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Abstract
We derive a new methodology for the construction of high-order integrators for sam-
pling the invariant measure of ergodic stochastic differential equations with dynamics
constrained on a manifold. We obtain the order conditions for sampling the invariant
measure for a class of Runge–Kutta methods applied to the constrained overdamped
Langevin equation. The analysis is valid for arbitrarily high order and relies on an
extension of the exotic aromatic Butcher-series formalism. To illustrate the method-
ology, a method of order two is introduced, and numerical experiments on the sphere,
the torus and the special linear group confirm the theoretical findings.
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1 Introduction

We consider systems of stochastic differential equations (SDEs) in R
d subject to a

smooth scalar constraint and a Stratonovich noise of the form

dX(t) = �M(X(t)) f (X(t))dt + �M(X(t))�(X(t)) ◦ dW (t), X(0) = X0 ∈ M,

(1.1)
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where �M : R
d → R

d×d is the orthogonal projection on the tangent bundle of the
manifold M = {x ∈ R

d , ζ(x) = 0} of codimension q, ζ : R
d → R

q is a given
constraint, f : R

d → R
d is a smooth drift, � : R

d → R
d×d is a smooth diffusion

coefficient, andW is a standard d-dimensional Brownianmotion inR
d on a probability

space equipped with a filtration and fulfilling the usual assumptions. For simplicity of
the analysis, we assume thatM is a compact smooth manifold of codimension q = 1.
The smoothness and compactness of M guarantee in particular the existence and
uniqueness of a solution to (1.1) with bounded moments for all times t > 0.1 In
addition, thanks to the projection operator �M, the solution X(t) lies on M for
all t > 0. In the additive noise case where �(x) = σ Id with σ > 0, Eq. (1.1) can
also be rewritten equivalently with a Lagrange multiplier (see [44, Sect. 3.2.4.1] or
[45, Sect. 3.3]) as:

dX(t) = f (X(t))dt + σdW (t) + g(X(t))dλt , ζ(X(t)) = 0, X(0) = X0 ∈ M,

where g = ∇ζ and λ is an adapted stochastic process determined by the equa-
tion ζ(X) = 0.

A major motivation of model (1.1) appears in computational problems in molec-
ular dynamics with the constrained overdamped Langevin equation (obtained in the
particular case where �(x) = σ Id is a constant homothety),

dX(t) = �M(X(t)) f (X(t))dt + σ�M(X(t)) ◦ dW (t), X(0) = X0 ∈ M,

(1.2)

with σ > 0, f = −∇V and V : R
d → R is a smooth potential. The overdamped

Langevin equation is widely used to model the motion of a set of particles subject
to a potential V in a high-friction regime. The possible constraints can be induced
for example by strong covalent bonds between atoms, or fixed angles in molecules.
Sampling from the constrained overdamped Langevin equation allows to compute the
so-called free energy, which is a key quantity in thermodynamic (see, for instance,
[18,44,45] and references therein). Equations of the form (1.1) appear naturally when
studying conservative SDEs, that is, SDEs possessing an invariant H conserved almost
surely by all realizations of (1.1). The solution of conservative SDEs is subject to the
constraint ζ(X) = 0 with ζ(x) = H(x) − H(X0). Drawing samples on a manifold
also has many applications in statistics (see [10,23] and references therein).

Under regularity conditions on the generator of the SDE and on M, it was shown
in [18,25] that the solution X(t) of the SDE (1.1) is ergodic, that is, there exists a
unique invariant measure dμ∞ onM that has a density ρ∞ with respect to dσM, the
canonical measure onM induced by the Euclidean metric of R

d , such that for all test
functions φ ∈ C∞(Rd , R),

lim
T→∞

1

T

∫ T

0
φ(X(t))dt =

∫
M

φ(x)dμ∞(x) almost surely. (1.3)

1 The extension to manifolds of any codimension q ≥ 1 will be further discussed in Remarks 2.6 and 3.1.
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In the case of the overdampedLangevinEq. (1.2) onM, the process is naturally ergodic

and the invariant measure is given by dμ∞ = ρ∞dσM = 1
Z exp

(
− 2

σ 2 V
)
dσM

with Z = ∫
M exp

(
− 2

σ 2 V
)
dσM. Approximating the quantity

∫
M φ(x)dμ∞(x) is

a computational challenge when the dimension d is high, which is the case in the
context of molecular dynamics where the dimension is proportional to the number
of particles, because a standard quadrature formula becomes prohibitively expensive.
We emphasize that μ∞ is singular with respect to the Lebesgue measure on R

d . In
addition, the integrator samples should remain on the manifold M. Hence, the order
conditions for sampling the invariant measure in the Euclidean context of R

d do not
generalize straightforwardly to the manifold case. The main goal of this article is to
build and analyse high-order one-step integrators for approximating

∫
M φ(x)dμ∞(x)

that lie on the manifold M and that have the form

Xn+1 = 	(Xn, h, ξn), (1.4)

where the ξn are standard independent random vectors and h is the numerical step.
There are different ways to approximate the solution of the SDE problem (1.1).

A strong approximation focuses on approaching the realization of a single trajec-
tory of (1.1) for a given realization of the Wiener process W . A weak approximation
approaches the average of functionals of the solution. We focus here on the approx-
imation for the invariant measure, that is, approaching averages of functionals of
the solution in the stationary state. This convergence is the numerical equivalent
of (1.3). The integrator (1.4) is said to have order p for the invariant measure if
for all φ ∈ C∞(Rd , R), there exists a positive constant C(φ) independent of the initial
condition X0 such that

e(φ, h) ≤ C(φ)h p where e(φ, h) =
∣∣∣∣ lim
N→∞

1

N + 1

N∑
n=0

φ(Xn) −
∫
M

φdμ∞
∣∣∣∣.
(1.5)

We recall that a scheme of weak order r immediately has order p ≥ r for the invariant
measure. For the underdamped and overdamped Langevin dynamics in R

d , the arti-
cles [3,4,9,40,41] proposed multiple schemes of high order for the invariant measure
with low weak order (typically r = 1). We mention in particular the work [3] that
introduced a methodology for the analysis and design of high-order integrators for the
invariant measure. This methodology, which relies on Talay–Tubaro expansions [63],
backward error analysis and modified differential equations for SDEs [1,22,36,37,67],
is generalized in the context of manifolds in the present paper.

A widely used and simple numerical scheme for sampling the invariant measure
distribution on manifolds is the Euler scheme (see [17,42,44,45] for instance). Two
variants exist for the overdamped Langevin Eq. (1.2), both of order one in the weak
sense, or for sampling the invariant measure: the Euler integrator with explicit projec-
tion direction
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Xn+1 = Xn + h f (Xn) + σ
√
hξn + λg(Xn), ζ(Xn+1) = 0, (1.6)

and alternatively the Euler integrator with implicit projection direction

Xn+1 = Xn + h f (Xn) + σ
√
hξn + λg(Xn+1), ζ(Xn+1) = 0. (1.7)

To the best of our knowledge, no high-order numerical integrators for sampling the
invariant measure of the overdamped Langevin equation with constraints (1.2) have
been proposed in the literature. In [46], an order two discretization based on the
RATTLE integrator (see [5,31,58]) is applied to the underdamped Langevin equation,
rather than to the overdamped Langevin dynamic (1.2). The previously described
discretizations can be combined with Metropolis–Hastings rejection procedures [32,
50]. We quote in particular the Markov chain Monte Carlo (MCMC) methods [10,
27,45] and the hybrid Monte Carlo methods [46,65], where the need for a reverse
projection check is shown to be a key step. We also mention the integrators in [47,66]
that are based on an Euler discretization and present new approaches for projecting
on the manifold. The alternative approach of using Metropolis–Hastings rejection
procedure allows to fully remove the bias on the invariant measure. Analogous to
the Euclidean case, this procedure does not make high-order discretizations obsolete
because, in particular, the rejection rate depends on the quality of the discretization and
the dimension of the problem in general, and in the case of stiff problems or problems
in high dimension, it suffers from timestep restrictions. Note also that in the specific
case where M is a Lie group, high-order integrators can be naturally obtained using
splitting methods that are, however, typically limited to weak order two of accuracy
(see [7] for further details in the context of ODEs).

This article proposes new tools for constructing integrators of any high order for
sampling the invariant measure of constrained SDEs of the form (1.1) and relies
on the formalism of trees and Butcher-series. Originally introduced by Hairer and
Wanner in [30], and based on the work of Butcher [13], B-series have proved to
be a powerful standard tool for the numerical analysis of deterministic differential
equations, as presented, for instance, in the textbooks [14,29]. In the last decades,
several works extended B-series to the stochastic context. We mention in particular
Burrage and Burrage [11,12] and Komori et al. [35] who first introduced stochastic
trees and B-series for studying the order conditions of strong convergence of SDEs,
Rößler [53–57] andDebrabant andKværnø [19–21] for the design and analysis of high-
order weak and strong integrators on a finite time interval, [6] for creating schemes
preserving quadratic invariants, and [38], where tree series were applied to a class
of stochastic differential algebraic equations (SDAEs) for the computation of strong
order conditions. Finally,wemention the recentwork [39],which introduced the exotic
aromatic B-series for the computation of order conditions for sampling the invariant
measure of ergodic SDEs in R

d , and that we extend in this paper to the context of
SDEs on manifolds.

This article is organized as follows. Section 2 is devoted to the analysis of the accu-
racy of integrators for sampling the invariant measure on a manifoldM. In Sect. 3, we
apply thismethodology on a class of Runge–Kuttamethods for solving the constrained
overdamped Langevin equation (1.2), to derive arbitrary high-order conditions for the
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invariant measure, with special emphasis on order two conditions, and to introduce
a new order two scheme that uses only a few evaluations of f per step. The detailed
calculations of the order conditions for the invariant measure are done in Sect. 4 with
the help of an extension of the exotic aromatic B-series formalism [39]. We compare
in Sect. 5 the new order two scheme with the Euler scheme (1.7) in numerical exper-
iments on a sphere, a torus and the special linear group SL(m) to confirm its order of
convergence for sampling the invariant measure.

2 High Order Ergodic Approximation on aManifold

In this section, we present a new criterion for building integrators of any order
for the invariant measure by extending the R

d results in [3,22] to the context of
manifolds. We first settle down a few notations and assumptions, before we recall
the standard weak expansions of the exact and numerical solution using the back-
ward Kolmogorov equation. For ζ : R

d → R a smooth map, we denote g = ∇ζ

its gradient, and G(x) = gT (x)g(x) = |g(x)|2 the Gram function related to the
manifold M = {x ∈ R

d , ζ(x) = 0}, where we denote by |x | = (xT x)1/2 the
Euclidean norm in R

d . We assume in the rest of the article that M is a com-
pact and smooth manifold of codimension one embedded in R

d . We suppose in
addition that the Gram function G is strictly positive on M, G(x) ≥ α > 0 for
all x ∈ M. With these notations, the projection �M on the tangent bundle is given
by �M(x) = Id − G(x)−1g(x)g(x)T . We denote L the generator of the SDE (1.1).
It is given, for φ ∈ C∞(Rd , R), by

Lφ=φ′(�M f ) + 1

2

d∑
i=1

φ′((�M�ei )
′(�M�ei )) + 1

2

d∑
i=1

φ′′(�M�ei ,�M�ei ),

(2.1)

where (ei )i=1,...,d is the canonical basis of R
d and, for all vectors a1, …, am ∈ R

d ,
we use the following notation for differentials in R

d ,

φ(m)(a1, . . . , am) =
d∑

i1,...,im=1

∂i1,...,imφ a1i1 . . . amim =
d∑

i1,...,im=1

∂mφ

∂xi1 . . . ∂xim
a1i1 . . . amim .

For the overdamped Langevin equation (1.2), the generator (2.1) reduces to

Lφ = φ′ f − G−1(g, f )φ′g − σ 2

2
G−1 div(g)φ′g + σ 2

2
G−2(g, g′g)φ′g + σ 2

2
φ

− σ 2

2
G−1φ′′(g, g) = σ 2

2
exp

( 2

σ 2 V
)
divM

(
exp

(
− 2

σ 2 V
)
∇Mφ

)
, (2.2)

where∇Mψ := �M∇ψ and divM(H) := div(H)−G−1(g, H ′(g)). The adjointL∗
of the generator (2.1) in L2(dσM) for the SDE (1.1), i.e. the operator that satisfies for
all test functions φ, ψ ∈ C∞(Rd , R),
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∫
M

(Lφ)ψdσM =
∫
M

φ(L∗ψ)dσM,

is given by

L∗φ = − divM(φ f ) + 1

2

d∑
i=1

divM(divM(φ�ei )�ei ).

Remark 2.1 As L is a self-adjoint operator in L2(dμ∞), but not in L2(dσM) in gen-
eral, it could be more natural to perform the analysis in the space L2(dμ∞). However,
as we allow the substages of our numerical integrators to explore the open neighbour-
hood of M in R

d , we shall work in this paper with differential operators that cannot
be rewritten in general with intrinsic derivatives on the manifoldM. In addition, per-
forming directly the integration by parts calculations in L2(dμ∞) with such operators
is not straightforward, and this motivated the choice of L2(dσM) for the analysis. A
similar choice was done in [39] in the context of R

d .

