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Abstract
The question of whether there exists an approximation procedure to compute the res-
onances of any Helmholtz resonator, regardless of its particular shape, is addressed.
A positive answer is given, and it is shown that all that one has to assume is that
the resonator chamber is bounded and that its boundary is C2. The proof is construc-
tive, providing a universal algorithm which only needs to access the values of the
characteristic function of the chamber at any requested point.
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1 Introduction

This paper provides an affirmative answer to the following question:
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Does there exist a universal algorithm for computing the resonances of the
Laplacian in R

2\U for any open bounded set U ⊂ R
2?

Any domainU ⊂ R
d gives rise to resonances, i.e., special frequencies that are ‘nearly’

eigenvalues of the Laplacian in R
d\U (with appropriate boundary conditions). The

most famous example is the “sound of the sea” in a seashell: when we hold a seashell
against our ear we hear frequencies that are nearly the eigenvalues of the Laplacian
in the closed cavity with Neumann boundary conditions. This is also known as a
Helmholtz resonator [23]. We therefore refer to U as a “resonator.”

We are interested in computing (Dirichlet) resonances in a way that is independent
of the domain U itself, i.e., U is the input of the problem, and the computation returns
the associated resonances. We work in the plane, i.e., d = 2, but our results can be
adapted to higher dimensions. To our best knowledge, this is the first time this question
is addressed. Furthermore, the proof of existence provides an actual algorithm (that
is, the proof is constructive). We test this algorithm on some standard examples and
compare to known results.

The framework required for this analysis is furnished by the Solvability Complexity
Index (SCI),which is an abstract theory for the classification of the computational com-
plexity of problems that are infinite-dimensional. This framework has been developed
over the last decade by Hansen and collaborators (cf. [6,20]) and draws inspiration
from the seminal result [15] on solving quintic equations via a tower of algorithms.
We therefore emphasize that ours is an abstract result in analysis, not in numerical
analysis.

1.1 Resonances

Let us first definewhatwemean by a resonance. LetU ⊂ R
d be an open set and assume

that ∂U ∈ C2. Let H be the Laplacian in L2(Rd\U ) with homogeneous Dirichlet
boundary conditions on ∂U . Resonances of H can be defined via analytic continuation
of the associated Dirichlet-to-Neumann (DtN) operators. Indeed, we can start from a
characterization of eigenvalues and perform analytic continuation as follows. Denote
the spectral parameter by k2 (with the branch cut of the complex square root running
along the positive real line). Then, k2 is an eigenvalue of H if and only if there exists
a function u ∈ L2(Rd\U ), such that (−� − k2)u = 0 in R

d\U and u = 0 on ∂U .
The existence of such a u is equivalent to the following. Let R > 0 be such that
U ⊂ BR (the open ball of radius R around 0). Denote by Minner(k) and Mouter(k),
respectively, the inner and outer DtNmaps on ∂ BR associated with−�−k2. Minner(k)

and Mouter(k) can be shown to be analytic operator-valued functions of k in the upper
half plane C

+ := {z ∈ C | Im(z) > 0}. If there exists an eigenfunction u of H with
eigenvalue k2, then

u|∂ BR ∈ ker(Minner(k)+ Mouter(k)).

Conversely, if φ ∈ ker(Minner(k) + Mouter(k)), then there exist solutions uinner and
uouter of (−�− k2)u = 0 in BR\U and R

d\B R , respectively, such that uinner|∂ BR =
uouter|∂ BR = φ and ∂νuinner|∂ BR = −∂νuouter|∂ BR (note that the normal vector ν is
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always taken to point to the exterior of the domain considered, that is, away from 0
for BR and toward 0 for R

d\BR). Hence, the function

u :=
{

uinner on BR\U
uouter on R

d\B R
(1.1)

is in H2(Rd\U ). This shows that a complex number k ∈ C
+ in the upper half plane

is a (square root of an) eigenvalue if and only if ker(Minner(k) + Mouter(k)) �= ∅. A
resonance can now be defined as follows.

Definition 1.1 (Resonance) Let us use the same symbols Minner(·), Mouter(·) to denote
the meromorphic continuations of the DtN maps to all of C. A number k ∈ C

− :=
{z ∈ C | Im(z) < 0} in the lower half plane is called a resonance of H , if

ker(Minner(k)+ Mouter(k)) �= {0}. (1.2)

Remark 1.2 Resonances in the sense of Definition 1.1 are well-defined. Indeed,
Mouter(k) is well defined for all k ∈ C and the only poles of Minner(k) are equal
to the Dirichlet eigenvalues of BR\U . But these all lie on the real axis, which is
excluded in Definition 1.1.

Moreover, an argument similar to the one surrounding Eq. (1.1) shows that the
nontriviality of ker(Minner(k)+Mouter(k)) is independent of the value of R as long as
U ⊂ BR .

Remark 1.3 In two dimensions, the DtN maps Minner, Mouter can actually be analyti-
cally continued to the logarithmic cover ofC, rather than justC− (cf. [17, Sec. 3.1.4]).
However, since the vast majority of the literature is concerned with resonances near
the real axis, we decided to simplify our presentation by considering only resonances
inC

−. A strategy for dealing with the general case has been outlined in [8, Sec. 4.2.2].

We show that resonances can be computed as the limit of a sequence of approx-
imations, each of which can be computed precisely using finitely many arithmetic
operations and accessing finitely many values of the characteristic function χU of
U . The proof is constructive: we define an algorithm and prove its convergence. We
emphasize that this single algorithm is valid for any open U ⊂ R

2 with ∂U ∈ C2. We
implement this algorithm and compare its output to known results.

1.2 The Solvability Complexity Index

The Solvability Complexity Index (SCI) addresses questions which are at the nexus
of pure and applied mathematics, as well as computer science:

How do we compute objects that are “infinite” in nature if we can only handle a
finite amount of information and perform finitely many mathematical operations?
Indeed, what do we even mean by “computing” such an object?
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These broad topics are addressed in the sequence of papers [6,7,20]. Let us summarize
themain definitions and discuss how these relate to our problem of finding resonances:

Definition 1.4 (Computational problem) A computational problem is a quadruple
(�,�,	,M), where

(i) � is a set, called the primary set,
(ii) � is a set of complex-valued functions on �, called the evaluation set,
(iii) M is a metric space,
(iv) 	 : �→M is a map, called the problem function.

Definition 1.5 (Arithmetic algorithm) Let (�,�,	,M) be a computational problem.
An arithmetic algorithm is a map 
 : �→M such that for each T ∈ � there exists
a finite subset �
(T ) ⊂ � such that

(i) the action of 
 on T depends only on { f (T )} f ∈�
(T ),
(ii) for every S ∈ �with f (T ) = f (S) for all f ∈ �
(T ) one has�
(S) = �
(T ),
(iii) the action of 
 on T consists of performing only finitely many arithmetic opera-

tions on { f (T )} f ∈�
(T ).

Definition 1.6 (Tower of arithmetic algorithms) Let (�,�,	,M) be a computational
problem. A tower of algorithms of height k for 	 is a family 
n1,n2,...,nk : �→M
of arithmetic algorithms such that for all T ∈ �

	(T ) = lim
nk→∞

· · · lim
n1→∞


n1,n2,...,nk (T ).

Definition 1.7 (SCI) A computational problem (�,�,	,M) is said to have a Solv-
ability Complexity Index (SCI) of k ∈ N if k is the smallest integer for which there
exists a tower of algorithms of height k for 	. If a computational problem has solv-
ability complexity index k, we write

SCI(�,�,	,M) = k.

If there exists a family {
n}n∈N of arithmetic algorithms and N1 ∈ N such that 	 =

N1 , then we define SCI(�,�,	,M) = 0.

Remark 1.8 One can even delve deeper into the SCI classification by considering the
so-called SCI Hierarchy which was introduced in [6]. In a nutshell, this hierarchy
considers not only how many limits a particular computational problem requires, but
also whether one can establish error bounds. For the interested reader, we discuss this
hierarchy (and why we are unable to obtain error bounds) in Appendix 1.

1.3 Setting of the Problem andMain Result

Let us describe the elements comprising our computational problem, followed by our
main theorem.
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(i) The primary set �. We define

� =
{
∅ �= U ⊂ R

2 open |U is bounded and ∂U ∈ C2
}

.

