (γ � β)(w1w3)α(w2)

=
∑

w1w2w3=w

deg(wi )>0

∑

w11w12w13=w1
deg(w11)>0,deg(w12)>0

β(w11w13w3)γ (w12)α(w2)

+
∑

w1w2w3=w

deg(wi )>0

∑

w31w32w33=w3
deg(w32)>0,deg(w33)>0

β(w1w31w33)γ (w32)α(w2)

+
∑

w1w2w3=w

deg(wi )>0

∑

w11w12w31w32=w1w3
deg(wi j )>0

β(w11w32)γ (w12w31)α(w2)

=
∑

π∈NCirr
3 (m)

t(π)=

β(wπ1)(γ (wπ2)α(wπ3) + γ (wπ3)α(wπ2))

+
∑

π∈NCirr
3 (m)

t(π)=�3

β(wπ1)γ (wπ2)α(wπ3). (26)
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Note that for π = {π1, π2, π3} ∈ NCirr
3 (m) the tree t(π) = corresponds to the

following nesting of blocks, π1 ≤ π2, π3. For α = β = γ and w = a1 · · · am ∈
T+(A), using the notation (5), this gives:

L2
γ �(γ )(w) = γ � (γ � γ )(w) =

∑

π∈NCirr
3 (m)

t(π)=

2γ (wπ) +
∑

π∈NCirr
3 (m)

t(π)=�3

γ (wπ).

We compute the general left iterated pre-Lie products in g using irreducible mono-
tone non-crossing partitions. Then we apply this computation to cumulant–cumulant
relations.

Proposition 4 Let γ1, . . . , γn+1 ∈ g and w = a1 · · · am ∈ T+(A) a word of length
deg(w) = m ≥ n + 2, n > 0. Then

γ1 � (· · · � (γn � γn+1) · · · )(w) =
∑

π∈Mirr
n+1(m)

(−1)nγn+1(wπ1) · · · γ1(wπn+1). (27)

Proof As in the case with the right iterated pre-Liemultiplication operator, we proceed
by induction on n. The base case, n = 1, again reduces to formula (11). The process
to obtain n = 2 from the case n = 1 is given in Eq. (26), and we observe that it is
already clear that the formula for the left operator is somewhat more involved than the
one for the right multiplication operator. For the inductive step, we write I nt irr([m])
for the intervals in [m] that do neither contain 1 nor m. Then

γ1 � (· · · γn−1 � (γn � γn+1) · · · )(w)

= −
∑

πn+1∈I nt irr([m])
γ2 � (· · · γn−1 � (γn � γn+1) · · · )(w[m]\πn+1)γ1(wπn+1).

By the induction hypothesis,

γ2 � (· · · γn−1 � (γn � γn+1) · · · )(w[m]\πn+1)

=
∑

π ′∈Mirr
n ([m]\πn+1)

(−1)n−1γn+1(wπ ′
1
) · · · γ2(wπ ′

n
),

whereMirr
n ([m]\πn+1) stands for the set of monotone irreducible partitions of the set

[m]\πn+1 with n blocks. The proof follows since Mirr
n+1(m) is in bijection with the

pairs (πn+1, π
′) appearing in the two summations, see Corollary 1. �

Corollary 3 Let κ and ρ be linear forms on T+(A) and w = a1 · · · am ∈ T+(A) a
word of length deg(w) = m ≥ n + 2, n > 0. Then
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Ln
ρ�(κ)(w) =

∑

π∈NCirr
n+1(m)

1,m∈π1

(−1)nm(π)κ(wπ1)ρ(wπ\π1),
(28)

with the notation ρ(wπ\π1) = ρ(wπ2) · · · ρ(wπn+1).

Proof Using Proposition 4 with γn+1 = κ and γ1 = · · · = γn = ρ, we get that

Ln
ρ�(κ)(w) =

∑

π ′∈Mirr
n+1(m)

1,m∈π ′
1

(−1)nκ(wπ ′
1
)ρ(wπ ′\π ′

1
).