We follow the framework of [25]. In particular, we rely on the construction of
the local orthogonal coordinates. In a neighbourhood NM of the manifold M, there
exists an atlas of local orthogonal coordinate systems (y, z) ∈ (V ⊂ R

d−1)× (−ε, ε)

for ε > 0, with respect to local charts ψ : U ⊂ NM → (V ⊂ R
d−1) × (−ε, ε), such

that if ψ(x) = (y, z), then z = ζ(x). We make the following regularity assumption
on the generator L.

Assumption 2.2 On an open neighbourhood NM of M in R
d , there exists a con-

stant C > 0 such that for all x ∈ NM and (y, z) = ψ(x), for all one-form
field v : TM → R onM of norm one, we have

d−1∑
i, j=1

d∑
k=1

�̃ik(y, z)�̃ jk(y, z)vi (̃x)v j (̃x) ≥ C,

where x̃ ∈ M is such that ψ(̃x) = (y, 0) and, for k = 1, . . . , d, (�̃ik(y, z))i ∈
R
d−1 is defined as the restriction of the vector (�M(̃x)�ik(x))i ∈ R

d to the tangent
space T̃xM of M, rewritten in the local orthogonal coordinate system.

This assumption is a variant in the manifold case of the uniform ellipticity property
of the generatorL in the Euclidean context ofR

d . In addition, Assumption 2.2 is auto-
matically satisfied for the constrained overdamped Langevin equation (1.2) and yields
that the function u(x, t) = E[φ(X(t))|X(0) = x] satisfies the backward Kolmogorov
equation (see [25]):

∂u

∂t
(x, t) = Lu(x, t), u(x, 0) = φ(x), x ∈ NM, t > 0. (2.3)
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We refer to [36,37] for similar results in the context of R
d . The backward Kol-

mogorov equation (2.3) allows us to write the following expansion of u(x, h) =
E[φ(X(h))|X0 = x] for h small enough

u(x, h) = φ(x) +
N∑
j=1

h j

j ! L
jφ(x) + hN+1Rh

N (φ, x), x ∈ NM, (2.4)

where NM is an open neighbourhood of M in R
d and the remainder satis-

fies
∣∣Rh

N (φ, x)
∣∣ ≤ CN (φ) where the constant CN (φ) is independent of h and x .

We now assume the existence and uniqueness of an invariant measure, as well as
an additional regularity property on L, in the spirit of [22, Hypotheses H1-H2] in the
context of R

d .

Assumption 2.3 There exists an open neighbourhood NM of M in R
d and a unique

positive function ρ∞ ∈ C∞(NM, R) satisfying
∫
M ρ∞dσM = 1 and L∗ρ∞ =

0 on NM. Moreover, for all φ ∈ C∞(NM, R) such that
∫
M φdσM = 0, there

exists a unique solution ρ ∈ C∞(NM, R) to the Poisson problem L∗ρ = φ that
satisfies

∫
M ρdσM = 0.

The existence and uniqueness of the invariant measure are in particular satisfied for
the constrained overdamped Langevin equation (1.2) (see [25, Sect. 2.3] for further
details). Assumption 2.3 yields the ergodicity of the process X(t) solution of (1.1)
with the unique invariant measure dμ∞ = ρ∞dσM on M. To proceed further, we
shall assume that the integrator (1.4) is ergodic, that is, there exists a measure dμh

that has a density with respect to dσM such that

lim
N→∞

1

N + 1

N∑
n=0

φ(Xn) =
∫
M

φdμh almost surely. (2.5)

We refer to [48,60–62] in the Euclidean case, and to [25] in the manifold case, and
references therein, for further details on the ergodicity of numerical integrators. In
addition, we suppose that E[φ(X1)|X0 = x], the numerical analog of u(x, h), can be
developed in powers of h as was done, for instance, in [3,63] in the context of R

d .

Assumption 2.4 For all φ ∈ C∞(Rd , R), the numerical integrator (1.4) has a weak
Taylor expansion of the form

E[φ(X1)|X0 = x] = φ(x) +
N∑
j=1

h jA j−1φ(x) + hN+1Rh
N (φ, x), x ∈ NM, (2.6)

for all h assumed small enough, and where NM is an open neighbourhood of M
in R

d and the remainder satisfies
∣∣Rh

N (φ, x)
∣∣ ≤ CN (φ) where the constant CN (φ) is

independent of h and x . The A j ’s, j = 0, 1, 2, . . . are linear differential operators
with coefficients depending smoothly on f , g and their (high order) derivatives (and
depending on the choice of the integrator).
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Under Assumptions 2.2 and 2.4, by comparing the expansions (2.6) and (2.4), the
integrator has at least weak order p if A j−1 = L j/ j ! for j = 1, . . . , p. However,
as observed already in R

d , high order for the invariant measure can be achieved in
spite of a low weak order. This is the purpose of Theorem 2.5 where we present a new
sufficient condition for a scheme to have order r for the invariant measure. This result,
which relies on the powerful tool of backward error analysis for SDEs, is similar to
[3, Thm.3.3] in the context of smooth compact manifolds.

Theorem 2.5 UnderAssumptions2.2,2.3and2.4, if the numerical scheme is consistent
(that is, if A0 = L) and ergodic, and if it satisfies in L2(dσM)

A∗
jρ∞ = 0, j = 1, . . . , r − 1,

then it has order r for the invariant measure and the numerical error (1.5) satisfies,
for h → 0,

e(φ, h) = hr
∫
M

φ(x)ρr (x)dσM(x) + O(hr+1)

= hr
∫ ∞

0

∫
M

u(x, t)A∗
r ρ∞(x)dσM(x)dt + O(hr+1),

where ρr ∈ C∞(NM, R) is the unique solution of the Poisson problem L∗ρr =
−A∗

r ρ∞ in NM that satisfies
∫
M ρrdσM = 0, with NM an open neighbourhood

of M in R
d .

The proof of Theorem 2.5 is detailed in Appendix A for the sake of completeness.
The idea is to write an expansion of the error in the spirit of [63], and to generalize
the analysis in [3,22] on T

d and in [25] to the context of smooth compact manifolds.
Theorem 2.5 states the result for times t → ∞. A bound of the error at finite

time tn = nh is typically given by the following exponential estimate (see [22,25])

∣∣∣∣E[φ(Xn)] −
∫
M

φ(x)dμ∞(x)

∣∣∣∣ ≤ Ke−μtn + Chp,

where the constant μ > 0 is in practice the spectral gap of a certain operator that
depends on the numerical integrator. Reducing the error term Ke−μtn is out of the
scope of this paper, though the recent works [2,24,43] proposed numerical methods
in R

d that improve the rate of convergence at infinity, while sometimes also reducing
the variance.

Remark 2.6 One can consider possible generalizations of Theorem 2.5 in the case
whereM is not compact, or ifM is a manifold of any dimension. We refer to [3] for
the non-compact extension of Theorem 2.5 in the context of R

d .
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3 High-Order Integrators for Constrained Langevin Dynamics

In this section, we propose a new class of Runge–Kutta methods for sampling the
invariantmeasure of Eq. (1.2), and present themethodology for deriving the conditions
of any order for the invariant measure using Theorem 2.5. In particular, we compute
exactly the consistency and order two conditions for the invariant measure as they are
the most relevant for the applications.

3.1 Runge–Kutta Methods for Constrained Overdamped Langevin

When discretizing naively Eq. (1.2), one cannot ensure in general that the integrator
stays onM. It is natural to discretize instead the equivalent formulation with Lagrange
multipliers

dX = f (X)dt + σdW + g(X)dλt , ζ(X) = 0, X(0) = X0 ∈ M.

The class of numerical schemes we obtain is in the spirit of deterministic Runge–Kutta
methods for differential algebraic problems such as the methods SHAKE and RAT-
TLE (see [5,31,58]), introduced in the context of constrained Hamiltonian dynamics,
or the SPARK class of methods for general DAEs (see [34]). Since evaluating f is in
practical applications the most expensive part of the algorithm compared to evaluat-
ing g, we propose high-order integrators that are implicit in g and explicit in f in the
spirit of implicit-explicit (IMEX) integrators (see, e.g., [31]), so that there are only a
few evaluations of f per step. We thus consider the following class of Runge–Kutta
integrators

Yi = Xn + h
s∑

j=1

ai j f (Y j ) + σ
√
hdiξn + λi

s∑
j=1

âi j g(Y j ), i = 1, . . . , s,

ζ(Yi ) = 0 if δi = 1, i = 1, . . . , s,

Xn+1 = Ys, (3.1)

where A = (ai j ), Â = (̂ai j ) ∈ R
s×s and δi = ∑s

j=1 âi j ∈ {0, 1} are the given Runge–
Kutta coefficients, and the ξn ∼ N (0, Id) are independent standard Gaussian random
vectors in R

d . (An alternative with discrete bounded random variables is discussed in
Remark 3.2.) We fix δs = 1 so that Xn+1 ∈ M and we ask that if δi = 0, then âi j = 0
for j = 1, . . . , s (internal stageswithout projection,Yi /∈ M a.s.). Ideally, one aims for
IMEX integrators with a low number of evaluations of f , we hence assume in addition
that Â is a lower triangular matrix and A is a strictly lower triangular matrix (in the
spirit of DIRK methods). We represent the numerical integrators with their associated
Butcher tableau, where b = (as,i )i , b̂ = (̂as,i )i , c = A1 and 1 = (1, . . . , 1)T .

c A δ Â d

bT b̂T
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For instance, the Euler schemes can be written as Runge–Kutta methods of the
form (3.1) with s = 2 and the following Butcher tableaux.

Euler (1.6) :
0 0 0 0 0 0 0
1 1 0 1 1 0 1
1 0 1 0

Euler (1.7) :
0 0 0 0 0 0 0
1 1 0 1 0 1 1
1 0 0 1

Note that the class of methods (3.1) satisfies automatically Assumption 2.4.

Remark 3.1 The class of Runge–Kutta methods (3.1) can be straightforwardly gen-
eralized (as done in [39] in the Euclidean case R

d ) to study partitioned problems
where f = f1 + f2 and, for example, to create IMEX schemes. In order to improve
the order of the method without increasing its cost, one could also apply a postproces-
sor (in the spirit of [64] in R

d ) or use multiple independent noises in (3.1) instead of
only one random variable ξn ∼ N (0, Id). This last extension can increase the number
of conditions butmay also increase the set of solutions.We refer in particular to [19,39]
in the context of R

d , where it is shown for a class of stochastic Runge–Kutta methods
that the order conditions for weak order 3 cannot be satisfied in general, unless we use
at least two independent noises. In addition, if we rewrite the internal stages of (3.1)
as

Yi = Xn + h
s∑

j=1

ai j f (Y j ) + σ
√
hdiξn +

( s∑
j=1

âi j g(Y j )

)
λi ,

where g : R
d → R

d×q and λi ∈ R
q , then the same class of methods is also fit

for solving (1.2) with a multidimensional constraint ζ : R
d → R

q . Note that the
coefficients of the method do not depend on the dimension of the space d or the
codimension q of the manifold. This will be studied in future work.

Remark 3.2 If ξn is a Gaussian random variable, its realizations can be arbitrarily
large, and the existence and uniqueness of the solution of the system (3.1) does not
hold in general. A standard remedy to ensure that the projection on M always exists
for h ≤ h0 small enough is to replace the standard Gaussian random vectors ξ in (3.1)
by bounded discrete random vectors ξ̂ that have the same first moments in the spirit of
[51, Chap.2]. This way, the order of the method is preserved both in the weak sense
and for the invariant measure, and the method is well-posed for all h small enough.
For weak/ergodic order two, one can consider, for instance, the random vectors ξ̂ with
independent components ξ̂i that satisfy

P(̂ξi = 0) = 2

3
and P(̂ξi = ±√

3) = 1

6
, i = 1, . . . , d. (3.2)

The following lemma guarantees the well-posedness of a method of the form (3.1)
with bounded random variables ξ̂n . The result is still true when A and Â are general
matrices, but we consider only the lower triangular case for the sake of brevity. This
result is in the spirit of [31, Chap.VII] for deterministic DAEs.
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Lemma 3.3 For Runge–Kutta methods of the form (3.1) where the ξn are replaced
by bounded random variables ξ̂n, there exists h0 > 0 such that for all h ≤ h0, for
any initial condition Xn ∈ M, there exists a unique solution Xn+1 of (3.1) in a
neighbourhood of Xn. Furthermore, the internal stages satisfy Yi = Xn + O(

√
h)

and λi = O(
√
h) for i = 1, . . . , s.

Proof We proceed by induction on i . We assume that for j < i , the Y j are already
defined and satisfy Y j = Xn + O(

√
h). The result is straightforward if δi = 0. We

thus assume that δi = 1 and prove the existence of a unique solution to the equations
of the internal stage i :

Yi = Xn + h
i−1∑
j=1

ai j f (Y j ) + σ
√
hdi ξ̂n + λi

i∑
j=1

âi j g(Y j ), (3.3)

ζ(Yi ) = 0. (3.4)

Using ζ(Xn) = 0, we rewrite Eq. (3.4) as

ζ(Yi ) − ζ(Xn) =
∫ 1

0
gT (Xn + τ(Yi − Xn))dτ(Yi − Xn) = 0. (3.5)

Inserting (3.3) in (3.5) yields

∫ 1

0
gT (Xn + τ(Yi − Xn))dτ

[
h

i−1∑
j=1

ai j f (Y j ) + σ
√
hdi ξ̂n + λi

i∑
j=1

âi j g(Y j )
]

= 0.