(ii) The evaluation set �. The evaluation set, which describes the data at our algo-
rithm’s disposal, is comprised of (all points in) the set U :

� := {U �→ χU (x) | x ∈ R
2}. (1.3)

Providing the values of the characteristic functions U �→ χU (x) in � means that
for every x ∈ R

2 we can test whether x is included in U or not.

Remark 1.9 Our computations will involve not only the values χU (x), but also the
values of the Bessel and Hankel functions Jn(z), H (1)

n (z), z ∈ C, n ∈ N as well as the
exponentials einθ , θ ∈ [0, 2π), n ∈ N. These do not have to be included as part of the
evaluation set because they can be approximated to arbitrary precision with explicit
error bounds. In order to keep the presentation clear and concise, we will assume
the values Jn(z), H (1)

n (z), einθ are known and not track these explicit errors in our
estimates.

(iii) The metric space M. M is the space cl(C) of all closed subsets of C equipped
with the Attouch-Wets metric, generated by the following distance function:

Definition 1.10 (Attouch-Wets distance) Let A, B be non-empty closed sets in C. The
Attouch-Wets distance between them is defined as

dAW(A, B) =
∞∑

n=1
2−n min

{
1 , sup
|x |<n
|dist(x, A)− dist(x, B)|

}
.

Note that if A, B ⊂ C are bounded, then dAW is equivalent to the Hausdorff distance
dH. Furthermore, it can be shown (cf. [5, Ch. 3]) that

dH(An ∩ B, A ∩ B)→ 0 for all B ⊂ C compact ⇒ dAW(An, A)→ 0. (1.4)

(iv) The problem function 	. The problem function 	(U ) = Res(U ) is the map that
associates with each U ∈ � the set of resonances (as defined in Definition 1.1)
of H .

With these at hand, we can state our main theorem:

Theorem 1.11 There exists a family of arithmetic algorithms {
n}n∈N such that

n(U ) → Res(U ) as n → +∞ for any U ∈ �, where the convergence is in the
sense of the Attouch-Wets metric. That is, SCI(�,�,Res(·), (cl(C), dAW)) = 1.

Remark 1.12 (The set Res(U ) is not empty) We note that whenever U is not empty,
the set Res(U ) too is not empty, although the resonances can lie far below the real
axis, depending on the geometry of U . We refer to Zworski [38] for an exposition on
this matter.
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Remark 1.13 (Neumann boundary conditions) In Sect. 5.2, we outline a strategy for
adapting this result to Neumann boundary conditions and implement a numerical
model consisting of four circular holes: this is relevant for understanding resonances
caused by oil-drilling platforms [18], for instance.

Theorem 1.11 is proved by identifying an operator of the form IdL2 +K(k), where
K(k) is in some Schatten classC p , with the property that ker(IdL2+K(k)) �= {0} if and
only if ker(Minner(k) + Mouter(k)) �= {0}. The former is equivalent to det�p�(IdL2 +
K(k)) = 0, where det�p� denotes the �p�-perturbation determinant. This determinant
is approximated via a finite element procedure on BR\U with explicit error bounds. A
thresholding procedure then yields an approximation for the zero set of det�p�(IdL2 +
K(k)).

1.4 Discussion

The study of cavity resonances is much older than the study of quantum mechanical
resonances. The foundational work is generally ascribed to Helmholtz [23], who in
the 1850s had constructed devices which were designed to identify special frequencies
from within a sound wave. These Helmholtz resonators consisted of a small aperture
at one end to admit sound, and a larger opening at the other to emit it.

The operator theoretic foundations of the study of cavity resonances are usually
based on various approaches to the theory of scattering by obstacles. A good early
treatment of both quantum mechanical and obstacle scattering may be found in the
seminal text of Newton [30]. The book of Lax and Phillips [25] is perhaps the most
famous work on scattering theory in a semi-abstract setting, though the whole subject
was extensively researched in the Soviet school by mathematicians such as Faddeev
and Pavlov, see, e.g., [19], and also the monograph of Yafaev [37].

There is extensivework in the appliedmathematics literature too, devoted to estimat-
ing resonances in various asymptotic regimes, either geometrical or semiclassical: see
[21,22,28,34,36] as starting points. Assemblies of resonators are proposed as cloaking
devices in a variety of contexts, see, e.g., [1]; the mathematical treatment of acoustic
waveguides is very similar to that of optical or quantumwaveguides. A very up-to-date
overview of the current state of the art in the subject may be found in [17].

Numerical approaches use a variety of techniques of which complex scaling (redis-
covered as ‘perfectlymatched layers’), boundary integral techniques and combinations
of these with special finite element methods are the most common.

Separately, recent years have seen a flurry of activity in research revolving around
the SCI concept. In addition to [6,7,20]which have beenmentioned above,we point out
[12,13] where some of the theory of spectral computations has been further developed;
[32] where this has been applied to certain classes of unbounded operators; [4] where
solutions of PDEs were considered; and [14] where the authors show how to perform
certain spectral computations with error bounds.

Organization of the paper In Sect. 2, we analyze the inner and outer DtN maps
and obtain a new expression equivalent to (1.2) in which Minner(k) + Mouter(k) is
replaced by an expression of the form IdL2+ perturbation. Section 3 is dedicated to the
construction of a finite element method for the approximation of this perturbation, and

123



Foundations of Computational Mathematics (2022) 22:697–731 703

U

BR−1

BR

Fig. 1 A sketch of the resonator U

in Sect. 4 the algorithm for approximating Res(U ) is defined and shown to converge.
Finally, in Sect. 5 we provide some numerical examples.

2 Formulas for the Inner and Outer DtNMaps

As a first step, we prove a weaker version of Theorem 1.11. We show that under the
additional assumption that the diameter of the resonator is known a priori, there exists
an algorithm that computes the set of resonances in one limit. To this end, we define

�R :=
{
∅ �= U ⊂ R

2 open | ∂U ∈ C2, U ⊂ BR−1
}

where Bρ is the open ball about the origin of radius ρ > 0. Then, one has:

Theorem 2.1 There exists a family of arithmetic algorithms {
R
n }n∈N depending on R,

such that
R
n (U )→ Res(U )as n→+∞ for any U ∈ �R, where the convergence is in

the sense of the Attouch-Wets metric. That is, SCI(�R,�,Res(·), (cl(C), dAW)) = 1.

Henceforth, the radius R > 1 will remain fixed until stated otherwise. In order
to prove Theorem 2.1, we start by studying the DtN maps. The goal is to recast the
formula (1.2) into a form that can be implemented numerically. We introduce the
orthonormal basis on ∂ BR

en(θ) := einθ

√
2π R

, θ ∈ [0, 2π), n ∈ Z,

which will be used frequently throughout the paper.
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2.1 The Outer Map

The outer DtN map acts on a function φ ∈ H1(∂ BR) as

Mouter(k)φ = ∂νu,

where u ∈ L2(R2\B R) solves the problem

{
(−�− k2)u = 0 in R

2\B R

u = φ on ∂ BR .

In the orthonormal basis {en}n∈Z, the map Mouter(k) has the explicit representation

Mouter(k) = diag

(
−k

H (1)
|n| ′(k R)

H (1)
|n| (k R)

, n ∈ Z

)
,

where H (1)
ν denote the Hankel functions of the first kind. Using well-known identities

for Bessel functions (cf. [26]), this can be rewritten as

Mouter(k) = diag

(
|n|
R
− k

H (1)
|n|−1(k R)

H (1)
|n| (k R)

, n ∈ Z

)
. (2.1)

Moreover, it can be seen that
H (1)
|n|−1(z)

H (1)
|n| (z)

∼ z
2|n| as |n| → +∞, so that thematrix elements

of Mouter grow linearly in |n|.

2.2 The Inner Map

We first show that the inner DtN map can be decomposed into a part that does not
depend on U and a bounded part:

Lemma 2.2 Let Minner,0 denote the free inner DtN map, i.e., the one with U = ∅. Then,
there exists a meromorphic operator-valued function C � k �→ K(k) with values in
the bounded operators on L2(∂ BR) such that

Minner(k) = Minner,0(k)+K(k). (2.2)

Proof For the inner DtN map, we first isolate the contribution of the resonator using
the following calculation. Let φ ∈ H1(∂ BR). Then, Minner(k)φ = ∂νu|∂ BR , where u
solves ⎧⎪⎨

⎪⎩
(−�− k2)u = 0 in BR\U ,

u = φ on ∂ BR,

u = 0 on ∂U .

