
Foundations of Computational Mathematics (2019) 19:653–701
https://doi.org/10.1007/s10208-018-9394-z

A Geometric Framework for Stochastic Shape Analysis

Alexis Arnaudon1 · Darryl D. Holm1 · Stefan Sommer2

Received: 30 March 2017 / Revised: 17 January 2018 / Accepted: 5 April 2018 / Published online: 31 July 2018
© The Author(s) 2018

Abstract
We introduce a stochastic model of diffeomorphisms, whose action on a variety of data
types descends to stochastic evolution of shapes, images and landmarks. The stochas-
ticity is introduced in the vector field which transports the data in the large deformation
diffeomorphic metric mapping framework for shape analysis and image registration.
The stochasticity thereby models errors or uncertainties of the flow in following the
prescribed deformation velocity. The approach is illustrated in the example of finite-
dimensional landmark manifolds, whose stochastic evolution is studied both via the
Fokker–Planck equation and by numerical simulations. We derive two approaches for
inferring parameters of the stochasticmodel from landmark configurations observed at
discrete time points. The first of the two approaches matches moments of the Fokker–
Planck equation to sample moments of the data, while the second approach employs
an expectation-maximization based algorithm using a Monte Carlo bridge sampling
scheme to optimise the data likelihood. We derive and numerically test the ability of
the two approaches to infer the spatial correlation length of the underlying noise.
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1 Introduction

In this work, we aim at modelling variability of shapes using a theory of stochastic
perturbations consistent with the action of the diffeomorphism group underlying the
large deformation diffeomorphic metric mapping framework (LDDMM, see [65]). In
applications, such variability arises and can be observed, for example, when human
organs are influenced by disease processes, as analysed in computational anatomy [66].
Spatially independent white noise contains insufficient information to describe these
large-scale variabilities of shapes. In addition, the coupling of the spatial correlations
of the noise must be adapted to a variety of transformation properties of the shape
spaces. The theory developed here addresses this problem by introducing spatially
correlated transport noise which respects the geometric structure of the data. This
method provides a new way of characterizing stochastic variability of shapes using
spatially correlated noise in the context of the standard LDDMM framework.

We will show that this specific type of noise can be used for all the data struc-
tures to which the LDDMM framework applies. The LDDMM theory was initiated by
[6,12,19,46,60] based on the pattern theory of [23]. LDDMM models the dynamics
of shapes by the action of diffeomorphisms (smooth invertible transformations) on
shape spaces. It gives a unified approach to shape modelling and shape analysis that is
valid for a range of structures such as landmarks, curves, surfaces, images, densities
or even tensor-valued images. For any such data structure, the optimal shape defor-
mations are described via the Euler–Poincaré equation of the diffeomorphism group,
usually referred to as the EPDiff equation [26,27,66]. In this work, we will show how
to obtain a stochastic EPDiff equation valid for any data structure, and in particular
for the finite-dimensional spaces of landmarks. For this, we will follow the LDDMM
derivation in [8] based on geometric mechanics [24,43]. This view is based on the
existence of momentum maps, which are characterized by the transformation proper-
ties of the data structures for images and shapes. These momentum maps persist in
the process of introducing noise into the EPDiff equation, and they thereby preserve
most of the technology developed for shape analysis in the deterministic context and
in computational anatomy.

This work is not the first to consider stochastic evolutions in LDDMM. Indeed,
[61,64] and more recently [44] have already investigated the possibility of stochastic
perturbations of landmark dynamics. In these works, the noise is introduced into the
momentum equation, as though it was an external random force acting on each land-
mark independently. In [44], an extra dissipative force was added to balance the energy
input from the noise and tomake the dynamics correspond to a certain type of heat bath
used in statistical physics. Refs. [55,56] considered evolutions on the landmark mani-
fold with stochastic parts being Brownian motion with respect to a Riemannian metric
and estimated parameters of the models from observed data. Here, we will introduce
Eulerian noise directly into the reconstruction relation used to find the deformation
flows from the velocity fields, which are solutions of the EPDiff equation [26,65]. As
we will see, this derivation of stochastic models is compatible with variational princi-
ples, preserves the momentum map structure and yields a stochastic EPDiff equation
with a novel type of multiplicative noise, depending on the gradient of the solution,
as well as its magnitude. This model is based on the previous works [2,25], where,
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Fig. 1 In this figure, we compare the deterministic evolution of landmarks arranged in an ellipse (black
line) with a translated ellipse as final position (black dashed line), to two different stochastically perturbed
evolutions. The radius for the landmark kernel is twice their average initial distances. In blue is the stochastic
perturbation developed in this paper. The black dots represent the J Eulerian noise fields arranged in a grid
configuration. Inmagenta is the evolution resulting from additive noise in themomentum equation, different
for each landmark but with the same amplitude as the Eulerian noise. We run three initial value simulations
to compare the limit of a large number of landmarks and small noise correlation. The Eulerian noise model
(blue) is robust to the continuum limit and can reproduce the general behaviour of the additive noise model.
Furthermore, the choice of the noise fields provides an additional freedom in parameterization which will be
studied and exploited in this work. a Low resolution and large noise correlation (100 landmarks, 6×6 noise
fields), b high resolution and large noise correlation (200 landmarks, 6 × 6 noise fields), c high resolution
and small noise correlation (200 landmarks, 12 × 12 noise fields) (Color figure online)

respectively, stochastic perturbations of infinite- and finite-dimensional mechanical
systems were considered. The Eulerian nature of the noise discussed here implies that
the noise correlation depends on the image position and not, as for example in [44,61],
on the landmarks themselves. Consequently, the present method for the introduction
of noise is compatible with any data structure, for any choice of its spatial correlation.
We also mention the conference paper [3] in which the basic theory underlying the
present work was applied to shape transformations of the corpus callosum. We dis-
cuss possibilities for including Lagrangian noise advected with the flow in contrast
to the present Eulerian case, and possibilities for including nonstationary correlation
statistics that responds to the evolution of advected quantities, in the conclusion of the
paper.

To illustrate this framework and give an immediate demonstration of stochastic
landmark dynamics, we display in Fig. 1 three experiments which compare the pro-
posed model with a stochastic forcing model, of the type studied in [61]. The proposed
model introduces the following stochastic Hamiltonian system for the positions of the
landmarks, qi , and their canonically conjugate momenta, pi ,

dqi = ∂h

∂pi
dt +

∑

l

σl(qi ) ◦ dW l
t ,

dpi = − ∂h

∂qi
dt −

∑

l

∂

∂qi
(pi · σl(qi )) ◦ dW l

t .

(1.1)
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In (1.1), theσl are prescribed functions of spacewhich represent the spatial correlations
of the noise. In Fig. 1, the σl fields are Gaussians whose variance is equal to twice
their separation distance and locations are indicated by black dots. We compare this
model with the system,

dqα
i = ∂h

∂pα
i
dt and dpα

i = − ∂h

∂qα
i
dt + σdW i

t , (1.2)

where σ is a constant. In this case, the noise corresponds to a stochastic force act-
ing on the landmarks, whose corresponding Brownian motion is different for each
landmark. We show on the first panel of Fig. 1 that for a small number of landmarks
and a large range of spatial correlations of the noise, both types of stochastic defor-
mations in (1.1) and (1.2) visually coincide. This is shown for a simple experiment
in translating a circle (from the black circle to the black dashed circle). By doubling
the number of landmarks (middle panel), the dynamics of (1.2) results in small-scale
noise correlation (magenta), whereas the proposed model (blue) remains equivalent to
the first experiment. This figure illustrates shape evolution when the noise is Eulerian
and independent of the data structure. Indeed, the limit of a large number of landmarks
corresponds to a certain continuum limit, in this case corresponding to curve dynam-
ics. Finally, in the right-most panel, we reduce the range of the spatial correlation of
the noise by adding more noise fields. This arrangement allows us to qualitatively
reproduce the dynamics of the equation (1.2) with the same number of landmarks as
the amount of noise and its spatial correlation is similar in both cases. Indeed, the
spatial correlations are dictated by the Eulerian functions σl defined in fixed space
for our model, and by the density of landmarks in the stochastically forced landmark
model.

Modelling large-scale shape variability with noise is of interest for applications
in computational anatomy, in which sources of variability include natural ageing,
the influence of diseases such as Alzheimer’s disease, and intra-subject population
scale variations. In the LDDMM context, these effects are sometimes modelled using
the random orbit model [45]. The random orbit approach models variability in the
observed data by using an ensemble of initial velocities in matching a template to a
set of observations via geodesic flows, see [62]. The randomness is confined to the
initial velocity as opposed to the evolving stochastic processes used in the present
work. A prior can be defined by assuming a distribution of the initial velocities, and
Bayesian approaches can then be used for inference of the template shape as well as
additional unknown parameters [1,41,67]. The stochastic model developed here can
also be applied to model random warps and to generate distributions used in Bayesian
shape modelling, and for coupling warps and functional variations such as those in
[40,51]. Indeed, because the proposed probabilistic approach assigns a likelihood to
random deformations, the model can be used for general likelihood-based inference
tasks.