(3.6)

Multiplying both sides of Eq. (3.3) by
∫ 1
0 gT (Xn + τ(Yi − Xn))dτ

( ∑i
j=1 âi j g(Y j )

)
,

and substituting λi in (3.3) with its value from (3.6), we deduce that F(Yi , h) = 0,
where the function F : R

d × R → R
d is given by

F(y, t) =
∫ 1

0
gT (Xn + τ(y − Xn))dτ

[(
t
i−1∑
j=1

ai j f (Y j ) + σ
√
tdi ξ̂n

)

( i−1∑
j=1

âi j g(Y j ) + âi i g(y)
)

+
( i−1∑

j=1

âi j g(Y j ) + âi i g(y)
)(

y − Xn − t
i−1∑
j=1

ai j f (Y j ) − σ
√
tdi ξ̂n

)]
.

As F(Xn, 0) = 0 and the partial differential ∂y F(Xn, 0) = G(Xn)Id is invertible,
the implicit function theorem yields the existence and uniqueness of Yi in a ball of
centre Xn for h ≤ h0 small enough. As ξ̂n is bounded andM is compact, there exists
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a deterministic h0 that works for every initial condition Xn ∈ M. Now that Yi is well
posed, we deduce from the identity F(Yi , h) = 0 that Yi = Xn + O(

√
h) and we

derive from (3.6) that λi is well posed for h small enough and satisfies λi = O(
√
h).

Finally, we observe that (Yi , λi ) is indeed a solution to (3.3) and (3.4). ��
Remark 3.4 In practice, one can solve numerically each internal stage of the set of
equations (3.1) with a fixed point iterations or a Newtonmethod starting from Yi = Xn

and λi = 0. As M is compact, if the ξn are replaced by bounded random variables,
these two methods converge for h ≤ h0 where h0 is small enough and independent of
the initial condition. It is crucial to initialize the Yi in a neighbourhood of Xn as (3.1)
has multiple solutions in general. For example, the Euler scheme (1.7) always has
two solutions if M is a sphere (the two intersections of M and a straight line going
through the centre of M).

Before looking at the consistency and the order conditions of the class of meth-
ods (3.1), we introduce a concise notation for multiplying vectors component-wise.

Definition 3.5 For y, y(1), . . . , y(n) ∈ R
d and m ≥ 0, we define the diamond product

and the diamond power as the vectors in R
d ,

y(1) ˛ . . . ˛ y(n) =
( n∏

k=1

y(k)
i

)
i

and y˛m = (ymi )i .

We present below the detailed calculation of the consistency conditions of the class
of methods (3.1) for the constrained overdamped Langevin equation (1.2). Similar
proofs can be found in [44, Prop. 3.24] for the Euler schemes (1.6) and (1.7), and in
[3,39] for Runge–Kutta methods in R

d .

Proposition 3.6 For a Runge–Kutta method of the form (3.1), the operatorA0 in (2.6)
is given for φ ∈ C∞(Rd , R) by

A0φ = bT1φ′ f − bT1G−1(g, f )φ′g − σ 2

2
d2s G

−1 div(g)φ′g

+ σ 2

2
d2s φ − σ 2

2
d2s G

−1φ′′(g, g)

+ σ 2ds

(
b̂T d − b̂T (δ ˛ d) + 1

2
ds

)
G−2(g, g′g)φ′g

+ σ 2ds
(
b̂T (δ ˛ d) − b̂T d

)
G−1φ′g′g.

In particular, if

bT1 = ds = 1 and b̂T d = b̂T (δ ˛ d), (3.7)

then the method is consistent, that is, A0 = L.
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Proof If we apply one step of amethod of the form (3.1)with the initial condition X0 =
x , then the internal stages Yi satisfy the following expansion

Yi = x + σ
√
hdiξ + hci f (x) + Rh, if δi = 0,

Yi = x + √
h

[
σdiξ + λ1/2,i (x)g(x)

]

+ h
[
ci f (x) + λ1,i (x)g(x) + σλ1/2,i (x)

s∑
j=1

âi j d j g
′(x)ξ

+ λ1/2,i (x)
s∑

j=1

âi jλ1/2, j (x)δ j g
′(x)g(x)

]
+ Rh, if δi = 1,

where the remainder satisfies
∣∣Rh

∣∣ ≤ Ch3/2, and where we used that λi can be
developed in powers of

√
h as λi = √

hλ1/2,i + hλ1,i + . . . in the spirit of [44,
Lemma3.25]. If δi = 1, ζ(Yi ) can also be expanded as

ζ(Yi ) = ζ(x) + √
h

[
σdi (g, ξ) + λ1/2,i G

]

+ h
[
ci (g, f ) + λ1,i G + λ1/2,i

s∑
j=1

âi jλ1/2, jδ j (g, g
′g)

+ σλ1/2,i

s∑
j=1

âi j d j (g, g
′ξ) + 1

2
σ 2d2i (ξ, g′ξ)

+ σλ1/2,i di (g, g
′ξ) + 1

2
λ21/2,i (g, g

′g)
]

+ . . .

where we omitted the dependency in x of G, g, g′ and the λk/2, j ’s for brevity. We
have ζ(Yi ) = ζ(x) = 0 (since x ∈ M), thus by identifying each term of the expansion
with zero, we get

λ1/2,i = −σδi diG
−1(g, ξ),

λ1,i = −δi ciG
−1(g, f ) + σ 2δi

⎛
⎝ s∑

j=1

âi j di d j + d2i

⎞
⎠G−2(g, ξ)(g, g′ξ)

− σ 2δi

⎛
⎝ s∑

j=1

âi jδ j di d j + 1

2
d2i

⎞
⎠G−3(g, ξ)2(g, g′g) − σ 2

2
δi d

2
i G

−1(ξ, g′ξ).

For φ a test function, the operator A0φ satisfies

E[φ(X1)] = E[φ(Ys)] = φ(x) + hA0φ(x) + h2A1φ(x) + · · ·
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By replacing Ys with its expansion in powers of h1/2, and by identifying the first terms,
we deduce that

A0φ = E

[
csφ

′ f − csG
−1(g, f )φ′g − σ 2

2
d2s G

−1(ξ, g′ξ)φ′g

+ σ 2ds (̂b
T d + ds)G

−2(g, ξ)(g, g′ξ)φ′g

− σ 2ds

(
b̂T (δ ˛ d) + 1

2
ds

)
G−3(g, ξ)2(g, g′g)φ′g

+ σ 2

2
d2s φ

′′(ξ, ξ) − σ 2d2s G
−1(g, ξ)φ′′(g, ξ)

+ σ 2

2
d2s G

−2(g, ξ)2φ′′(g, g) + σ 2dsb̂
T (δ ˛ d)G−2(g, ξ)2φ′g′g

− σ 2dsb̂
T dG−1(g, ξ)φ′g′ξ

]
,

where we used that δs = 1 and that all the terms containing an odd number of ξ

vanish since odd moments of ξ are zero. Distributing the expectation on each term
and using cs = bT1 yield the desired expression of A0φ. We deduce the consistency
conditions bT1 = ds = 1 and b̂T d = b̂T (δ ˛ d) in order to get A0 = L. ��
Remark 3.7 The analysis presented in Sect. 3.1 is conducted for the overdamped
Langevin dynamics (1.2). It would be interesting to consider extensions with multi-
plicative noise or a non-gradient vector field f . The calculations would likely become
more involved, and we may get more order conditions (see, for instance, [3, Thm.3.3]
and [39, Remark 5.1 and Sect. 5.5] in the context of R

d , where many additional terms
arise, in particular for the integration by parts calculations). This will be studied in
future work.

3.2 Order Conditions for the Invariant Measure onManifolds

We now derive the methodology for getting the conditions of arbitrary high order
for sampling the invariant measure of the constrained overdamped Langevin equa-
tion (1.2). In particular, the following theorem presents the Runge–Kutta conditions
for order two for the invariant measure onM. Note that the number of conditions does
not depend on the dimension of the space d.

Theorem 3.8 (Runge–Kutta conditions for order two for the invariant measure) We
consider a Runge–Kutta method of the form (3.1) and assume the consistency condi-
tion (3.7). If the method is ergodic and if the following conditions are satisfied, then
the integrator has order two for the invariant measure:

b̂T d = bT d,

bT c = bT (δ ˛ c) = bT d˛2 = bT (δ ˛ d˛2) = 2b̂T d − 1

2
,

b̂T c = b̂T (δ ˛ c) = b̂T d˛2 = b̂T (δ ˛ d˛2) = b̂T d˛3 = b̂T (δ ˛ d˛3) = 2b̂T d − 1

2
,
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b̂T (c ˛ d) = b̂T (δ ˛ c ˛ d),

bT (d ˛ Â((1 − δ) ˛ d))) = 0,

b̂T A((δ − 1) ˛ d)) = b̂T (δ ˛ A((δ − 1) ˛ d))) = (̂bT d)2 − 2b̂T d + 1

2
,

b̂T (d ˛ Âc) = b̂T (d ˛ Âd˛2) = b̂T (d ˛ Â(δ ˛ d˛2)) = 2b̂T (d ˛ Âd) + (̂bT d)2 − 2b̂T d + 1

2
,

b̂T (d˛2 ˛ Âd) = b̂T (d ˛ Âd) + 1

2
(̂bT d)2,

b̂T (c ˛ Â((δ − 1) ˛ d) + b̂T (d ˛ Â((δ − 3 · 1) ˛ d) + b̂T (d ˛ Â(δ ˛ c) = 2(̂bT d)2 − 4b̂T d + 1,

b̂T (d˛2 ˛ Â(δ ˛ d)) + b̂T (d ˛ Â(δ ˛ d)) = 2b̂T (d ˛ Âd) + 3

2
(̂bT d)2 − 2b̂T d + 1

2
,

b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) = 0,

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) = (4 − 2b̂T d )̂bT (d ˛ Âd) + 3(̂bT d)2 − 4b̂T d + 1.

In the particular case where we set δ = 1, the order two conditions reduce to the
following:

(̂bT d)2 − 2b̂T d + 1

2
= 0,

b̂T d = bT d,

bT c = bT d˛2 = b̂T c = b̂T d˛2 = b̂T d˛3 = 2b̂T d − 1

2
,

b̂T (d ˛ Âc) = b̂T (d ˛ Âd˛2) = 2b̂T (d ˛ Âd),

b̂T (d˛2 ˛ Âd) = b̂T (d ˛ Âd) + b̂T d − 1

4
,

b̂T (d ˛ ( Âd)˛2) = (4 − 2b̂T d )̂bT (d ˛ Âd) + 2b̂T d − 1

2
.

For simplicity, we used in Theorem3.8 the notation ˛ ofDefinition 3.5. For instance,
the condition b̂T (d˛2 ˛ Âd) = b̂T (d ˛ Âd) + 1

2 (̂b
T d)2 rewrites into

s∑
i, j=1

b̂i d
2
i âi j d j =

d∑
i, j=1

b̂i di âi j d j + 1

2

( d∑
i=1

b̂i di
)2

.

The order conditions of Theorem3.8 can be obtained from straightforward calculations
with the following methodology. We compute the operator A1 with the same method
used for A0 in Proposition 3.6. It is a differential operator of order four with the
following first terms

A1φ = σ 4

8
2φ − σ 4

4
G−1φ′′(g, g) + σ 4

8
G−2φ(4)(g, g, g, g) + Bφ, (3.8)

where B is a differential operator of order three. We present the complete expan-
sion of A1 in Sect. 4 by using a B-series approach. If we assume that b̂T d = bT d,
then we can integrate by parts to transform

∫
MA1φdμ∞ into an integral of the

form
∫
MA0

1φdμ∞ whereA0
1φ is a differential operator of order one in φ (in the spirit

of [3,39]). On a manifold, the integration by parts is a corollary of the Green theorem
(see, for instance, [59, Chap. II]). As we shall see below, it reveals a crucial tool for

123



664 Foundations of Computational Mathematics (2022) 22:649–695

deriving order conditions for the invariant measure. To perform the calculations in a
systematic manner, a formalization of the integration by parts process with trees and
B-series is presented in Sect. 4.