(2.3)
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Define a new map S(k) : H1(∂ BR)→ H
3
2 (BR) by S(k)φ = w, where w solves

{
(−�− k2)w = 0 in BR,

w = φ on ∂ BR .

That is, S(k)φ is the harmonic extension of φ into BR . The regularity properties of
S(k) follow from [29, Th. 4.21]. Next choose any smooth radial function ρ satisfying

{
ρ ≡ 1 in a neighborhood of ∂ BR

ρ ≡ 0 in a neighborhood of BR−1
(2.4)

(e.g., ρ(r) can be chosen as a piecewise polynomial in r ; then, the values ρ(r) can be
computed from r in finitely many algebraic steps) and introduce the function

v := u − ρS(k)φ

on BR\U . Then, by construction we have

⎧⎨
⎩

(−�− k2)v = (2∇ρ · ∇ +�ρ)S(k)φ in BR\U ,

v = 0 on ∂ BR,

v = 0 on ∂U .

In operator terms, this means that

v = (HD − k2)−1Tρ S(k)φ, (2.5)

where HD denotes the Laplacian on L2(BR\U )with homogeneousDirichlet boundary
condition on ∂(BR\U ) and where we have denoted

Tρ := 2∇ρ · ∇ +�ρ.

Substituting the new representation for v into u = ρS(k)φ+v, we immediately obtain

Minner(k)φ = ∂νu|∂ BR

= ∂ν(ρS(k)φ)+ ∂ν(HD − k2)−1Tρ S(k)φ

= ∂νρ︸︷︷︸
=0

S(k)φ + ρ︸︷︷︸
=1

∂ν S(k)φ + ∂ν(HD − k2)−1Tρ S(k)φ

= Minner,0(k)φ + ∂ν(HD − k2)−1Tρ S(k)φ. (2.6)

Let us next study the operator ∂ν(HD − k2)−1Tρ S(k) appearing in the last term in
(2.6). The harmonic extension operator S(k) extends to a bounded operator

S(k) : L2(∂ BR)→ H
1
2 (BR)
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(cf. [29, Th. 6.12]). Moreover, we have that Tρ : H
1
2 (BR)→ H− 1

2 (BR) is bounded.
Under the assumption that ∂U is C2, we may conclude from elliptic regularity that

(HD − k2)−1Tρ S(k) : L2(∂ BR)→ H
3
2 (BR)

as a bounded operator. Finally, by the trace theorem, the normal derivative operator

∂ν is continuous from H
3
2 (BR) to L2(∂ BR), so we conclude that

∂ν(HD − k2)−1Tρ S(k) : L2(∂ BR)→ L2(∂ BR)

is bounded. This completes the proof. ��
The decomposition in Lemma 2.2 allows us to reduce the study of Minner to that of
Minner,0. Next, we note that Minner,0 can in fact be represented as a diagonal operator
in the basis {en}n∈Z in a very similar manner to Mouter. Indeed, one has

Minner,0(k) = diag

(
k

J ′|n|(k R)

J|n|(k R)
, n ∈ Z

)

= diag

( |n|
R
− k

J|n|+1(k R)

J|n|(k R)
, n ∈ Z

)
, (2.7)

where Jν denote the Bessel functions of the first kind. It can be seen that
J|n|+1(z)

J|n|(z) ∼ z
2|n|

as |n| → +∞, so that the matrix elements of Minner,0 grow linearly in |n|.

2.3 Approximation Procedure

From Eqs. (2.1), (2.2) and (2.7), we have

Minner(k)+ Mouter(k) = 2

R
N +H(k)+ J (k)+K(k),

where

J (k) = diag

(
−k

J|n|+1(k R)

J|n|(k R)
, n ∈ Z

)

H(k) = diag

(
−k

H (1)
|n|−1(k R)

H (1)
|n| (k R)

, n ∈ Z

)

N = diag
(|n| , n ∈ Z

)
K(k) = ∂ν(HD − k2)−1(2∇ρ · ∇ +�ρ)S(k).

Note that H,J ,K are bounded and analytic in k. In order to determine whether
ker(Minner + Mouter) �= {0}, we want to transform Minner + Mouter into an operator
of the form I + (compact). To this end, we introduce the bijective operator N :=

123



Foundations of Computational Mathematics (2022) 22:697–731 707

N + P0 = diag(..., 3, 2, 1, 1, 1, 2, 3, ...), where P0 denotes the projection onto the
zeroth component. This new notation brings Minner + Mouter into the form

Minner(k)+ Mouter(k)

= 2

R
N +H(k)+ J (k)+K(k)− 2

R
P0

= 2

R
N 1

2

(
I + R

2
N− 1

2
(
H(k)+ J (k)+K(k)

)
N− 1

2 −N− 1
2 P0N−

1
2

)
N 1

2

= 2

R
N 1

2

(
I + R

2
N− 1

2
(
H(k)+ J (k)+K(k)

)
N− 1

2 − P0

)
N 1

2 .

Because N 1
2 = diag(...,

√
3,
√
2, 1, 1, 1,

√
2,
√
3, ...) is bijective from its domain to

L2(∂ BR), we have

ker(Minner + Mouter) = {0}
⇔ ker

(
I + R

2
N− 1

2
(
H(k)+ J (k)+K(k)

)
N− 1

2 − P0

)
= {0}.

Now, observe that for all p > 2, R
2N
− 1

2
(
H(k) + J (k) + K(k)

)
N− 1

2 − P0 ∈ C p,

the p-Schatten class (because H,J ,K are bounded and N− 1
2 is in C p). Therefore,

its perturbation determinant det�p� is defined, where �·� denotes the ceiling function
(cf. [16, Sec. XI.9]). Our task is reduced to finding the zeros k ∈ C

− of the analytic
function

det�p�
(

I + R

2
N− 1

2
(
H(k)+ J (k)+K(k)

)
N− 1

2 − P0

)
.

In order to approximate this determinant by something computable, we first prove that
a square truncation of the operator matrix will converge in Schatten norm.

Lemma 2.3 Let k ∈ C
− and for n ∈ N let Pn : L2(∂ BR)→ span{e−n, . . . en} be the

orthogonal projection. Then, there exists a constant C > 0 depending only on the set
U such that∥∥∥N− 1

2 (H+ J +K)N− 1
2 − PnN−

1
2 (H+ J +K)N− 1

2 Pn

∥∥∥
C p
≤ Cn−

1
2+ 1

p .

Proof The proof is given by a direct calculation:

∥∥∥N− 1
2 (H+ J +K)N− 1

2 − PnN−
1
2 (H+ J +K)N− 1

2 Pn

∥∥∥
C p

≤
∥∥∥(I − Pn)N− 1

2 (H+ J +K)N− 1
2

∥∥∥
C p

+
∥∥∥PnN−

1
2 (H+ J +K)N− 1

2 (I − Pn)

∥∥∥
C p
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≤ 2‖H+ J +K‖L(L2(∂ BR))

∥∥∥(I − Pn)N− 1
2

∥∥∥
C p

≤ C‖H+ J +K‖L(L2(∂ BR))n
1− p

2
p .

