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Abstract
The optimisation of nonsmooth, nonconvex functions without access to gradients
is a particularly challenging problem that is frequently encountered, for example
in model parameter optimisation problems. Bilevel optimisation of parameters is a
standard setting in areas such as variational regularisation problems and supervised
machine learning. We present efficient and robust derivative-free methods called
randomised Itoh–Abe methods. These are generalisations of the Itoh–Abe discrete
gradient method, a well-known scheme from geometric integration, which has pre-
viously only been considered in the smooth setting. We demonstrate that the method
and its favourable energy dissipation properties are well defined in the nonsmooth set-
ting. Furthermore, we prove that whenever the objective function is locally Lipschitz
continuous, the iterates almost surely converge to a connected set of Clarke stationary
points.We present an implementation of the methods, and apply it to various test prob-
lems. The numerical results indicate that the randomised Itoh–Abe methods can be
superior to state-of-the-art derivative-free optimisation methods in solving nonsmooth
problems while still remaining competitive in terms of efficiency.
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1 Introduction

We consider the unconstrained optimisation problem

min
x∈Rn

V (x), (1.1)

where the objective function V is locally Lipschitz continuous, bounded below and
coercive—the latter meaning that {x ∈ R

n : V (x) ≤ M} is compact for all M ∈
R. The function may be nonconvex and nonsmooth, and we assume no knowledge
besides point evaluations x �→ V (x). To solve (1.1), we present randomised Itoh–
Abe methods, a generalisation of the Itoh–Abe discrete gradient method. The latter is
a derivative-free optimisation scheme1 that has previously only been considered for
differentiable functions.

Discrete gradient methods, a tool from geometric numerical integration, are opti-
misation schemes that inherit the energy dissipation of continuous gradient flow. The
iterates of the methods monotonically decrease the objective function for all time
steps, and Grimm et al. [33] recently provided a convergence theory for solving (1.1)
in the continuously differentiable setting. We extend the concepts and results of their
work and show that the Itoh–Abe discrete gradient method can be applied in the nons-
mooth case, and, furthermore, that the favourable dissipativity property of themethods
extends to this setting. Furthermore, we prove that for locally Lipschitz continuous
functions the iterates converge to a set of stationary points, defined in the Clarke
subdifferential framework.

1.1 Gradient Flow and the Discrete Gradient Method

For a differentiable function V : R
n → R, gradient flow is the ODE system defined

by
ẋ = −∇V (x), x(0) = x0 ∈ R

n, (1.2)

where the dot represents differentiation with respect to time. By applying the chain
rule, we compute

d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 = −‖∇V (x(t))‖2 = −‖ẋ(t)‖2 ≤ 0, (1.3)

where ‖x‖ denotes the 2-norm
√〈x, x〉. This implies that gradient flow is inherently

an energy dissipative system.
In the field of geometric numerical integration, one studies methods for numerically

solving ODEs while also preserving structures of the continuous system—see [35,52]

1 Not to be confused with another derivative-free method with the same name proposed by Bagirov et al.
[5], which uses a different concept of a discrete gradient.
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for an introduction. Discrete gradient methods can be applied to the first-order gradient
systems to preserve energy conservation laws, dissipation laws, as well as Lyapunov
functions [30,40,53,65]. They are defined as follows:

Definition 1.1 Let V : R
n → R be continuously differentiable. A discrete gradient is

a continuousmapping∇V : R
n×R

n → R
n that satisfies the two following properties:

{ 〈∇V (x, y), y − x〉 = V (y) − V (x) (mean value property)
limy→x ∇V (x, y) = ∇V (x) (consistency)

for all x, y ∈ R
n .

We now introduce the discrete gradient method for optimisation. For x0 ∈ R
n and

time steps τk > 0, k ∈ N, we solve

xk+1 = xk − τk∇V (xk, xk+1). (1.4)

We apply the above mean value property to derive that the iterates decrease V .

V (xk+1) − V (xk) = 〈∇V (xk, xk+1), xk+1 − xk〉
= −τk‖∇V (xk, xk+1)‖2 = − 1

τk
‖xk+1 − xk‖2. (1.5)

Note that the decrease holds for all time steps τk > 0, and that (1.5) can be seen
as a discrete analogue of the dissipative structure of gradient flow (1.3), replacing
derivatives by finite differences.

Grimm et al. [33] proved that for coercive, continuously differentiable functions,
the iterates of (1.4) converge to a set of stationary points, provided that there are strictly
positive constants τmin, τmax such that τk ∈ [τmin, τmax] for all k ∈ N.

1.1.1 Itoh–Abe Methods

The Itoh–Abe discrete gradient [40] (also known as coordinate increment discrete
gradient)2 is defined for differentiable functions V as:

∇V (x, y) =

⎛
⎜⎜⎜⎜⎝

V (y1,x2,...,xn)−V (x)
y1−x1

V (y1,y2,x3,...,xn)−V (y1,x2,...,xn)
y2−x2

...
V (y)−V (y1,...,yn−1,xn)

yn−xn

⎞
⎟⎟⎟⎟⎠ ,

where [∇V (x, y)]i := [∇V (y1, . . . , yi , xi+1, . . . , xn)]i if yi = xi . Solving an iterate
of the discrete gradient method (1.4) with the Itoh–Abe discrete gradient is equivalent

2 There are infinitely many discrete gradients, each with a corresponding discrete gradient method. See
[33] for further examples.
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to successively solving n scalar equations of the form:

xk+1
1 = xk

1 − τk
V (xk+1

1 , xk
2 , . . . , xk

n ) − V (xk)

xk+1
1 − xk

1

xk+1
2 = xk

2 − τk
V (xk+1

1 , xk+1
2 , xk

3 , . . . , xk
n ) − V (xk+1

1 , xk
2 , . . . , xk

n )

xk+1
2 − xk

2

...

xk+1
n = xk

n − τk
V (xk+1) − V (xk+1

1 , xk+1
2 , . . . , xk+1

n−1, xk
n )

xk+1
n − xk

n

,

or xk+1
i = xk

i in the cases where [∇V (xk+1
1 , . . . , xk+1

i−1 , xk
i , . . . , xk

n )]i = 0, i.e. when
there is directional stationarity.

To make this scheme meaningful for nondifferentiable V , we only need to adapt
the criteria of directional stationarity, as the scheme is otherwise derivative-free. For
this we use Clarke directional stationarity, Definition 2.7. We proceed to describe an
extension of the Itoh–Abe discrete gradient method for nonsmooth functions.

Wegeneralise the Itoh–Abe discrete gradientmethod to randomised Itoh–Abe meth-
ods accordingly. Let (dk)k∈N ⊂ Sn−1 be a sequence of directions of descent, where
Sn−1 denotes the unit sphere {x ∈ R

n : ‖x‖ = 1}. The directions can be drawn from
a random distribution or chosen deterministically. At the kth step, we update

xk+1 =
{

xk, if V is stationary at xk along dk (see Definition 2.7), or

xk + τkβkdk, where βk �= 0 solves βk = − V (xk+τkβk dk )−V (xk )
τkβk

.
(1.6)

For notational brevity, we write dV (x, y) := (V (x) − V (y)/‖x − y‖ when x �= y
and dV (x, x) := 0.

We formalise this method in Algorithm 1. Note that the two conditions in (1.6) are
not mutually exclusive, but at least one will hold (Lemma 3.1). We assume through-
out the paper that the time steps (τk)k∈N are bounded between two strictly positive
constants τmin < τmax, which can take arbitrary values.

Algorithm 1 Randomised Itoh–Abe method
Input: starting point x0, directions (dk )k∈N, time steps (τk )k∈N.

for k = 0, 1, 2, . . . do
Update xk+1 = xk + τkβkdk via (1.6)

end for

Observe that if (dk)k∈N cycle through the standard coordinates (ei )n
i=1 with the rule

dk = e[k mod n]+1, then computing n steps of (1.6) corresponds to one step of (1.4)
with the Itoh–Abe discrete gradient. Furthermore, the dissipation properties (1.5) can

123



Foundations of Computational Mathematics (2022) 22:1351–1394 1355

be rewritten as:

V (xk+1) − V (xk) = −τkdV (xk, xk+1)2 = − 1

τk
‖xk+1 − xk‖2. (1.7)

Consequently, the dissipative structure of the Itoh–Abe methods is well defined in a
derivative-free setting.

Ehrhardt et al. [24] studied discrete gradientmethods in the smooth setting, asserting
linear convergence rates for functions that satisfy the Polyak–Łojasiewicz inequality
[42]. Benning et al. [7] propose a Bregman Itoh–Abe optimisation scheme by applying
the Itoh–Abe discrete gradient to the inverse scale space flow, enabling one to speed
up convergence by promoting structural priors such as sparsity. Celledoni et al. [15]
extend the Itoh–Abe discrete gradient method to optimisation on Riemannian mani-
folds. Furthermore, the application of Itoh–Abe discrete gradient methods to smooth
optimisation problems is well documented and includes convex variational regulari-
sation problems for image analysis [33], nonconvex image inpainting problems with
Euler’s elastica regularisation [66], for which it outperformed gradient-based schemes,
and the popular Gauss–Seidel method and successive-over-relaxation (SOR) methods
for solving linear systems [55]. Pathiraja and Reich [60] apply discrete gradient meth-
ods to gradient flow systems with applications to computational Bayesian inference,
observing rapid convergence of the scheme applied to Fokker–Planck dynamics.

1.2 Bilevel Optimisation and Blackbox Problems

An important application for developing derivative-free solvers is model parameter
optimisation problems. The setting for this class of problems is as follows. A model
depends on some tunable parameters α ∈ R

n , so that for a given parameter choice α,
the model returns an output uα . There is a cost function Φ, which assigns to output
uα a numerical score Φ(uα) ∈ R, which we want to minimise. The associated model
parameter optimisation problem becomes

α∗ ∈ argmin
α∈Rn

Φ(uα).

A well-known example of such problems is supervised machine learning.
In this paper, we consider one instance of such problems in image analysis, namely

bilevel optimisation of variational regularisation problems. Here, the model is given
by a variational regularisation problem for image denoising

uα ∈ argmin
u

1

2
‖u − f δ‖2 + Rα(u),

where f δ is a noisy image and Rα(·) ≡ R(·, α) is a regularisation function that
depends on a regularisation parameter α. For training data with desired reconstruction
u†, we consider a scoring function Φ that estimates the discrepancy between u† and
the reconstruction uα . To ensure that α �→ uα is a well-defined mapping, we assume
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that the variational problem is strictly convex for all admissible parameters α. This
would follow, e.g. from convexity of Rα . In Sect. 6.2, we apply Itoh–Abe methods to
solve these problems.