Lemma 3.9 (Integration by parts on M) If ψ : R
d → R and H : R

d → R
d are

smooth functions, then

∫
M

(∇Mψ, H)dσM = −
∫
M

ψ divM(�MH)dσM,

where∇Mψ := �M∇ψ and divM(H) := div(H)−G−1(g, H ′g). In addition, with
the invariant measure dμ∞ = ρ∞dσM and k ≥ 0, we obtain

∫
M

[
G−kψ ′H − G−(k+1)(g, H)ψ ′g

]
dμ∞

=
∫
M

[
G−(k+1)(g, H ′g)ψ

− (2k + 1)G−(k+2)(g, g′g)(g, H)ψ

− G−k div(H)ψ + 2kG−(k+1)(g, g′H)ψ

+ G−(k+1) div(g)(g, H)ψ + 2

σ 2G
−(k+1)(g, f )(g, H)ψ

− 2

σ 2G
−k( f , H)ψ

]
dμ∞. (3.9)

For example, let us integrate by parts the terms of order four w.r.t. φ of the opera-
torA1φ in Eq. (3.8). Applying identity (3.9) withψ = σ 4

8 φ′(ei ), H = ei and k = 0,
and then summing on i = 1, . . . , d yields

∫
M

[σ 4

8
2φ − σ 4

8
G−1φ′′(g, g)

]
dμ∞ =

∫
M

[
− σ 4

8
G−2(g, g′g)φ′g

+ σ 4

8
G−1 div(g)φ′g + σ 2

4
G−1(g, f )φ′g − σ 2

4
φ′ f

]
dμ∞. (3.10)

We apply again (3.9) with ψ = σ 4

8 φ(3)(g, g, ei ), H = ei and k = 1, and then sum
on i = 1, . . . , d to get

∫
M

[σ 4

8
G−1φ′′(g, g) − σ 4

8
G−2φ(4)(g, g, g, g)

]
dμ∞

=
∫
M

[
− σ 4

4
G−1

∑
i

φ(3)(g, ∂i g, ei) + σ 4

2
G−2φ(3)(g, g, g′g)

− 3σ 4

8
G−3(g, g′g)φ(3)(g, g, g) + σ 4

8
G−2 div(g)φ(3)(g, g, g)

+ σ 2

4
G−2(g, f )φ(3)(g, g, g) − σ 2

4
G−1φ(3)(g, g, f )

]
dμ∞. (3.11)
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Subtracting (3.11) from (3.10) allows to express
∫
MA1φdμ∞ with derivatives of φ

of order strictly less than 4. We iterate this method to obtain
∫
MA1φdμ∞ =∫

MA0
1φdμ∞ where A0

1 is an operator of order one in φ and then find sufficient
conditions such that A0

1 = 0. This implies that A∗
1ρ∞ = 0, and Theorem 2.5 then

gives the order two for the invariantmeasure. The computation ofA0
1 is further detailed

in Sect. 4.
Although constructing methods of high weak order is not the main focus of this

paper, considering the explicit formula forA1 and comparingwithL2/2 (see Sect. 4 for
their detailed expansion in B-series), one immediately obtains the following theorem
for weak order two of accuracy.

Theorem 3.10 (Runge–Kutta conditions for weak order two) We consider a Runge–
Kutta method of the form (3.1) and assume that it satisfies (3.7). If the following
conditions are satisfied, then the integrator has weak order two:

bT d = bT c = bT (δ ˛ c) = bT d˛2 = bT (δ ˛ d˛2) = 1

2
,

b̂T d = b̂T c = b̂T (δ ˛ c) = b̂T d˛2 = b̂T (δ ˛ d˛2) = b̂T d˛3 = b̂T (δ ˛ d˛3) = 1

2
,

b̂T (c ˛ d) = b̂T (δ ˛ c ˛ d),

b̂T (d ˛ Âd) = 1

8
,

bT (d ˛ Â((1 − δ) ˛ d)) = 0,

b̂T A((1 − δ) ˛ d) = b̂T (δ ˛ A((1 − δ) ˛ d)) = 1

4
,

b̂T (d ˛ Âc) = b̂T (d ˛ Âd˛2) = b̂T (d ˛ Â(δ ˛ d˛2)) = 0,

b̂T (d˛2 ˛ Âd) = 1

4
,

b̂T (c ˛ Â((1 − δ) ˛ d)) − b̂T (d ˛ Â(δ ˛ d)) − b̂T (d ˛ Â(δ ˛ c)) = 1

8
,

b̂T (d˛2 ˛ Â(δ ˛ d)) + b̂T (d ˛ Â(δ ˛ d)) = 1

8
,

b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) = 0,

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) = 1

8
.

Remark 3.11 For δ = 1, the weak order two conditions of Theorem 3.10 have no
solution,which is in contrast with the invariantmeasure case presented in Theorem3.8.
Indeed, the condition b̂T A((1 − δ) ˛ d) = 1

4 cannot be fulfilled if we fix δ = 1.

3.3 Illustrative Examples of High Order Runge–Kutta Methods onManifolds

In this section, we present several examples of high-order Runge–Kuttamethods of the
form (3.1). The purpose of these examples is to illustrate our analysis, and deriving new
integratorswith small error constant, favourable stability properties, small variance and
fast convergence to equilibrium is a challenging open question which is not addressed
in the present paper. First, we introduce a method that has order two for sampling the
invariant measure of the constrained Langevin dynamics (1.2). Since there are many
solutions to the order conditions, we obtain this integrator by solving numerically
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an optimization problem: we minimize the absolute values of the coefficients of the
method under the constraints given by the order conditions of Theorem 3.8. This
method is explicit in f and uses only three evaluations of f per step. It is defined by
the following Butcher tableau

0 0 0 0 0 1 1 0 0 0 d1
c2 c2 0 0 0 1 â21 â22 0 0 d2
c3 0 c3 0 0 1 â31 â32 â33 0 d3
1 â41 â42 â43 0 1 â41 â42 â43 0 1

â41 â42 â43 0 â41 â42 â43 0

or by the associated set of equations

Y1 = Xn + σ
√
hd1ξn + λ1g(Y1),

Y2 = Xn + hc2 f (Y1) + σ
√
hd2ξn + λ2 [̂a21g(Y1) + â22g(Y2)] ,

Y3 = Xn + hc3 f (Y2) + σ
√
hd3ξn + λ3 [̂a31g(Y1) + â32g(Y2) + â33g(Y3)] ,

Xn+1 = Xn + h
3∑
j=1

â4 j f (Y j ) + σ
√
hξn + λ4

3∑
j=1

â4 j g(Y j ),

where λ1, λ2, λ3, λ4 are such that ζ(Y1) = ζ(Y2) = ζ(Y3) = ζ(Xn+1) = 0,

(3.12)

and with the values of ci , di , âi j given in Appendix C. To implement one step of this
scheme, we apply a few iterations of the Newton method to find the projections onM.
We emphasize that if the stepsize h is not small enough, the fixed point problems of
finding λi such that ζ(Yi ) = 0 may not be well defined, leading to diverging Newton
iterations. Following Remark 3.2, we replace the standard Gaussian random vectors ξ

in (3.1) by independent bounded discrete random vectors ξ̂ that satisfy (3.2). This
way, the order two for the invariant measure is preserved and the method is well posed
for h small enough.

With the same methodology we used to obtain the order conditions of Theorem 3.8
and Theorem 3.10, and with the expressions of A1φ and A0

1φ (see Sect. 4 for further
details), we also get classes of Runge–Kutta integrators and their order conditions for
the following specific subproblems.
Euclidean case R

d . Fixing g = 0 in the expressions ofA1φ andA0
1φ yields the order

two conditions in the weak sense and for the invariant measure in R
d as given in [39,

Tables 1-2].
Deterministic case. Fixing σ = 0 in the expression ofA1φ yields the order conditions
for approximating the solution of ODEs of the form ẋ = �M(x) f (x), where f is a
gradient. Note that this equation can be rewritten as the following differential algebraic
equation (DAE) of index two (see [31, Chap.VII]):

ẋ = f (x) + λg(x),

0 = ζ(x). (3.13)
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We obtain a class of deterministic Runge–Kutta methods for solving DAEs of the
form (3.13) by setting σ = 0 in (3.1). ARunge–Kuttamethod of this form is consistent
if bT1 = 1, and has order two if b̂T c = b̂T (δ ˛ c) = bT c = bT (δ ˛ c) = 1/2. For
instance, an order two method for solving ODEs of the form (3.13) is

Xn+1 = Xn + h
f (Xn) + f (Xn+1)

2
+ λ

g(Xn) + g(Xn+1)

2
, ζ(Xn+1) = 0.

Spherical case.In the simple case whereM is the unit sphere in R
d (that is, when the

constraint is of the form ζ(x) = (|x |2 − 1)/2 and g(x) = x), the consistency condi-
tions (3.7) reduce to bT1 = ds = 1. The weak order two conditions of Theorem 3.10
reduce to the following conditions:

bT d = bT c = bT (δ ˛ c) = bT d˛2 = bT (δ ˛ d˛2) = b̂T d = b̂T c = 1

2
,

b̂T (d ˛ Âd) = 1

8
,

b̂T A((1 − δ) ˛ d) = 1

4
,

b̂T (d ˛ Âc) = 0.

On the other hand, the order two conditions for the invariant measure of Theorem 3.8
on the sphere are the following:

b̂T d = bT d,

bT c = bT (δ ˛ c) = bT d˛2 = bT (δ ˛ d˛2) = b̂T c = 2b̂T d − 1

2
,

b̂T (d ˛ Âc) = 2b̂T (d ˛ Âd) + (̂bT d)2 − 2b̂T d + 1

2
,

b̂T A((δ − 1) ˛ d) = (̂bT d)2 − 2b̂T d + 1

2
.

For example, the following integrator has order two for the invariant measure ifM is
a sphere:

Y1 = Xn + h

(
3

2
− √

2

)
f (Y2) + σ

√
h

(
1 −

√
2

2

)
ξn + λ1(2Y1 − Y2),

Y2 = Xn + h f (Y1) + σ
√
hξn + λ2Y1, ζ(Y1) = ζ(Y2) = 0,

Xn+1 = Y2.

Brownian motions on manifolds. Runge–Kutta methods of the form (3.1) can also be
used for simulating a Brownian motion on a manifold (see [33, Chap. III]) by solving
numerically

dX = �M(X) ◦ dW , X(0) = X0 ∈ M. (3.14)
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We recall that in the context ofR
d , the Euler–Maruyama integrator is exact for approx-

imating a Brownian motion in law. However, in the context of manifolds, there are no
exact Runge–Kutta integrators for simulating a Brownian motion onM in general. In
particular, the Euler scheme (1.7) only has weak order one for solving (3.14) in gen-
eral. Fixing f = 0 in (3.1) yields a class of Runge–Kutta methods for solving (3.14).
The consistency conditions are ds = 1 and b̂T d = b̂T (δ ˛d). The conditions for order
two for the invariant measure (respectively for weak order two) of such a Runge–Kutta
method are obtained by deleting the order conditions in Theorem 3.8 (respectively, in
Theorem 3.10) that involve A, b or c. In the specific case where M is a sphere, the
consistency conditions (3.7) become ds = 1 and the weak order two conditions of
Theorem 3.10 reduce to the two following conditions:

b̂T d = 1

2
, b̂T (d ˛ Âd) = 1

8
.

For example, a weak order two method for simulating a Brownian motion on a sphere
is

Xn+1 = Xn + √
hξn + λ

3Xn + √
hξn + Xn+1

4
, ζ(Xn+1) = 0.

In addition, there are no additional order two conditions for the invariant measure, that
is, any consistent integrator, such as the Euler scheme (1.7), has at least order two for
the invariant measure on the sphere.

4 Exotic Aromatic B-Series for Computing Order Conditions

As described in the introduction, B-series were introduced to tackle the calculations
of order conditions of ODEs by representing Taylor expansions with trees. In [16], an
extension of the original B-series, called aromatic B-series, was used to study volume-
preserving integrators. It allowed in particular to represent the divergence of aB-series.
B-series and aromatic B-series were also studied later in [26,49,52] for their geometric
properties, and in [8,15] for their algebraic structure of Hopf algebras. In [39], a new
formalism of B-series, called exotic aromatic B-series, was introduced for computing
order conditions for sampling the invariant measure of SDEs in R

d . It added a new
kind of edge, called liana, to the aromatic trees in order to represent new terms such
as the Laplacian of an aromatic B-series. In this section, we extend the formalism of
exotic aromatic B-series by allowing the representation of scalar products, and show
that the operators L j andA j can be represented conveniently in the form of B-series.
We also rewrite the integration by parts formula (3.9) as a straightforward process on
graphs, and apply it to compute A0

1.
We consider graphs γ = (V , E, L) where V is the set of nodes, E the set of edges

and L the set of lianas. We split the set of edges into E = E0 ∪ ES where E0 are the
standard oriented edges as defined in [39], and where ES is a new set of non-oriented
edges represented as double horizontal straight lines. If (v,w) = (w, v) ∈ ES , we
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consider this edge as an outgoing edge for both v andw, but v andw are not predeces-
sors of each other. If (v,w) ∈ ES , we denote S(v) = w and S(v) = v otherwise. We
consider graphs where each node has exactly one outgoing edge, except exactly one
node, called the root r , that has none. If we consider only the graph (V , E), where we
erase the lianas, it can be decomposed in two kinds of connected components: one that
contains the root that we name the rooted tree, and the other components that we name
aromas. We decompose the set of nodes in V = V f ∪Vg ∪{r}where V f are the nodes
representing the function f and are represented with black disks (respectively, Vg
represent the function g and are drawn with white disks). We write N f (γ ) the number
of elements of V f (respectively, Ng(γ ) the number of elements of Vg) and Nl(γ ) the
number of lianas. The order of a directed graph γ = (V , E, L) is defined as:

|γ | = N f (γ ) + Nl(γ ) + Ng(γ )

2
− |ES| .

For instance, the graph γ = (V , E, L) with

V f = {v2, v5, v6}, Vg = {v1, v3, v4, v7}, ES = {(v6, v7)},
E0 = {(v1, r), (v2, v1), (v3, r), (v4, v4), (v5, v4)}, L = {(v2, v2), (v3, v5), (v5, v6)},

(4.1)

satisfies |γ | = 7 and is represented as

1

2
3

5

4

67
r .