��
Our problem is therefore reduced to computing thematrix elements of the truncated

operator PnN−
1
2 (H+J+K)N− 1

2 Pn−P0. This is done by performing a finite element
procedure on BR\U . This is the objective of the next section.

Remark 2.4 We remind the reader that the algorithm is assumed to have access to the

values of Bessel and Hankel functions (recall (1.3)) so that the values of PnN−
1
2 (H+

J )N− 1
2 Pn − P0 can be computed in finitely arithmetic operations. Hence, we only

need to compute PnN−
1
2KN− 1

2 Pn .

3 Matrix Elements of the Inner DtNMap

The goal of this section is to compute the matrix elements

Kαβ :=
∫

∂ BR

eβK(k)eα dσ

where {eα}α∈Z is the orthonormal basis of L2(∂ BR) defined in the previous section and
where we recall that K(k) = ∂ν(HD − k2)−1Tρ S(k). This is done by converting the
integral on the boundary ∂ BR to an integral on the interior, using Green’s theorem. To
this end, we extend the basis functions to the interior, by defining (in polar coordinates)

Eβ(r , θ) := ρ(r)eβ(θ),

where ρ was defined in (2.4), and denote

vα := (HD − k2)−1Tρ S(k)eα

fα := Tρ S(k)eα (3.1)

so that vα = (HD − k2)−1 fα . Now note that by Green’s theorem

Kαβ =
∫

∂ BR

eβ∂νvα dσ

=
∫

BR\U
Eβ�vα dx +

∫
BR\U

∇Eβ · ∇vα dx

=
∫

BR\U
Eβ(− fα − k2vα) dx +

∫
BR\U

∇Eβ · ∇vα dx
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=
∫

BR\U
∇Eβ · ∇vα dx − k2

∫
BR\U

Eβvα dx −
∫

BR\U
Eβ fα dx . (3.2)

Next, note that the integrand in the third term on the right-hand side is explicitly given.
Indeed, one can easily see that

S(k)eα(r , θ) = Jα(kr)

Jα(k R)

eiαθ

√
2π R

, (3.3)

where Jα are the Bessel functions of the first kind. Hence, the last integral in (3.2)
can be explicitly approximated by quadrature, with a known bound for the error. In
order to compute the first and second terms in the right hand side of (3.2), we need to
approximate the function vα , which is the solution of the boundary value problem

{
(−�− k2)vα = (2∇ρ · ∇ +�ρ)S(k)eα in BR\U ,

vα = 0 on ∂(BR\U ).
(3.4)

Note again that the right-hand side of this equation is explicitly given in terms of (3.3).

3.1 Finite Element Approximation of v˛

For notational convenience, we write

O := BR\U .

In the current subsection, we prove:

Proposition 3.1 Let vα be the solution of (3.4). For small discretization parameter
h > 0, there exists a piecewise linear function vh

α which is computable from a finite
subset of (1.3) in finitely many algebraic steps, which satisfies the error estimate

‖vα − vh
α‖H1(O) ≤ Ch

1
3 ‖ fα‖H1(O),

where C is independent of h and α, and where fα is defined in (3.1).

The reader should bear in mind that all constants obtained in our estimates will
actually depend on k. However, these constants are uniformly bounded, as long as
k2 varies in a compact set separated from the spectrum of HD (recall that HD is the
Laplacian on L2(O) with homogeneous Dirichlet boundary conditions on ∂O). Note
that, since σ(HD) is strictly positive and discrete, any compact subset of C

− has this
property.

Let h > 0 be our discretization parameter. We start by defining what we mean by
the neighbors of a grid point j ∈ hZ

2.

Definition 3.2 Let j = ( j1, j2) ∈ hZ
2. The set of neighbors of j is the set of all grid

points contained in the cell [ j1 − h, j1 + 2h] × [ j2 − h, j2 + 2h] (cf. Fig. 2).
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Fig. 2 Illustration of (3.5). The point j is included in Lh , if and only if all the solid black points are in
O = BR\U . These solid black points are the neighbors of j

Remark 3.3 The apparent asymmetry in the definition above is merely due to the fact
that a point j defines a cell that is “northeast” of it, i.e., [ j1, j1 + h] × [ j2, j2 + h].

Define a uniform rectangular grid by

Lh :=
{

j ∈ hZ
2 ∩ BR

∣∣ all neighbors of j are contained in O
}

and note that Lh can be completely constructed from the knowledge of χU ( j), j ∈
hZ

2∩BR in finitelymany steps. Next, define the open polygonal domainOh generated
by Lh as follows.

Oh := int

( ⋃
j∈Lh

[0, h]2 + j

)
.

Note that as soon as h < 1
max(curv(∂O))

= 1
max(curv(∂U ))

one will haveOh ⊂ O and for
all x ∈ ∂Oh (cf. Fig. 2)

√
3

2
h ≤ dist(x, ∂O) ≤ 3

√
2h. (3.5)

Finally, we choose the obvious triangulation Th for Oh obtained by splitting each
square [0, h]2 + j along its diagonal and denote by W h the corresponding P1 finite
element space with zero boundary conditions, i.e.,

W h :=
{
w ∈ H1(O)

∣∣w ≡ 0 in O\Oh and w piecewise linear in Oh w.r.t. Th

}
Next, we will construct a finite element approximation for the solution of problem
(3.4) starting from Céa’s classical lemma:
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Lemma 3.4 (Céa’s Lemma, [11, Th. 2.4.1]) Let Wh ⊂ H1
0 (O) be a family of sub-

spaces and assume the bilinear form a : H1
0 (O)× H1

0 (O)→ C and linear functional
f ∈ H−1(O) satisfy the hypotheses of the Lax–Milgram theorem. Let v be the solution
of the problem

a(v,w) = 〈 f , w〉 for allw ∈ H1
0 (O)

and vh be the solution of

a(vh, wh) = 〈 f , wh〉 for allwh ∈Wh . (3.6)

Then, there exists C > 0 s.t.

‖v − vh‖H1(O) ≤ C inf
wh∈Wh

‖v − wh‖H1(O) (3.7)

for all h > 0.

We apply this lemma to our present situation by choosing

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Wh = W h

a(v,w) = ∫
O ∇v · ∇w dx

f = fα
v = vα as in (3.4)

vh
α = the solution of (3.6).

Remark 3.5 Note that the finite element approximation vh
α is not computable from

the information in (1.3) in finitely many algebraic operations. An additional step of
numerical integration is necessary to achieve this. We will revisit this issue at the end
of the section.

Lemma 3.4 tells us that in order to estimate the approximation error ‖vα−vh
α‖H1(O)

it is enough to estimate the projection error infwh∈W h ‖vα −wh‖H1(O). For the latter,
we have

‖vα − wh‖H1(O) ≤ ‖vα‖H1(O\Oh) + ‖vα − wh‖H1(Oh)

for any wh ∈ W h . To estimate the right hand side, we further decompose Oh into a
boundary layer and an interior part. More precisely, we write

Oh = Oint
h ∪Obdry

h ,

where Obdry
h is the union of all cells having nonempty intersection with ∂Oh , and

Oint
h = Oh\Obdry

h (cf. Fig. 3).
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Fig. 3 Left: Sketch ofO = BR\U ,Oh andObdry
h . Right: Sketch of the chosen triangulation

Hence, for any wh ∈ W h we have

‖vα − wh‖H1(O) ≤ ‖vα − wh‖H1(O\Oint
h ) + ‖vα − wh‖H1(Oint

h ) (3.8)

Next, estimate the all three terms on the r.h.s. of (3.8) individually. To estimate the
two last terms, we will choose a particular “test function” uh ∈ W h . We first recall a
classical interpolation estimate for linear finite elements [11, Th. 3.1.6]:

Theorem 3.6 (Classical interpolation estimate) Let K be an element of Th, and let �h
K

denote the linear interpolation operator on H2(K ), i.e., �h
K w is the affine function

with (�h
K w)( j) = w( j) for all corners j of K . Then, there exists C > 0 (independent

of h, w, K ) such that

‖w −�h
K w‖H1(K ) ≤ Ch‖D2w‖L2(K ),

‖w −�h
K w‖L2(K ) ≤ Ch2‖D2w‖L2(K ).

Now, we choose an explicit function uh ∈ W h as follows.

• For each finite element K ⊂ Oint
h , let uh |K = �h

K (vα) be the linear interpolation
of vα , i.e., uh( j) = vα( j) for all nodes j ∈ ∂K ∩ Lh .
• For boundary elements K ⊂ Obdry

h , we set

uh(i) = 0, for boundary nodes i,

uh( j) = vα( j), for interior nodes j .

Here a boundary node is any i ∈ Lh ∩ ∂Oh . Note that testing whether a node is
a boundary node can be done in finitely many steps, because boundary nodes are
precisely those nodes whose neighbors are not all contained in O.

This defines a continuous, piecewise linear function in W h . We have the following
error estimates.
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Lemma 3.7 (Third term in (3.8)) One has the interior error estimate

‖vα − uh‖H1(Oint
h ) ≤ Ch‖vα‖H2(Oint

h ).