Recall that every non-crossing partition π ∈ NCirr
n+1(m) can be obtained from m(π)

many different ordered partitions π ′ ∈ Mirr
n+1(m) by forgetting the order of the blocks

in π ′, see (4). Since this procedure does not affects the terms (−1)nκ(wπ ′
1
)ρ(wπ ′\π ′

1
),

we can instead index the summation over NCirr
n+1(m) by simply considering the m(π)

occurrences of partitions π ′ ∈ Mirr
n+1(m) corresponding to π . This gives the desired

formula (28). �
Remark 4 Another verification of this corollary via induction can be given using (2)
in Lemma 1 together with the min–max order on non-crossing partitions mentioned in
Remark 1. Looking at a rooted tree as a poset, the coefficients in (28) count the number
of total order extension of said poset. Looking at these coefficients from the viewpoint
of irreducible non-crossing partitions, they count the number of total orderings of the
blocks.

Recall now the free–monotone cumulant–cumulant relation (19):

κ = W (ρ) = ρ +
∑

n>1

1

(n + 1)! L
n
ρ�(ρ).

Applying identity (28), we get another proof of the

Theorem 2 [3] For a word w = a1 · · · am ∈ T+(A), the multivariate free cumulants
can be expressed in terms of multivariate monotone cumulants by:

κ(w) =
∑

π∈NCirr(n)

(−1)|π |−1

t(π)! ρ(wπ). (29)

In the Boolean case, where β = −W (−ρ), we immediately find by an analogous
computation

β(w) =
∑

π∈NCirr(n)

1

t(π)!ρ(wπ). (30)
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5 Monotone–Free Cumulant–Cumulant Relations

We adapt now constructions by Murua on rooted trees [28] to non-crossing partitions.
The definition of quasi-monotone partitions below is also inspired independently by
similar constructions on quasi-posets and finite topologies related to quasi-symmetric
functions [21].

A quasi-order is a binary relationwhich is reflexive and transitive but not necessarily
antisymmetric. A quasi-order � is total if two elements are always comparable, i.e.,
if x � y or y � x for all x, y. Two elements x, y are equivalent (x ≡ y) for � if and
only if x � y and y � x . We write x ≺ y if x � y and x, y are not equivalent. Total
orders on a finite set X of cardinality n are in bijection with bijections from X to [n]:
given a total order, choose the unique increasing bijection from X to [n]. Similarly,
total quasi-orders on X are in bijection with surjective maps from X to [k] with k ≤ n
equal to the number of equivalence classes in X .

Definition 2 A quasi-monotone partition of [n] is a non-crossing partition π equipped
with a total quasi-order � of its blocks compatible with the natural partial order ≤ in
the sense that πi < π j implies πi ≺ π j . A quasi-monotone partition is of rank k if
� has k equivalence classes. The set of quasi-monotone partitions of [n] of rank k is
denoted QMk(n).

Remark 5 Choosing such a quasi-order amounts to decorating the blockswith elements
of the set [k] with k ≤ n in such a way that πi < π j implies f (πi ) < f (π j ), where f
stands for the (surjective) decoration map. The case where f (πi ) ≤ f (π j ) is required
in the previous condition was considered in [3] under the name of non-decreasing
k-coloured non-crossing partitions.

Let now π be an irreducible non-crossing partition. We will write ωk(π) for the
number of these total quasi-orders on π , that is the number of quasi-monotone parti-
tions of rank k associatedwith the irreducible non-crossing partitionπ . As this number
depends only on the order ≤, it depends only on the tree associated with π and we
write ωk(t(π)) := ωk(π) (see [28, Def. 12]).

We also define, following [28, Thm. 10], for π an irreducible non-crossing partition
of [n],

ω(π) = ω(t(π)) :=
n∑

k=1

(−1)k+1

k
ωk(π). (31)

For a general non-crossing partition π ′ of [n], we extend the previous definition by
taking ω(π ′) to be the product of the evaluations of ω on the irreducible components
of π ′. That is, π ′ decomposes as a union of irreducible non-crossing partitions, π ′ =
ρ1 ∪ ρ2 ∪ · · · ∪ ρl and we set:

ω(π ′) :=
l∏

i=1

ω(ρi ). (32)

The first few terms of ω are listed below
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ω( ) = 1, ω( ) = −1

2
, ω( ) = 1

3
, ω( ) = −1

2
+ 2

3
= 1

6
.