We say that two directed graphs (V 1, E1, L1) and (V 2, E2, L2) are equivalent if there
exists a bijection ϕ : V 1 → V 2 such that

ϕ(V 1
f ) = V 2

f , ϕ(V 1
g ) = V 2

g , (ϕ × ϕ)(E1) = E2,

(ϕ × ϕ)(E1
S) = E2

S, (ϕ × ϕ)(L1) = L2.

We call exotic aromatic forests the equivalence classes of these directed graphs γ =
(V , E, L), andwedenoteEAT the set of exotic aromatic forests. In addition,we need a
different set of rooted forestswhere the root is inV f orVg .We call themexotic aromatic
vector fields and gather them together in the set EAV . The elementary differential
associated with an exotic aromatic forest is given by the following definition:

Definition 4.1 Let γ = (V , E, L) ∈ EAT , and let f , g : R
d → R

d and φ : R
d → R

be smooth functions. We denote l1, . . . , ls the elements of L , v1, . . . , vm the elements
of V � {r} and δi, j the Kronecker symbol (δi, j = 1 if i = j , δi, j = 0 else). We
use the notation for v ∈ V , Iπ(v) = (iq1, . . . , iqs ) where π(v) = {q1, . . . , qs} are the
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predecessors of v, and J�(v) = ( jlx1 , . . . , jlxt ) where �(v) = {lx1, . . . , lxt } are the
lianas linked to v. Then, F(γ ) is defined as

F(γ )( f , g, φ) = σ 2(|γ |−N f (γ ))G−Ng(γ )/2

d∑
iv1 ,...,ivm=1

d∑
jl1 ,..., jls=1

⎛
⎝ ∏

v∈V f

δiv,iS(v)
∂Iπ(v)

∂J�(v)
fiv

⎞
⎠

·
⎛
⎝ ∏

v∈Vg
δiv,iS(v)

∂Iπ(v)
∂J�(v)

giv

⎞
⎠ ∂Iπ(r)∂J�(r)φ.

For example, the differential associated with the exotic aromatic forest γ given
by (4.1) is

F(γ )( f , g, φ) = σ 8G−2
d∑

iv1 ,...,iv7=1

d∑
jl1 ,..., jl3=1

∂ jl1 jl1
fiv2 ∂ jl2 jl3

fiv5 δiv6 ,iv7
∂ jl3

fiv6

· ∂iv2 giv1 ∂ jl2
giv3 ∂iv4 iv5 giv4 δiv7 ,iv6

giv7 ∂iv1 iv3φ.

We extend the definition of F on Span(EAT ) by linearity and write, for the sake of
simplicity, F(γ )(φ) instead of F(γ )( f , g, φ). An exotic aromatic B-series is a formal
series indexed over EAT of the form

B(a)(φ) =
∑

γ∈EAT
h|γ |a(γ )F(γ )(φ).

Remark 4.2 As we assumed that the functions f and g are gradients, multiple exotic
aromatic forests can represent the same differential. We do not detail here the method
to identify two such forests as it is similar to [39, Prop. 4.7] in the context of R

d .

The following result states that the operators L j/ j ! and A j can be written with
exotic aromatic forests. We omit the proof for the sake of brevity as it is similar to [39,
Thm.4.1].

Proposition 4.3 Take a Runge–Kutta method of the form (3.1), then the expan-
sions (2.4) and (2.6) can be formally written with exotic aromatic B-series, that is,
there exists two maps e and a over EAT such that

E[φ(X(h))|X(0) = x] = B(e)(φ)(x), E[φ(X1)|X0 = x] = B(a)(φ)(x),

and where the operators are given by

L j

j ! = F

( ∑
γ∈EAT ,|γ |= j

e(γ )γ

)
, A j−1 = F

( ∑
γ∈EAT ,|γ |= j

a(γ )γ

)
.
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If e(γ ) = a(γ ) for all γ ∈ EAT with 1 ≤ |γ | ≤ p, then the integrator has at least
weak order p.

For example, the operator L in (2.2) can be rewritten with exotic aromatic forests
as:

Lφ = φ′ f − G−1(g, f )φ′g − σ 2

2
G−1 div(g)φ′g

+ σ 2

2
G−2(g, g′g)φ′g + σ 2

2
φ − σ 2

2
G−1φ′′(g, g)

= F
(

− − 1

2
+ 1

2
+ 1

2
− 1

2

)
(φ).

We present in Table 2 (see Appendix D) the decomposition in exotic aromatic forests
of the operators L2φ/2 = L(Lφ)/2 and A1φ under the consistency condition (3.7).

Remark 4.4 If we replace the functions g and φ by f and fix σ = G = 1, the newly
obtained exotic aromatic B-series satisfy an isometric equivariance property, that is,
they stay unchanged when applying an isometric coordinate transformation. It was
proved in [52] that under a condition of locality, aromatic B-series are exactly the
affine equivariant methods, that is, the maps that stay unchanged when applying an
affine coordinate transformation. Analogously, it would be interesting to make a link
between the isometric equivariant maps and the exotic aromatic B-series.

In the spirit of the Butcher product on trees [29, Chap. III], we introduce a few
notations for writing with ease different operations on forests.

Notation Let γ be an exotic aromatic forest/vector field, τ be an exotic aromatic
vector field and v a node of γ , then we define the following operators on forests.

1.
τ
γ: sum of all exotic aromatic forests/vector fields obtained by linking the root of τ
to a node of γ with a new edge in E0

2. ττ (resp. ττ ): aroma obtained by linking the root of τ to a white node (resp.a
black node) with a new edge in ES

3.
τ
: sum of all aromas obtained by linking the root of τ to a node of τ with a new

edge in E0

4. γγv : sum of all exotic aromatic forests/vector fields obtained by linking the node v

to a node of γ with a new liana

5. vvγ
ττ

: forest obtained by linking the root of τ to the node v of γ with a new edge
in E0

For simplicity, we combine multiple operations on a same forest as in vvγ and
ττ
,

where operation 1 is always applied first.

For example, let γ = , τ = and v = r the root of γ , then we get

τ
γ = + 2 , ττ = ,

τ = + , γγv = + 2 , vvγ
ττ

= .
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The integration by parts (3.9) can be rewritten conveniently with exotic aromatic
forests.

Lemma 4.5 Let γ ∈ EAT and τ ∈ EAV , then the process of integration by parts
rewrites into

∫
M

F
(τ
γ − ττ γ

)
(φ)dμ∞ =

∫
M

F
(

ττ γ − (Ng(γ ) + Ng(τ ) + 1) ττ γ − τ
γ

+ (Ng(γ ) + Ng(τ ))
ττ
γ + ττ γ + 2 ττ γ − 2 ττ γ

)

(φ)dμ∞, (4.2)

∫
M

F
(
γγv − vvγ

)
(φ)dμ∞ =

∫
M

F
(

− (Ng(γ ) + 1) vvγ

+ Ng(γ ) vvγ + vvγ + 2 vvγ − 2 vvγ
)
(φ)dμ∞.

(4.3)

We write γ ∼ γ̃ if it is possible to go from γ ∈ EAT to γ̃ ∈ Span(EAT )

with the processes of integration by parts (4.2) or (4.3). We extend this relation by
linearity on Span(EAT ) and make it symmetric so that ∼ becomes an equivalence
relation on Span(EAT ). For example, the integrations by parts (3.10) and (3.11) can

be rewritten with exotic aromatic B-series by using (4.3) with γ = and γ = .
It yields

1

8
− 1

8
∼ −1

8
+ 1

8
+ 1

4
− 1

4
,

1

8
− 1

8
∼ −1

4
+ 1

2

− 3

8
+ 1

8
+ 1

4
− 1

4
.

For the sake of completeness, we present in Appendix B the integrations by parts for
the order 3 terms of A1φ. The computations are similar for the terms of order two
in φ.

Remark 4.6 In the Euclidean case R
d , that is, for a forest γ ∈ EAT and a vector

field τ ∈ EAV with Ng(γ ) = Ng(τ ) = 0 and g = 0, Lemma 4.5 reduces to the two
following equations:

τ
γ ∼ − τ

γ − 2 ττ γ, γγv ∼ −2 vvγ .

We recover the process of integration by parts described in [39, Thm.4.4] in the context
of exotic aromatic B-series in R

d .
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We can now revisit the statement of Theorem 2.5 in terms of B-series.

Theorem 4.7 Take a consistent ergodic Runge–Kutta method of the form (3.1). We
denote Ai = F(γi ) with γi ∈ EAT . If γi ∼ γ 0

i and F(γ 0
i ) = 0 for 1 ≤ i < r , then

the method has at least order r for the invariant measure.

By applying repeatedly the process of integrations by parts described in Lemma 4.5,
one can simplify the operator Ai = F(γi ) into an operator of the form A0

i = F(γ 0
i )

such that γi ∼ γ 0
i . The complete decomposition of A0

1 into exotic aromatic forests is
detailed in Table 3 (see Appendix D). According to Theorem 4.7, choosing the coef-
ficients of the Runge–Kutta method such that γ 0

1 = 0 yields the order two conditions
for the invariant measure, as stated in Theorem 3.8.

Remark 4.8 We call EAT 0 the subset of exotic aromatic forests whose root has only
one predecessor (that is, the forests associated with an order one operator) or that have

a rooted tree of the form , , , …Then, if γ ∈ EAT , there exists γ 0 ∈
EAT 0 such that γ ∼ γ 0. For instance, for a consistent method of the form (3.1), the
operator A0

1 = F(γ 0
1 ) has the form

γ 0
1 = (bT d − b̂T d) +

∑
|γ |=2
|π(r)|=1

a0(γ )γ,

so that γ 0
1 ∈ EAT 0, and A0

1 is a differential operator of order one if the condi-
tion bT d = b̂T d holds.

5 Numerical Experiments

In this section, we perform numerical experiments to confirm the theoretical findings,
first on a sphere and a torus in R

3, and then on the special linear group.

5.1 Invariant Measure Approximation on a Sphere and a Torus

To check the numerical order two of the Runge–Kutta integrator (3.12) presented in
Sect. 3.3, we first compare it with the Euler scheme (1.7) on the unit sphere in R

3,
where the constraint is given by ζ(x) = (x21 + x22 + x23 − 1)/2. We choose the
potential V (x) = 25(1 − x21 − x22 ), with σ = √

2, φ(x) = x23 , f = −∇V , g =
∇ζ , M = 107 independent trajectories to have a small Monte Carlo error and a final
time T = 20.Observe that for the smaller final time T = 10 (not included in the figures
for conciseness), the convergence curves reveal nearly identical to the case T = 20
considered in Fig. 1, which suggests that the numerical solutions are already very
close to equilibrium at these final times. Following Remark 3.2 and Lemma 3.3,
we use discrete bounded random variables satisfying (3.2) in the implementation
of the integrators. For both integrators, we compute the Monte Carlo estimator �J =
1
M

∑M
m=1 φ(X (m)

N ) � E[φ(XN )], where X (m)
n is them-th realization of the integrator at

123



674 Foundations of Computational Mathematics (2022) 22:649–695

Fig. 1 A trajectory of the order two method (left) and the convergence curve for the sphere for the invariant
measure (right) with the potential V (x) = 25(1− x21 − x22 ), φ(x) = x23 , a final time T = 20 and M = 107

trajectories

time tn = nh, and N is an integer satisfying Nh = T . We compare this approximation
with a reference value of

∫
M φdμ∞ computed via a standard quadrature formula, and

we plot the error for the invariant measure (1.5) versus different timestep h. We also
plot an estimate of the Monte Carlo error by using the standard error of the mean
estimator

(∑M
m=1(φ(X (m)

N ) − �J )2
)1/2

/
√
M(M − 1). We observe in all convergence

plots that the Monte Carlo error prevails for small values of the timestep h. On Fig. 1,
we observe as expected order one for the Euler scheme (1.7) and order two for the
Runge–Kutta scheme (3.12).

We then apply the Euler scheme (1.7) and the Runge–Kutta integrator (3.12) on a
torus defined by the constraint ζ(x) = (x21 + x22 + x23 + R2 − r2)2 − 4R2(x21 + x22 )
with R = 3 and r = 1. The potential is V (x) = 25(x3 − r)2, and we choose σ =√
2, φ(x) = x23 , f = −∇V , g = ∇ζ , a final time T = 20 and M = 107 independent

trajectories. On Fig. 2, we plot the error for the invariant measure versus the timestep h,
by using a reference value for

∫
M φdμ∞ obtained with a standard quadrature formula.

As expected, we observe order two for the proposed integrator. These curves confirm
the theoretical findings presented in Sect. 3. In particular, the scheme (3.12) has order
two of accuracy for the invariant measure on manifolds, according to Theorem 3.8.
Note that if we had chosen a very short final time T , we would have observed the
weak order one instead of the order two for the invariant measure as we would not
have reached equilibrium.