In the present model, the observed shape variability indicates the required spatial
correlation of the noise, which must be specified or inferred for each application. As
this correlation is generally unknown, estimating the parameters of the correlation
structure becomes an important part of the framework. We will address the problem of
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inferring the noise parameters by considering two different methods in the context of
the representation of shapes by landmarks: The first method is based on estimating the
time evolution of the probability distribution of each landmark. We will derive a set of
differential equations approximating the time evolution of the complete distribution
via its first moments. We can then solve the inverse problem of estimating the noise
correlation from known initial and final distribution of landmarks by minimization of
a certain cost function, solved using a genetic algorithm. The second method is based
on an expectation-maximization (EM) algorithmwhich can infer unknown parameters
for a parametric statistical model from observed data. In this context, since only initial
and final landmarks positions are observed, the full stochastic trajectories are regarded
as missing information. For this algorithm, we need to estimate the likelihood of
stochastic paths connecting sets of observed landmarks. We achieve this by adapting
the theory of diffusion bridges to the stochastic landmark equation. As discussed in
the concluding remarks, inference methods for other data structures, in particular for
infinite-dimensional shape representations, are not treated in this paper and left as
outstanding problems for future work.

Finally, we wish to mention that multiple additional approaches for shapes analysis
exist outside the LDDMM context, particularly exemplified by the Kendall shape
spaces [37], see also [18]. We focus this paper on the LDDMM framework leaving
possibilities for extending the presented methods to include stochastic dynamics and
noise inference in other shape analysis approaches to future work.

Plan of thisWork

Webegin by developing a general theory of stochastic perturbations for inexact match-
ing in Sect. 2. We then focus on exact landmark matching in Sect. 3, which is the
simplest example of this theory. In particular, we derive the Fokker–Planck equation
in Sect. 3.2 and diffusion bridge simulation in Sect. 3.3. In Sect. 4, we describe the two
methodswe use for estimating parameters of the noise from observations. The Fokker–
Planck based method is discussed in Sect. 4.2 and the expectation-maximization
algorithm is treated in Sect. 4.3. We end the paper with numerical examples in Sect. 5,
in which we investigate the effect of the noise on landmark dynamics and compare
the two methods for estimating the noise amplitude.

2 Stochastic Large DeformationMatching

In this section, we will first review the geometrical framework of LDDMM, following
[8], and then introduce noise following [25] to preserve the geometrical structure of
LDDMM. The key ingredient for both topics is themomentummap, which wewill use
as the main tool for reducing the infinite-dimensional equation on the diffeomorphism
group to equations on shape spaces.
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2.1 The Deterministic LDDMMModel

Here, we will briefly review the theory of reduction by symmetry, as applied to the
LDDMMcontext, following the presentation of [8].We detail the proof of the formulas
below in the next section when we include noise. Define an energy functional E by

E(ut ) =
∫ 1

0
l(ut )dt + 1

2λ2
‖g1.I0 − I1‖2, (2.1)

where I0, I1 ∈ V are shapes represented in a vector space V on which the diffeomor-
phism group Diff(Rd) acts, ut is a time-dependent vector field, and λ is a weight, or
tolerance, which allows the matching to be inexact. The flow gt ∈ Diff(Rd) corre-
sponding to ut is found by solving the reconstruction relation

∂t gt = ut gt , (2.2)

and I0 is matched against I1 through the action g1.I0 of g1 on s0. The vector field
ut can be considered an element of the Lie algebra X(Rd). In the case of I0, I1
being images I : R

d → R, the action is by push-forward, g.I = I ◦ g−1, and
when I represents N landmarks with positions qi ∈ R

d , the action is by evaluation
g.q = (g(q1), . . . , g(qN )) (see [8] for more details). The group elements can act on
various additional shape structures such as tensor fields.

Remark 2.1 (Nonlinear shape structures) This framework can be extended to structures
that are not represented by a vector space V , such as curves or surfaces. We leave this
extension for future work.

Using the calculus of variations for the functional (2.1) results in the equation of
motion for ut of the form

d

dt

δl

δu
+ ad∗

ut

δl

δu
= 0, (2.3)

which is called the Euler–Poincaré equation. The operation ad∗ is the coadjoint action
of the Lie algebra of vector fields associated with the diffeomorphism group. The
operation ad∗ acts on the variations δl/δu, which are 1-form densities, in the dual
of the Lie algebra of vector fields, under the L2 pairing. When l(u) is a norm, this
equation is the geodesic equation for that norm, in the case that λ = ∞; that is, with
exact matching. We will focus on this case later in Sect. 3 when discussing landmark
dynamics. Here, the inexact matching term constrains the form of the momentum
m = ∂l

∂u to depend on the geodesic path. Following the notation of [8], the momentum
map is defined as

m(t) = − 1

λ2
J 0

t � (gt,1(J 0
1 − J 1

1 )�), (2.4)
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where gt,s is the solution of (2.2) at time t with initial conditions at time s, while
J 0

t = gt,0 I0 and J 1
t = gt,1 I1. The value J 0

1 corresponds to the initial shape, pushed
forward to time t = 1, and J 1

1 = I1 is the target shape.
The operations � and � in the momentummap formula (2.4) are defined, as follows.

The Lagrangian l in (2.1) may be taken as kinetic energy, which defines a scalar
product and norm l(u) = 〈u, Lu〉L2 = ‖u‖2

L2 on the space of vector fields X(Rd).
The quantity Lu = δl/δu may then be regarded as the momentum conjugate to the
velocity u. Similarly, for the image data space V , we define the dual space V ∗ with
the L2 pairing 〈 f , I 〉 = ∫

�
f (x)I (x)dx , where f ∈ V ∗ and � is the image domain

� ∈ R
d . This identification defines the � operator as � : V → V ∗. When an element

gt of the diffeomorphism group acts on V by push-forward, It = gt .I0 = (gt )∗ I0, the
corresponding infinitesimal action of the velocity u in the Lie algebra of vector fields
u ∈ X(Rd) is given by u.I := [g∗

t
d
dt (gt )∗ I0]t=0. In terms of this infinitesimal action,

we can then define the operation � : V × V ∗ → g∗ as

〈I � f , u〉g×g∗ := 〈 f , u.I 〉V ×V ∗ . (2.5)

A detailed derivation of this formula for the momentum map can be found in [8].

Remark 2.2 (Solving this equation) We will just add here the important remark that
the relation (2.4) introduces nonlocality into the problem, as the momentum implicitly
depends on the value of the group at later times. This is exactly what is needed in order
to solve the boundary value problem coming from the matching of images I1 and I0.
The optimal vector field can be found with a shooting method or a gradient descent
algorithm on the energy functional (2.1), see [6]. For more information about the
relation of the momentum map approach of [8] to the LDDMM approach of [6], see
[9].

2.2 Stochastic Reduction Theory

The aim here is to introduce noise in the Euler–Poincaré equation (2.3) while pre-
serving the momentum map (2.4); so that the noise descends to the shape spaces.
Following [25], we introduce noise in the reconstruction relation (2.2) and proceed
with the theory of reduction by symmetry. We will focus on a noise described by a set
of J real-valued independent Wiener processes W i

t together with J associated vector
fields σi ∈ X(Rd) on the data domain. We will later discuss particular forms of these
fields and methods for estimating unknown parameters of the fields in the context of
landmark matching.

Remark 2.3 (Dimension of the noise) We proceed here with a finite number of J
associated vector fields and finite-dimensional noise while leaving possible extension
to infinite-dimensional noise such as done by [64] for later works.
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We replace the reconstruction relation (2.2) by the following stochastic process

dgt = ut gtdt +
J∑

l=1

σl gt ◦ dW l
t , (2.6)

where ◦ denotes Stratonovich integration. That is, the Lie group trajectory gt is now a
stochastic process. With this noise construction, the previous derivations of (2.3) and
(2.4) in [8] still apply and we obtain the following result for the stochastic vector field,
ut .

Proposition 2.4 Under stochastic perturbations of the form (2.6), the momentum map
(2.4) persists, and the Euler–Poincaré equation takes the form

d
δl

δu
+ ad∗

ut

δl

δu
dt +

J∑

l=1

ad∗
σl

δl

δu
◦ dW l

t = 0 . (2.7)

Proof We first show that the momentum map formula (2.4) persists in the presence
of noise. The key step in its computation is to prove the formula in lemma 2.5 of
[8] which is given by ∂t (g−1δg) = Adgδu, where Ad is the adjoint action on the
diffeomorphism group on its Lie algebra. We first compute the variations of (2.6)

δdgt = δugdt + uδgdt +
J∑

l=1

σlδg ◦ dW l
t ,

and then prove this formula by a direct computation

d(g−1δg) = −g−1dgg−1δg + g−1dδg

= −g−1(udt+
J∑

l=1

σl ◦ dW l
t )δg + g−1(δugdt + uδgdt+

J∑

l=1

σlδg ◦ dW l
t )

= g−1δug dt

:= Adgδu dt .

This key formula is the same as in [6] and [8] for the deterministic case. In particu-
lar, it does not explicitly depend on the Wiener processes W l

t . This ensures that the
momentum map formula (2.4) remains the same as in the deterministic case. The last
step of the proof is to derive the stochastic Euler–Poincaré equation (2.7). This is done
by computing the stochastic evolution of the momentum, given by

δl

δu
= Ad∗

g−1(I0 � (g−1
1 π)), where π = 1

λ2
(g1 I0 − I1)

� .
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The only time dependence is in the coadjoint action, and, by the standard formula

dAd∗
g−1η = −ad∗

dgg−1Ad
∗
g−1η,

we obtain the result

d
δl

δu
= −dAd∗

g−1(I0 � (g−1
1 π))

= ad∗
dgg−1Ad

∗
g−1(I0 � (g−1

1 π))

= ad∗
dgg−1

δl

δu
,

where we have used the stochastic reconstruction relation (2.6) in the form

dgg−1 = udt +
N∑

l=1

σl ◦ dW t
l . ��

In summary, this stochastic perturbation of the LDDMM framework preserves the
form of momentum map (2.4), although it does affect the reconstruction relation (2.6)
and the Euler–Poincaré equation (2.7). As shown in [8], various data structures fit into
this framework including landmarks, images, shapes, and tensor fields. In practice, for
inexact matching, a gradient descent algorithm can be used to minimize the energy
functional (2.1). The noise will only appear in the evaluation of the matching cost via
the reconstruction relation. The algorithm of [6] then directly applies, provided the
stochastic reconstruction relation can be integrated with enough accuracy. We will not
treat the full inexact matching problem here. Instead, we will study the simpler case
of exact matching, where the energy functional consists only of the kinetic term.