The following table can be found in [11].

t

ω 1 − 1
2

1
3

1
6 − 1

6 − 1
4 − 1

12 0 − 1
30

(33)

t

ω 1
30

1
30

1
60

1
5

1
20

3
20

1
10

−1
60

(34)

These numbers appear in the analysis of the continuousBaker–Campbell–Hausdorff
problem (to compute the logarithm of a flow) in a Hall basis as well as in the context
of backward error analysis in numerical analysis [7,10,11,28]. Their appearance is
therefore in some sense natural in the context of the pre-Lie approach to cumulant–
cumulant relations.

Remark 6 Regarding the last statement, we remark that non-crossing partitions are
counted by Catalan numbers. They are in bijection with planar binary trees. That the
cumulant–cumulant relations between monotone and free (Boolean) cumulants are
encoded in terms of the pre-LieMagnus expansion (18) is a result of the corresponding
moment–cumulant relations being described in terms of fixed point equations in non-
commutative shuffle algebra [17,18]. These fixed point equations are, algebraically
speaking, analogous to the integral equation associated with a linear matrix-valued
initial value problem and its exponential solution in terms of the classical Magnus
expansion. See e.g. [20] for more details.

Saying this, we note that understanding to what extend the use of the pre-Lie Mag-
nus expansion can be effective in—numerical—computations in non-commutative
probability theory has to be further studied, in the context of concrete examples.

Before entering cumulant–cumulant relations, let us introduce a last construction.
Let π = {π1, . . . , πk} be a non-crossing partition of [n] and V = {πi1 , . . . , πil } a
subset of π including all the minimal elements of π for the ≤-order. We write Sub(π)

for the set of all such subsets. The set of the |V | = l blocks belonging to V defines a
non-crossing partition of the set

⋃l
j=1 πi j that we denote ν(V ).

We call V -connected components of π the sets Sπi j
, j ≤ l, of blocks in π :

Sπi j
= {πm | m ≤ k, πm ≥ πi j and � j ′ ≤ l with πm ≥ πi j ′ > πi j }.

The sets of blocks Sπi j
are disjoint and define a partition of the set π . By construction,

each set Sπi j
is an irreducible non-crossing partition of the set of integers X j :=

123



750 Foundations of Computational Mathematics (2022) 22:733–755

⋃
πi∈Sπi j

πi with minimal element πi j . We set:

V (π) := {Sπi1
, . . . , Sπil

}, (35)

that we view as a family of irreducible non-crossing partitions with associated forest

f (V (π)) = t(Sπi1
) · · · t(Sπil

).

Notice, for further use, that there is a bijection between the pairs (π, V ) as above
and the pairs (ν, (αi )1≤i≤l)), where ν = (ν1, . . . , νl) is a non-crossing partition and
αi is an irreducible non-crossing partition of νi . The bijection is given by

ν j := X j , α j := Sπi j
(36)

with inverse

π :=
l⊔

j=1

α j , V = {α1
1, . . . , α

1
l }, (37)

where α1
j stands for the minimal block in α j .

Remark 7 For those readers familiar with the min–max order, the previous analysis
can be described as follows. Given π = {π1, . . . , πk}, take a non-crossing partition
σ = {σ1, . . . , σl} such that σ � π . By definition of the min–max order, for every
σ j ∈ σ there is a πi j ∈ π such that min(σ j ),max(σ j ) ∈ πi j , this gives the set V =
{πi1, . . . , πil } (which is also the partition ν(V )). Note that V clearly contains all outer
blocks ofπ . Then V (π) = {π |σ1, . . . , π |σ1} is the set of irreducible partitions obtained
when restricting π to the blocks of σ (this means that X j = ρ j and Si j = π |σ j ).

The following Proposition translates [28, Eq. (41)] in the language of non-crossing
partitions.