Proof This follows immediately from Theorem 3.6. ��
Lemma 3.8 (First term in (3.8)) For any q ∈ (2,∞), there exists C > 0 such that the
boundary layer error estimate

‖vα − uh‖H1(O\Oint
h ) ≤ Ch

1
2− 1

q ‖vα‖H2(O).

holds.

Proof We begin with ‖vα − uh‖L2(O\Oint
h ). Let x ∈ O\Oint

h and note that similarly to

eq. (3.5) there exists y ∈ ∂O with |x − y| ≤ 4
√
2h. By Morrey’s inequality (cf. (28)

in the proof of [10, Th. 9.12]), this implies

|vα(x)| = |vα(x)− vα(y)|
≤ C |x − y|‖vα‖H2(O\Oint

h )

≤ Ch‖vα‖H2(O\Oint
h ), (3.9)

Moreover, we note that by the definition of uh , one has ‖uh‖L∞(O\Oint
h ) ≤

‖vα‖L∞(O\Oint
h ). These facts allow us to estimate

‖vα − uh‖L2(O\Oint
h ) ≤ ‖vα‖L2(O\Oint

h ) + ‖uh‖L2(O\Oint
h )

≤ |O\Oint
h |

1
2
(‖vα‖L∞(O\Oint

h ) + ‖uh‖L∞(O\Oint
h )

)
≤ Ch

1
2 ‖vα‖L∞(O\Oint

h )

≤ Ch
3
2 ‖vα‖H2(O\Oint

h ) (3.10)

where we have used (3.9) in the last line.
Turning to the gradient, a similar estimate is obtained as follows. By definition of

uh , one has

|∇uh(x)| ≤
{
0 for x ∈ O\Oh
C
h ‖vα‖L∞(K ) for x ∈ K ⊂ Obdry

h

In particular, for every K ⊂ Obdry
h one has

‖∇uh‖L2(K ) ≤ C‖vα‖L∞(K )

≤ Ch‖vα‖H2(K ) by (3.9). (3.11)
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Thus, using the fact that H1(O) ↪→ Lq(O) for all 2 < q <∞, we obtain

1
2‖∇vα − ∇uh‖2

L2(O\Oint
h )

≤ ‖∇vα‖2L2(O\Oint
h )
+ ‖∇uh‖2

L2(O\Oint
h )

= ‖∇vα‖2L2(O\Oint
h )
+ ‖∇uh‖2

L2(Obdry
h )

= ‖∇vα‖2L2(O\Oint
h )
+

∑
K⊂Obdry

h

‖∇uh‖2L2(K )

≤ |O\Oint
h |1−

2
q ‖∇vα‖2Lq (O\Oint

h )
+ Ch2

∑
K⊂Obdry

h

‖vα‖2H2(K )

≤ Ch1− 2
q ‖∇vα‖2H1(O)

+ Ch2‖vα‖2
H2(Obdry

h )

≤ Ch1− 2
q ‖vα‖2H2(O)

for all 2 < q <∞, where (3.11) and the Sobolev embedding H1(O) ↪→ Lq(O)were
used in the fourth line. Hence, the gradient estimate becomes

‖∇vα − ∇uh‖L2(O\Oint
h ) ≤ Ch

1
2− 1

q ‖vα‖H2(O) (3.12)

Combining estimates (3.10) and (3.12) completes the proof. ��
Lemmas 3.7 and 3.8 (choosing q = 6, for definiteness), together with (3.7) and

(3.8), finally yield the estimate

‖vα − vh
α‖H1(O) ≤ C inf

wh∈W h
‖vα − wh‖H1(O)

≤ C‖vα − uh‖H1(O)

≤ C
[
‖vα − uh‖H1(O\Oint

h ) + ‖vα − uh‖H1(Oint
h )

]
≤ C

[
h

1
3 ‖vα‖H2(O) + h‖vα‖H2(Oint

h )

]
≤ Ch

1
3 ‖vα‖H2(O)

(for h small enough). Finally, by elliptic regularity, we obtain the estimate

‖vα − vh
α‖H1(O) ≤ Ch

1
3 ‖ fα‖L2(O) (3.13)

where we recall that fα was defined in (3.1).

Remark 3.9 (Numerical integration) As we noted in Remark 3.5, the approximate
solution vh

α is not computable from a finite subset of (1.3) in finitely many steps.
However, the classical theory of finite elements shows that numerical integration does
not change the error estimate (3.13) (see, e.g., [11, Sec. 4.1]).
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This concludes the proof of Proposition 3.1.

3.2 Matrix Elements, Revisited

Going back to (3.2) (and taking into account (3.3)), in order to compute the matrix
elements Kαβ , we have to approximate the integrals

I1 :=
∫
O

Eβ vα dx,

I2 :=
∫
O
∇Eβ · ∇vα dx,

I3 :=
∫
O

Eβ fα dx . (3.14)

This will be a simple consequence of Proposition 3.1 and Theorem 3.6. Let�h denote
the linear interpolation operator w.r.t. the triangulation Th , i.e., �hu( j) = u( j) for all
j ∈ Lh and �hu|K is an affine function for all elements K .

Proposition 3.10 We have∣∣∣∣I1 −
∫
O

�h Eβvh
α dx

∣∣∣∣ ≤ Ch
1
3 β2‖ fα‖L2(O), (3.15)∣∣∣∣I2 −

∫
O

�h∇Eβ · ∇vh
α dx

∣∣∣∣ ≤ Ch
1
3 β2‖ fα‖L2(O), (3.16)∣∣∣∣I3 −

∫
O

�h Eβ �h fα dx

∣∣∣∣ ≤ Ch2β2‖ fα‖H2(O). (3.17)

Proof We begin with (3.15) and assume w.l.o.g. h < 1. Constants independent of
h, α, β will be denoted C and their value may change from line to line. By the triangle
and Hölder inequalities, we have∣∣∣∣I1 −

∫
O

�h Eβvh
α dx

∣∣∣∣
≤ ‖Eβ‖L2‖vα − vh

α‖L2 + ‖vh
α‖L2‖Eβ −�h Eβ‖L2

≤ Ch
1
3 ‖Eβ‖L2‖ fα‖L2 + Ch2‖Eβ‖H2

(‖vα‖L2 + ‖vh
α − vα‖L2

)
≤ Ch

1
3 ‖Eβ‖L2‖ fα‖L2 + Ch2‖Eβ‖H2

(‖ fα‖L2 + h
1
3 ‖ fα‖L2

)
≤ Ch

1
3 ‖Eβ‖H2‖ fα‖L2

≤ Ch
1
3 β2‖ fα‖L2 ,

where we have used Proposition 3.1 and Theorem 3.6 in the second line, and Propo-
sition 3.1 and elliptic regularity in the third line. The estimate ‖Eβ‖H2 ≤ Cβ2 used
in the last line is evident from the definition of Eβ . We omit the calculations leading
to (3.16) and (3.17), since they are entirely analogous. ��
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Remark 3.11 We note that (by a straightforward calculation in polar coordinates) the
integral (3.14) vanishes unless α = β. In fact, one has∫
O

Eβ fα dx

= 1

R Jα(k R)
δαβ

∫ R

R−1
ρ(r)

[
2ρ′(r)(kr Jα−1(kr)− α Jα(kr))+ r�ρ(r)Jα(kr)

]
dr ,

where δαβ denotes the Kronecker symbol. This one-dimensional integral can easily
be approximated by a Riemann sum. While this fact is irrelevant to our theoretical
treatment, it may improve performance and precision of numerical implementations.

Let us now go back to (3.2). Prop 3.10 allows us to define an approximate n × n
matrix Kh by

(Kh)αβ :=
∫
O

(�h∇Eβ) · ∇vh
α dx − k2

∫
O

(�h Eβ)vh
α dx −

∫
O

(�h Eβ)(�h fα) dx,

(3.18)

whose matrix elements satisfy the error estimate

|Kαβ − (Kh)αβ | ≤ C(k)β2
(

h
1
3 ‖ fα‖L2(O) + h2‖ fα‖H2(O)

)
. (3.19)

The norms on the right hand side can be estimated by explicit calculation. One has

‖ fα‖H1(O) ≤ C |α|
‖ fα‖H2(O) ≤ C |α|3

Plugging these bounds into (3.19), we finally arrive at

|Kαβ − (Kh)αβ | ≤ C(k)
(

h
1
3 β2|α| + h2β2|α|3

)
. (3.20)

We summarize these results in the following

Theorem 3.12 For any n ∈ N, one has the operator norm error estimate1

‖PnKPn −Kh‖L(H) ≤ C(k)(h
1
3 n3 + h2n5),

where C(k) is independent of n, h and bounded for k in a compact set disjoint from
the real line.