The exact matching problem in computational anatomy possesses many parallels
with the geometric approach to classical mechanics and ideal fluid dynamics. In par-
ticular, Poincaré’s fundamental paper in 1901, which started the field of geometric
mechanics in finite dimensions, has recently been generalized to the stochastic case
[14]. In addition, the fundamental analytical properties of Euler’s fluid equations have
been shown to extend to the stochastic case in [13].

We expect that these advances in the analysis of SPDEs occurring in fluid dynamics
and other parallel fields will inform computational anatomy, and eventually will apply
to infinite-dimensional representations of shape. One reason for our optimism is that
the fundamental analytical properties of incompressible Euler fluid dynamics in three
dimensions have already been found in [13] to persist under the introduction of the
present type of stochasticity. Namely, the properties of local-in-time existence and
uniqueness, as well as the Beal-Kato-Majda criterion for blow-up for the determin-
istic 3D Euler fluid motion equations, all persist in detail for stochastic Euler fluid
motion, under the introduction of the type of stochastic Lie transport by cylindrical
Stratonovich noise that we have proposed here for stochastic shape analysis.

The persistence of deterministic analytical properties in passing to the SPDEs
governing stochastic 3D incompressible continuumfluid dynamics is a type of infinite-
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dimensional result that has not yet been proven for the evolution of shapes. The
corresponding results in the analysis of SPDEs for embeddings, immersions and curves
representing data structures for shape evolution, for example, have not yet been dis-
covered, and they remain now as outstanding open problems. However, we believe that
the prospects for successfully performing the necessary analysis are hopeful because
the type of noise we propose here preserves the fundamental properties of diffeomor-
phic flow for both continuum fluids and shapes. For example, the momentum maps
for the deterministic and stochastic evolution of shapes of any data structure are iden-
tical. Thus, the only difference in the present approach from the deterministic case is
that the diffeomorphic time evolution of the various shape momentum maps proceeds
by the action of Lie derivative by a stochastic vector field, instead of a deterministic
one. Since the stochastic part of the vector field is as smooth as we wish, we are
hopeful that the analytical properties for the deterministic evolution of a large class of
infinite-dimensional representations of shape (such as smooth embeddings) will also
persist under the introduction of the type of stochastic transport proposed here. For the
remainder of the paper, we restrict ourselves to the treatment of stochastic landmark
dynamics.

3 Exact Stochastic LandmarkMatching

In this section, we apply the previous ideas of stochastic deformation of LDDMM
to exact matching with landmark dynamics. This is the simplest data structure in the
LDDMM framework, and it will serve to give interesting insights into the effect of the
noise in this context. Since exact matching means that the energy functional contains
only a kinetic energy, the optimal vector field is found from a boundary value problem
with the Euler–Poincaré equation (2.3). For exact matching, the singular momentum
map for landmarks takes the simple familiar form for the reduction of the EPDiff
equation (see [11,26])

m(x, t) =
N∑

i=0

pi (t)δ(x − qi (t)), (3.1)

for N landmarks with momenta pi and positions qi , with i = 1, 2, . . . , N . A direct
substitution of u = K ∗ m into the stochastic Euler–Poincaré equation (2.7) gives the
stochastic landmark equations in (3.6). Here, K is a given kernel corresponding to
the Green’s function of the differential operator L used to construct the Lagrangian.
Below, we take a different approach and proceed from a variational principle in which
the stochastic landmark dynamics is constrained. We refer the interested reader to,
e.g., [34] for a detailed exposition of this derivation in the deterministic context.

3.1 Stochastic Landmarks Dynamics

Recall that for N landmarks in R
d , the diffeomorphism group elements g act on the

landmarks by evaluation of their position g.q = (g(q1), . . . , g(qN )), and the associ-
ated momentum map is (3.1). The original action functional (2.1) can be equivalently
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written as a constrained variational principle where the pi play the role of Lagrange
multipliers enforcing the stochastic reconstruction relation (2.6). This procedure is
based on the Clebsch action principle, which for landmark dynamics has been studied
for one-dimensional motion of landmarks on the real line in [32]

S(u,q,p) =
∫∫

l(u) dx dt +
∑

i

∫
pi ·

(
◦dqi − u(qi ) dt +

∑

l

σl(qi ) ◦ dW l
t

)
.

(3.2)

Notice that only the Lagrangian depends on the spatial (Eulerian) variable x on the
image domain. We now use the singular momentummap (3.1) which provides us with
the relation

2 l(u) =
∫

m(q,p)(x) · u(x)dx =
∑

i

pi · u(qi ) .

This relation reduces the action functional (3.2) to the finite-dimensional space of
landmarks. We arrive at the action integral

S(q,p) =
∫

h(q,p) dt +
∑

i

∫
pi ·

(
◦ dqi +

∑

l

σl(qi ) ◦ dW l
t

)
, (3.3)

where the Hamiltonian only depends on the landmark variables, as

h(q,p) = 1

2

N∑

i, j=1

(pi · p j )K (qi − q j ) . (3.4)

The action integral in (3.3) involves the phase spaceLagrangian (3.4) and the stochastic
potential, given by

φl(q,p) :=
∑

i

pi · σl(qi ) . (3.5)

Taking free variations of (3.3) gives the stochastic Hamilton equations in the form

dqi = ∂h

∂pi
dt +

∑

l

∂φl

∂pi
◦ dW l

t ,

dpi = − ∂h

∂qi
dt −

∑

l

∂φl

∂qi
◦ dW l

t .

(3.6)
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Explicitly, we have

dqi =
∑

j

p j K (qi − q j )dt +
∑

l

σl(qi ) ◦ dW l
t ,

dpi = −
∑

j

pi · p j
∂

∂qi
K (qi − q j ) dt −

∑

l

∂

∂qi
(pi · σl(qi )) ◦ dW l

t .

(3.7)

In coordinates, the stochastic equations (3.6) become

dqα
i = ∂h

∂ pα
i
dt +

∑

l

σα
l (qi ) ◦ dW l

t ,

dpα
i = − ∂h

∂qα
i
dt −

∑

l,β

∂σ
β
l (qi )

∂qα
i

pβ
i ◦ dW l

t ,

(3.8)

where α, β run through the domain directions, α, β = 1, . . . , d.
In order to have a unique strong solution of this stochastic differential equation, we

need the drift and volatility to be Lipschitz functions with a linear growth condition
after converting to Itô form, and for the volatility to be uniformly bounded, see [36].
This requirement is achieved when the functions σl are twice continuously differen-
tiable and uniformly bounded in the position variable. The latter property will hold
with these functions being C2 kernel functions. The particular form of the stochastic
potential in (3.5) arises from the Legendre transformation of (3.2). The solutions of
(3.8) represent the singular solutions of the stochastic EPDiff equation, corresponding
to a stochastic path in the diffeomorphism group. In previousworks such as [44,61,64],
noise has been introduced additively and only in the momentum equation, correspond-
ing to a stochastic force. Also, the noise has typically been taken to be different for
each landmark, and one can interpret it having been attached to each landmark. In the
present case, the noise is not additive and the Wiener processes are not related to the
landmarks, but to the domain of the image. Nearby landmarks will thus be affected by
a similar noise, controlled by the spatial correlations of the noise. We refer to Fig. 1
in the Introduction for a numerical experiment demonstrating this effect.

Remark 3.1 (Geometric noise) The geometric origin of the Hamiltonian stochastic
equations in (3.6) deserves a bit more explanation. In the position equation (3.6), the
noise arises as the infinitesimal transformation by the action of the stochastic vector
field in (2.6), namely dgg−1 = udt + ∑

l σl ◦ dW t
l , on the manifold of positions

of the landmarks, which is generated by the J stochastic potentials, l(qi ,pi ) :=
pi · σl(qi )). Since this stochastic Hamiltonian is linear in the canonical momenta, the
noise perturbing the evolution of the landmark positions is independent of the landmark
momenta. On the other hand, the noise in the momentum equations arises as the
cotangent lift of the action of the stochastic vector field dgg−1 on the positions of the
landmarks. This cotangent lift determines the action on the momentum fibres attached
to the perturbed position of each of the landmarks in phase space. The cotangent lift
transformation is given explicitly by the product of the momentum and the gradient of
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the spatial fields σl with respect to the position qi of the i-th landmark. This difference
increases the effect of the noise in regions where the σl fields have large spatial
gradients, provided the landmarks are moving rapidly enough for their momenta to
be nonnegligible. We will see in the example that in certain cases this balance in
the product of the momentum and the spatial gradient of the noise parameters can
significantly affect the dynamics of the landmarks.

3.2 The Fokker–Planck Equation

In this section,we study the evolution of the probability density function of the stochas-
tic landmarks by using the Fokker–Planck equation. This study is possible in the case
of landmarks because the associated phase space is finite-dimensional.