Bilevel optimisation problems, andmodel parameter optimisation problems in gen-
eral, pose several challenges. They are often nonconvex and nonsmooth, due to the
nonsmoothness and nonlinearity of α �→ uα . Furthermore, the model simulation
α �→ uα is an algorithmic process for which gradients or subgradients cannot eas-
ily be estimated. Such problems are termed blackbox optimisation problems, as one
only has access to point evaluations of the function. It is therefore of great interest to
develop efficient and robust derivative-free methods for such optimisation problems.

There is a rich literature on bilevel optimisation for variational regularisation
problems in image analysis, c.f., e.g. [13,22,45,58]. Furthermore, model parameter
optimisation problems appear in many other applications. These include optimising
for the management of water resources [28], approximation of a transmembrane pro-
tein structure in computational biology [31], image registration in medical imaging
[59], the building of wind farms [23], and solar energy utilisation in architectural
design [41], to name a few.

1.3 Related Literature on Nonsmooth, Nonconvex Optimisation

Although nonsmooth, nonconvex problems are known for their difficulty compared to
convex problems, a rich optimisation theory has grown since the 1970s. As the focus of
this paper is derivative-free optimisation, we will compare the methods’ convergence
properties and performance to other derivative-free solvers. For recent reviews on
derivative-free optimisation, we refer the reader to Audet and Hare [3] and Larson et
al. [46].

While there is a myriad of derivative-free solvers, few provide convergence guar-
antees for nonsmooth, nonconvex functions. Audet and Dennis Jr [2] introduced
the mesh adaptive direct search (MADS) method for constrained optimisation, with
provable convergence guarantees to stationary points for nonsmooth, nonconvex func-
tions. Direct search methods evaluate the function at a finite polling set, compare the
evaluations, and update the polling set accordingly. Such methods only consider the
ordering of evaluations, rather than the numerical differences. A significant portion of
derivative-free methods is direct search methods, and the most well known of these is
the Nelder–Mead method (also known as the downhill simplex method) [56].

Alternatively, model-based methods that build a local quadratic model based on
evaluations are well-documented [14,63,64]. While such methods tend to work well
in practice, they are normally designed only for smooth functions, so their performance
on nonsmooth functions is not guaranteed.

Fasano et al. [27] formulate a derivative-free line search method termed DFN and
analyse its convergence properties for nonsmooth functions for the Clarke subdiffer-
ential, in the constrained setting. Building on theDFN algorithm, Liuzzi and Truemper
[50] formulate a derivative-free method that is a hybrid between DFN and MADS.
There are similarities between the DFN scheme in [27] and our approach to Itoh–Abe
methods, both in the implementation of the derivative-free scheme and in their the-
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oretical analysis. For example, both schemes implement line search schemes which
are robust to nonsmoothness in similar ways, and in both cases, Clarke stationarity is
proven, given sufficient density assumptions for the sequence of directions (dk)k∈N
on the unit sphere.

With these similarities in mind, we highlight some ways in which this work differs
from [27]. A central motivation for this work is the extension of discrete gradient
methods, as an established concept in geometric numerical integration, to nondiffer-
entiable systems, in particular for solving optimisation problems. The realisation and
particular implementation of the discrete gradient scheme in Sect. 5 is in this sense
secondary.3 Moreover, this builds on previous research into discrete gradients methods
in optimisation, including [24] where convergence rates are established for smooth
problems, and [7] where the Itoh–Abe methods are generalised to Bregman methods,
e.g. for faster, sparse optimisation.

In comparing the theoretical analyses, we also remark that the theorems in Sect. 3.2
are stronger, as they establish convergence to stationary points for directions (dk)k∈N
chosen both determinstically and stochastically, through cyclical density and proba-
bilistic arguments, respectively, while the corresponding result in [27, Proposition 2.7]
assumes the density of a subsequence (dk j ) j∈N. However, we believe that it should be
possible to extend our novel arguments in Sect. 3.2 to DFN.

We mention the random search scheme, given by

xk+1 = xk − τk
V (xk + βkdk) − V (xk)

βk
dk, (1.8)

where βk > 0, τk > 0, and (dk)k∈N are independent, random draws from a probability
distribution. This explicit scheme was proposed by Polyak [62] and later studied by
Nesterov [57] for derivative-free optimisation of nonsmooth, convex functions. In
[57], convergence rates are obtained for E(V (xk)) −min V , based on analysis of the
Gaussian smoothing function Vβ(xk) := Edk V (xk + βdk), i.e. the expectation with
respect to dk , where the directions (dk)k∈N are drawn from a Gaussian distribution.
We remark that the randomised Itoh–Abe method (1.6) corresponds to (1.8) with an
additional, implicit coupling between τk and βk as described in (1.6). However, in
contrast to the stochastic analysis in [57], the optimality analysis for the randomised
Itoh–Abemethods inSect. 3.2 is basedon the deterministic estimates (1.7), inherited by
the structure preservation of the discrete gradient methods. Whether a similar analysis
could be applied to obtain convergence rates for randomised Itoh–Abe methods in the
nonsmooth setting is beyond the scope of this paper, and is left as a future topic of
inquiry.

Amongst the challenges that nonconvexity poses in optimisation, a central one is
that V is not bounded below by its first-order approximation, and, on a related note,
the concept of a subdifferential becomes significantly more complicated in this setting
(see Sect. 2 for details on generalised subdifferentials). While the main focus of [57] is
convex optimisation, in Sect. 7 the authors derive complexity estimates for nonconvex
problems with respect to the norm of the gradient of the Gaussian smoothing Vμ. As is

3 Indeed, alternative approaches to solving the Itoh–Abemethod (1.6) can be found, e.g. in [7,15,24,33,66].

123



1358 Foundations of Computational Mathematics (2022) 22:1351–1394

expected, the complexity estimate is significantly affected by nonconvexity, and it is
not shownwhether these estimates forVμ can be extended to the nonsmooth functionV
or its subgradients. In contrast, while the analysis for the Itoh–Abemethods in Sect. 3.2
holds for nonsmooth, nonconvex functions, it is not clear whether the analysis could
be notably simplified by assuming convexity of V .

While our focus is on derivative-free methods, we also mention some popular
methods for nonsmooth, nonconvex optimisation that use gradient or subgradient
information. Central in nonsmooth optimisation are bundle methods, where a sub-
gradient [19] is required at each iterate to construct a linear approximation to the
objective function—see [43] for an introduction. A close alternative to bundle meth-
ods are gradient sampling methods (see [12] for a recent review by Burke et al.), where
the descent direction is determined by sampling gradients in a neighbourhood of the
current iterate. Curtis and Que [21] formulated a hybrid method between the gradient
sampling scheme of [20] and the well-known quasi-Newton method BFGS adapted
for nonsmooth problems [49]. These methods have convergence guarantees in the
Clarke subdifferential framework, under the assumption that the objective function is
differentiable in an open, dense set. Last, we mention a derivative-free scheme based
on gradient sampling methods, proposed by Kiwiel [44], where gradients are replaced
by Gupal’s estimates of gradients of the Steklov averages of the objective function.
This method has convergence guarantees in the Clarke subdifferential framework, but
has a high computational cost in terms of function evaluations per iterate.

1.4 Contributions

In this paper, we formulate randomised Itoh–Abe methods for nonsmooth functions.
We prove that the method always admits a solution, and that the iterates converge
to a set of Clarke stationary points, for any locally Lipschitz continuous function,
and both for deterministic and randomly chosen search directions. Consequently, the
scope of discrete gradient methods for optimisation is significantly broadened, and we
conclude that the dissipativity properties of gradient flowcan be preserved even beyond
differentiability. Ultimately, this provides a new robust, and versatile optimisation
scheme for nonsmooth, nonconvex functions.

The theoretical convergence analysis for the Itoh–Abe methods is thorough and
foundational, and we provide examples that demonstrate that the conditions of the
convergence theorem are not just sufficient, but necessary. Furthermore, the statements
and proofs are sufficiently general so that they can be adapted to other schemes, such
as the aforementioned DFO method, thus enhancing the theory of these methods as
well.

We show that the method works well in practice, by solving bilevel optimisation
problems for variational regularisation problems, as well as solving benchmark prob-
lems such as Rosenbrock functions.

The rest of the paper is structured as follows. Sect. 2 provides a background on
the Clarke subdifferential for nonsmooth, nonconvex analysis. In Sect. 3, the main
theoretical results of the paper are presented, namely existence and optimality results
in the stochastic and deterministic setting. In Sect. 4, we briefly discuss the Itoh–Abe
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discrete gradient for general coordinate systems. In Sects. 5 and 6, the numerical
implementation is described and results from example problems are presented. A
conclusion is given in Sect. 7.

2 Nonconvex Optimisation

In this section, we introduce the Clarke subdifferential framework [19], the most
popular framework for nonsmooth, nonconvex optimality analysis, due to its nice
analytical properties. It generalises the gradient of a differentiable function, as well as
the subdifferential [26] of a convex function, hence the term Clarke subdifferential.
Francis H. Clarke introduced the framework in his doctoral thesis in 1973 [18], in
which he used the term generalised gradients.

2.1 The Clarke Subdifferential

Throughout the rest of the paper, for ε > 0 and x ∈ R
n , we denote by Bε(x) the open

ball {y ∈ R
n : ‖y − x‖ < ε}.

Definition 2.1 V is Lipschitz of rank L near x if there exists ε > 0 such that for all
y, z ∈ Bε(x), one has

|V (y) − V (z)| ≤ L‖y − z‖.

V is locally Lipschitz continuous if the above property holds for all x ∈ R
n .

Definition 2.2 For a function V that is Lipschitz continuous near x and for a vector
d ∈ R

n , the Clarke directional derivative is given by

V o(x; d) = lim sup
y→x, λ↓0

V (y + λd) − V (y)

λ
.

Definition 2.3 Let V be locally Lipschitz and x ∈ R
n . The Clarke subdifferential of

V at x is given by

∂V (x) = {
p ∈ R

n : V o(x; d) ≥ 〈d, p〉 for all d ∈ R
n}

.

An element of ∂V (x) is called a Clarke subgradient.

The subdifferential ∂V is well defined for locally Lipschitz functions, coincides with
the standard subdifferential for convex functions [19, Proposition 2.2.7], and coincides
with the derivative at points of strict differentiability [19, Proposition 2.2.4]. It can
equivalently be characterised as [19, Theorem 2.5.1]

∂V (x) = co
{

p ∈ R
n : ∃ (xk)k∈N ⊂ D(V ) s.t. xk → x and ∇V (xk) → p

}
,
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whereD(V ) is the set of differentiable points of V , and co denotes the convex hull of
the set. We additionally state two useful results, both of which can be found in Chapter
2 of [19].

Proposition 2.4 Suppose V is locally Lipschitz continuous. Then,

(i) ∂V (x) is nonempty, convex, and compact, and if V is Lipschitz of rank L near x,
then ∂V (x) ⊆ BL(0).