5.2 Invariant Measure Approximation on the Special Linear Group

Sampling on a manifold M is especially useful to compute integrals of the
form

∫
M φ(x)dμ∞ when M is a manifold of high dimension. The class of meth-

ods (3.1) is convenient as the number of order conditions does not increase with the
dimension of the space increasing. We apply Method (3.12) on a Lie group (in the
spirit of [65,66]) to see how it performs in high dimension. We choose the special
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Fig. 2 A trajectory of the order two method (left) and the convergence curve for the torus for the invariant
measure (right) with the potential V (x) = 25(x3 − r)2, φ(x) = x23 , a final time T = 20 and M = 107

trajectories

Table 1 Numerical approximation of the integral J (m) = ∫
SL(m) φ(x)dμ∞ for 2 ≤ m ≤ 4 with the

estimator �J = M−1 ∑M
k=1 φ(X (k)

N ) where (Xn) is given by the Euler scheme (1.7) for �JEuler and by the

Runge–Kutta integrator (3.12) for �J2, with their respective errors

m dim(SL(m)) J (m) �JEuler error for �JEuler �J2 error for �J2
2 3 2.00967 2.01031 6.4 · 10−4 2.00962 4.4 · 10−5

3 8 3.01954 3.02068 1.1 · 10−3 3.01934 2.0 · 10−4

4 15 4.02930 4.03095 1.6 · 10−3 4.02907 2.3 · 10−4

The average is taken over M = 106 trajectories, with the potential (5.1), φ(x) = Tr(x), a final time T = 10
and a timestep h = 2−12T

linear group SL(m) = {M ∈ R
m×m, det(M) = 1}, seen as a submanifold of R

m2
of

codimension 1. As explained in Remark 2.6, our analysis still applies to SL(m) if we
choose a potential V with appropriate growth assumptions, even if it is not a compact
manifold. We compare the Euler scheme (1.7) and the Runge–Kutta integrator (3.12)
onM = SL(m) for differentm (that is, with the constraint ζ(x) = det(x)−1), where
we use in the implementation discrete random variables satisfying (3.2). We choose
the potential

V (x) = 25Tr((x − Im2)T (x − Im2)) (5.1)

and the parameters σ = √
2, φ(x) = Tr(x) and M = 106 trajectories. Each trajectory

is an approximation of the solution of Eq. (1.2) at time T = 10 with a timestep h =
T /N and N = 212 steps. With this timestep h, the Newton method used in the
Euler scheme (1.7) does not converge for approximately 0.005% of the trajectories
for m = 4. We choose to discard these trajectories, which induces a negligible bias
in the expectation. This does not occur for the Runge–Kutta integrator (3.12). We
recall that for a small enough timestep h, the Newton method would always converge
(see also Remark 3.4). The reference solution for J (m) = ∫

SL(m)
φ(x)dμ∞(x) is
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computed with the Runge–Kutta method (3.12) with href = 2−14T . With the factor 25
in the potential (5.1), the solution of (1.2) stays close to Im2 , and J (m) is close
to φ(Im2) = m. This choice of factor permits to explore a reasonably small area
of SL(m) with moderate manifold curvature. We observe numerically that replacing
the factor 25 by 1 in (5.1) induces a severe timestep restriction (results not included
for conciseness). The computation of J (m) could also be done via the parametrization
given by the Iwasawa decomposition for SL(m) (see, for instance, [28, Chap.1]) and
the use of standard quadrature methods, but these methods have prohibitive costs in
high dimension. We put together the numerical results in Table 1 and observe that the
Runge–Kutta method (3.12) performs significantly better than the Euler scheme (1.7).
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Appendices

A Proof of Theorem 2.5

In the spirit of backward error analysis for differential equations (see [1,22,29,67]),
we build a modified generator Lh such that U (x, h) = E[φ(X1)|X0 = x] formally
satisfies

U (x, h) =
∑
j≥0

h j

j ! (L
h) jφ(x). (A.1)

Truncating this formal series yields an estimate of the form

U (x, h) = φ(x) +
N∑
j=1

h j

j ! (L
h) jφ(x) + hN+1Rh

N (φ, x), x ∈ NM,

where NM is an open neighbourhood of M in R
d and the remainder satis-

fies
∣∣Rh

N (φ, x)
∣∣ ≤ CN (φ). For this, we write formally Lh = L + ∑

n≥1 h
nLn and

compare the series expression in (2.6) and (A.1). By formally identifying the powers
of h, we deduce the following rigorous definition of the Ln on an open neighbourhood
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of M in R
d ,

L0 = L, Ln = An +
n∑

l=1

Bl
l!

∑
n1+···+nl+1=n−l

Ln1 · · · LnlAnl+1, n ≥ 1, (A.2)

where the Bl are the Bernoulli numbers (see [3,22,67] for similar expansions in T
d

or R
d ). Using Assumption 2.3, we build recursively a sequence of functions (ρn) such

that

L∗ρn = −
n∑

l=1

L∗
l ρn−l and ρ0 = ρ∞, (A.3)

where
∫
M ρndσM = 0 for n ≥ 1. We denote ρh

r = ∑r
n=0 h

nρn and dμh
r = ρh

r dσM
and adapt on the manifold M the following result from [22, Thm.2.1] in the context
of R

d .

Lemma A.1 Under Assumptions 2.2, 2.3 and 2.4, for all φ ∈ C∞(Rd , R), for every
positive integer r , there exists a constant Cr (φ) independent of h such that, for all h
small enough,

∣∣∣∣
∫
M

φdμh −
∫
M

φdμh
r

∣∣∣∣ ≤ Cr (φ)hr+1. (A.4)

We omit the proof of Lemma A.1 as it is exactly the same as in [22, Thm.2.1] by
replacing dx by dσM and T

d by M. We are now able to prove Theorem 2.5.

Proof of Theorem 2.5 As A∗
jρ∞ = 0 for j = 1, . . . , r − 1, we deduce recursively

from (A.2) and (A.3) that ρ j = 0 for j = 1, . . . , r −1, which yields ρh
r = ρ∞ +hrρr .

Using the definition of the error for the invariant measure (1.5) and the ergodicity of
the integrator (2.5), Eq. (A.4) becomes

∣∣∣∣e(φ, h) − hr
∫
M

φ(x)ρr (x)dσM(x)

∣∣∣∣ ≤ Chr+1.

We are left to prove that

∫
M

φ(x)ρr (x)dσM(x) =
∫ ∞

0

∫
M

u(x, t)A∗
r ρ∞(x)dσM(x)dt .

By the backward Kolmogorov equation and ergodicity, u satisfies

lim
T→∞ u(x, T ) = φ(x) +

∫ ∞

0
Lu(x, t)dt =

∫
M

φ(y)dμ∞(y).
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Using L∗ρr = −L∗
r ρ∞ = −A∗

r ρ∞, we deduce

∫
M

φ(x)ρr (x)dσM(x) = −
∫ ∞

0

∫
M

Lu(x, t)ρr (x)dσM(x)dt

+
∫
M

φ(y)dμ∞(y)
∫
M

ρr (x)dσM(x)

= −
∫ ∞

0

∫
M

u(x, t)L∗ρr (x)dσM(x)dt

=
∫ ∞

0

∫
M

u(x, t)A∗
r ρ∞(x)dσM(x)dt,

where we used that
∫
M ρr (x)dσM(x) = 0. This concludes the proof of Theorem 2.5.

��

B Integration by Parts Using the Tree Formalism

We provide here the detailed calculations of the integrations by parts of the order three
terms that are needed for the proof of Theorem3.8.After applying the operations (3.10)
and (3.11), the integral

∫
MA1φdμ∞ is transformed into

∫
M Bφdμ∞ where B is a

differential operator of order three given by

Bφ = F
(1
4

− 1

4
+ 1

2
− 1

4
+ 1

4

+ 1

8
− 3

8
− 1

4
− 1

8
+ 1

8

)
(φ) + Rφ,

andR is a differential operator of order two. Using Lemma 4.5 multiple times, we get
the following integrations by parts of the order three terms of Bφ.

1

4
− 1

4
∼ − 1

4
+ 1

4
− 1

4
+ 1

4
+ 1

2
− 1

2

− 1

4
+ 1

4
∼ 1

4
+ 1

4
− 1

4
− 1

4

+ 3

4
− 1

2
− 1

4
− 1

2
+ 1

2

− 1

4
+ 1

4
∼ 1

4
+ 1

4
+ 1

4
− 3

4
− 1

4

− 1

4
+ 3

4
− 1

4
− 1

2
+ 1

2

− 1

8
+ 1

8
∼ 1

8
+ 1

8
− 1

8
− 3

8
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+ 3

8
− 1

8
− 1

4
+ 1

4

1

8
− 1

8
∼ − 1

8
− 1

4
− 1

8
+ 1

4
+ 1

8

+ 5

8
− 5

8
+ 1

8
+ 1

4
− 1

4

1

4
− 1

4
∼ − 1

2
+ 1

2
+ 5

4
+ 1

4
− 5

4

− 1

4
− 1

4
+ 1

4
+ 1

2
− 1

2

C Coefficients of the Order Two Runge–Kutta Method

The coefficients of the Runge–Kutta method (3.12) used in Sect. 5 are

c2 = 0.621729189582953540,

d1 = −0.898931652839146019,

d3 = 0.318924515019668897,

â31 = 0.887706593835748395,

â41 = 0.0547449506054026516,

â22 = 1 − â21,

â43 = 1 − â41 − â42.

c3 = 0.102032386582165330,

d2 = −1.66233102561284629,

â21 = 0.584372887990673524,

â32 = −0.345018694936693742,

â42 = −0.0205123070437693053,

â33 = 1 − â31 − â32,
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DDecomposition of the Operators in Exotic Aromatic Forests

See Tables 2 and 3.

Table 2 Coefficients in exotic aromatic B-series of the operators L2φ/2 = ∑
e(γ )F(γ )(φ) and A1φ =∑

a(γ )F(γ )(φ) for consistent Runge–Kutta methods of the form (3.1)

Forest γ Differential F(γ )(φ) Exact e(γ ) Numerical
approximation
a(γ )

Terms of order 4 w.r.t. φ

σ 42φ 1
8

1
8

σ 4G−1φ′′(g, g) − 1
4 − 1

4

σ 4G−2φ(4)(g, g, g, g) 1
8

1
8

Terms of order 3 w.r.t. φ

σ 2φ′ f 1
2

1
2

σ 2G−1φ(3)(g, g, f ) − 1
2 − 1

2

σ 4G−2φ(3)(g, g, g′g) 1 1

σ 4G−1 ∑
φ(3)(g, g′ei , ei ) − 1

2 − 1
2

σ 2G−2(g, f )φ(3)(g, g, g) 1
2

1
2

σ 4G−2 div(g)φ(3)(g, g, g) 1
4

1
4

σ 4G−2(g, g′g)φ(3)(g, g, g) − 3
4 − 3

4

σ 2G−1(g, f )φ′(g) − 1
2 − 1

2

σ 4G−1 div(g)φ′(g) − 1
4 − 1

4

σ 4G−2(g, g′g)φ′(g) 1
4

1
4

Terms of order 2 w.r.t. φ

φ′′( f , f ) 1
2

1
2

σ 2 ∑
φ′′( f ′ei , ei ) 1

2 bT d

σ 2G−1φ′′(g, g′ f ) −1 −1

σ 2G−1φ′′(g, f ′g) −1 −bT d − b̂T d

σ 4G−2φ′′(g, g′g′g) 3
2 −2b̂T (d ˛ Âd) − (̂bT d)2 + 2b̂T d + 1
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Table 2 continued

Forest γ Differential F(γ )(φ) Exact e(γ ) Numerical
approximation
a(γ )

σ 2G−2φ′′(g′g, g′g) 1
4 −b̂T (d ˛ Âd) − 1

2 (̂bT d)2 + b̂T d

σ 4G−2φ′′(g, g′′(g, g)) 1
2 2b̂T d˛2 − 2b̂T (δ ˛ d˛2) + 1

2

σ 4G−1φ′′(g, g) − 1
2 − 1

2

σ 4G−1 ∑
φ′′(g′ei , g′ei ) − 1

4 b̂T (d ˛ Âd) + 1
2 (̂bT d)2 − b̂T d

σ 4G−1 ∑
φ′′(g′′(g, ei ), ei ) 0 b̂T (δ ˛ d˛2) − b̂T d˛2

G−1(g, f )φ′′(g, f ) −1 −1

σ 2G−1 div(g)φ′′(g, f ) − 1
2 − 1

2

σ 2G−2(g, g′g)φ′′(g, f ) 1
2

1
2

σ 2G−1(g, f )
∑

φ′′(ei , g′ei ) − 1
2 −b̂T d

σ 4G−1 div(g)
∑

φ′′(ei , g′ei ) − 1
4 − 1

2 b̂
T d

σ 4G−2(g, g′g) ∑
φ′′(ei , g′ei ) 1

4
1
2 b̂

T d

σ 2G−2(g, f )φ′′(g, g′g) 2 2b̂T d + 1

σ 4G−2 div(g)φ′′(g, g′g) 1 b̂T d + 1
2

σ 4G−3(g, g′g)φ′′(g, g′g) − 5
2 2b̂T (d ˛ Âd) + (̂bT d)2 − 3b̂T d − 3

2

σ 2G−2(g, g′ f )φ′′(g, g) 1 1

σ 2G−2(g, f ′g)φ′′(g, g) 1
2 bT d

σ 4G−2 ∑
∂i j gi g jφ

′′(g, g) 1
2

1
2

σ 4G−2 ∑
∂ j gi ∂i g jφ

′′(g, g) 1
4

1
4

σ 4G−3(g, g′g′g)φ′′(g, g) − 7
4 b̂T (d ˛ Âd) + 1

2 (̂bT d)2 − b̂T d − 3
2
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Table 2 continued