Proposition 5 Given an irreducible non-crossing partition π = {π1, . . . , πn} with
minimal element π1, we write π ′ for the non-crossing partition {π2, . . . , πn} and
have:

ω(π) =
∑

V∈Sub(π ′)

B|V |
f (ν(V ))!ω(V (π ′)). (38)

In this proposition, f (ν(V )) is the forest associated with non-crossing partition
ν(V ). Recall that the factorial of a forest f is the product of the tree factorials ti !,
where ti runs over the trees in the forest f .

We address now the central result of this work, i.e., a closed formula formultivariate
monotone–free cumulant–cumulant relation. In (18), we saw that they are related in
terms of the pre-Lie Magnus expansion

ρ = �′(κ). (39)
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The objective is to express the evaluation of this formula on a word in terms of a
sum over irreducible non-crossing partitions. An analogous approach applies to the
monotone–Boolean relation, ρ = −�′(−β).

Using the definition of the pre-Lie Magnus expansion (14), relation (39) expands
into

ρ =
∑

n≥0

Bn

n! L
n
�′(κ)�(κ). (40)

Computing up to order five gives the following monotone–free cumulant–cumulant
relations

ρ(a1) = �′(κ)(a1) = κ(a1) (41)

ρ(a1a2) = �′(κ)(a1a2) = κ(a1a2) (42)

ρ(a1a2a3) = �′(κ)(a1a2a3) = κ(a1a2a3) + 1

2
κ(a1a3)κ(a2) (43)

ρ(a1a2a3a4) = �′(κ)(a1a2a3a4) = κ(a1a2a3a4) + 1

2
κ(a1a4)κ(a2a3)

+ 1

2
κ(a1a3a4)κ(a2) + 1

2
κ(a1a2a4)κ(a3) + 1

6
κ(a1a4)κ(a2)κ(a3)

(44)

ρ(a1a2a3a4a5) = �′(κ)(a1a2a3a4a5)

= κ(a1a2a3a4a5) + 1

2
κ(a1a5)κ(a2a3a4) + 1

2
κ(a1a4a5)κ(a2a3)

+ 1

2
κ(a1a2a5)κ(a3a4) + 1

2
κ(a1a3a4a5)κ(a2) + 1

2
κ(a1a2a4a5)κ(a3)

+ 1

2
κ(a1a2a3a5)κ(a4) + 1

6
κ(a1a4a5)κ(a2)κ(a3)

+ 1

6
κ(a1a3a5)κ(a2)κ(a4) + 1

6
κ(a1a2a5)κ(a3)κ(a4)

+ 1

6
κ(a1a5)κ(a2a3)κ(a4) + 1

6
κ(a1a5)κ(a3a4)κ(a2)

+ 1

3
κ(a1a5)κ(a2a4)κ(a3). (45)

In the computations (41)–(45), the coefficients happen to depend only on the nesting
structure of the corresponding irreducible non-crossing partitions. In fact, one notices
that they identify with the corresponding values of ω given by the first four entries
in table (33). These example computations motivate Theorem 3. Indeed, one verifies
that using the entries in tables (33) (and (34)) in formula (46) gives the expressions
(41)–(45).

Remark 8 Observe that the effective degree (Lemma 2) determines the number of
terms that are necessary to compute the cumulant–cumulant relation up to order n in
(40).
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Proposition 1 together with Eq. (28) is central to the proof of Theorem 3, which
addresses the problem of expressing multivariate monotone cumulants in terms of free
(and Boolean) cumulants.

Theorem 3 For a word w = a1 · · · am ∈ T+(A)

ρ(w) =
∑

π∈NCirr(m)

(−1)|π |−1ω(t(π))
∏

πi∈π

κ(wπi ). (46)

Proof Notice first that the effective degree #(Ln
�(κ)�(κ)) is at least n + 1. The proof

is done by induction on the length of w. The base case is given in Eq. (41). For the
inductive step, observe that by (28) in Corollary 3, we find for a wordw = a1 · · · am ∈
T+(A):

ρ(w) = �′(κ)(w) =
m−1∑

n≥0

Bn

n! L
n
�′(κ)�(κ)(w)

(28)=
m−1∑

n=0

Bn

n! (−1)n
∑

π∈NCirr
n+1(m)

1,m∈π1

m(π)κ(wπ1)

n+1∏

i=2

ρ(wπi ).