(ii) ∂V (x) is outer semicontinuous atx: For all ε > 0, there exists δ > 0 such that

∂V (y) ⊂ ∂V (x) + Bε(0), for all y ∈ x + Bδ(0).

There are alternative frameworks for generalising differentiability to nonsmooth,
nonconvex functions. For example, the Michel–Penot subdifferential [54] coincides
with the Gâteaux derivative when this exists, unlike the Clarke subdifferential, which
is larger and only coincides with strict derivatives [29]. However, the outer semicon-
tinuity of the Clarke subdifferential makes it in most cases the preferred framework
for analysis. See [8] by Borwein and Zhu for a survey of various subdifferentials,
published on the 25th birthday of the Clarke subdifferential.

2.1.1 Discrete Gradients Versus Subgradients

By definition, when V is continuously differentiable, any discrete gradient ∇V (x, y)

converges to the gradient∇V (x) as y → x . However, for nondifferentiable V , discrete
gradients do not necessarily approximate a subgradient or even an ε-approximate
subgradient.4 This is demonstrated by the following example.

Example 2.5 Let V (x1, x2) :=
√

x21 + x22 , and set xk = [ 1k , 0]T and yk = [0, 1
k ]T.

Then, for all k, the Itoh–Abe discrete gradient is

∇V (xk, yk) = [1, 1]T.

Thus, xk → [0, 0]T, yk → [0, 0]T and ∇V (xk, yk) → [1, 1]T. However, [1, 1]T is
not in ∂V (0, 0) = B1(0, 0). In fact, for all ε > 0, we have [1, 1]T /∈ ∂εV (0, 0).

2.1.2 Clarke Stationary Points

Definition 2.6 x∗ ∈ R
n is a Clarke stationary point of V if 0 ∈ ∂V (x∗).

For our purposes, we also define Clarke directional stationarity.

Definition 2.7 (Directional Clarke stationarity) For a direction d ∈ R
n\ {0}, we say

that V is Clarke directionally stationary at x∗ along d if

min
{

V o(x∗; d), V o(x∗;−d)
} ≥ 0.

4 For convex functions, p ∈ R
n is an ε-approximate subgradient if, for all y ∈ R

n , it is the case that
V (y) ≥ V (x) + 〈p, y − x〉 − ε [37].
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Remark 2.8 A point x∗ is Clarke stationary if and only if V is Clarke directionally
stationary at x∗ along d for all d ∈ Sn−1.

Any local maxima and minima are stationary. If V is convex, then stationary points
coincide with the global minima. For more general classes of functions, the concept
of Clarke stationary points also reduces to convex first-order optimality conditions.

Definition 2.9 [61] A locally Lipschitz continuous function V is pseudoconvex if for
all x, y ∈ R

n ,

V (y) < V (x) �⇒ ∀p ∈ ∂V (x), 〈p, y − x〉 < 0.

If V is pseudoconvex, then any Clarke stationary point is a global minimum [4]. Clarke
[19] also introduced the notion of regularity.

Definition 2.10 A function V is regular at x if the directional derivative

V ′(x; d) := lim
λ↓0

V (x + λd) − V (x)

λ

exists and equals V o(x; d) for each d ∈ R
n . If this holds for all x , we say that V is

regular.

For a regular function, a point is Clarke stationary if and only if the directional deriva-
tive is nonnegative in all directions. For example, convex functions are regular, and
strict differentiability at a point implies regularity at a point. However, for nonregular
functions, x∗ can simultaneously be Clarke stationary and have negative directional
derivatives in a neighbourhood of directions.

3 The Discrete Gradient Method for Nonsmooth Optimisation

In this section, we present the main theoretical results for the randomised Itoh–Abe
methods. In particular, in Lemma 3.1, we prove that the discrete gradient update (1.6)
admits a solution for all τk > 0. We also prove under minimal assumptions on V and
(dk)k∈N that the iterates converge to a connected set of Clarke stationary points, both
in a stochastic and deterministic setting.

3.1 Existence Result

Lemma 3.1 Suppose V is a locally Lipschitz continuous function bounded below, and
that x ∈ R

n, d ∈ Sn−1, and τ > 0. Then, one of the following statements hold.

(i) There is a β �= 0 that solves (1.6), i.e. that satisfies V (x+τβd)−V (x)
τβ

= −β.
(ii) V is Clarke directionally stationary at x along d.

Proof Suppose the second statement does not hold. Then, there is ε > 0 such that

min
{

V o(x;−d), V o(x; d)
}

< −ε,
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so assume without loss of generality that V o(x; d) < −ε. By definition of V o, there
is δ > 0 such that for all β ∈ (0, δ),

V (x + τβd) − V (x)

τβ
< −ε/2.

Choosing β1 = min{δ/2, ε/2}, we obtain

V (x + τβ1d) − V (x)

τβ2
1

< −1.

On the other hand, as V is bounded below, there is M < 0 such that V (x + τβd) −
V (x) > M for all β ∈ R. Setting β2 = √|M |/τ , we derive

V (x + τβ2d) − V (x)

τβ2
2

> −1.

Note that the above inequality holds for all β ≥ β2, so we have β1 < β2. Since the
mapping β �→ V (x+τβd)−V (x)

τβ2 is continuous for β ∈ (0,∞), we conclude by the
intermediate value theorem [70, Theorem 4.23] that there is β ∈ (β1, β2) that solves
the discrete gradient equation:

V (x + τβd) − V (x)

τβ2 = −1. ��
The following lemma, which is an adaptation of [33, Theorem 1] for the nonsmooth

setting, summarises some useful properties of the methods.

Lemma 3.2 Suppose that V is continuous, bounded from below and coercive, and let
(xk)k∈N be the iterates produced by (1.6). Then, the following properties hold.

(i) V (xk+1) ≤ V (xk).
(ii) limk→∞ dV (xk, xk+1) = 0.
(iii) limk→∞ ‖xk − xk+1‖ = 0.
(iv) (xk)k∈N has an accumulation point x∗.

Proof Property (i) follows from the equation V (xk+1) − V (xk) = −τkβ
2
k .

Next we show properties (ii) and (iii). Since V is bounded below and (V (xk))k∈N
is non-increasing, V (xk) → V ∗ for some limit V ∗. Therefore, by (1.7)

V (x0) − V ∗ =
∞∑

k=0

V (xk) − V (xk+1) =
∞∑

k=0

τkdV (xk, xk+1)2

≥ τmin

∞∑
k=0

dV (xk, xk+1)2.
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Similarly, by (1.7)

V (x0) − V ∗ =
∞∑

k=0

V (xk) − V (xk+1) =
∞∑

k=0

1

τk
‖xk − xk+1‖2

≥ 1

τmax

∞∑
k=0

‖xk − xk+1‖2.

We conclude that

lim
k→∞ dV (xk, xk+1) = lim

k→∞‖xk+1 − xk‖ = 0,

which shows properties (ii) and (iii).
Last, we show (iv). Since (V (xk))k∈N is a non-increasing sequence, the iterates

(xk)k∈N belong to the set
{

x ∈ R
n : V (x) ≤ V (x0)

}
. Therefore, by coercivity of V ,

the iterates (xk)k∈N are bounded and admit an accumulation point. ��
We denote by S the limit set of (xk)k∈N, which is the set of accumulation points,

S =
{

x∗ ∈ R
n : ∃(xk j ) j∈N s.t. xk j → x∗} .

By the above lemma, S is nonempty. We now prove further properties of the limit set.

Lemma 3.3 With the same assumption for V as in Lemma3.2, the limit set S is compact,
connected and has empty interior. Furthermore, V is constant on S.

Proof Boundedness of S follows from coercivity of V combined with the fact that S
is a subset of {x ∈ R

n : V (x) ≤ V (x0)}. Since any accumulation point of S is also
an accumulation point of (xk)k∈N, S is closed. Hence, S is compact.

We prove connectedness by contradiction. Suppose S is disconnected. Since S is
closed, this is equivalent to there being disjoint, closed, nonempty sets S1, S2 such
that S = S1 ∪ S2. Choose ε > 0 such that ‖x − y‖ ≥ ε for all x ∈ S1, y ∈ S2, and
define the nonempty, closed set S3 = {x ∈ R

n : ‖x − y‖ ≥ ε/3 for all y ∈ S}. As
‖xk − xk+1‖ → 0, there is K ∈ N such that ‖xk − xk+1‖ < ε/3 for all k ≥ K . It
follows that if xk ∈ S1 + Bε/3(0) and x j ∈ S2 + Bε/3(0) for j ≥ k ≥ K , then there is
l ∈ (k, j) such that xl ∈ S3. As (xk)k∈N has accumulation points in S1 and S2, it thus
follows that it also has a subsequence in S3. As (xk)k∈N is a bounded sequence and
S3 is closed, this subsequence admits a convergent subsequence with limit in S3. This
contradicts the assumption that all accumulation points of (xk)k∈N are in S1 ∪ S2.

To show that V is constant on S, we simply note that (V (xk))k∈N is a non-increasing
sequence and V (x∗) = limk→∞ V (xk) for all x∗ ∈ S, from which the result follows.

Finally, we show by contradiction that S has empty interior. Suppose S contains an
open ball Bε(x) in R

n . Then, as ‖xk+1 − xk‖ → 0, there is a j ∈ N such that x j ∈
Bε(x). However, as V is constant on S, V (x j ) = mink∈N V (xk). Since (V (xk))k∈N is
a non-increasing sequence and ‖xk − xk+1‖2 = τk(V (xk)− V (xk+1)), it follows that
xk = x j for all k ≥ j . Therefore, S = {x j }, which contradicts the assumption that S
has nonempty interior. ��
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3.2 Optimality Result

We now proceed to the main result of this paper, namely that all points in the limit
set S are Clarke stationary. We consider the stochastic case and the deterministic case
separately.

In the stochastic case, we assume that the directions (dk)k∈N are randomly, indepen-
dently drawn, and that the probability density of Ξ has support almost everywhere in
Sn−1. It is straightforward to extend the proof to the case where (dnk+1, . . . , dn(k+1))

are drawn as an orthonormal system under the assumptions that the directions
(dnk+ j )k∈N are independently drawn from Sn−1 for j = 1, . . . , n, and that the support
of the density of the corresponding marginal distribution is dense in Sn−1.

We define X to be the set of nonstationary points,

X = {x ∈ R
n : 0 /∈ ∂V (x)}. (3.1)

Theorem 3.4 With the same assumption for V as in Lemma 3.2, let (xk)k∈N solve
(1.6) where (dk)k∈N are independently drawn from the random distribution Ξ , and
suppose that the density of Ξ has almost everywhere support in Sn−1. Then, every
accumulation point of (xk)k∈N is almost surely Clarke stationary.