Proof This follows from the generalized Young inequality:

‖(K −Kh)u‖L2

1 We are abusing notation here, by identifying Kh with Kh ⊕ 0span{e1,...,en }⊥ .
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≤ max

{
sup
|α|≤n

n∑
β=−n

|Kαβ − (Kh)αβ | , sup
|β|≤n

n∑
α=−n

|Kαβ − (Kh)αβ |
}
· ‖u‖L2 .

Since |Kαβ − (Kh)αβ | ≤ C(h
1
3 n3 + h2n5), by (3.20), this immediately implies the

assertion. ��
Remark 3.13 We emphasize that all terms on the right hand side of (3.18) can be
computed from the data provided in (1.3) in finitely many steps. Indeed, the mass and
stiffness matrices m, s of the P1 finite element method can be computed exactly and
satisfy

∫
O

φψ dx =
∑

i, j∈Lh

φ(i)mi jψ( j) (3.21)

∫
O
∇φ · ∇ψ dx =

∑
i, j∈Lh

φ(i)si jψ( j) (3.22)

for all φ,ψ ∈ W h .

4 The Algorithm

4.1 Proof of Theorem 2.1

From Theorem 3.12 (by choosing h ∼ n−11) and Lemma 2.3, we obtain a computable
approximation Kh(n) such that

∥∥∥N− 1
2 (H+ J +K)N− 1

2 − PnN−
1
2 (H+ J +Kh(n))N−

1
2 Pn

∥∥∥
C p
≤ Cn−

1
2+ 1

p .

(4.1)

Using the Lipschitz continuity of perturbation determinants (cf. [33, Th. 6.5]), we
conclude

Lemma 4.1 Let k ∈ C
− and define AR

n (k) := R
2 PnN−

1
2
(
H(k) + J (k) +

Kh(n)(k)
)
N− 1

2 Pn − P0. Then, there exists C > 0, which is independent of k for
k in a compact subset of C

−, such that

∣∣∣∣det�p�
(

I + R

2
N− 1

2
(
H(k)+ J (k)+K(k)

)
N− 1

2 − P0

)

− det�p�
(

I + AR
n (k)

)∣∣∣ ≤ Cn−
1
2+ 1
�p� .

Fix a non-empty compact set Q inC
− and define the grid Gn = 1

n (Z+iZ). Because
det�p�(· · · ) is analytic in k, it can only have finitely many zeros in Q and all are of
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finite order. That is, near a zero k0 one has∣∣∣∣det�p�
(

I + R

2
N− 1

2
(
H(k)+ J (k)+K(k)

)
N− 1

2 − P0

)∣∣∣∣ ≤ C̃ |k − k0|ν (4.2)

for some C̃, ν > 0 and for all k in a sufficiently small neighborhood of k0. Next, we
define the R and Q dependent algorithm by


Q,R
n : �R → cl(C)


Q,R
n (U ) :=

{
k ∈ Gn ∩ Q

∣∣∣∣
∣∣∣det�p� (I + AR

n (k)
)∣∣∣ ≤ 1

log(n)

}
. (4.3)

Theorem 4.2 For any U ∈ �R, we have that 

Q,R
n (U )→ Res(U ) ∩ Q in Hausdorff

distance as n →+∞.

Remark 4.3 (The Hausdorff distance for empty sets) We note that since Q is arbitrary,
it may very well be the case that Res(U )∩ Q = ∅, and then, one needs to be cautious
when using the Hausdorff distance. In this case, we employ the following conventions
for the Hausdorff distance:

dH(A,∅) = +∞, if A �= ∅,
dH(∅,∅) = 0.

Proof of Theorem 4.2 First we treat the case Res(U ) ∩ Q �= ∅. Let us write AR(k) :=
R
2N
− 1

2
(
H(k)+J (k)+K(k)

)
N− 1

2−P0 for notational convenience. The proof consists

of two steps. First, we prove that any convergent sequence kn ∈ 

Q,R
n (U ) necessarily

converges to a zero of det�p�(I + AR), and second we prove that for every zero k0
of det�p�(I + AR) there exists a sequence kn ∈ 


Q,R
n (U ) converging to k0. Together,

these two facts imply Hausdorff convergence.
Let us begin with step 1. Assume that kn ∈ 


Q,R
n (U ) converges to some k̃ ∈ C. By

the definition of 

Q,R
n , we have | det(I + AR

n (kn))| ≤ 1
log(n)

. Hence, by Lemma 4.1
we have that

| det�p�(I + AR(kn))| ≤ 1

log(n)
+ Cn−

1
2+ 1
�p� → 0

as n→+∞. Hence, we have

det�p�(I + AR(k̃)) = lim
n→+∞ det(I + AR(kn)) = 0.

Conversely, suppose that det(I + AR(k0)) = 0 for some k0 ∈ Q. Then, there exists a
sequence kn ∈ Gn ∩ Q such that |k0 − kn| ≤ 1

n . Hence, by (4.2) we have

| det�p�(I + AR(kn))| ≤ C̃
1

nν
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Re z

Im z

Q1Q1 Q2

Q3Q4Q4Q5

Q6

Q7 · · ·· · ·

Fig. 4 Tiling of the lower half plane

and employing Lemma 4.1 again, we obtain

| det�p�(I + AR
n (kn))| ≤ C̃

1

nν
+ Cn−

1
2+ 1
�p� . (4.4)

Clearly, for large enough n, the right-hand side of (4.4) will be less than 1
log(n)

, hence

kn ∈ 

Q,R
n (U ) for n large enough. This completes the proof for the case Res(U )∩Q �=

∅.
If Res(U )∩Q = ∅, then det(I + AR(k0)) is bounded uniformly away from 0 in Q.

Hence, for all n large enough, the condition (4.3) for points to belong to 

Q,R
n (U )will

not be fulfilled and therefore 

Q,R
n (U ) = ∅. Our convention regarding the Hausdorff

distance for empty sets then leads to dH(Res(U ) ∩ Q, 

Q,R
n (U )) = 0 for all n large

enough. ��
It remains to extend our argument from a single compact set Q to the entire complex

plane. This is done via a diagonal-type argument. We choose a tiling of C
−, where we

start with a rectangle Q1 =
{
z ∈ C

− ∣∣ |Re(z)| ≤ 1
2 , | Im(z)+ 3

2 | ≤ 1
2

}
and then add

rectangles in a counterclockwise spiral manner as shown in Fig. 4. Note again that
each individual rectangle Qi is well separated from {k | k2 ∈ σ(HD)} ⊂ R.

Next, we define our algorithm as follows. We let


R
1 (U ) := 


Q1,R
1 (U )


R
2 (U ) := 


Q1,R
2 (U ) ∪ 


Q2,R
2 (U )


R
3 (U ) := 


Q1,R
3 (U ) ∪ 


Q2,R
3 (U ) ∪ 


Q3,R
3 (U )

...


R
n (U ) :=

n⋃
j=1



Q j ,R
n (U ).
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Theorem 4.2 ensures that 
R
n (U )∩ B → Res(U )∩ B as n→+∞ in Hausdorff sense

for each compact subset B of C
−. The proof of Theorem 2.1 now follows from the

characterization of the Attouch-Wets metric appearing in (1.4).

4.2 Proof of Theorem 1.11

It remains to extend the above algorithm from�R to�. In this section, wewill define a
new algorithm, 
n , based on the algorithm 
R

n constructed above. The main difficulty
consists in “locating U” by testing only finitely many points.

The algorithm below uses two radii, R and r . R is used for running 
R
n , while

r is successively increased to search for hidden components of U . The following
pseudocode gives the definition of 
n .