By Eq. (4), we have thatm(π) = |t(π)|!
t(π)! . Also, |t(π)| = n+1 for any π ∈ NCirr

n+1(m).
If π ′ = π\{π1} is the non-crossing partition obtained by removing π1 from π , by
inductive hypothesis we obtain

ρ(w) =
m−1∑

n=0

Bn

n! (−1)n
∑

π∈NCirr
n+1(m)

1,m∈π1

(n + 1)!
(n + 1) f (π ′)!κ(wπ1 )

n+1∏

i=2

ρ(wπi )

=
m−1∑

n=0

(−1)n
∑

π∈NCirr
n+1(m)

1,m∈π1

B|π ′ |
f (π ′)!κ(wπ1 )

n+1∏

i=2

⎛

⎝
∑

σi∈NCirr(πi )

(−1)|σi |−1ω(t(σi ))κ(wσi )

⎞

⎠ ,

Now we apply the bijection in (37): we set the pair (μ′, V ) associated with
(π ′, (σi )2≤i≤|π ′|+1):

μ′ =
|π ′|+1⊔

i=2

σi , V = {σ 1
2 , . . . , σ 1

|π ′|+1}.

We also define μ = {π1}  μ which is an element of NCirr(m). Now observe the
following:

– By definition |V | = |π ′|.
–

∑|π ′|+1
i=1 (|σi | − 1) = ∑|π ′|+1

i=1 |σi | − |π ′| = |μ′| − |π ′| = |μ| − 1 − |π ′|.
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– ν(V ) is the non-crossing partition of
⋃|π ′|+1

i=2 σ 1
i whose blocks are the elements

of V . Recall that σi is an irreducible partition of πi for 2 ≤ i ≤ |π ′|. Hence, the
nesting structure of the blocks of π ′ is encoded in the nesting structure of the outer
block of each π ′. Hence f (π ′) = f (ν(V )).

– It is easy to see that the set of partitions in Eq. (35) is given by Sσ 1
i

= σi for any

2 ≤ i ≤ |π ′| + 1, and hence, V (μ′) = {σ2, . . . , σ|π ′|+1}. Hence, ω(V (μ′)) =
∏|π ′|+1

i=2 ω(t(σi )).

Finally, since the above sum is indexed by all the pairs (π ′, (σi )2≤i≤|π ′|+1), we can
write it as a sum over all the pairs (μ′, V ) as follows:

ρ(w) =
∑

μ∈NCirr(m)

∑

V∈Sub(μ′)
(−1)|V | B|V |

f (ν(V ))!κ(wπ1)κ(wμ′)(−1)|μ′|−|V |ω(V (μ′))

=
∑

μ∈NCirr(m)

(−1)|μ|−1κ(wμ)
∑

V∈Sub(μ′)

B|V |
f (ν(V ))!ω(V (μ′))

so that, by Proposition 5

ρ(w) =
∑

μ∈NCirr(m)

(−1)|μ|−1ω(t(μ))κ(wμ),

and the statement follows. �
Remark 9 The univariate monotone–free andmonotone–Boolean cumulant–cumulant
relations have appeared in reference [3, Thm. 1.2]. Both the conceptual approach
as well as the proof given there are different from ours. Indeed, the authors of [3]
use the combinatorics of a formula that relates the notion of strongly matricial free
independence with monotone independence (due to Lencewski, see cited works in
[3]) and that the nth monotone cumulant is given by the coefficient of k in the general
polynomial ϕ((x1 + · · · + xk)n), where the xi are monotone independent identically
distributed elements [22]. It is then shown in [3] that this coefficient is given in terms
of free cumulants rn times the linear coefficient of Pπ (k), where Pπ (k) counts the
number of non-decreasing k-colourings of the non-crossing partition π (see Remark
5.2).
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