Proof We will construct a countable collection of open sets (B j ) j∈N, such that X ⊂⋃
j∈N B j and so that for all j ∈ N we have P(S ∩ B j �= ∅) = 0. Then, the result

follows from countable additivity of probability measures.
We first show that for every x ∈ X , there is d ∈ Sn−1, ε > 0, and δ > 0 such that

V (y − λe) − V (y)

λ
≤ −ε, ∀y ∈ Bδ(x), e ∈ Bδ(d) ∩ Sn−1, λ ∈ (0, δ). (3.2)

To show this, note that if x ∈ X , then by definition there is d ∈ Sn−1, ε > 0 such that

V o(x;−d) = lim sup
y→x
λ↓0

V (y − λd) − V (y)

λ
≤ −ε.

Therefore, there is η > 0 such that for all λ ∈ (0, η) and all y ∈ Bη(x), we have

V (y − λd) − V (y)

λ
≤ −ε/2.

As V is Lipschitz continuous around Bη(x), the mapping

e �→ V (y − λe) − V (y)

λ
,

is also locally Lipschitz continuous (of the same rank). It follows that there exists
δ ∈ (0, η) such that for all y ∈ Bδ(x), all e ∈ Bδ(d) ∩ Sn−1, and all λ ∈ (0, δ), we
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have

V (y − λe) − V (y)

λ
≤ −ε/3.

This concludes the first step.
Next, for each m ∈ N, we define the set

Xm =
{

x ∈ X : (3.2) holds for some d ∈ Sn−1, ε > 0 and all δ < 1/m
}

.

Clearly,
X =

⋃
m∈N

Xm . (3.3)

For each m ∈ N, let (y(i,m))i∈N be a dense sequence in Xm , which exists because Q
n

is both countable and dense in R
n . We define Y (m)

i = Bδ(y(i,m)), where δ = 1
m+1 .

Therefore,

(3.3) and Xm ⊂
⋃
i∈N

Y (m)
i for all m ∈ N �⇒ X ⊂

⋃
m∈N

⋃
i∈N

Y (m)
i .

Since a countable union of countable sets is countable, we conclude with the following
statement. There exists sequences (yi )i∈N ⊂ R

n , (εi )i∈N ⊂ (0,∞), (δi )i∈N ⊂ (0,∞),
and (d̃i )i∈N ⊂ Sn−1, such that for all z ∈ Bδi (yi ) =: Bi , all e ∈ Bδi (d̃

i )∩Sn−1 =: Di ,
and all λ ∈ (0, δi ), we have

V (z − λe) − V (z)

λ
≤ −εi , (3.4)

and such that
X ⊂

⋃
i∈N

Bi . (3.5)

Finally, we want to show that for each i ∈ N, P(S ∩ Bi �= ∅) = 0. For this, we fix i

and set m := minx∈Bi V (x), M := maxx∈Bi V (x), and μ := min{ε2i τmin,
δ2i

τmax
} > 0.

We first show for any k ∈ N that

xk ∈ Bi and dk ∈ Di �⇒ V (xk) − V (xk+1) ≥ μ. (3.6)

To show this, we write xk+1 = xk − λdk for some λ ∈ R, and consider separately the
cases |λ| < δi and |λ| ≥ δi . In the first case, it follows from (3.4) that λ ∈ (0, δi ), and
furthermore that

V (xk − λdk) − V (xk) ≤ −εiλ = −εi‖xk+1 − xk‖.
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However, by (1.7), we also have

V (xk+1) − V (xk) = − 1

τk
‖xk+1 − xk‖2,

and, combining these equations, we get

εiτk ≤ ‖xk+1 − xk‖.

This in return implies

V (xk) − V (xk+1) ≥ ε2i τmin ≥ μ.

Otherwise, if |λ| > δi , then by (1.7)

V (xk) − V (xk+1) ≥ δ2i

τmax
≥ μ.

Thus, (3.6) holds.
Next, choose K ∈ N such that Kμ > M − m, and suppose that there are K + 1

indices k1, . . . kK+1 such that xk j ∈ Bi and dk j ∈ Di for j = 1, . . . , K + 1. Then,
using (3.6) and the fact that (V (xk))k∈N is a non-increasing sequence, we have

M − m ≥ V (xk1) − V (xkK+1) ≥ V (xk1) − V (xkK ) + μ ≥ · · · ≥ V (xk1) − V (xk1) + Kμ

> M − m,

which is a contradiction. Thus, for there to be a subsequence of (xk)k∈N in Bi , there
can be no more than K instances where xk ∈ Bi and dk is drawn in Di . Since (dk)k∈N
are independent draws, the probability of this is 0, as we rigorously demonstrate in
the next paragraph.

For j = 1, 2, . . ., denote by E j ∈ N ∪ {+∞} the index k for which xk is the j th
iterate of (xk)k∈N in Bi , where we set E j = +∞ if there are fewer than j elements of
(xk)k∈N in Bi . Next, we construct a sequence of random variables ( f j ) j∈N, where if
E j ∈ Nwe set f j := d E j , and otherwise f j is an independent draw fromΞ . It follows
that ( f j ) j∈N is a sequence of independent draws from Ξ . Finally, for j = 1, 2, . . .,

set Fj := 1 if f j ∈ Di and 0 otherwise, and define G j := ∑ j
k=1 Fj . We observe that

P((xk)k∈N has subsequence in Bi ) ≤ P(lim sup
j→∞

G j ≤ K ) = 0,

where the latter equality holds because (Fj )
∞
j=1 is a sequence of independent events

with P(Fj = 1) = PΞ(d ∈ Di ) > 0. This concludes the proof. ��
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3.2.1 Deterministic Case

We now cover the deterministic case, in which (dk)k∈N is required to be cyclically
dense.

Definition 3.5 A sequence (dk)k∈N ⊂ U is cyclically dense in U if for each ε > 0
there is N ∈ N so that for all k ∈ N, the set

{
dk, . . . , dk+N−1

}
forms an ε-cover of

U ,

U ⊂
k+N−1⋃

i=k

Bε(d
i ).

In Appendix A, we show that randomly drawn sequences are almost surely not
cyclically dense, hence the separate treatment of stochastic and deterministic schemes.

Many constructions of dense sequences are also cyclically dense. We provide an
example of such a sequence on the unit interval [0, 1].
Example 3.6 Let σ ∈ (0, 1) be an irrational number and define the sequence (λk)k∈N
in [0, 1] by

λk = (σk) (mod 1) = σk − �σk� ,

where �σk� denotes the largest integer less than or equal to σk.
To see that (λk)k∈N is cyclically dense in [0, 1], set ε > 0 and note by sequential

compactness of [0, 1] that there is k, r ∈ N such that |λk − λk+r | < ε. We can write
δ = λk+r −λk , where we know that δ �= 0, as no value can be repeated in the sequence
due to σ being irrational. By modular arithmetic, we have for any l ∈ N,

λk+rl = λk + lδ (mod 1).

In other words, the subsequence (λk+rl)l∈N moves in increments of δ ∈ (−ε, ε) on

[0, 1]. Setting N = r
⌈

1
|δ|

⌉
+ k, where  1/|δ|! denotes the smallest integer greater

than or equal to 1/|δ|, it is clear that for any j ∈ N, the set {λ j , λ j+1, . . . , λ j+N−1}
forms an ε-cover of [0, 1].

One could naturally extend this construction to higher dimensions [0, 1]n , by choos-
ingn irrational numbers such that the ratio of any twoof these numbers is also irrational.

Theorem 3.7 Let (xk)k∈N solve (1.6), where (dk)k∈N are cyclically dense. Then, all
accumulation points x∗ ∈ S satisfy 0 ∈ ∂V (x∗).

Proof We consider the setup in the proof to Theorem 3.4, where X is the set of
nonstationary points (3.1) and is covered by a countable collection of open balls
(3.5),

X ⊂
⋃
i∈N

Bδi (yi ).
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We will show that an accumulation point x∗ ∈ S cannot belong to the ball Bδi (yi ),
fromwhich it follows that S is a subset of the set of stationary points. For contradiction,
suppose that there is a subsequence (xk j ) j∈N → x∗ ∈ Bδi (yi ). By Lemma 3.2 (iii),
since ‖xk − xk+1‖ → 0 as k → ∞, we deduce that for any N ∈ N, there is j ∈ N

such that

{xk j , xk j+1, . . . , xk j+N−1} ⊂ Bδi (yi ).

Then, by cyclical density, we can choose N such that the corresponding directions
{dk j , dk j+1, . . . , dk j+N−1} form a δi -cover of Sn−1. Therefore, there exists xk ∈
Bδi (yi ) and dk ∈ Bδi (e

i ), so we can argue as in Theorem 3.4, that

V (xk) − V (xk+1) ≥ μ,

where μ = min

{
ε2i τmin,

δ2i
τmax

}
. If (xk j ) j∈N had a limit in Bδi (yi ), this would happen

arbitrarily many times, which is a contradiction. This concludes the proof. ��

3.3 Necessity of Search Density and Lipschitz Continuity

In what follows, we examine the necessity of some of the assumptions made in the
convergence theorems.

It is well known that for nonsmooth problems, it is necessary to employ a set of
directions (dk)k∈N larger than the set of basis coordinates {e1, . . . , en}. For example,
consider the function V (x, y) = max {x, y} and the starting point x0 = [1, 1]T. With
the standard Itoh–Abe discrete gradient method, the iterates would remain at x0, even
though this point is nonstationary.

Furthermore, the following example demonstrates that it is necessary for the set of
directions (±dk)k∈N to be dense on Sn−1.

Example 3.8 We suppose V : R
2 → R is defined by V (x1, x2) = |x1| + N |y2| for

some N ∈ N, and set x0 = [−1, 0]T. For θ ∈ [−π/2, π/2], let d = [cos θ, sin θ ]T.
Then, −d is a direction of descent if and only if θ ∈ (− arctan(1/N ), arctan(1/N )).
This interval can be made arbitrarily small by choosing N to be sufficiently large.
Therefore, for an Itoh–Abe method to descend from x0 for arbitrary functions, either
the directions (dk)k∈N (or (−dk)k∈N) need to include a convergent subsequence to
the direction [1, 0]T. As this direction is arbitrary, we deduce that (±dk)k∈N must be
dense.

Theorem 3.4 also assumes that V is locally Lipschitz continuous.We briefly discuss
why this assumption is necessary, and provide an example to show that for functions
that are merely continuous, the theorem no longer holds.

By Clarke [19, Proposition 2.1.1. (b)], the mapping (y, d) �→ V o(y; d) is upper
semicontinuous for y near x , due to local Lipschitz continuity of V near x . That is,

V o(y∗; d∗) ≥ lim sup
y→y∗,d→d∗

V o(y; d).
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This property is crucial for the convergence analysis of Itoh–Abemethods, as it implies
that for a subsequence (xk j ) j∈N such that xk j → x∗ and dk j → d∗, we have

V o(x∗, d∗) ≥ lim sup
j∈N

V o(xk j ; dk j ) = 0.