We will denote the probability density by P(q,p, t), on the phase space R2d N at
time t . The Fokker–Planck equation can be computed using standard procedures and
is given in the following proposition.

Proposition 3.2 The Fokker–Planck equation associated with the stochastic process
(3.6) for the probability distribution P : R2d N × R → R is given by

d

dt
P(q,p, t) = {h,P}can + 1

2

∑

l

{φl , {φl ,P}can}can := L ∗
P, (3.9)

where {F, G}can = ∇FT
J∇G is the canonical Poisson bracket with J =

(
0 1

−1 0

)

and φl(q,p) = ∑
i pi · σl(qi ) are the stochastic potentials. This formula also defines

the forward Kolmogorov operator, L ∗.

Proof The proof follows the standard derivation of the Fokker–Planck equation, by
taking into account the geometrical structure of the stochastic process (3.6). The time
evolution of an arbitrary function f : R2d N → R can be written as

d f (p,q) = { f , h}candt +
∑

l

{ f , φl}can ◦ dW l
t ,

as both drift and volatility have the same Hamiltonian form in the Stratonovich formu-
lation. We then compute the Itô correction of this stochastic process, which is can be
written as a double Poisson bracket form; namely, 1

2

∑
l{{ f , φl}can, φl}candt . The Itô

correction is the quadratic variation of the Stratonovich term in the stochastic differen-
tial equation, which equals the nonstochastic part of one half of the time derivative of
the volatility (where a square Brownian motion becomes dt). We refer to [2,14] for a
more detailed derivation of this formula in a general setting. Taking the expectation of
the Itô process then removes the noise term and defines the forward Kolmogorov oper-
ator such that ḟ = L f . By pairing this formula with the density function P(q,p, t)
over the phase space (q,p) by using the usual L2 pairing, as

∫
P(q,p, t)L f (q,p)dqdp =

∫
L ∗

P(q,p, t) f (q,p)dqdp,
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we obtain the Fokker–Planck equation Ṗ = L ∗
P, which is explicitly given by (3.9) as

the double bracket term is self-adjoint and the advection term anti-self-adjoint. Notice
that here we have used a special property of the Poisson bracket; namely, that the
Poisson bracket is also a symplectic 2-form, which is exact and whose integral over
the whole phase space vanishes, provided we choose suitable boundary conditions.
We again refer to [2,14] for more details about this derivation. ��

Of course, the direct study of this equation is not possible, even numerically, because
of its high dimensionality. The main use here of the Fokker–Planck equation will be
to understand the time evolution of uncertainties around each landmark. Indeed, for
each landmark qi , the corresponding marginal distribution (integrating P over all the
other variables) will represent the time evolution of the error on the mean trajectory
of this landmark. We will show in the next section how to approximate the Fokker–
Planck equation with a finite set of ordinary differential equations which describe the
dynamics of the first moments of the distribution P. This will then be used to estimate
parameters of the noise fields σl for given sets of initial and final landmarks.

Remark 3.3 (On ergodicity) The question of ergodicity of the process (3.6) is not
relevant here, as we will only consider this process for finite times, usually between
t = 0 and t = 1. The existence of stationary measures of the Fokker–Planck equation
via Hörmander’s theorem is thus not needed. Nevertheless, we will rely on a notion
of reachability in the landmark position in the next section, where we will show how
to sample diffusion bridges for landmarks with fixed initial and final positions. This
ensures that there exists a noise realization which can bring any set of landmarks to
any other set of landmarks. This property is weaker than the Hörmander condition and
was introduced in [58].

3.3 Diffusion Bridges

The transition probability and solution to the Fokker–Planck equation P(q,p, t) can
also be estimated by Monte Carlo sampling of diffusion bridges. This approach will,
in particular, be natural for maximum likelihood estimation of parameters of land-
mark processes using the expectation-maximization (EM) algorithm that will involve
expectation over unobserved landmark trajectories, or for direct optimization of the
data likelihood. The EM estimation approach will be used in Sect. 4.3. Here, we
develop a theory of conditioned bridge processes for landmark dynamics which we
will employ in the estimation. The approach is based on the method of [15] with two
main modifications. The scheme and its modifications will be detailed after a short
description of the general situation. Alternative methods for simulating conditioned
diffusion bridges can be found in, e.g. [7,50,52].

In [15], a Girsanov formula [22], generalized to account for unbounded drifts, is
used to show that when the diffusion field �(x, t) of an R

d -valued diffusion process

dx = b(x, t)dt + �(x, t)dW , x0 = u (3.10)

is uniformly invertible, the corresponding process conditioned on hitting a point v ∈
R

d at time T > 0 is absolutely continuous with respect to an explicitly constructed
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unconditioned process x̂ that will hit v at time T a.s.. The modified process x̂ is
constructed by adding an additional drift term that forces the process towards the
target v. In [15], this process is constructed as a modification of (3.10)

dx̂ = b(x̂, t)dt − x̂ − v
T − t

dt + �(x̂, t)dW . (3.11)

Letting Px|v denote the law of x conditioned on hitting v with corresponding expec-
tation Ex|v, the Cameron–Martin–Girsanov theorem implies that Px|v is absolutely
continuous with respect to Px̂, see for example [49] and the discussion in [50]. An
explicit expression for the Radon–Nikodym derivative dPx|v/dPx̂ can be computed,
and this derivative is central for using simulations of the process x̂ to compute expecta-
tions over the conditioned process x|v. In particular, as shown in [15], the conditioned
process x|v and the modified process x̂ are related by

Ex|v( f (x)) =
Ex̂

(
f (x̂)ϕ(x̂)

)

Ex̂(ϕ(x̂))
, (3.12)

where ϕ(x̂) is a correction factor applied to each stochastic bridge x̂. Notice here that
f is a real-valued function of the stochastic path from t = 0 to t = T .
Returning to landmark evolutions in the phase space R2d N , the process (3.6) has

two vector variables (q,p) that typically will be conditioned on hitting a fixed set of
landmark positions v at time T . The conditioning thus happens only in the q variables
by requiring qT = v. To construct bridges with an approach similar to the scheme
of [15], we need to find an appropriate extra drift term and handle the fact that the
diffusion field may not be invertible in general. Recall first that the landmark process
(3.6) has diffusion field

�(q,p) =
(

�q(q)

�p(q,p)

)
:=

(
σ1(q), . . . , σJ (q)

−∇q(p · σ1(q)), . . . ,−∇q(p · σJ (q))

)
, (3.13)

where σ j (q) denotes the vector (σ j (q1), . . . , σ j (qN ))T . Notice that this matrix is
not square and has dimension 2d N × J so that �(q,p) ◦ dWt with dWt a J -vector
corresponds to the stochastic term of (3.6). Though �(q,p) couples the q and p
equation, when the number of noise fields J is sufficiently large, the q part �q(q) will
often be surjective as a linear map R

J → R
d N . In this situation, by letting �q(q)†

denote the Moore–Penrose pseudo-inverse of �q(q), we can construct a guiding drift
term as

G(q,p) := −�(q,p)�q(q)†(q − v)
T − t

. (3.14)

This term, when added to the process (3.6) and when measures are taken to control
the unbounded drift of (3.6), will ensure that the modified process hits qT a.s. at time
T . The drift term (3.14) is a direct generalization of the term added in (3.11). If � had
been invertible then ��† = Id resulting in the guiding term of [15] used in equation

123



668 Foundations of Computational Mathematics (2019) 19:653–701

(3.11). In the current noninvertible case, ��
†
q(q− v) uses the difference q− v which

only involves the landmark position but affects both the position and the momentum
equations.We stress here the fact that the introduction of noise in theq equation in (3.6)
is essential in our present approach. When conditioning on the q variable, a guided
process could not directly be constructed in this way, if the noise had been introduced
only in the p equation, as in [44,61,64]. The fact that this term is weighted by ��† is
also important as it allows the guiding term to be more efficient in the noisy regions
of the image, where there is more freedom to deviate from the deterministic path.
The guiding term can be interpreted as originating from a time-rescaled gradient flow,
and with the guiding term added, the diffusion process can be seen as a stochastically
perturbed gradient flow, see [3].

The guiding term (3.14) is, in practice, not always appropriate for landmarks.
Because the correction is dependent only on the difference to the target in the position
equation, a phenomenon of over-shooting is often observed. In such cases, the land-
marks travel too fast initially due to a large momentum, strengthened by the guiding
term that forces the landmarks towards v. The high initial speed is only corrected when
the time approaches T and the guiding term brings the landmark back to their final
position. This effect is illustrated in Fig. 4 in Sect. 5.2 and results in low values of the
correction factor ϕ(q,p) used to compute the expectation in (3.12). This effect tends
to produce inefficient samples when approximating (3.12) by Monte Carlo sampling.
As an alternative, upon letting b(q,p) denote the drift term of (3.6), we employ a
guided diffusion process of the form

(
dq̂
dp̂

)
= b(q̂, p̂)dt − �(q̂, p̂)�q(q̂)†(φt,T (q̂, p̂) − v)

T − t
dt + �(q̂, p̂) ◦ dW , (3.15)

for some appropriately chosen function φt,T : R
2d N → R

d N that gives an esti-
mate of the value of q̂T using the value of the modified stochastic process (q̂t , p̂t )

at time t . The hat denotes the solution of the process (3.15), which is different
from the original dynamics of the process (3.6) written without the hats. The choice
φt,T (q̂, p̂) := q̂ recovers the guiding term (3.14). It would be natural to define
φt,T (q̂, p̂) := E(q,p)(qT |(qt ,pt ) = (q̂, p̂)). The resulting guiding term will only
be driven by the expected amount needed at the endpoint, not from the value at time t .
A similar choice but easier to handle is to let φt,T (q̂, p̂) be the solution at time T of the
original deterministic landmark dynamics (2.3), obtained from the initial conditions
(q̂t , p̂t ) = (q̂, p̂). We will use this latter choice with a modification to ensure its time
derivative is bounded. The approach is visualized in Figure 4. To ensure convergence
of q̂t → v for t → T , a bounded approximation b̃ will be chosen to replace the
original unbounded drift b in (3.15). As it turns out, this choice has little influence in
practice.