Algorithm 1: Remove R dependence

Let U ∈ � and initialise R = r = 1;
for n ∈ N do

Consider the lattice Ln = n−11Z2 ∩ Br (recall the choice h ∼ n−11 before
eq. (4.1)). For every j ∈ Ln , test whether j ∈ U . For all j ∈ Ln ∩U ,
compute | j |;
if | j | ≤ R − 1 for all j ∈ Ln ∩U, then

define 
n(U ) := 
R
n (U ∩ BR−1), increment r by 1 and proceed to n + 1;

else
increment r by 1, set R := r and repeat the current step;

end
end

This process generates increasing sequences that we denote by Rn and rn and
defines an algorithm 
n : � → cl(C). Note that rn diverges to +∞, because it gets
incremented by at least 1 in every step.

Lemma 4.4 The sequence {Rn}n∈N is eventually constant and if N > 0 is such that
Rn = RN for all n > N, one has U ⊂ BRN−1
Proof The fact that {Rn}n∈N is eventually constant follows immediately from the
boundedness of U and the above pseudocode. Now let N ∈ N be as in the assertion.
Assume for contradiction that U � BRN−1. Then, there exists x ∈ U with |x | >

RN−1, and, sinceU\B RN−1 is open, there exists ε > 0 such that Bε(x) ⊂ U\B RN−1.
But then, as soon as n > N is large enough such that n−11 < ε and rn > |x |, there
would exist j ∈ Ln with j ∈ Bε(x). According to the pseudocode, then, Rn would be
incremented by 1, contradicting the fact that Rn = RN for all n > N . ��

By definition, the output of the algorithm 
n is 

Rn
n (U ∩ BRn−1). Since Rn is

eventually constant, there is N ∈ N such that Rn ≡ RN for all n ≥ N . Hence, we
have

lim
n→+∞
n(U ) = lim

n→+∞
Rn
n (U ∩ BRn−1)

= lim
n→+∞
RN

n (U ∩ BRN−1)
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= lim
n→+∞
RN

n (U )

= Res(U ),

where the second and third lines follow from Lemma 4.4 and the last line follows from
the proof of Theorem 2.1. This completes the proof of Theorem 1.11.

5 Numerical Results

Although the algorithm described in Sects. 3 and 4 was never designed for computa-
tional efficiency, we show in this section that it is possible to obtain surprisingly good
numerical results with a MATLAB implementation which differs only in two minor
respects:

1. The decomposition Minner = Minner,0 + K obtained in Lemma 2.2 introduces
artificial singularities at the spectrum of HD (the Dirichlet Laplacian introduced
in eq. (2.5)), which lead to numerical instabilities. For this reason, rather than
approximating the solution vα of (3.4), we directly implemented a finite element
approximation of the solution u of (2.3). The matrix elements of Minner can then
be calculated via Green’s formula, similar to (3.2).

2. For reasons of performance, instead of using the triangulation procedure outlined
in Section 3.1, we use the meshing tool Distmesh, cf. [31], to triangulate our
domain.

5.1 A Circular Resonator Chamber

The first geometry we consider is that of a circular resonator chamber, connected
to open space by a narrow channel. Figure 5 shows the triangulation of the domain
O = BR\U . The specific parameter values in this example are: outer radius of the
DtN sphere R = 3, outer radius of the resonator chamber router = 2, inner radius of
the resonator chamber rinner = 1.8, width of the opening d = 1.3, meshing parameter
h = 0.1.

Figure 6 shows a logarithmic contour plot of the computed determinant | det(I +
An(k))| in the complex plane for n = 20. For the sake of comparison we included the
Dirichlet eigenvalues of a closed resonator chamber in the image (red dots). One can
see that next to each of the Dirichlet eigenvalues there is zero of the determinant, as
we would expect.

The resonance effects can in fact be seen on the level of the associated PDE. Figure 7
shows the finite element approximation of the solution u of (2.3) with right hand side
φ = eα , once for k far away from a resonance, and once for k near a resonance. As can
be seen, when k is near the resonance the wave penetrates into the chamber, whereas
when k is far from a resonance the solution appears to be nearly 0 inside.

Finally, our results show what happens to the locations of the resonances when the
opening width d is varied. Figure 8 shows the contour plot of | det(I + An(k))| for an
opening width of d = 1.0. One can clearly see that the zeros of det(I + An(k)) move
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d 2rinner

Fig. 5 Example triangulation of a circular Helmholtz resonator used in our implementation
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Fig. 6 Logarithmic contour plot of | det(I + An(k))| for n = 20 and opening width d = 1.3 in a strip below
the real axis. Red dots: Dirichlet eigenvalues of the closed resonator chamber
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Fig. 7 Solution of (2.3) with boundary values φ = eα for α = 5. Left: k = 1.0 (far from resonance), right:
k = 2.049− 0.026i (near second resonance)
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Fig. 8 Top: logarithmic contour plot of | det(I + An(k))| for n = 20 and opening width d = 1.0 in a strip
below the real axis; Bottom left: zoomed in around first resonance; bottom right: zoomed in around second
resonance. Red dots: Dirichlet eigenvalues of the closed resonator chamber

Table 1 Approximate numerical
values of resonances and
eigenvalues corresponding to the
contour plots in Figs. 6 and 8,
respectively

Eigenvalue Resonance
d=1.3 d=1.0

First 1.3360 1.315− 0.002i 1.325− 0.001i

Second 2.1287 2.049− 0.026i 2.089− 0.005i

Third 2.8531 2.738− 0.090i 2.788− 0.023i

The values in the second and third column were obtained as the local
minima of | det(I + An(k))|

closer to the real axis and become narrower, as is expected from the abstract theory
(cf. [24, Ch. 23.3]).

Table 1 summarizes the values of the first three eigenvalues and associated reso-
nances in both cases (that is, with openings d = 1.0 and d = 1.3). One can observe
that when the opening is narrower, the resonances are closer to their eigenvalue coun-
terparts:

Convergence analysis

In order to verify Theorem 1.11 and estimate the practical rate of convergence, we
compute a successive series of approximations for the first resonance for the opening
d = 1.3. Because for large values of n the choices of the meshing parameter made
above (h ∼ n−11) and the threshold 1/ log n are not feasible for implementation, we
demonstrate that even a simpler version of (4.3) exhibits good convergence properties.
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Fig. 9 Left: approximations zn of the first resonance for opening d = 1.3 and n ∈ {5, 10, 20, 40, 80}; right:
plot of the successive error |z2n − zn | for n ∈ {5, 10, 20, 40}

Table 2 Approximations zn of
the first resonance for opening
d = 1.3

n zn

5 1.3186− 0.0019i

10 1.3147− 0.0023i

20 1.3135− 0.0024i

40 1.3131− 0.0025i

80 1.3130− 0.0025i

More precisely, we chose h = n−1 and for n ∈ {5, 10, 20, 40, 80} performed
gradient descent steps until | det(I + An(z))| < 10−7 (note that for all values of n
considered this is much less than 1/ log n). The resulting points zn and their relative
differences are shown in Fig. 9, and their first digits are given in Table 2. A comparison
between the values in Tables 1 and 2 suggests that only the first two digits of the rough
approximations in Table 1 should be trusted (this is in accordance with the lattice
distance in Fig. 6, which was chosen to be 10−3). Finally, the decay of errors in the
right-hand plot of Fig. 2 suggests a convergence rate of approximately n−1.7.

5.2 Four Circular Neumann Holes

In many applications, it is necessary to consider not only Dirichlet, but also Neumann
boundary conditions. An important real-life situation in which this is the case is pre-
sented by resonance effects of water waves caused by submerged objects. A concrete
question which has entailed a vast body of scientific literature is this: Do the pillars
of offshore structures, such as oil drilling platforms, introduce a positive interference
of water waves that could damage the structure itself? At what frequencies are such
positive interferences expected to occur? (cf. [18,27,35].) This section contains a short
study of the latter question, together with some numerical experiments.
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Fig. 10 Triangulation of BR\U for U consisting of four circular Neumann holes

The approach outlined in Sects. 2–4 can be adapted to Neumann boundary condi-
tions on the boundary of the obstacle U , given a set of stronger assumptions. In this
section, we will briefly outline the ideas and present some numerical results.

Let now �R denote the class of all bounded domains U � BR−1 ⊂ R
2 with a C2

boundary. We consider the associated Neumann Laplacian:

H := −�N on L2(R2\U ).