Without local Lipschitz continuity, it is possible to have

xk j → x∗, dk j → d∗, and V o(xk j ; dk j ) → 0, but V o(x∗; d∗) < 0.

In this case, there is no guarantee that the limit x∗ is Clarke stationary.We demonstrate
this with an example.

Example 3.9 We first fix the iterates (xk)k∈N ⊂ R
2 and (dk)k∈N ⊂ S1, and construct

the function V : R
2 → R subsequently. Let (dk)k∈N be a cyclically dense sequence

in S1 and assume without loss of generality that [0, 1]T /∈ (dk)k∈N. Replacing dk with
−dk does not change the step in (1.6), so we assume that dk

1 < 0 for all k. We set
x0 = [0, 0]T and define (xk)k∈N to be

xk+1 = xk − 1

(k + 1)2
dk .

Note that since dk
1 < 0 for all k, xk+1

1 > xk
1 for all k, so none of the iterates coincide.

Furthermore, the sequence (xk)k∈N has a unique limit, which we denote by x∗.
Next, we define a piecewise affine path ρ : R → R accordingly. If r < x01 , set

ρ(r) := x02 , and if r > x∗
1 , set ρ(r) := x∗

2 . Otherwise, r ∈ [x01 , x∗
1 ] and there are

unique λ ∈ [0, 1] and k ∈ N such that r = λxk
1 + (1 − λ)xk+1

1 . In this case, we set
ρ(r) := λxk

2 + (1− λ)xk+1
2 = xk

2 + (r − xk
1 )d

k
2/dk

1 .
We then define V : R

2 → R accordingly. On (xk)k∈N, we set

V (xk+1) = V (xk) − 1

(k + 1)4
, V (x0) = 0.

If r = λxk
1 + (1− λ)xk+1

1 for some λ ∈ [0, 1] and k ∈ N, set

V (r , ρ(r)) := λV (xk) + (1− λ)V (xk+1) = V (xk) + r − xk

dk
1 (k + 1)2

.

Otherwise, if r < x01 , set V (r , ρ(r)) := V (x0), and if r > x∗
1 , then set V (r , ρ(r)) :=

V (x∗). Finally, for each [r , x2]T ∈ R
2, define V (r , x2) := V (r , ρ(r)) − (x2 − ρ(r)).

One can verify that this constitutes a well-defined, continuous function on R
2.

Furthermore, the iterates (xk)k∈N satisfy (1.6) with τk = 1. Finally, observe that for
all x ∈ R

2, we have V o(x; [0, 1]T) = −1. Therefore, x∗ is not a stationary point of
V .

One may observe directly for this function that V o(·; ·) is not upper semicontin-
uous, and hence that V is not locally Lipschitz continuous at x∗. Namely, passing
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to a subsequence (dk j ) j∈N such that dk j → [0, 1]T, we conclude from the above
construction that lim sup j→∞ V o(xk j ; dk j ) ≥ 0, while V o(x∗; [0, 1]T) = −1.

3.4 Nonsmooth, Nonconvex Functions with Further Regularity

For a large class of nonsmooth optimisation problems (convex and nonconvex), the
objective function is sufficiently regular so that the standard Itoh–Abe discrete gradient
method is also guaranteed to converge to Clarke stationary points. These are functions
V for which x∗ ∈ R

n is Clarke stationary if and only if V o(x∗;±ei ) ≥ 0 for i =
1, . . . , n. One may, for example, consider functions of the form:

V (x) = E(x) + λ‖x‖1,

where E is a continuously differentiable function that may be nonconvex and ‖x‖1
denotes |x1| + · · · + |xn|, and λ > 0. See, for example, Proposition 2.3.3 and the
subsequent corollary in [19], combined with the fact that the nonsmooth component
of V , i.e. ‖ · ‖1, separates into n coordinate-wise scalar functions. This implies that
the Clarke subdifferential is given by

∂V (x) = {∇E(x)} + λ

ną

i=1

sgn(xi ),

where
Ś

denotes the Cartesian product and

sgn(xi ) :=
{
{xi/|xi |}, if xi �= 0,

[ − 1, 1], if xi = 0.

Since this paper is chiefly concerned with the blackbox setting where no particular
structure of V is assumed, we do not include an analysis of the convergence properties
of the standard Itoh–Abe discrete gradient method for functions of the above form.
However, we point out that for problems where Clarke stationarity is equivalent to
Clarke directional stationarity along the standard coordinates, one can easily adapt
Theorem 3.4 to prove that the iterates converge to a set of Clarke stationary points
when the directions (dk)k∈N are drawn from the standard coordinates (ei )n

i=1.
Furthermore, one could drop the requirement that V is locally Lipschitz continuous,

and replace ‖x‖1 with ‖x‖p
p, where p ∈ (0, 1), and ‖x‖p

p = |x1|p + · · · + |xn|p. This
too is beyond the scope of this paper.

4 Rotated Itoh–Abe Discrete Gradients

We briefly discuss a randomised Itoh–Abe method that retains the Itoh–Abe discrete
gradient structure, by ensuring that the directions (dkn+1, dkn+2, . . . , dk(n+1)) are
orthonormal for all k. For this, we consider each block of n directions to be indepen-
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dently drawn from a random distribution on the set of orthogonal transformations on
R

n , denoted by O(n).

Definition 4.1 The orthogonal group of dimension n, O(n), is the set of orthogonal
matrices in R

n , i.e. matrices R which satisfy R−1 = RT. Equivalently, R maps one
orthonormal basis of R

n to another.

Each element of O(n) corresponds to a rotated Itoh–Abe discrete gradient.

Definition 4.2 (Rotated Itoh–Abe discrete gradient) For R ∈ O(n), denote by (ei )n
i=1

and ( f i )n
i=1 twoorthonormal bases such that R f i = ei . For continuously differentiable

functions V , the rotated Itoh–Abe discrete gradient, denoted by ∇R V , is given by

∇R V (x, y) = RT∇̂R V (x, y),

where

(
∇̂R V (x, y)

)
i
:=

⎧⎪⎨
⎪⎩

V
(

x+∑i
j=1〈y−x, f j 〉 f j

)
−V

(
x+∑i−1

j=1〈y−x, f j 〉 f j
)

〈y−x, f i 〉 , if 〈y − x, f i 〉 �= 0,

〈∇V
(

x + ∑i−1
j=1〈y − x, f j 〉 f j

)
, f i 〉, otherwise.

It is straightforward to check that it is a discrete gradient, as defined for continuously
differentiable functions.

Proposition 4.3 If V : R
n → R is continuously differentiable, then ∇R V is a discrete

gradient.

Proof For any x, y ∈ R
n , x �= y,

〈∇R V (x, y), y − x〉 = 〈RT∇̂R V (x, y), y − x〉 = 〈∇̂R V (x, y), R(y − x)〉

=
n∑

i=1

V

⎛
⎝x +

i∑
j=1

〈y − x, f j 〉 f j

⎞
⎠

− V

⎛
⎝x +

i−1∑
j=1

〈y − x, f j 〉 f j

⎞
⎠ = V (y) − V (x).

The convergence property limy→x ∇R V (x, y) = ∇V (x) follows directly from con-
tinuous differentiability of V . ��

Thus, we can implement schemes that are formally discrete gradient methods and
also fulfil the convergence theorems in Sect. 3.

5 Numerical Implementation

We consider three ways of choosing (dk)k∈N.
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1. Standard Itoh–Abe method The directions cycle through the standard coordinates,
with the rule dk = e[k mod n]+1. Performing n steps of this method is equivalent to
one step with the standard Itoh–Abe discrete gradient method.

2. Random pursuit Itoh–Abe method The directions are independently drawn from
a random distribution Ξ on Sn−1. We assume that the density of Ξ has support
almost everywhere.

3. Rotated Itoh–Abe method For each k ∈ N, the block of n consecutive directions
(dkn+1, dkn+2, . . . , d(k+1)n) is drawn from a random distribution on O(n), so that
the directions form an orthonormal basis. We assume that each draw from O(n) is
independent.

We formalise an implementation of randomised Itoh–Abe methods with two algo-
rithms, an inner and an outer one. Algorithm 3 is the inner algorithm and returns xk+1,
given xk , dk , and time step bounds τmin, τmax. Algorithm 2 is the outer algorithm,
which calls the inner algorithm for each iterate xk , and provides a stopping rule for
the methods. The stopping rule in Algorithm 2 takes two positive integers K and M as
parameters, such that the algorithm stops either after K iterations, or when the iterates
have not sufficiently decreased V in the last M iterations. We typically set M ≈ n, n
being the dimension of the domain. The exception to this is when the function V is
expected to be highly irregular or nonsmooth, in which case we choose a larger M , as
directions are generally prone to yield insufficient decrease. This stopping rule can be
replaced by any other heuristic.

Algorithm 3 is a tailor-made scalar solver for (1.6) that balances the trade-off
between decreasing β �→ V (xk + βdk) as much as possible within the time step
constraints τmin, τmax and using minimal function evaluations. Rather than solving for
a given τk , it ensures that there exists some τk ∈ [τmin, τmax] that matches the output
xk+1. The algorithm uses a preliminary time step τ ∈ [τmin, τmax], which we set to
τ = √

τminτmax. This method is particularly suitable when τmin $ τmax, and it can be
replaced by any other scalar root solver. The algorithm calls the functions interpola-
tionStep and backtrackingFunction, whose algorithms can be found in Appendix.

As the algorithm does not use a fixed time step, it is notationally convenient to make
βk include τk , so that the update becomes xk+1 = xk +βkdk where βk/τk solves (1.6).
With this in mind, we define an admissible output xk+1 = xk + βdk of Algorithm 3
as follows, for a specified tolerance ε > 0 and time step bounds τmin < τmax:

∃τ ∈ [τmin, τmax], β̃ ∈ [β − ε, β + ε] s.t. β̃/τ solves (1.6) for time step τ. (5.1)

The Python code is available at https://github.com/esriis/itohabe_optimisation.