The matrix �(q̂, p̂)�q(q̂)† in (3.15) only accounts for the q dynamics in the
pseudo-inverse �q(q̂)†. When the momentum is high and the noise fields σ j have
high gradients, this fact can again lead to improbable sample paths. In such cases, the
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scheme can be further generalized by using a guiding term of the form

1

T − t
�(q̂, p̂)

(
Dh

(
φt,T (�(q̂, p̂)h)

)|h=0

)†
(φt,T (q̂, p̂) − v) . (3.16)

The matrix Dh
(
φt,T (�(q̂, p̂)h)

)|h=0 is a linear approximation of the expected end-
point dynamics as a function of the noise vector h ∈ R

J . Again, with φt,T (q̂, p̂) := q̂,
the original guiding term (3.14) is recovered, and the term is close to the guiding term
of (3.15) when the momentum or gradients of σ j are low. We use this term for the
experiments in Sect. 5.2 involving high momentum dynamics, e.g. Fig. 6.

The following result is an extension of [15, Theorem 5] and [42, Theorem 3] to
the modified guided SDE (3.15). It is the basis for the EM approach for estimating
the parameters of the landmark processes developed in Sect. 4.3. Please note that the
Girsanov theorem [15, Thm. 1] which relates the modified and original process, does
not assume that� is invertible. Themain analytic consequence of the noninvertibility is
that the process is semi-elliptic and the transition density, therefore, cannot be bounded
by Aronson’s estimation [4]. Instead, we here assume continuity and boundedness of
the density of q in small intervals of (0, T ] in the sense of the assumption below. We
write P(q0,p0;q,p, t) for the transition density at time t of a solution (q,p) to (3.6)
started at (q0,p0). Similarly, when conditioning only on q, we write P(q0,p0;q, t) =∫
Rd N P(q0,p0;q,p, t)dp.

Assumption 1 For any (q0,p0) and (q,p), the process (qt ,pt ) has a density
P(q0,p0;q,p, t) and the map (q, t) �→ ∫

Rd N g0(q0,p0)P(q0,p0;q, t)d(q0,p0) is
continuous in t and q and bounded on sets {(q, t)|s − ε ≤ t ≤ s} for s ∈ (0, T ],
sufficiently small ε > 0, and any integrable function g0.

The interpretation of Assumption 1 is that, given any distribution of initial conditions
(q0,p0)with density g0, the resulting q-transition density of the process is continuous
and bounded in q and t . As shown in Lemma A.2, Assumption 1 can be slightly
weakened if Theorem 3.4 is only used to approximate the transition density at time T
as opposed to expectations E[ f (q,p)|qT = v] for arbitrary measurable functions f .

We let W (R2d N ) denote the Wiener space of continuous paths [0, T ] → R
2d N .

Theorem 3.4 Assume �q(q) : RJ → R
d N is surjective for allqwith �q(q)† bounded,

and that � is C1,2, bounded, and with bounded derivatives. Let b̃q be a bounded
approximation of the q-part of the drift b, and set b̃ = b + �(q,p)�q(q)†(b̃q − bq).
Let v ∈ R

d N be a point with P(q0,p0; v, t) positive, and let P(q,p)|v be the law
of (q,p) |qT = v. Let (q̂, p̂) be solution to (3.15), (q̂0, p̂0) = (q0,p0) with ϕt,T :
R
2d N → R

d N a map with ϕt,T (q,p)−q
T −t bounded on [0, T ). Then, for positive measurable

f : W (R2d N ) → R,

E(q,p)|v[ f (q,p)] = lim
t→T

E(q̂,p̂)

[
f (q̂, p̂)ϕ(q̂, p̂, t)

]

E(q̂,p̂)[ϕ(q̂, p̂, t)] , (3.17)
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with

logϕ(q,p, t) = −
∫ t

0

(q − v)T A(q)b̃(q,p)ds

T − s

−
∫ t

0

(q − v)T
(
d A(q)

)
(q − v)

2(T − s)
−

∑

i, j

∫ t

0

d[Ai j (q), (q − v)i (q − v) j )]
T − s

+
∫ t

0
(bq(q,p) − b̃q(q,p))T �q(q)†,T dW

− 1

2

∫ t

0
‖�q(q)†(bq(q,p) − b̃q(q,p))‖2ds

+
∫ t

0

(ϕt,T (q,p) − q)T �q(q)†,T dW

T − t
− 1

2

∫ t

0

∥∥∥∥∥
�q(q)†(ϕt,T (q,p) − q)

T − t

∥∥∥∥∥

2

ds,

where A(q) = (
�q(q)�q(q)T

)−1
. In addition,

P(q0,p0;q, T ) =
( |A(v)|

2πT

) d
2

e− ‖�q(q0)†(q0−v)‖2
2T lim

t→T
E(q̂,p̂)[ϕ(q̂, p̂, t)] . (3.18)

In the Theorem, [·, ·] denotes the quadratic variation of semimartingales. As men-
tioned above, a bounded approximation b̃ must be used to replace the original drift
term b in (3.15). The last integrals in the expression for logϕ(q,p, t) are results of
this approximation and the use of the map ϕt,T .

The result is proved in “Appendix A”. If � had been invertible and if the guidance
scheme (3.11) was used, the result of [15] would imply that the right-hand side limit
of (3.17) would equal

E(q̂,p̂)

[
f (q̂, p̂)ϕ(q̂, p̂, T )

]

E(q̂,p̂)[ϕ(q̂, p̂, T )] .

Extending the convergence argument to the present noninvertible case is nontrivial, and
we postpone investigating this to future work. For numerical computations, ϕ(q̂, p̂, t)
can be approximated by finite differences. As described later in the paper, we do this
using a framework that allows symbolic evaluation of gradients and thus subsequent
optimization for parameters of the processes.

4 Estimating the Spatial Correlation of the Noise

We now assume a set of n observed landmark configurations q1, . . . ,qn at time T ,
i.e. the observations are considered realizations of the stochastic process at some pos-
itive time T . From this data, we aim at inferring parameters of the model. This can
be both parameters of the noise fields σl and parameters for the initial configura-
tion (q(0),p(0)). The initial configuration can be deterministic with fixed known or
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unknown parameters, or it can be randomly chosen from a distribution with known
or unknown parameters. We develop two different strategies for performing the infer-
ence. The first inference method in Sect. 4.2 is a shooting method based on solving the
evolution of the first moments of the probability distribution of the landmark positions
while the second method in Sect. 4.3 is based on the expectation-maximization (EM)
algorithm. The discussion is here in the context of landmarks, although these ideas
may also apply in the more general context of Sect. 2.

4.1 The Noise Fields

We start by discussing the form of the unknown J noise fields σl . To estimate them
from a finite amount of observed data, we are forced to require the fields to be specified
by a finite number of parameters. A possible choice for a family of noise fields is to
select J linearly independent elements σ1, . . . , σJ from a dense subset ofC1(Rd ,Rd).
We here use a kernel k with length scale rl and a noise amplitude λl ∈ R

d , that is

σα
l (qi ) = λα

l krl (‖qi − δl‖) , (4.1)

where δl denotes the kernel positions. Possible choices for the kernel includeGaussians
krl (x) = e−x2/(2r2l ), or cubic B-splines krl (x) = S3(x/rl). The Gaussian kernel has the
advantage of simplifying calculations of the moment equations, whereas the B-spline
representation is compactly supported and gives a partition of unity when used in a
regular grid. Other interesting choices may include a cosine or a polynomial basis of
the image domain.

In principle, the methods below allow all parameters of the noise fields to be esti-
mated given sufficient amount of data. However, for simplicity, we will fix the length
scale and the position of the kernels. The unknown parameters for the noise can then
be specified in a single vector variable θ = (λ1, . . . , λK ). The aim of the next sec-
tions will be to estimate this vector, possibly in addition to the initial configuration
(q(0),p(0)), from data using the method of moments in Sect. 4.2 and EM in Sect. 4.3,
respectively.

Remark 4.1 For the bridge simulation scheme, we required �q(q) to be surjective
as a linear map R

J → R
d N . This assumption can be satisfied when the number of

landmarks is low relative to the number of noise fields having nonzero support in the
area where the landmarks reside. On the other hand, if the number of landmarks is
increasedwhile the number of noise fields is fixed, the assumption eventually cannot be
satisfied. Intuitively, in such cases, the extra drift added to the bridge SDE must guide
through a nonlinear submanifold of the phase space to ensure the landmarks will hit
the target point v exactly. This limitation can be handled in three ways: (1) Themethod
ofmoments as described below avoidsmatching individual point configurations, and it
can, therefore, be used in situations where the surjectivity condition is not satisfied. (2)
As discussed in Remark 2.3, the noise can be made infinite dimensional. This can be
donewhile keeping correlation structure similarly to the case with finite J . See also [3]
for a discussion of noise in the form of aGaussian process. (3) The bridgematching can
be made inexact mimicking the inexact matching pursued in deterministic LDDMM.
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This could potentially relax the requirements on the extra drift term to only ensure
convergence towards a given distance of the target. Inexact observations of stochastic
processes are for example treated in [63].