Forest γ Differential F(γ )(φ) Exact e(γ ) Numerical
approximation
a(γ )

σ 4G−3(g, g′′(g, g))φ′′(g, g) − 1
2 b̂T (δ ˛ d˛2) − b̂T d˛2 − 1

2

G−2(g, f )2φ′′(g, g) 1
2

1
2

σ 2G−2(g, f ) div(g)φ′′(g, g) 1
2

1
2

γ e(γ ) a(γ )

−2 −b̂T d − 3
2

1
8

1
8

−1 − 1
2 b̂

T d − 3
4

19
8 −b̂T (d ˛ Âd) − 1

2 (̂bT d)2 + 3
2 b̂

T d + 15
8

Terms of order 1 w.r.t. φ

1
2 bT c

1
4

1
2 b

T d˛2

− 1
2 b̂T (d ˛ Âc) − b̂T d

− 1
2 b̂T A((δ − 1) ˛ d) − b̂T dbT d

0 bT (d ˛ Â((δ − 1) ˛ d))

− 1
4 − 1

2 b
T (δ ˛ d˛2)

0 b̂T (δ ˛ c ˛ d) − b̂T (c ˛ d)

− 1
4

1
2 b̂

T (d ˛ Âd˛2) − 1
2 b̂

T d

1
2 −b̂T (d ˛ ( Âd)˛2) − 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d)))

− 2b̂T db̂T (d ˛ Âd) + (̂bT d)2 + b̂T d
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Table 2 continued

γ e(γ ) a(γ )

1
4 b̂T (d ˛ Âd˛2) − 3

2 b̂
T (d ˛ Â(δ ˛ d˛2)) + b̂T d (̂bT d˛2 − b̂T (δ ˛ d˛2)) + 1

2 b̂
T d

0 −2b̂T (d˛2 ˛ Âd) + (̂bT d + 1)̂bT d˛2 − b̂T db̂T (δ ˛ d˛2)

0 b̂T (d˛2 ˛ Âd) − 1
2 b̂

T d˛2

0 1
2 b̂

T (δ ˛ d˛3) − 1
2 b̂

T d˛3

− 1
2 −b̂T c

− 1
4 − 1

2 b̂
T c

1
4

1
2 b̂

T c

− 1
2 −bT (δ ˛ c)

− 1
4 − 1

2 b
T (δ ˛ d˛2)

1
4 bT (d ˛ Â((1 − δ) ˛ d))) + 1

2 b
T (δ ˛ d˛2)

1 b̂T (c˛ Â((1−δ)˛d))+ (̂bT d)2+ b̂T d+ b̂T (d ˛
Â((1 − δ) ˛ d)) − b̂T (d ˛ Â(δ ˛ c))

1
2

1
2 b̂

T (d ˛ Â((1− δ) ˛ d))+ 1
2 (̂bT d)2 + 1

2 b̂
T d +

1
2 b̂

T (d˛2 ˛ Â((1−δ)˛d))− 1
2 b̂

T (d ˛ Â(δ˛d˛2))

3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) + (2b̂T d − 1
2 )̂bT (d ˛ Âd)

−3b̂T (d ˛ ( Â((1− δ) ˛ d))˛2) + 1
2 b̂

T (d ˛ Â(δ ˛
d)) + b̂T (d ˛ ( Âd)˛2)

−1 + 1
2 b̂

T (d˛2 ˛ Â((δ − 1) ˛ d)) + 1
2 b̂

T (d ˛ Â(δ ˛
d˛2)) − 3

2 (̂bT d)2 − 3
2 b̂

T d
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Table 2 continued

γ e(γ ) a(γ )

− 1
4 − 1

2 b̂
T d˛2

− 1
8 − 1

4 b̂
T d˛2

1
8

1
4 b̂

T d˛2

1
4

1
2 b̂

T (δ ˛ d˛2)

1
8

1
4 b̂

T (δ ˛ d˛2)

− 1
8 b̂T (d˛2 ˛ Âd) − (̂bT d + 1

2 )̂bT d˛2 + (̂bT d − 1
4 )̂bT (δ ˛ d˛2)

1
2 −b̂T (d ˛ Âc) + b̂T d

1
2 b̂T (δ ˛ A((1 − δ) ˛ d)) + b̂T dbT d

1
4 − 1

2 b̂
T (d ˛ Âd˛2) + 1

2 b̂
T d

0 −b̂T (d˛2 ˛ Âd) + 1
2 b̂

T (δ ˛ d˛2)

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d)))

− 1
2 +2b̂T (d˛2 ˛ Âd) + 2b̂T db̂T (d ˛ Âd) − b̂T (δ ˛ d˛2) − (̂bT d)2 − b̂T d

− 1
4

1
2 b̂

T (d ˛ Â((3δ − 2 · 1) ˛ d˛2)) + b̂T d (̂bT (δ ˛ d˛2) − b̂T d˛2) − 1
2 b̂

T d

1
2 b̂T (δ ˛ c)

1
2

1
2 b̂

T (δ ˛ d˛2) + 1
2 b̂

T (δ ˛ c)

b̂T (c ˛ Â((δ − 1) ˛ d)) + b̂T (d ˛ Â((δ − 1) ˛ d))

− 3
2 +b̂T (d ˛ Â(δ ˛ c)) − 1

2 b̂
T (δ ˛ d˛2) − 1

2 b̂
T (δ ˛ c) − (̂bT d)2 − b̂T d

1
8

1
4 b̂

T (δ ˛ d˛2)
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Table 2 continued

γ e(γ ) a(γ )

1
2 b̂

T (d ˛ Â((δ − 1) ˛ d)) + 1
2 b̂

T (d ˛ Â(δ ˛ d˛2))

− 3
4 + 1

2 b̂
T (d˛2 ˛ Â((δ − 1) ˛ d)) − 1

2 b̂
T (δ ˛ d˛2) − 1

2 (̂bT d)2 − 1
2 b̂

T d

3b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) − 1
2 b̂

T (d˛2 ˛ Â((δ + 1) ˛ d))

−b̂T (d ˛ ( Âd)˛2) − 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d)))

+( 12 − 2b̂T d )̂bT (d ˛ Âd) − 1
2 b̂

T (d ˛ Â(δ ˛ d)) − 1
2 b̂

T (d ˛ Â(δ ˛ d˛2))
9
8 + 9

2 b̂
T (δ ˛ d˛3) − 15

4 b̂T (δ ˛ d˛2) + 3
2 (̂bT d)2 + 3

2 b̂
T d

− 1
2 −bT c

− 1
2 − 1

2

− 1
2 − 1

2

− 1
4 − 1

2 b
T d˛2

− 1
2 −bT d

3
2 −b̂T (d ˛ Âc) + b̂T d + 1

3
2 bT (d ˛ Â((1 − δ) ˛ d)) + b̂T A((1 − δ) ˛ d) + (̂bT d + 2)bT d

1
2 b̂T (c ˛ d) − b̂T (δ ˛ c ˛ d) + 1

2

1
4

1
2 b

T (δ ˛ d˛2)

3
4 − 1

2 b̂
T (d ˛ Âd˛2) + 1

2 b̂
T d + 1

2

1
4

1
2 b̂

T d˛3 − 1
2 b̂

T (δ ˛ d˛3) + 1
4

1
2 −b̂T (d˛2 ˛ Âd) + 3

2 b̂
T d˛2 − b̂T (δ ˛ d˛2) + 1

2

1
4 −b̂T (d ˛ Âd) − 1

2 (̂bT d)2 + b̂T d

− 9
4 b̂T (d˛( Âd)˛2)+3b̂T (d˛ Â(d˛ Â((1−δ)˛d)))+

(2b̂T d + 3)̂bT (d ˛ Âd) + 1
2 (̂bT d)2 − 4b̂T d − 1

1
2 b̂

T (d ˛ Â((3δ − 2 · 1) ˛ d˛2)) + 2b̂T (d˛2 ˛ Âd)

− 7
4 −(2b̂T d + 3)̂bT d˛2 + 2(̂bT d + 1)̂bT (δ ˛ d˛2) − 1

2 b̂
T d − 3

2
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Table 2 continued

γ e(γ ) a(γ )

− 1
8 − 1

8

− 1
8 − 1

8

3
2 b̂T c + 1

3
4

1
2 b̂

T c + 1
2

− 9
4 b̂T (d ˛ Âc) − 1

2 b̂
T c − b̂T d − 3

2

1
2 bT (δ ˛ c)

1
4

1
2 b

T (δ ˛ d˛2)

− 5
4 b̂T (δ ˛ A((δ − 1) ˛ d)) + bT (d ˛ Â((δ − 1) ˛

d)) − 1
2 b

T (δ ˛ d˛2) − (̂bT d + 1)bT d

3
4

1
2 b̂

T d˛2 + 1
2

3
8

1
4 b̂

T d˛2 + 1
4

− 9
8

1
2 b̂

T (d ˛ Âd˛2) − 1
4 b̂

T d˛2 − 1
2 b̂

T d − 3
4

1
2 b̂T d

1
4

1
2 b̂

T d

− 1
2 b̂T (d˛2 ˛ Âd) − 1

2 b̂
T (δ ˛ d˛2) − 1

2 b̂
T d − 1

4

−3 b̂T (c ˛ Â((δ −1)˛d))+ b̂T (d ˛ Â(δ ˛ c))+ b̂T (d ˛ Â((δ −1)˛d))

−(̂bT d)2 − 3b̂T d − 1
1
2 b̂

T (d˛2 ˛ Â((δ − 1) ˛ d))+ 1
2 b̂

T (d ˛ Â(δ ˛ d˛2))

− 3
2 + 1

2 b̂
T (d˛ Â((δ−1)˛d))− 1

2 (̂bT d)2− 3
2 b̂

T d− 1
2

3b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) − 1
2 b̂

T (d˛2 ˛ Â((3 · 1 + δ) ˛ d))

−2b̂T (d ˛ ( Âd)˛2) − 6b̂T (d ˛ Â(d ˛ Â((1− δ) ˛
d))) − 1

2 b̂
T (d ˛ Â(δ ˛ d˛2))

23
4 − 1

2 b̂
T (d ˛ Â(δ ˛d))− (4b̂T d+ 5

2 )̂bT (d ˛ Âd)+
b̂T (δ ˛ d˛2) + (̂bT d)2 + 13

2 b̂T d + 3

− 3
4 − 1

2 b̂
T (δ ˛ d˛2) − 1

2

− 3
8 − 1

4 b̂
T (δ ˛ d˛2) − 1

4
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Table 2 continued

γ e(γ ) a(γ )

1
2 b̂

T (d ˛ Â((2 · 1 − 3δ) ˛ d˛2)) − b̂T (d˛2 ˛ Âd)

13
8 +(2b̂T d + 3

2 )̂bT d˛2 − (2b̂T d + 3
4 )̂bT (δ ˛ d˛2) + 1

2 b̂
T d + 5

4

−1 −b̂T (δ ˛ c) − 1
2

−1 − 1
2 b̂

T (δ ˛ c) − 1
2 b̂

T (δ ˛ d˛2) − 1
2

b̂T (c ˛ Â((1 − δ) ˛ d)) + b̂T (d ˛ Â((1 − δ) ˛ d))

7
2 −b̂T (d ˛ Â(δ ˛ c)) + 1

2 b̂
T (δ ˛ c) + 1

2 b̂
T (δ ˛ d˛2) + (̂bT d)2 + 2b̂T d + 3

2

− 1
4 − 1

4 b̂
T (δ ˛ d˛2) − 1

8
1
2 b̂

T (d˛2 ˛ Â((1 − δ) ˛ d)) − 1
2 b̂

T (d ˛ Â(δ ˛ d˛2))

7
4 + 1

2 b̂
T (d ˛ Â((1 − δ) ˛ d)) + 1

2 b̂
T (δ ˛ d˛2) + 1

2 (̂bT d)2 + b̂T d + 3
4

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d)))

−3b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) + (2b̂T d + 1
2 )̂bT (d ˛ Âd)

+ 1
2 b̂

T (d˛2 ˛ Â((1 + δ) ˛ d)) + 1
2 b̂

T (d ˛ Â(δ ˛ d˛2)) − 9
2 b̂

T (δ ˛ d˛3)

− 7
2 + 1

2 b̂
T (d ˛ Â(δ ˛ d)) + 15

4 b̂T (δ ˛ d˛2) − (̂bT d)2 − 3b̂T d − 15
8

Table 3 Coefficients in exotic aromatic B-series of the operator A0
1φ = ∑

a0(γ )F(γ )(φ) for consistent
Runge–Kutta methods of the form (3.1)

γ a0(γ )

bT d − b̂T d

bT c − 2bT d + 1
2

1
2 b

T d˛2 − bT d + 1
4

b̂T (d ˛ Âc) − 2b̂T (d ˛ Âd) − (̂bT d)2 + 2b̂T d − 1
2

b̂T A((δ − 1) ˛ d)) − b̂T dbT d + 2b̂T d − 1
2

bT (d ˛ Â((δ − 1) ˛ d))