6 Examples

In this section, we use the randomised Itoh–Abe methods to solve several nons-
mooth, nonconvex problems. In Sect. 6.1, we consider some well-known optimisation
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Algorithm 2 Randomised Itoh–Abe method with solver and stopping criterion. The
function innerSolver is described in Algorithm 3.
Input:

x0 starting point
(dk )k∈N directions
(τmin, τmax) time step bounds
τ ∈ (τmin, τmax) proposed time step
ε > 0 tolerance
η > 0 tolerance for decrease
σ ∈ (0, 1) search parameter
K maximal number of iterations
M maximal number of consecutive directions without descent before stopping
m = 0 initialise counter

1: for k = 0, . . . , K − 1 do
2: xk+1 ← innerSolver(xk , dk , τmin, τmax, τ , ε, σ )

3: if V (xk ) − V (xk+1) ≤ η then
4: m = m + 1
5: else
6: m = 0
7: end if
8: if m ≥ M then
9: Terminate
10: end if
11: end for

Algorithm 3 Solver for Itoh–Abe step (1.6). The function interpolationStep, defined
in Algorithm 4, returns a point of descent β, which is chosen in such a way that the
subsequent backtrackingFunction procedure, defined in Algorithm 6, is guaranteed to
find a solution to (5.1). For full details, see Appendix B.
Input:

x ∈ R
n current point

d ∈ Sn−1 direction
τmin > 0 time step lower bound
τmax ∈ (τmin,+∞) time step upper bound
τ ∈ (τmin, τmax) proposed time step
ε > 0 tolerance for β

σ ∈ (0, 1) search parameter
Output:

y ∈ R
n solution to (5.1)

1: function innerSolver(x ,d,τmin,τmax,τ ,ε,σ )
2: if (V (x) − V (x + εd))/ε2 ≤ 1/τmin then & check for direction of descent
3: d ← −d
4: if (V (x) − V (x + εd))/ε2 ≤ 1/τmin then & if V is stationary at x along d up to tolerance
5: return x & then β = 0 solves (5.1)
6: end if
7: end if
8: f : β �→ V (x + βd) − V (x) & define scalar function
9: β ← interpolationStep( f , τmin, τmax, τ , ε, σ ) & do parabolic interpolation step
10: β ← backtrackingFunction( f , β, τmin, τmax, ε, σ ) & do backtracking procedure
11: return x + βd & output solution to (5.1)
12: end function
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challenges developed by Rosenbrock and Nesterov. In Sect. 6.2, we solve bilevel
optimisation of parameters in variational regularisation problems.5

We compare our method to state-of-the-art derivative-free optimisation methods
Py-BOBYQA [14,64] and the LT-MADS solver provided by NOMAD [2,47,48]. For
purposes of comparing results across solvers for these problems, we do not measure
objective function value against iterates, but against function evaluations.

6.1 Rosenbrock Functions

We consider the well-known Rosenbrock function [68]

V (x, y) = (1− x)2 + 100(y − x2)2. (6.1)

Its global minimiser [1, 1]T is located in a narrow, curved valley, which is challenging
for the iterates to navigate. We compare the three variants of the Itoh–Abe method,
for which we set the algorithm parameters ε = 10−5, τmin = 10−4, τmax = 102,
η = 10−9, and M = 30. See Fig. 1 for the numerical results. All three methods
converge to the global minimiser, which shows that the Itoh–Abe methods are robust.
Unsurprisingly, the random pursuit method and the rotated Itoh–Abe method, which
descend in varying directions, perform significantly better than the standard Itoh–Abe
method.

We additionally consider a nonsmooth variant of (6.1), termed Nesterov’s (second)
nonsmooth Chebyshev–Rosenbrock function [34],

V (x, y) = 1

4
|x − 1| + ∣∣y − 2|x | + 1

∣∣. (6.2)

In this case too, the global minimiser [1, 1]T is located along a narrow path. Further-
more, there is a nonminimising, stationary point at [0,−1]T, which is nonregular, i.e.
it has negative directional derivatives.

We also compare the three Itoh–Abemethods for this example, and set the algorithm
parameters ε = 10−10, τmin = 10−4, τmax = 102, η = 10−16, and M = 100.
See Fig. 2 for the results from this. As can be seen, the standard Itoh–Abe discrete
gradient method is not suitable for the irregular paths and nonsmooth kinks of the
objective function, and stagnates early on. The two randomised Itoh–Abe methods
perform better, as they descend in varying directions. For the remaining 2D problems
in this paper, we will consider the rotated Itoh–Abe method, although we could just
as well have used the random pursuit method. For higher-dimensional problems, we
recommend the random pursuit method.

We compare the performance of the randomised Itoh–Abe (RIA) method to
Py-BOBYQA and LT-MADS for Nesterov’s nonsmooth Chebyshev–Rosenbrock
function. We set the parameters of the Itoh–Abe method to ε = 10−10, τmin = 10−4,
τmax = 102,η = 10−16, and M = 100, the parameters of Py-BOBYQAto rhobeg = 2,

5 Test images are taken from the Berkeley database [51]. Available online: https://www2.eecs.berkeley.
edu/Research/Projects/CS/vision/bsds/BSDS300/html/dataset/images.html.
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Standard Itoh–Abe Rotated Itoh–Abe

Random pursuit Itoh–Abe

Fig. 1 Comparison of three variants of the Itoh–Abe method applied to the Rosenbrock function. Top left:
Itoh–Abe method with standard frame. Top right: rotated Itoh–Abe method. Bottom left: Itoh–Abe method

with random pursuit. Bottom right: convergence rates of the relative objective V (xk )−V ∗
V (x0)−V ∗ for the three

variants

rhoend = 10−16 and npt = (n + 1)(n + 2)/2, and the parameters of LT-MADS to
DIRECTION_TYPE = LT 2N and MIN_MESH_SIZE = 10−13. See Figs. 3 and 4
for the numerical results for two different starting points. In the first case, the Itoh–
Abe method successfully converges to the global minimiser, the LT-MADS method
locates the nonminimising stationarypoint at [0,−1]T,while thePy-BOBYQAiterates
stagnate at a kink, reflecting the fact that the method is not designed for nonsmooth
functions. In the second case, both the Itoh–Abe method and LT-MADS locate the
minimiser, while the Py-BOBYQA iterates stagnate at a kink.

6.2 Bilevel Parameter Learning in Image Analysis

In this subsection, we consider the Itoh–Abe method for solving bilevel optimisation
problems for the learning of parameters of variational imaging problems. We restrict
our focus to denoising problems, although the same method could be applied to any
inverse problem.We first consider one-dimensional bilevel problems with wavelet and
TV denoising, and two-dimensional problems with TGV denoising. In the TGV case,
we compare the randomised Itoh–Abe method to the Py-BOBYQA and LT-MADS
methods. Throughout this section, we set M = n, where n = 1, 2.

123



1376 Foundations of Computational Mathematics (2022) 22:1351–1394

Standard Itoh–Abe Rotated Itoh–Abe

Random pursuit Itoh–Abe

Fig. 2 Comparison of three variants of the Itoh–Abe method applied to Nesterov’s nonsmooth Chebyshev–
Rosenbrock function. Top left: Itoh–Abe method with standard frame. Top right: rotated Itoh–Abe. Bottom

left: Itoh–Abe with random pursuit. Bottom right: convergence rates of the relative objective V (xk )−V ∗
V (x0)−V ∗ for

the three variants

6.2.1 Setup for Variational Regularisation Problem

Consider an image u† ∈ L2(Ω), for some domain Ω ⊂ R
2, and a noisy image

f δ = u† + noise.

To recover a clean image from the noisy one, we consider a parametrised family of
regularisers:

{
Rα : L2(Ω) → [0,∞] : α ∈ [0,∞)n

}
,

and solve the variational regularisation problem

uα ∈ argmin
u

1

2
‖u − f δ‖2 + Rα(u). (6.3)

The first term in (6.3), the data fidelity term, ensures that the reconstruction approx-
imates f δ . The regulariser term serves to denoise the reconstruction, by promoting
favourable features such as smooth regions and sharp edges. The parameters α deter-
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RIA LT-MADS

Py-BOBYQA

Fig. 3 Comparison of rotated Itoh–Abe method, LT-MADS and Py-BOBYQA applied to Nesterov’s nons-
mooth Chebyshev–Rosenbrock function. Top left: the iterates from the Itoh–Abe method locate the unique
minimiser to an order of accuracy of about 10−11. Top right: the iterates from the LT-MADS method
locate the nonminimising stationary point. Bottom left: the iterates from the Py-BOBYQAmethod stagnate

due to nonsmoothness. Bottom right: a plot of the relative objective V (xk )−V ∗
V (x0)−V ∗ with respect to function

evaluations, for each method

mine how heavily to regularise, and sometimes adjust other features of the regulariser.
See [6,39,71] for an overview of variational regularisation methods.

We list some common regularisers in image analysis. Total variation (TV) [11,69]
is given by the function Rα(u) := α TV(u), where α ∈ (0,∞), and

TV(u) := sup

{∫
Ω

u(x) div φ(x)dx : φ ∈ C1
c (Ω;R

d), ‖φ‖∞ ≤ 1

}
.

This is one of the most common regularisers for image denoising. See Fig. 5 for
an example of denoising with TV regularisation. We also consider its second-order
generalisation, total generalised variation [9,10], Rα(u) = TGV2

α(u), where α =
[α1, α2]T ∈ (0,∞)2 and

TGV2
α(u) := sup

φ∈K

{∫
Ω

u(x) div2 φ(x)dx

}
,

K := {φ ∈ C2
c (Ω;Sym2(Rd)), ‖ divl φ‖∞ ≤ αl+1, l = 0, 1}.
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RIA LT-MADS

Py-BOBYQA

Fig. 4 Comparison of rotated Itoh–Abe method, LT-MADS and Py-BOBYQA applied to Nesterov’s non-
smooth Chebyshev–Rosenbrock function with a different starting point. Top left: the iterates from the
Itoh–Abe method locate the unique minimiser to an order of accuracy of about 10−11. Top right: the
iterates from the Py-BOBYQA method stagnate due to nonsmoothness. Bottom left: the iterates from the
LT-MADS method locate the nonminimising stationary point. Bottom right: a plot of the relative objective
V (xk )−V ∗
V (x0)−V ∗ with respect to function evaluations, for each method

α1 α2 α3

Fig. 5 TV denoising reconstructions for different regularisation parameters, with the SSIM scoring func-
tion (see (6.6)). Top: graph of V in (6.5), ground truth image, and noisy image, respectively. Bottom:
reconstructions for parameter choices, α1 = 10−2, α2 = 7× 10−2, α3 = 2× 10−1, respectively
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For a linear, bounded operator W : L2(Ω) → �2, the basis pursuit regulariser

Rα(u) := α‖W u‖1

promotes sparsity of the image u in the dictionary of W .
As illustrated in Fig. 5, the quality of the reconstruction is sensitive to α. If α is

too low, the reconstruction is too noisy, while if α is too high, too much detail is
removed. As it is generally not possible to ascertain the optimal choice of α a priori,
a significant amount of time and effort is spent on parameter tuning. It is therefore of
interest to improve our understanding of optimal parameter choices. One approach is
to learn suitable parameters from training data. This requires a desired reconstruction
u†, noisy data f δ , and a scoring function Φ : L2(Ω) → R that measures the error
between u† and the reconstruction uα . The bilevel optimisation problem is given by

α∗ ∈ argmin
α∈(0,∞)n

Φ(uα), s.t. uα solves (6.3). (6.4)

In our case, we have strong convexity in the data fidelity term, which implies that uα

is unique for each α ∈ (0,∞)n . We can therefore define a mapping

V (α) := Φ(uα). (6.5)

The bilevel problem (6.4) is difficult to tackle, both analytically as well as
numerically. In most cases, the lower level problem (6.3) does not have a closed
form formulation. Instead, a reconstruction uα is approximated numerically with
an algorithm6. Therefore, one typically does not have access to gradient or subgra-
dient information7 for the mappings α �→ uα . Furthermore, the bilevel mapping
α �→ Φ(uα) is often nonsmooth and nonconvex. Therefore, numerically solving (6.4)
amounts to solving a nonsmooth, nonconvex function in a blackbox setting. We con-
sider the application of the Itoh–Abe method for these problems.