In addition, let us assume that each obstacle U comes with an associated regular
parametrization γU : [aU

1 , bU
1 ] ∪ [aU

2 , bU
2 ] · · · ∪ [aU

nU
, bU

nU
] → R

2 (parametrized by
its arc length) of its boundary. Define

�N := � ∪
{

U �→ γU (x)
∣∣ x ∈

nU⋃
k=1
[aU

k , bU
k ]
}

,

where�was defined in (1.3). Under this additional hypothesis, Sects. 2, 3 and 4 (with
modifications) show that

SCI(�R,�N,Res(·), (cl(C), dAW)) = 1.

Indeed, the discussions in Sects. 2 and 4 remain true with trivial changes for Neumann
conditions on ∂U . The only major difference is in Sect. 3.1, where the finite element
approximation of vα is constructed. A version of Proposition 3.1 in the Neumann case
can be obtained from our new assumptions as follows.

(i) For each U , choose a uniform discretization of the intervals [aU
k , bU

k ]. This
induces an oriented discretization of ∂U via γU .

(ii) Using well known meshing algorithms (e.g., [9, Ch. 5]), construct a fitted mesh
of BR\U based on the boundary discretization from (i).
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Fig. 11 Logarithmic contour plot of | det(I + An(k))| for n = 30 in a strip below the real axis

Table 3 Approximate numerical
values of resonances
corresponding to the contour
plot in Fig. 11

Resonance

First 0.545− 0.123i

Second 2.277− 0.032i

Third 4.495− 0.149i

(iii) Apply [2, Th. 4.1] to obtain the desired FEM error estimate.

We implemented the algorithm thus obtained (with the caveats (a), (b) mentioned at
the beginning of the section) for an obstacle consisting of four circular holes, as shown
in Figure 10.

This geometry had previously been studied in the context of water waves interacting
with a circular array of cylinders [18]. Figure 11 shows the output of our algorithm
for four circular holes of radius 0.6, situated at the corners of a square of edge length
2.

The heat map in Fig. 11 suggests 3 resonances located approximately at the fol-
lowing values (Table 3):

A comparison with [18, Fig. 8] shows good agreement.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A. Details of Implementation

As indicated in Sect. 5, our implementation differs from the theoretical algorithm (4.3).
Here we give some of the technical details. First, we note that the matrix elements of
Minner can be computed using only integrals overO and the solution uα of (2.3) (with
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right hand side eα). Indeed, by Green’s identity one has

〈eβ, Minnereα〉L2(∂ BR) =
∫

∂ BR

eβ∂νuα dS

=
∫
O

Eβ�uα dx +
∫
O
∇Eβ · ∇uα dx

= −k2
∫
O

Eβuα dx +
∫
O
∇Eβ · ∇uα dx .

A finite element approximation of the last line yields

〈eβ, Minnereα〉L2(∂ BR) ≈ −k2
∑

i, j∈Lh

Eβ(i)mi j u
h
α( j)+

∑
i, j∈Lh

Eβ(i)si j u
h
α( j) (5.1)

=
∑

i, j∈Lh

Eβ(i)
(
si j − k2mi j

)
uh

α( j), (5.2)

where m, s denote the mass and stiffness matrices of the FEM scheme (cf. (3.21),
(3.22)) and uh

α denotes the FEM approximation of uα . Then, using the notation from
Sect. 2.3, one has

Minner(k)+ Mouter(k) = 1

R
(N − P0)+H(k)+ Minner(k),

which after some simplifications yields the formula

R

2
N− 1

2 (Minner(k)+ Mouter(k))N− 1
2

= 1

2

(
I − P0 + RN− 1

2 (H(k)+ Minner(k))N− 1
2

)
, (5.3)

whose matrix elements can be computed entirely from the values of the Hankel func-
tions and (5.1). Note that by the theory in Sect. 2 we have Minner = 1

RN + J + K,
so the right-hand side of eq. (5.3) is in fact of the form I + [compact], as needed.
Equation (5.3) suggests the following procedure.
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Algorithm 2: Compute Resonances

Fix number of lattice points n ∈ N;
Fix cutoff threshold ε > 0;
Fix triangulation mesh size h > 0;
Fix matrix size N ∈ N;
Initialize lattice Gn ⊂ C

−;
Generate triangular mesh Oh ;
Initialize set of resonances Res := {};
for k ∈ Gn do

for −N ≤ α, β ≤ N do
Compute FEM approximation uh

α;
Compute (α, β)-matrix element of (5.3) using (5.1);

end
Compute

D :=
∣∣∣ det ( 1

2

(
I − P0 + RN− 1

2 (H(k)+ Minner(k))N− 1
2

)
(2N+1)×(2N+1)

)∣∣∣;
if D < ε then

Res := Res∪{k};
end

end
return Res
The MATLAB implementation of Algorithm 2 which yielded Figs. 6, 7, 8, 9, 10

and 11 is available at https://github.com/frank-roesler/SeashellComp. The code for
the finite element approximation was partially adapted from [3].

The Solvability Complexity Index Hierarchy

Definition 6.1 (The Solvability Complexity Index Hierarchy) The SCI Hierarchy is a
hierarchy {�k}k∈N0 of classes of computational problems (�,�,	,M), where each
�k is defined as the collection of all computational problems satisfying:

(�,�,	,M) ∈ �0 ⇐⇒ SCI(�,�,	,M) = 0,

(�,�,	,M) ∈ �k+1 ⇐⇒ SCI(�,�,	,M) ≤ k, k ∈ N,

with the special class�1 defined as the class of all computational problems in�2 with
a convergence rate:

(�,�,	,M) ∈ �1 ⇐⇒ ∃{
n}n∈N s.t. ∀T ∈ �, d(
n(T ),	(T )) ≤ 2−n .

Hence, we have that �0 ⊂ �1 ⊂ �2 ⊂ · · ·
In some cases, these classes can be further refined to pinpoint precisely how the

convergence of the algorithms occurs. For instance, in the case where the metric space
is the space of all closed subsets of C equipped with the Attouch-Wets metric, one
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Fig. 12 SCI Hierarchy for
k ∈ {1, 2, 3}. The Helmholtz
resonator computational
problem lies in �2 Σk Πk

Δk+1

Δk

could ask whether the approximations 
n1,n2,...,nk (T ) lie in a small neighborhood of
the problem function 	(T ) for every T , or conversely, whether the problem function
	(T ) lies in a small neighborhood of the approximations 
n1,n2,...,nk (T ) for every T .
Letting Bε(A) denote the usual Euclidean ε-neighborhood of a set A in C, the most
basic definition, defining the first level of this hierarchy, is:

Definition 6.2 (The SCI Hierarchy for (cl(C), dAW): �1 and �1) Consider the setup
in Definition 6.1 assuming further that M = (cl(C), dAW). Then we can define the
following subsets of �2:

�1 =
{
(�,�,	,M) ∈ �2 | ∃{
n}n∈N s.t. ∀T ∈ �,


n(T )→ 	(T ) and 
n(T ) ⊂ B2−n (	(T ))
}

�1 =
{
(�,�,	,M) ∈ �2 | ∃{
n}n∈N s.t. ∀T ∈ �,


n(T )→ 	(T ) and 	(T ) ⊂ B2−n (
n(T ))
}
.

It can be shown that �1 = �1 ∩�1.
One can further define higher classes �k and �k in an “intertwining” way, so that

�k,�k ⊂ �k+1 and for k ∈ {1, 2, 3}, �k = �k ∩�k , see Fig. 12. We omit this here,
and refer to [6].

What About Our Computational Problem?

In view of Definitions 6.1 and 6.2, and considering that Theorem 1.11 amounts to
showing that our computational problem lies in�2, one is naturally led to ask whether
this can be improved: Is the computational problem in �1? �1? or perhaps even �1?

To showany such results, onewould have to keep track of all the constants appearing
throughout the proofs and bound them a priori. While this might be possible for most
constants (given certain a priori bounds on the curvature of ∂U ), there is one constant
that we cannot estimate: the constant C̃ appearing in (4.2), which controls the width
of the zeroes of det(I + A). Due to this, at present there is no hope to obtain error
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bounds. However, the question of whether (under suitable additional assumptions) one
can estimate C̃ (and all other constants) is the subject of ongoing research.
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