− 1
2 b

T (δ ˛ d˛2) + bT d − 1
4

b̂T (δ ˛ c ˛ d) − b̂T (c ˛ d) + 2b̂T d˛2 − 2b̂T (δ ˛ d˛2)

123
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Table 3 continued

γ a0(γ )

1
2 b̂

T (d ˛ Âd˛2) − b̂T (d ˛ Âd) − 1
2 (̂bT d)2 + b̂T d − 1

4

−b̂T (d ˛ ( Âd)˛2) − 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) + (4 −
2b̂T d )̂bT (d ˛ Âd) + 3(̂bT d)2 − 4b̂T d + 1

1
2 b̂

T (d ˛ Â((2 · 1 − 3δ) ˛ d˛2)) + b̂T (d ˛ Âd) + (̂bT d −
1)(̂bT d˛2 − b̂T (δ ˛ d˛2)) + 1

2 (̂bT d)2 − b̂T d + 1
4

−2b̂T (d˛2 ˛ Âd) + 2b̂T (d ˛ Âd) + (̂bT d − 2)̂bT d˛2 + (3 −
b̂T d )̂bT (δ ˛ d˛2) + (̂bT d)2 − 2b̂T d + 1

2

b̂T (d˛2 ˛ Âd) − b̂T (d ˛ Âd) + 1
2 b̂

T d˛2 − b̂T (δ ˛ d˛2) −
1
2 (̂bT d)2 + b̂T d − 1

4

1
2 b̂

T (δ ˛ d˛3) − 1
2 b̂

T d˛3 + b̂T d˛2 − b̂T (δ ˛ d˛2)

−b̂T d˛2 + b̂T (δ ˛ d˛2)

−b̂T c + 2b̂T d − 1
2

− 1
2 b̂

T c + b̂T d − 1
4

1
2 b̂

T c − b̂T d + 1
4

−bT (δ ˛ c) + 2bT d − 1
2

− 1
2 b

T (δ ˛ d˛2) + bT d − 1
4

bT (d ˛ Â((1 − δ) ˛ d)) + 1
2 b

T (δ ˛ d˛2) − bT d + 1
4

b̂T (d ˛ Â((3 · 1 − δ) ˛ d)) − b̂T (d ˛ Â(δ ˛ c)) + b̂T (c ˛ Â((1 −
δ) ˛ d)) + 2(̂bT d)2 − 4b̂T d + 1

123
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Table 3 continued

γ a0(γ )

1
2 b̂

T (d ˛ Â((3 · 1− δ) ˛ d)) − 1
2 b̂

T (d ˛ Â(δ ˛ d˛2)) + 1
2 b̂

T (d˛2 ˛

Â((1 − δ) ˛ d)) + (̂bT d)2 − 2b̂T d + 1
2

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) + (2b̂T d −
11
2 )̂bT (d ˛ Âd)

−3b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) − 1
2 b̂

T (d˛2 ˛ Â((1 − δ) ˛ d))

+ 1
2 b̂

T (d ˛ Â(δ ˛d))+ 1
2 b̂

T (d ˛ Â(δ ˛d˛2))−4(̂bT d)2+6b̂T d− 3
2

− 1
2 b̂

T d˛2 + b̂T d − 1
4

− 1
4 b̂

T d˛2 + 1
2 b̂

T d − 1
8

1
4 b̂

T d˛2 − 1
2 b̂

T d + 1
8

−2b̂T d˛2 + 5
2 b̂

T (δ ˛ d˛2) − b̂T d + 1
4

5
4 b̂

T (δ ˛ d˛2) − b̂T d˛2 − 1
2 b̂

T d + 1
8

( 52 − b̂T d )̂bT d˛2 + (̂bT d − 13
4 )̂bT (δ ˛ d˛2) + b̂T (d˛2 ˛ Âd) −

b̂T (d ˛ Âd) − 1
2 (̂bT d)2 + 3

2 b̂
T d − 3

8

−b̂T (d ˛ Âc) + 2b̂T (d ˛ Âd) + (̂bT d)2 − 2b̂T d + 1
2

b̂T (δ ˛ A((1 − δ) ˛ d)) + b̂T dbT d − 2b̂T d + 1
2

− 1
2 b̂

T (d ˛ Âd˛2) + b̂T (d ˛ Âd) + 1
2 (̂bT d)2 − b̂T d + 1

4

−b̂T (d˛2˛ Âd)+b̂T (d˛ Âd)+ 1
2 b̂

T (δ˛d˛2)+ 1
2 (̂bT d)2−b̂T d+ 1

4

b̂T (d ˛ ( Âd)˛2)+3b̂T (d ˛ Â(d ˛ Â((1− δ)˛d)))+2b̂T (d˛2 ˛ Âd)

+(2b̂T d − 6)̂bT (d ˛ Âd) − b̂T (δ ˛ d˛2) − 4(̂bT d)2 + 6b̂T d − 3
2

1
2 b̂

T (d ˛ Â((3δ − 2 · 1) ˛ d˛2)) − b̂T (d ˛ Âd) + (1 −
b̂T d)(̂bT d˛2 − b̂T (δ ˛ d˛2)) − 1

2 (̂bT d)2 + b̂T d − 1
4

123
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Table 3 continued

γ a0(γ )

b̂T (δ ˛ c) − 2b̂T d + 1
2

1
2 b̂

T (δ ˛ d˛2) + 1
2 b̂

T (δ ˛ c) − 2b̂T d + 1
2

b̂T (c ˛ Â((δ − 1) ˛ d)) + b̂T (d ˛ Â((δ − 3 · 1) ˛ d))

+b̂T (d˛ Â(δ˛c))− 1
2 b̂

T (δ˛d˛2)− 1
2 b̂

T (δ˛c)−2(̂bT d)2+6b̂T d− 3
2

1
4 b̂

T (δ ˛ d˛2) − 1
2 b̂

T d + 1
8

1
2 b̂

T (d ˛ Â((δ − 3 · 1) ˛ d)) + 1
2 b̂

T (d ˛ Â(δ ˛ d˛2))

+ 1
2 b̂

T (d˛2 ˛ Â((δ−1)˛d))− 1
2 b̂

T (δ ˛d˛2)− (̂bT d)2+3b̂T d− 3
4

3b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) + ( 132 − 2b̂T d )̂bT (d ˛ Âd)

−b̂T (d ˛ ( Âd)˛2) − 3b̂T (d ˛ Â(d ˛ Â((1− δ) ˛ d))) − 1
2 b̂

T (d˛2 ˛
Â((δ + 1) ˛ d))

− 1
2 b̂

T (d ˛ Â(δ ˛ d˛2)) + 9
2 b̂

T (δ ˛ d˛3) − 1
2 b̂

T (d ˛ Â(δ ˛ d)) −
15
4 b̂T (δ ˛ d˛2) + 9

2 (̂bT d)2 − 15
2 b̂T d + 15

8

−bT c + 2b̂T d − 1
2

− 1
2 b

T d˛2 + b̂T d − 1
4

−bT d + b̂T d

−b̂T (d ˛ Âc) + 2b̂T (d ˛ Âd) + (̂bT d)2 − 2b̂T d + 1
2

bT (d˛ Â((1−δ)˛d))+b̂T A((1−δ)˛d)+(̂bT d+2)bT d−4b̂T d+ 1
2

b̂T (c ˛ d) − b̂T (δ ˛ c ˛ d) − 2b̂T d˛2 + 2b̂T (δ ˛ d˛2)

1
2 b

T (δ ˛ d˛2) − b̂T d + 1
4

− 1
2 b̂

T (d ˛ Âd˛2) + b̂T (d ˛ Âd) + 1
2 (̂bT d)2 − b̂T d + 1

4

1
2 b̂

T d˛3 − 1
2 b̂

T (δ ˛ d˛3) − b̂T d˛2 + b̂T (δ ˛ d˛2)

−b̂T (d˛2 ˛ Âd) + b̂T (d ˛ Âd) − 1
2 b̂

T d˛2 + b̂T (δ ˛ d˛2) +
1
2 (̂bT d)2 − b̂T d + 1

4

123
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Table 3 continued

γ a0(γ )

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) + (2b̂T d −
4)̂bT (d ˛ Âd) − 3(̂bT d)2 + 4b̂T d − 1

1
2 b̂

T (d ˛ Â((3δ − 2 · 1) ˛ d˛2)) + 2b̂T (d˛2 ˛ Âd) − 3b̂T (d ˛ Âd)

+(3−2b̂T d )̂bT d˛2+(2b̂T d−4)̂bT (δ˛d˛2)− 3
2 (̂bT d)2+3b̂T d− 3

4

b̂T d˛2 − b̂T (δ ˛ d˛2)

b̂T c − 2b̂T d + 1
2

1
2 b̂

T c − b̂T d + 1
4

b̂T (d ˛ Âc) − 2b̂T (d ˛ Âd) − 1
2 b̂

T c − (̂bT d)2 + 3b̂T d − 3
4

bT (δ ˛ c) − 2b̂T d + 1
2

1
2 b

T (δ ˛ d˛2) − b̂T d + 1
4

bT (d ˛ Â((δ − 1) ˛ d)) + b̂T (δ ˛ A((δ − 1) ˛ d)) − 1
2 b

T (δ ˛
d˛2) − (̂bT d + 1)bT d + 4b̂T d − 3

4

1
2 b̂

T d˛2 − b̂T d + 1
4

1
4 b̂

T d˛2 − 1
2 b̂

T d + 1
8

1
2 b̂

T (d ˛ Âd˛2)− b̂T (d ˛ Âd)− 1
4 b̂

T d˛2 − 1
2 (̂bT d)2 + 3

2 b̂
T d − 3

8

b̂T (d˛2 ˛ Âd)− b̂T (d ˛ Âd)− 1
2 b̂

T (δ ˛d˛2)− 1
2 (̂bT d)2+ b̂T d− 1

4

b̂T (c ˛ Â((δ − 1) ˛ d)) + b̂T (d ˛ Â(δ ˛ c)) + b̂T (d ˛ Â((δ − 3 ·
1) ˛ d)) − 2(̂bT d)2 + 4b̂T d − 1

1
2 b̂

T (d˛2 ˛ Â((δ − 1) ˛ d)) + 1
2 b̂

T (d ˛ Â(δ ˛ d˛2)) + 1
2 b̂

T (d ˛
Â((δ − 3 · 1) ˛ d)) − (̂bT d)2 + 2b̂T d − 1

2

3b̂T (d ˛ ( Â((1 − δ) ˛ d))˛2) − 1
2 b̂

T (d˛2 ˛ Â((3 · 1 + δ) ˛ d))

−2b̂T (d ˛ ( Âd)˛2) − 6b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) + ( 232 −
4b̂T d )̂bT (d ˛ Âd)

− 1
2 b̂

T (d ˛ Â(δ ˛ d)) − 1
2 b̂

T (d ˛ Â(δ ˛ d˛2)) + b̂T (δ ˛ d˛2) +
8(̂bT d)2 − 12b̂T d + 3

2b̂T d˛2 − 5
2 b̂

T (δ ˛ d˛2) + b̂T d − 1
4

123
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Table 3 continued

γ a0(γ )

b̂T d˛2 − 5
4 b̂

T (δ ˛ d˛2) + 1
2 b̂

T d − 1
8

1
2 b̂

T (d ˛ Â((2 · 1 − 3δ) ˛ d˛2)) − b̂T (d˛2 ˛ Âd) + 2b̂T (d ˛ Âd)

+(2b̂T d− 7
2 )̂bT d˛2+( 174 −2b̂T d )̂bT (δ˛d˛2)+(̂bT d)2− 5

2 b̂
T d+ 5

8

−b̂T (δ ˛ c) + 2b̂T d − 1
2

− 1
2 b̂

T (δ ˛ c) − 1
2 b̂

T (δ ˛ d˛2) + 2b̂T d − 1
2

b̂T (c ˛ Â((1 − δ) ˛ d)) + b̂T (d ˛ Â((3 · 1 − δ) ˛ d))

−b̂T (d˛ Â(δ˛c))+ 1
2 b̂

T (δ˛c)+ 1
2 b̂

T (δ˛d˛2)+2(̂bT d)2−6b̂T d+ 3
2

− 1
4 b̂

T (δ ˛ d˛2) + 1
2 b̂

T d − 1
8

1
2 b̂

T (d˛2 ˛ Â((1 − δ) ˛ d)) − 1
2 b̂

T (d ˛ Â(δ ˛ d˛2))

+ 1
2 b̂

T (d ˛ Â((3 ·1−δ)˛d))+ 1
2 b̂

T (δ ˛d˛2)+ (̂bT d)2−3b̂T d+ 3
4

b̂T (d ˛ ( Âd)˛2) + 3b̂T (d ˛ Â(d ˛ Â((1 − δ) ˛ d))) + (2b̂T d −
13
2 )̂bT (d ˛ Âd)

−3b̂T (d ˛ ( Â((1− δ) ˛ d))˛2) + 1
2 b̂

T (d ˛ Â(δ ˛ d)) + 1
2 b̂

T (d˛2 ˛
Â((1 + δ) ˛ d))

+ 1
2 b̂

T (d ˛ Â(δ ˛ d˛2)) − 9
2 b̂

T (δ ˛ d˛3) + 15
4 b̂T (δ ˛ d˛2) −

9
2 (̂bT d)2 + 15

2 b̂T d − 15
8
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