For the numerical experiments in this paper, we reparametrise V (α) as V (exp(α)),
where the exponential operator is applied elementwise on the parameters. There are two
reasons for doing so. The first reason is that this paper is concerned with unconstrained
optimisation, and this parametrisation allows us to optimise on R

n instead of (0,∞)n .
The second reason is that exp(α) has been found to be a preferable scaling for purposes
of numerical optimisation.

For the numerical implementation, we discretise the domain Ω and represent the
image u as a vector in some Euclidean space R

m .

6 Accounting for inexact functions evaluations in the algorithm is beyond the scope of this paper. However,
for bilevel learning, this issue was recently addressed by Ehrhardt and Roberts [25].
7 While automatic differentiation [32] can be useful for these purposes, it is in many cases not applicable
to iterative algorithms that involve nonsmooth terms or for which the number of iterations cannot be
predetermined. See [57] for further discussion of why derivative-free optimisation schemes are still needed.
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6.2.2 Wavelet Denoising

We consider the wavelet denoising problem

uα = argmin
u∈Rm

1

2
‖u − f δ‖2 + α‖W u‖1,

where W is the Haar wavelet transform. In particular, W is an orthogonal matrix,
which implies that the regularisation problem has the unique solution

uα = W−1Tα(W f δ),

where Tα is the shrinkage operator defined by

[Tα(v)]i := sgn(vi )max (|vi | − α, 0) .

We first optimise α for the scoring function

Φ(u) := 1

2
‖u − u†‖2.

We set the parameters of the Itoh–Abe method to ε = 10−4, τmin = 10−1, τmax = 10,
and η = 10−1. See Fig. 6 for the numerical results.

We also optimise α with respect to the scoring function Φ(u) := 1−SSIM(u, u†),
where SSIM : R

m × R
m → R is the structural similarity function [72] defined for

two images u and v as

SSIM(u, v) := (2μuμv + c)(2σuv + C)

(μ2
u + μ2

v + c)(σ 2
u + σ 2

v + C)
. (6.6)

Here,μu is themean intensity of u,σu is the unbiased estimate of the standard deviation
of u, and σuv is the correlation coefficient between u and v:

μu := 1

m

m∑
i=1

ui , σu :=
(

1

m − 1

m∑
i=1

(ui − μu)2

) 1
2

,

σuv := 1

m − 1

m∑
i=1

(ui − μu)(vi − μv).

The constants c > 0 and C > 0 are small parameters which provide stability to the
measure and are set to 0.01 and 0.03, respectively. We set the parameters of the Itoh–
Abe method to ε = 10−4, τmin = 10−3, τmax = 103, and η = 10−2. See Fig. 7 for the
numerical results.
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(a) Plot with labels. (b) Noisy image (c) k = 1. α = 1.02.

(d) k = 2. α = 4.42×10−3. (e) k = 3. α = 1.99×10−1. (f) k = 9. α = 1.04×10−1.

Fig. 6 Haar wavelet denoising with ‖ · ‖2 scoring function and the Itoh–Abe method. Top left: plot of
iterates of the Itoh–Abe method. Top middle: the noisy image. The rest: image denoising results at different
iterates k

6.2.3 Total Variation Denoising

We consider the TV denoising problem

uα = argmin
u∈Rm

1

2
‖u − f δ‖2 + α TV(u),

with the SSIM scoring function. We solve the above denoising problem using 300
iterations of the PDHGmethod [16]. We set the parameters of the Itoh–Abe method to
ε = 10−4, τmin = 10−5, τmax = 9×10−4, and η = 10−5. See Fig. 8 for the numerical
results.

6.2.4 Total Generalised Variation Regularisation

We now consider the second-order total generalised variation (TGV) regulariser
for denoising, Rα1,α2(u) = TGV2

α1,α2
(u), with the scoring function Φ(u) := 1 −

SSIM(u, u†). Like for TV denoising, we solve the denoising problem using the PDHG
method.We set the parameters of the randomised Itoh–Abe (RIA)method to ε = 10−1,
τmin = 10−3, τmax = 105, and η = 10−20. See Fig. 9 for the numerical results.

We compare these results to the results from the Py-BOBYQA and LT-MADS
solvers. We set the parameters of Py-BOBYQA to rhobeg = 2, rhoend = 10−10 and
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(a) Plot with labels. (b) k = 0. α = 10.0. (c) k = 2. α = 4.71.

(d) k = 4. α = 1.15. (e) k = 5. α = 6.23×10−2. (f) k = 8. α = 1.54×10−1.

Fig. 7 Wavelet denoising with SSIM scoring function and the Itoh–Abe method. Top left: plot of iterates
of the Itoh–Abe method. The rest: image denoising result at different iterates k

npt = 2(n + 1) and the parameters of LT-MADS to DIRECTION_TYPE = LT 2N .
See the results for two different starting points in Figs. 10 and 11. We note that the
objective function is approximately stationary across a range of values, which leads to
the different points of convergence, and different limiting values of the objective func-
tion for different methods. We see that the methods are all of comparable efficiency,
although the Itoh–Abe method is slower initially. The Itoh–Abe method seems to be
the most efficient, once it is within a neighbourhood of the minimiser.

6.3 Continuity and Boundedness Properties of Bilevel Problems

For the theoretical analysis in this paper, we assume that the objective function V is
locally Lipschitz continuous, bounded below, and coercive. In what follows, we briefly
discuss whether bilevel problems of the form (6.4) will satisfy these properties.

We first consider the assumption that V is bounded below. Since V (α) = Φ(uα),
this holds if Φ is bounded below, as is the case for Φ(u) = ‖u − u†‖2/2 and 1 −
SSIM(u, u†) [72].

Coercivity does not hold for bilevel problems in general. This is because while the
parameter domainR

n or (0,∞)n is unbounded, the image inR
m , {uα ∈ R

m : α ∈ R
n},

is often bounded (one may verify this, for example, for uα = argminu∈R(u −1)2/2+
α|u|, α > 0), leading to V (α) flattening out as ‖α‖ grows. However, for non-coercive
objective functions, if the iterates of the Itoh–Abe method (xk)k∈N admit an accumu-
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(a) Plot with labels. (b) k = 0. α = 2.00×10−1.

(c) k = 1. α = 5.74×10−3. (d) k = 2. α = 6.18×10−2. (e) k = 5. α = 3.63×10−2.

Fig. 8 TV denoising with SSIM scoring function and the Itoh–Abe method. Top left: plot of iterates of the
Itoh–Abemethod. The rest: image denoising result at different iterates k, with a zoom to show the difference

lation point, then it is straightforward to verify that the results from Theorems 3.4 and
3.7 still hold. Alternatively, one can impose coercivity by including regularisation of
the parameters in the scoring function.

Third, we consider local Lipschitz continuity of bilevel problems. A sufficient
condition for this is that both the scoring functionΦ and the solutionmapping α �→ uα

are locally Lipschitz continuous. Local Lipschitz continuity of the scoring functions
follows from continuous differentiability of ‖ · ‖2/2 and SSIM, which can be verified
directly. Local Lipschitz continuity of the solution mapping α �→ uα for general
bilevel problems is beyond the scope of this paper, but we demonstrate it for a class of
bilevel problems and afterwards mention some previous works that address this issue.
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(a) (b) k= 0, α 1 = 6.74×10−3, 2 = 6.07×10−1.

(c) k = 6, α1 = 5.96, α2 = 25.5. (d) k = 10, α1 = 4.09×10−1, α2 = 10.4.

(e) k= 18, α1 = 1.43×10−1, α2 = 7.99×10−1. (f) k = 29, α1 = 8.87×10−2, α2 = 1.55.

α

Fig. 9 TGV denoising with SSIM scoring function and the Itoh–Abe method. Top left: plot of iterates of
the method. The rest: image denoising result at different iterations k
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RIA LT-MADS

Py-BOBYQA

Fig. 10 Comparison of optimisation methods for TGV denoising with SSIM scoring function. Top left: plot
of iterates of the Itoh–Abe method. Top right: plot of iterates of the LT-MADS method. Bottom left: plot of
iterates of the Py-BOBYQA method. Bottom right: comparison of convergence rates for the methods with
respect to function evaluations

We consider bilevel problems where for α > 0

uα := argmin
u

{
1

2
‖u − f δ‖2 + αR(u)

}
,

where R is a convex, proper function that is Lipschitz continuous of rank L > 0. For
β > α > 0, there exist unique subgradients pα ∈ ∂ R(uα) and pβ ∈ ∂ R(uβ) such
that

uα = f δ − α pα, uβ = f δ − β pβ.

Then, we compute

‖uα − uβ‖2 = 〈uβ − uα, α pα − β pβ〉
= (β − α)〈uα − uβ, pβ〉 − α〈uα − uβ, pα − pβ〉
≤ |β − α|‖uα − uβ‖‖pβ‖ ≤ L|β − α|‖uα − uβ‖,

where the first and second inequalities follow from convexity and Lipschitz continuity
of R, respectively, see [19, Propositions 2.2.9, 2.1.2]. Thus, we obtain ‖uα − uβ‖ ≤
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RIA LT-MADS

Py-BOBYQA

Fig. 11 Comparison of optimisation methods for TGV denoising with SSIM scoring function for a different
starting point. Top left: plot of iterates of the Itoh–Abe method. Top right: plot of iterates of the LT-MADS
method. Bottom left: plot of iterates of the Py-BOBYQAmethod. Bottom right: comparison of convergence
rates for the methods with respect to function evaluations

L|β −α|. This demonstrates local Lipschitz continuity for several of the bilevel prob-
lems we consider, including T V and wavelet denoising in Sects. 6.2.3 and 6.2.2.

We did not consider continuity properties of α �→ uα for more general regu-
larisation problems. However, we refer the reader to the strong regularity condition
formulated by Robinson [67], which can be used to show local Lipschitz continuity of
solution mappings, for example, as was done by Hintermüller and Wu [38] for blind
deconvolution problems.