4.2 Method of Moments

Wedescribe here our firstmethod for estimating the parameters θ by solving a shooting
problem on the space of first and second-order moments. Given an estimate of the
endpoint distributions P(q,p, T ), we will solve the inverse problem which consists
in using the Fokker–Planck equation (3.9) to find the values of θ such that we can
reproduce the observed final distribution. Solving the Fokker–Planck equation directly
is infeasible due to its high dimensionality. Instead, we will derive a set of finite-
dimensional equations approximating the solution of the Fokker–Planck equation (3.9)
for the probability distribution P in terms of its first moments. This approach has been
developed in the field of plasma physics for the Liouville equation, which is similar
to the Fokker–Planck equation (3.9).

Remark 4.2 (Geometric moment equation) As the Fokker–Planck (3.9) is written in
term of the canonical bracket, we could expect to be able to apply a geometrical version
of the method of moments such as the one developed by [28]. Although this method
seems to fit the present geometric derivation of the stochastic equations, we will not
use it as it is not in our case practically useful. Indeed, it requires the expansions of
the Hamiltonian functions in term of the moments, but we cannot obtain here a valid
expansionwith a finite number of terms. This is due to the fact that the LDDMMkernel
and the noise kernels cannot generally be globally approximated by finite polynomials
with bounded approximation error for large distances. This would, in turn, produce
spurious strong interactions between distant landmarks.

The method for approximating the Fokker–Planck that we will use here is the
following. We first define the moments

〈qα
i 〉 :=

∫
qα

i Pθ (q,p, t) dqdp (4.2)

〈qα
i pβ

j 〉 :=
∫

qα
i pβ

j Pθ (q,p, t) dqdp , (4.3)

where we have written only two possible moments, although any combinations of p
and q at any order are possible. In this work, we will only consider moments up to the
second order, that is the moments 〈qα

i 〉 , 〈pα
i 〉 , 〈qα

i qβ
j 〉 , 〈qα

i pβ
j 〉 and 〈pα

i pβ
j 〉. Notice

that the first moment are (1, 1)-tensors, and the second moments are (2, 2)-tensors,
although we will only use index notation here.

We illustrate this method with the first moment 〈qα
i 〉, which represents the mean

position of the landmarks. We compute its time derivative and use the property of the
Kolmogorov operator L defined in (3.9) to obtain

d

dt
〈qα

i 〉 =
∫

qα
i L

∗
Pθ dqdp =

∫
L qα

i Pθ dqdp = 〈
L qα

i

〉
. (4.4)
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We thus first need to apply the Kolmogorov operator L to qα
i to obtain

L qα
i = −{h, qα

i }can + 1

2

∑

l

{φl , {φl , qα
i }can}can

= ∂h

∂ pα
i

+ 1

2

∂σα
l (qi )

∂qβ
i

σ
β
l (qi ),

(4.5)

which corresponds to the q part of the drift of the stochastic processwith Itô correction.
Similarly, for the momentum evolution, we obtain

L pα
i = −{h, pα

i }can + 1

2

∑

l

{φl , {φl , pα
i }can}can

= − ∂h

∂qα
i

+ 1

2
pγ

i

∂σ
γ

l (qi )

∂qβ
i

∂σ
β
l (qi )

∂qα
i

− 1

2
pβ

i

∂2σ
β
l (qi )

∂qα
i ∂qγ

i

σ
γ

l (qi ) .

(4.6)

Most of the terms on the right-hand side of (4.5) and (4.6) are nonlinear; so their
expected value cannot be written in terms of only the first moments. This is the usual
closure problem of moment equations, such as the BBGKY problem arising in many-
body problems in quantum mechanics. The solution to this problem is to truncate
the hierarchy of moments for a given order and consider the system of ODEs as an
approximation of the complete Fokker–Planck solution. Here, we will apply the so-
called cluster expansion method described in [38]. We refer to “Appendix B.1” for
more details about this method.

Apart from the first approximation 〈qα
i qβ

j 〉 → 〈qα
i 〉 〈qβ

j 〉, the next order of approx-
imation is to keep track of the correlations

�2 〈qα
i qβ

j 〉 := 〈qα
i qβ

j 〉 − 〈qα
i 〉 〈qβ

j 〉 . (4.7)

This quantity is also called a centred second moment as for i = j it corresponds to the
covariance of the probability distribution for the landmark i . In general, it corresponds
to the correlation between the positions of two landmarks. The dynamical equation
for this correlation is found from the equation of the second moment, which gives
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where (i ↔ j) stands for the same term but with i and j exchanged. This equation is
interesting to study in more detail, as it already gives us information about the nature
of the dynamics for the spatial covariance of landmarks. Indeed, we have three types
of terms with the following effects.

(1) The σl -dependent terms. This first term is quadratic in the σ ’s, not proportional to
any linear or quadratic polynomial in q or p. This term is a direct contribution from
the noise in the q equation and will have the effect of almost linearly increasing
the centred covariance, wherever a σl > 0.

(2) The h-dependent terms. From the form of this term, we expect it to be proportional
to a correlation. It will thus have an exponential effect on the dynamics, triggered
by the linear contribution of the first term.Notice that this termonly depends on the
Hamiltonian, and, thus, on the interaction between landmarks. If two landmarks
interact, we expect their covariance to be averaged. This term will capture their
averaged covariance.

(3) The ∇qσl -dependent terms. These terms are related to the noise in the p equation
and will account for the effect on the landmark position of the interaction of the
momentum of the landmark with the gradients of the noise.

Notice that the last two types of terms describe second order effects with respect to
the spatial covariance of the landmarks, as they depend linearly on the correlations. In
the expansion of these nonlinear terms, the other correlations involving p will appear.
This means that all of the possible second-order correlations must be computed. This
computation is done in “Appendix B”, where we also approximate the expected value
of the kernels as 〈K (q)〉 ≈ K (〈q〉). As we will see in the numerical examples in
Sect. 5, these approximations can give a reliable estimate of the landmark covariance,
but this should be rigorously justified to obtain a precise estimate of the errors. Such
a study is beyond the scope of this work and is left open.

Given the equations for the moment evolution, we can estimate the parameters θ

by minimizing the cost function

C(〈p〉 (0), λl) = 1

γ1
‖〈q〉 − 〈q〉 (T )‖2 + 1

γ2
‖�2 〈qq〉 − �2 〈qq〉 (T )‖2 , (4.8)

where γ1 and γ2 are weights. We denote by 〈q〉 and�2 〈qq〉 the target first and second
moments and by 〈q〉 (T ) and �2 〈qq〉 (T ) the estimated moments which implicitly
depend on the parameters of the noise and the initial momentum. The choice of the
norm is free here, and we chose a norm which only considers i = j and normalizes
each term to 1 so that all the covariance of the landmarks contribute equally to the
cost. Other choices could be made, depending on applications. Also, the cost function
may depend on other parameters, but this would make its minimization more difficult.

To minimize the cost (4.8), we can use gradient-based methods such as the BFGS
algorithm. Suchmethods require the evaluation of the Jacobian ofC with respect to all
of its arguments. Usually, for the estimation of the initial momentum, a linear adjoint
equation is used. However, the derivative with respect to the parameters of the noise
cannot be computed in this way. We will evaluate the gradients symbolically by using
the Theano library in Python [59]. To improve the efficiency of the algorithm, we first
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match the mean final position, by only updating the initial momentum. Then, with this
initial condition, we match for both first and second moments and update the initial
momentum as well as the parameters λl . As we will see in the numerical experiments
in section 5, gradient-based methods are not optimal, and genetic algorithms, such as
the differential evolution algorithm of [57] designed for global minimizations, turn
out to perform better.

4.3 Maximum Likelihood and Expectation-Maximization

We now describe how to estimate the unknown parameters collected in the variable
θ by a maximum likelihood estimation based on the expectation-maximization (EM)
algorithm of [16]. The likelihood of n independent observations (q1, . . . ,qn) at time
T given parameters θ takes the form

L(q1, . . . ,qn, θ) =
n∏

i=1

Pθ (qi , T ) =
n∏

i=1

∫

Rd N
Pθ (qi ,p, T )dp . (4.9)

The parameters θ can be estimated by maximizing the likelihood, that is by letting

θ̂ ∈ argmaxθ L(θ;q1, . . . ,qn) .

For this, the likelihood could be directly computed by numerical approximation of
Pθ (qi , T ) using an approximation of the Fokker–Planck equation (3.9). Alternatively,
the fact that the stochastic process is only sampled at time T suggests a missing data
approach that marginalizes out the unobserved trajectories up to time T . Let (q,p; θ)

denote the stochastic landmark process with parameters θ , and let P(q,p; θ) denote
its law. Let L(q,p; θ) denote the likelihood of the entire stochastic path for a given
realization of the noise, and computed with respect to the parameter θ . Notice that this
likelihood is only defined for finite time discretizations of the process and there is no
notion of path density for the infinite-dimensional process. We thus proceed formally,
while noting that the approach can be justified rigorously, see e.g. [17]. An alternative
approach is to optimize the likelihood (4.9) directly using (3.18). This is pursued in
[55].