7 Conclusion

In this paper, we have shown that the randomised Itoh–Abe methods are efficient and
robust schemes for solving unconstrained, nonsmooth, nonconvex problems without
the use of gradients or subgradients. Furthermore, the favourable rates of dissipativity
that the discrete gradient method inherits from the gradient flow system extend to the
nonsmooth case. We show, under minimal assumptions on the objective function, that
themethods admit a solution that is computationally tractable, and the iterates converge
to a connected set of Clarke stationary points. Through examples, the assumptions are
also shown to be necessary.
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The methods are shown to be robust and versatile optimisation schemes. It locates
the global minimisers of the Rosenbrock function and a variant of Nesterov’s non-
smooth Chebyshev–Rosenbrock functions. The efficiency of the Itoh–Abe discrete
gradient method has already been demonstrated elsewhere for smooth problems
[33,55,66] and sparse optimisation [7]. We also consider its application to bilevel
learning problems and compare its performance to the derivative-free Py-BOBYQA
and LT-MADS methods.

Future work will be dedicated to adapting the randomised Itoh–Abe methods for
constrained optimisation problems, establishing convergence of the iterates of the
method for Kurdyka-Łojasiewicz functions [1], and further analysing the Lipschitz
continuity properties of bilevel optimisation for variational regularisation problems.

Acknowledgements The authors give thanks to Lindon Roberts for helpful discussions and for providing
code for Py-BOBYQA, to Antonin Chambolle for helpful discussions, and to the reviewers for useful
feedback.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Probability Theory

In what follows, we show that a sequence (dk)k∈N ⊂ Sn−1 of independent draws from
a probability distribution Ξ is almost surely not cyclically dense. This is a simple
consequence of the second Borel–Cantelli lemma [17, Theorem 4.2.4].

Proposition A.1 Let (dk)k∈N ⊂ Sn−1 be a sequence of independent draws from Ξ on
Sn−1. Then, (dk)k∈N is almost surely not cyclically dense.

Proof For ε > 0, d∗ ∈ Sn−1, choose a set U ⊂ Sn−1 such that p := PΞ(d ∈ U ) ∈
(0, 1) and Bε(d∗) ∩ U = ∅. For k ∈ N, set Ak = 1 if dk ∈ U and Ak = 0 otherwise.
Then, (Ak)k∈N is a sequence of independent Bernoulli trials with success probability
p.

We set k0 = 0 and define recursively ki+1 as the largest integer such that ki+1−ki ≤
log1/p(i) for i ∈ N. Denote by Ei the event that A j = 1 for all ki ≤ j < ki+1. Then,
(Ei )i∈N is a sequence of independent events, and P(Ei ) = pki+1−ki ≥ 1/i . Thus,∑

i∈N P(Ei ) = +∞, so by the second Borel–Cantelli lemma [17, Theorem 4.2.4],
almost surely infinitely many of the events Ei occur.

Note that ki+1 − ki → ∞ as i → ∞, since log1/p(i) → ∞. Hence, if infinitely
many of the events Ei occur, then the sequence (dk)k∈N contains strings of consecutive
draws of arbitrary length which do not intersect with Sn−1\U ⊃ Bε(d∗) ∩ Sn−1.
This violates the conditions for cyclical density. Hence, (dk)k∈N is almost surely not
cyclically dense. ��
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Appendix B Algorithms for Inner Solver

In this section, we provide full details on the approach to solving the Itoh–Abe discrete
gradient equation (1.6). We furthermore ascertain that this algorithm terminates in a
finite number of steps, and outputs a solution to (5.1).

Algorithm 4 Parabolic interpolation step. The algorithm seeks to achieve a large
function decrease through a parabolic interpolation step. Initial steps β0, β1, β2 are
incrementally increased until parabolic interpolation criteria holds. If the function
slope becomes too flat, i.e. − f (β2)/β

2
2 < 1/τmax, before this happens, then the

algorithm returns β2.
Input:

f : R → R scalar function
τmin > 0 time step lower bound
τmax ∈ (τmin,+∞) time step upper bound
τ ∈ (τmin, τmax) proposed time step
ε > 0 tolerance for β

σ ∈ (0, 1) search parameter
Output:

β > 0 best step after parabolic interpolation step
1: function interpolationStep( f ,τmin,τmax,τ ,ε,σ )

2: β0, β1, β2 ← 0, ε,− f (ε)τ

ε
& β2/τ solves (1.6) for linearisation f (β) ≈ β f (ε)/ε

3: β = ParabolicDescent( f , β0, β1, β2) & do parabolic descent step
4: while β = 0 do & while parabolic criteria not fulfilled, increase βi
5: if − f (β2)/β

2
2 < 1/τmax then

6: return β2 & if slope is too flat, return β2
7: end if
8: β0, β1, β2 ← β1, β2, β2/σ

9: β = ParabolicDescent( f , β0, β1, β2)

10: end while
11: β ← argmin{ f (β) : β ∈ {β, β1, β2}}
12: return β

13: end function

In what follows, we prove several statements about Algorithms 4 and 6.

Proposition B.1 Algorithms 4 and 6 terminate after a finite number of steps.

Proof We first prove this for Algorithm 4. The only loop statement in this algorithm
is the line segment 4–10. For this loop to go on indefinitely, the difference quotients

f (c/σ j+1) − f (c/σ j )

c/σ j+1 − c/σ j
< 0

with c = − f (ε)τ/ε > 0, would need to be non-increasing with respect to j ∈ N,
due to the condition in Algorithm 5, line 2. This and the fact that c/σ j → ∞ as
j → ∞ imply that f (c/σ j ) → −∞, hence violating the assumption that V and f
are bounded below. Thus, Algorithm 4 terminates in a finite number of steps.

We prove the same for Algorithm 6. In this algorithm, there are three loop state-
ments, starting at lines 6, 11, and 21, respectively. The first and third loops are
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Algorithm 5 Parabolic descent. If the slope of f from (β0, β1) to (β1, β2) increases,
then do parabolic interpolation step. Otherwise, return 0.
Input:

f : R → R scalar function
β0 > 0 first evaluation point
β1 > β0 second evaluation point
β2 > β1 third evaluation point

Output:
β ≥ 0 parabolic descent step

1: function ParabolicDescent( f ,β0,β1,β2)

2: if f (β1)− f (β0)
β1−β0

≥ f (β2)− f (β1)
β2−β1

then & if parabolic criteria not fulfilled, return 0
3: return 0
4: else & otherwise, do parabolic descent (see [36, Section 6.2.2])

5: return β1 − 1

2

(β1 − β0)
2( f (β1) − f (β2)) − (β1 − β2)

2( f (β1) − f (β0))

(β1 − β0)( f (β1) − f (β2)) − (β1 − β2)( f (β1) − f (β0))
6: end if
7: end function

guaranteed to terminate, as otherwise we would have β∗ − β∗ → 0, violating the
criteria that β∗ − β∗ > ε. The second loop will terminate as a consequence of V (and
thus f ) being bounded below.

Finally, we verify that Algorithm 3 indeed solves (5.1).

Proposition B.2 For input x and d, the output of Algorithm 3, x + βd, is a solution to
the Itoh–Abe scalar equation as defined in (5.1).

Proof We prove this on a case-by-case basis.
The first case is that Algorithm 3 finds in line 4 that V is directionally stationary at

x along d up to ε-tolerance, and sets β = 0. If V is indeed directionally stationary at x
along d, then clearly output x satisfies (5.1). Otherwise, thenwithout loss of generality,
we can assume that V o(x; d) < 0, and by arguing as in the proof to Lemma 3.1, there
exists β ∈ (0, ε) such that V (x + βd) − V (x) < −β2/τmin. This together with the
inequality V (x +εd)−V (x) ≥ −ε2/τmin and the intermediate value theorem implies
that there exists β̃ ∈ (β, ε) such that β̃/τmin solves (1.6) for the time step τmin. It
would follow that x satisfies (5.1).

The next cases are in Algorithm 6, lines 3, 16, and 18. In each of these cases, it
follows by definition that the output x + βd solves (5.1).

The final case is Algorithm 6, line 30, via line 27, as the outcome of the while
loop starting at line 21. If, at the termination of the loop, the first condition fails,
meaning that − f (β)/β2 ∈ [1/τmax, 1/τmin], then trivially the output x + βd
solves (5.1). Otherwise, if the second condition fails, then |β∗ − β∗| ≤ ε, and by
the bounds − f (β∗)/β∗2 < 1/τmax and − f (β∗)/β2∗ > 1/τmin, the continuity of
β �→ − f (β)/β2, and the intermediate value theorem [70, Theorem 4.23], for an
arbitrary τ ∈ [τmin, τmax], there is β̃ ∈ [β∗, β∗] such that β̃/τ solves (1.6) for τ .
Furthermore, since β ∈ (β∗, β∗), we have |β − β̃| < ε and thus x + βd solves (5.1).
This concludes the proof. ��
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Algorithm 6 Backtracking procedure. This algorithm finds a solution to (5.1), given
input β from the interpolationStep in Algorithm 4. If− f (β)/β2 < 1/τmax, a solution
is found in the interval (0, β), and if − f (β)/β2 > 1/τmin, then a solution is found in
(β,+∞), through standard search procedures.
Input:

β > 0 initial step
f : R → R scalar function
τmin > 0 time step lower bound
τmax ∈ (τmin,+∞) time step upper bound
ε > 0 tolerance for β

σ ∈ (0, 1) search parameter
Output:

β > 0 step corresponding to solution x + βd to (5.1)
1: function backtrackingFunction( f ,β,τmin,τmax,ε,σ )
2: if − f (β)/β2 ∈ [1/τmax, 1/τmin] then & backtracking part
3: return β & if time step constraints hold, return solution to (5.1)
4: else if − f (β)/β2 < 1/τmax then & slope too flat �⇒ there exists a solution < β to (5.1)
5: β∗ ← β, β∗ ← σβ∗
6: while − f (β∗)/β2∗ < 1/τmax, β∗ − β∗ > ε and β∗ > ε do
7: β∗ ← β∗, β∗ ← σβ∗ & decrease β∗, β∗ until β∗ is lower bound
8: end while
9: else & slope too steep �⇒ there exists a solution > β to (5.1)
10: β∗ ← β, β∗ ← β∗/σ
11: while − f (β∗)/β∗2 > 1/τmin do
12: β∗ ← β∗, β∗ ← β∗/σ & increase β∗, β∗ until β∗ is upper bound
13: end while
14: end if
15: if − f (β∗)/β∗2 ∈ [1/τmax, 1/τmin] then & if β∗ or β∗ solve (5.1), return this
16: return β∗
17: else if − f (β∗)/β2∗ ∈ [1/τmax, 1/τmin] then
18: return β∗
19: else & otherwise, find solution to (5.1) β in (β∗, β∗)
20: β ← β∗ + σ(β∗ − β∗)
21: while − f (β)/β2 /∈ [1/τmax, 1/τmin] and β∗ − β∗ > ε do
22: if − f (β)/β2 < 1/τmax then
23: β∗ ← β & if slope is too flat, reduce steps
24: else
25: β∗ ← β & if slope is too steep, increase steps
26: end if
27: β ← β∗ + σ(β∗ − β∗)
28: end while
29: end if
30: return β

31: end function
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