The EM algorithm finds a sequence of parameter estimates {θk} converging to a θ̂

by iterating over the following two steps:

(1) Expectation:Compute the expected value of the log-likelihood given the previous
parameter estimate θk−1:

Q(θ |θk−1) := Eθk−1[logL(q,p; θ) |q1, . . . ,qn]

=
n∑

i=1

Eθk−1 [logL(q,p; θ |qi )] .
(4.10)

The expectation (4.10) over the process conditioned on the observations qi inte-
grates the likelihood over all sample paths reaching qi . For this, we employ the
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bridge simulation approach developed in Sect. 3.3. For each qi , we thus exchange
(qt ,pt ; θ) with a guided process (q̂, p̂; θ,qi ) and use the equality (3.17) from
Theorem 3.4. The expectation on the right-hand side of (3.17) can be approx-
imated by drawing samples from the guided process. Note that the correction
factor ϕ(q,p|θk−1,qi ) makes the approach equal to importance sampling of the
conditioned process with the guided process as proposal distribution.

(2) Maximization: Find the new parameter estimate

θk = argmaxθ Q(θ |θk−1) . (4.11)

The maximization step can be approximated by updating θk such that it increases
Q(θ |θk−1) instead of maximizing it. This is the approach of the generalized EM
algorithm [48]. The update of θ is thus computed by taking a gradient step

θk = θk−1 + ε∇θ Q(θ |θk−1), (4.12)

where ε > 0. The gradient which is evaluated for each of the sampled paths can
be computed symbolically using the Theano library [59]. Theano allows the entire
computational chain from the definition of the Hamiltonian and noise fields to the
time-discrete stochastic integration to be specified symbolically. The framework
can therefore automatically derive gradients symbolically before the expressions
are compiled to efficient numerical code. See also [39] for more details on the use
of Theano for differential geometric and stochastic computations.

The resulting estimation algorithm is listed in Algorithm 1. For each qi , the expec-
tation Eθk−1[logPθ (q,p|qi )] is estimated by sampling Nbridges bridges. The algorithm
can perform a fixed number K of updates to the estimate θk or stop at convergence.

Algorithm 1: Stochastic EM-estimation of parameters θ .

// Initialization
θ0 ← initialization value
// Main loop
for k = 1 to K do

for i = 1 to n do
for j = 1 to Nbridges do

sample bridge (q̂(ω j ), p̂(ω j ); θk−1,qi )

compute logPθk (q̂(ω j ), p̂(ω j )) and ϕ(q̂(ω j ), p̂(ω j ))

end
set Cqi = mean j

(
ϕ(q̂(ω j ), p̂(ω j ))

)

set E
(q,p)|qi [logPθk−1 (q, p)] ≈ C−1

qi mean j
(
logPθ (q̂(ω j ), p̂(ω j ))ϕ(q̂(ω j ), p̂(ω j ))

)

end
set Q(θ |θk−1) = meani

(
E(q,p|qi )[logPθk−1 (q, p)])

compute ∇θ Q(θ |θk−1)

update θ : θk = θk−1 + ε∇θ Q(θ |θk−1)

end
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(a) (b) (c)

Fig. 2 We plot on the left panel three simulations of a single landmark dynamics subject to an array of
Gaussian noise fields. Their parameters are either λl = (0.08, 0) or λl = (0, 0.08). We used three different
length scales rl for the noise fields to analyse the effects of small or large Gaussian fields σl on the mean
path of the landmark (with Gaussian kernels) and final covariance (ellipses). We used 2000 timesteps to
integrate the moment equation forwards from t = 0 to t = 1. The initial momenta were found using a
shooting method in the deterministic landmark equation. We display on the other two panels a zoom on
two of the simulations of the left panel and compare the estimation of the final covariance from a Monte
Carlo sampling of 10,000 realizations (magenta) and from the solution of the moment equation (red) for
two values of rl . The black density represents the probability distribution of the landmark estimated from
samples, and the dashed lines two level sets. a Moment dynamics, b rl = 0.5, c rl = 0.03 (Color figure
online)

5 Numerical Examples

We now present several numerical tests of the stochastic perturbation of the landmark
dynamics. In particular, we want to illustrate aspects of the effect of the noise on the
landmarks and test the algorithms for estimation of the spatial correlation of the noise.
We will focus here on synthetic examples and refer to [3] for an application of the
methods on a dataset of Corpora Callosa shapes represented by 77 landmarks. The
numerical simulations of this work have been done in Python, using the symbolic
computation framework Theano [59]. The code is available from the public repository
https://bitbucket.org/stefansommer/stochlandyn. See also [39] for additional details.

5.1 Solution of the Fokker–Planck Equation

We first consider a simple experiment with a single landmark, subjected to a square
array of noise fields with Gaussian noise kernel. To a first-order approximation, the
mean trajectory of the landmark is a straight line with constant momenta as the Hamil-
tonian is a pure kinetic energy.

This experiment is displayed in Fig. 2a where we used two arrays of four by four
noise fields with either λl = (0.08, 0) or λl = (0, 0.08) and three values of the noise
radius rl = 0.5, 0.05, 0.03. For large values of rl , the noise is mostly uniform and the
gradients of the σl are negligible. The only term contributing to the final covariance

of the landmark is therefore
〈
σα

l (qi )σ
β
l (q j )

〉
. Notice that because there is only one

landmark, thus a linear drift, the deterministic part does not affect the covariance. This
term only has a linear effect on the covariance which is thus an ellipse proportional
to the noise fields. Here the noise has equal strength in both the x and y coordinate
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(a) (b)

Fig. 3 In these two panels, we present a study similar to Fig. 2a but with 5 interacting landmarks. On
the left, we illustrate the effect of varying the landmark length scale α, and, on the right, we compare the
result of the moment equation and a Monte Carlo simulation in the case of α = 0.1, with also 10, 000
realizations. As before, the black density plot shows the probability density of the landmarks, the magenta
curve the covariance from sampling and the red curve the covariance from themoment equation. aLandmark
interaction, b sampling comparison

thus we observe a circle. For smaller values of rl , the gradient of σl is large enough
for the other term in the momentum equation which couples the momentum and the
gradient of σ to affect the moment dynamics. This effect is shown in Fig. 2a where
the covariance has a larger value in the direction of the gradient of σl than in the other
directions. This is explained by the fact that this coupling is of the form ∂

∂qi
(σl(qi )·pi ),

thus the ellipse is in the direction of the gradient, not the momenta. Notice that there
should be some noise in the direction of the momenta for this term to have an effect.

Using the same experiment, we compared the estimation of the covariance from the
moment equation with a direct sampling obtained by solving the stochastic landmarks
equations. We did this experiment for rl = 0.5 and rl = 0.03 in Figure 2b, c. The left
panel with rl = 0.5 shows an excellent agreement between the two methods but the
right panel with rl = 0.03 shows differences. This type of error in the estimation of
the covariance is explained by the fact that the final distribution has a large skewness.
This effect is not captured by the moment equations as we neglected the effects of
order higher than 2, and the skewness is a third order effect described by terms such
as �3 〈qα

i qβ
j qγ

k 〉. Nevertheless, the final covariance is close enough to the correct
one to be able to use it in the estimation of the noise fields. This demonstrates that
even in rather extreme cases, which are not realistic for applications, the second-order
approximation used to derive the moment equation still produces reliable results.

We did a similar experiment but with 5 interacting landmarks arranged in an ellipse
configuration and with initial conditions obtained from the deterministic shooting
method such that the endpoint of the deterministic landmark equations match another
ellipse. We display these experiments in Fig. 3 with the same noise as in the previous
tests and with rl = 0.2. We modified here the landmark interaction length scale α

from α = 0.02 (no-interactions) to α = 0.2 (neighbours interactions) to see the effect
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(a) (b)

Fig. 4 aVisualization of the process (3.15). From the initial landmark configuration q(0) (blue crosses), the
target v (blue dots) is hit using themodified process (q̂, p̂) (black lines: q̂). At time t = T /2,φt,T (q̂(t), p̂(t))

is calculated (green dots) and the process is guided by −(T − t)−1��
†
q(φt,T (q̂, p̂) − v) (q part: green

arrows, length doubled for visualization). The use ofφt,T implies small guiding and high-probability sample

bridges. b Similar setup but using the guiding term −(T − t)−1��
†
q(q̂− v) without φt,T . The momentum

couples with the guiding term, and, intuitively, the path travels too fast towards the target (q at t = T /2
much closer than halfway towards v) and overshoots. This effect gives low probability sample bridges and
the guiding term (green arrows) is much larger than in a. a Guided process using φt,T , b guided process
without φt,T (Color figure online)

of the noise with the landmark interactions. Due to the different length scales, the
trajectories to the target ellipse are slightly different so the landmarks will be subject
to different noise. The larger length scale has the effect of reducing the differences
between the covariances of interacting landmarks.

5.2 Bridge Sampling

Here, we aim at visualizing the effect of the constructed bridge sampling scheme. In
Fig. 4, the effect of the guiding term is visualized on a sample path. At t = T /2, the
predicted endpoint φt,T (q̂(t), p̂(t)) is calculated and the difference φt,T (q̂, p̂) − v is
used to guide the evolution of the path towards the target v. The guiding term ensures
that q̂ will hit v almost surely at time T . Notice that the difference φt,T (q̂, p̂) − v is
generally much smaller than the difference q̂ − v. The introduction of φt,T therefore
implies that the process is modified less giving more likely bridges. Without φt,T ,
the process is generally attracted too quickly towards the target as can be seen by the
landmarks at t = 0.5 being almost at their final positions in Fig. 4b. The path thus
overshoots the target. This effect is not present when using φt,T in Fig. 4a.

5.3 Estimating the Noise Amplitudes

We here aim at estimating the noise amplitude from sampled data using both the
method of moments and maximum likelihood.

We first use the genetic algorithm of [57] called differential evolution algorithm
to minimize the cost function C in (4.8). This algorithm has in experiments proven
successful in avoiding local minima during the optimization. We compared it with
the standard BFGS gradient descent algorithm with a single landmark in Fig. 5. This
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(a) (b)

Fig. 5 This figure shows the results of estimating parameters of the σl fields with the moment equation.
Black arrows: The original σl . Blue arrows: The estimated σl . The error in the final covariance for the
differential equation genetic algorithm is of the order of 10−10 and for the BFGS algorithm, it is of the
order of 5 · 10−2. a Genetic algorithm, b gradient descent (Color figure online)

algorithm relies on the Jacobian of the cost functional computed symbolically using the
Theano package of [59]. It is able to estimate the noise amplitude along the trajectory
of the landmark where the signal from the gradient of C is the strongest. For the
other regions of the image, the algorithm cannot detect any signal to update the noise
fields. The genetic algorithm can overcome this issue as it is based on evolving a
population of solutions which uniformly cover the entire parameter space. In this way,
the solution obtained is a better approximation of the global minimum of C . It is
interesting that even if the final moment of Fig. 5 is well matched with the genetic
algorithm, the noise amplitude is not perfectly recovered. This illustrates the expected
degeneracy of this model for a low number of landmarks. When more landmarks are
added, the noise amplitude estimation is closer to the expected one, see Fig. 7. In these
experiments, we set the initial variance of themomentum, and the position/momentum
correlation to 0 for simplicity, and because we used these values to generate the final
variance. In practice, one may expect to have other prior for the initial variance of the
momenta or can try to find it as an unknown parameter of the problem. Having them
as unknown may result in a large parameter space, thus simplifications such as all the
landmarks have the same initial variance in the momentum could be used. We leave
such investigation for later when applied to real data, with a possible meaningful prior.

In Fig. 6, the same experiment is performed with MLE and the bridge sampling
scheme. The noise kernels are in this experiment cubic B-splines placed in a grid
providing a partition of unity. In the optimization, λl are fixed to be equal for all
l = 1, . . . , J implying that the total noise variance will be uniform at each point of the
domain. The figure shows the experiment performed with low momentum (Fig. 6a)
and high momentum (Fig. 6b). In the low momentum case, the noise parameters are
estimated correctly and the sample covariance with the estimated parameters matches
the covariance of the original samples. The SDE (3.15) is here used for the bridge
sampling scheme. In contrast to the previous method, the algorithm is now optimizing
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(a) (b)

Fig. 6 The noise amplitudes are here estimated usingmaximum likelihoodwith the bridge sampling scheme.
We assume λl are equal for all l resulting in two parameters for the noise. Thus by assumption, the
estimated noise will be uniform over the domain. a The parameters are estimated correctly in the low
momentum setting. b While the sample covariance matches the covariance of the original data in the high
momentum case, the estimated parameters are different from the original. a Landmark and estmated noise,
low momentum, b landmark and estmated noise, high momentum

for the maximum likelihood of the samples and not directly for matching the final
covariance. A higher difference in the endpoint covariance is, therefore, to be expected.

With higher initial momentum, the coupling between the guidance and noise makes
the scheme (3.15) overestimate the variance. Instead, the guidance term (3.16) is used.
Notice that even though the sample covariance with the estimated parameters matches
the covariance of the original samples, the estimated λl are different than the original
values. This indicates that the maximum likelihood estimate of the parameters may
not match the original setting in the highly nonlinear case occurring when the coupling
between noise and momentum is high. Because of the nonlinearity, the noise is able
to generate horizontal variation in the position of the final the landmark even though
the variation with the estimated parameters are mainly vertical along the trajectory.

Figures 7 and 8 show the result of noise estimation using different configurations
of the ellipse and both the method of moments and MLE. The noise parameters λl

are allowed to vary with l in both cases giving spatially nonuniform noise amplitude.
The algorithms find the correct noise parameters in the areas covered by the landmark
trajectories.

6 Discussion and Outlook

As the first topic of this work, we raised the issue of how to include stochasticity
and uncertainty in the framework of large deformation matching in a systematic and
geometrically consistent way. In Sect. 2, we exposed a general theory of stochastic
deformations in the LDDMM framework, based on the momentum map representa-
tion of images in [8], by introducing spatially correlated time-dependent noise in the
reconstruction relation that is used to compute the deformation map from its veloc-
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(a) (b)

Fig. 7 This figure shows the result of noise estimation using the moment equation as in Fig. 5 but for the
ellipse experiment. The error in the final covariance for the differential equation genetic algorithm is of the
order of 10−9 and for the BFGS algorithm it is of the order of 5 · 10−3. a Genetic algorithm, b gradient
descent

(a) (b)

Fig. 8 a Setup as Fig. 6 but with five landmarks in an ellipsis configuration. b Examples of simulated
bridges as used in the approximation of the Q function in the EM procedure. a Landmarks and estmated
noise, b EM iterations

ity field. By taking this approach, we have preserved most of the advantages of the
theory of reduction by symmetry. In particular, we have preserved the capability of
applying this stochastic model to general data structures. The dynamical equation is
the stochastic EPDiff equation, in which the noise appears in a certain multiplicative
form with spatial correlations encoded in a set of spatially dependent functions σl .
The key feature of this noise is that the structure of the original equation provided by
the theory of reduction by symmetry still remains. In particular, the persistence of the
momentum map allows for both exact and inexact matching in this stochastic context.

The question of local-in-time existence and uniqueness of this equation is important,
but it is not treated in this work. We refer to [10] for such a study for the 2D Euler
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equation and to [13] for the 3D case. Another possible extension would be to consider
an infinite number of σl fields with an infinite-dimensional Wiener process for the
stochastic EPDiff equation as investigated in [64], also in the context of stochastic
shape analysis. We considered have time-independent σl fields. However, there are
several approaches for making these fields time dependent besides simply prescribing
them as functions of time. Some of these other approaches were derived by [21] in the
context of stochastic fluid dynamics. In particular, the idea of having the noise fields
being carried by the deformation could be of interest in this context as well. Yet another
possibility would be to introduce two different types of noise fields, one modelling
small-scale noise correlations and the other one for larger scale noise correlations. In
this case, it would make sense for the small scale variability to be advected by the
large-scale deformation, as in the multi-scale model of [30].

After defining the general model in Sect. 2, we applied it to exact landmark match-
ing in Sect. 3, which is the simplest nontrivial application of the LDDMM framework.
This approach allowed investigation of the effects of the noise on large deformation
matching in a finite-dimensional model. Introducing the noise in both the momentum
and the position equations of the landmarks made the landmark trajectories rougher
than they would have been, otherwise, had the noise been only in the momentum equa-
tion. The noise in the position equation also increased the flexibility for controlling the
landmark trajectories. This flexibility was used to derive a scheme for simulating diffu-
sion bridges with corresponding sampling correction factor that allowed evaluation of
expectations with respect to the original conditioned landmark dynamics. In addition,
we used the finite dimensionality of the system to derive the Fokker–Planck equation
and apply it to the dynamics of moments of the probability distribution function.

Somemodifications to the standard theory of diffusion bridgesweremade to accom-
modate the case of landmark dynamics and to improve the speed and accuracy of the
estimation of expectations over conditioned landmarks trajectories. The landmarks
represent the simplest cases for numerical shape analysis, especially in the context of
stochastic systems. We used a simple Heun method to solve the stochastic landmark
equations. Higher order integration schemes could have been used, such as the stochas-
tic variational integrators of [31]. The next step in extending the landmark example
is to allow for inexact matching and to study the trade-off between the effect of noise
and the tolerance of the matching.

Several issues regarding ergodicity and other properties of theKolmogorov operator
were left open in this paper, whose future treatments could add to the theoretical
understanding of themodel. Finally, the stochastic LDDMMframework can be applied
to other types of data structures, in particular to images with inexact matching as
originally done in [6]. Studying the effects of the stochastic model on other nonlinear
data structures such as curves or surfaces would also be of great interest for future
works.

As a second topic, we raised the issue of determining the noise correlation from
data sets which would allow the theory of stochastic deformations to be used with
observed data. We developed two independent methods which we implemented and
applied to several test examples. First, the moment equation allows matching of the
sample moments. It is deterministic, making optimization of the noise parameters
stable and efficient, and it does not require special conditions on the noise fields. Its
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accuracy depends on the approximation order in the moment equation. Scaling the
moment equation to a large number of landmarks or continuous shapes such as curves
may be challenging as well as optimizing for a high number of unknown parameters.
In the landmark experiments we presented above, this approach allowed us to reliably
estimate the underlying noise, but an extension of this method to infinite-dimensional
representations of shapes is not possible unless a discretized version of the equations
is used. For this method, we also made two approximations that could possibly be
improved elsewhere. One of them is the truncation to retain only second-order terms
in the moment equation, and the other is to approximate the expectation of a kernel
function as the kernel of the expected values. Both approximationswere shown towork
well for cases with small enough noise, which would be the case in most applications.
Finally, it is also important to notice that we did not use the freedom of the initial
value of the variance of the momentum and the position/momentum correlation. These
parameters could either be inferred using this scheme (with a larger parameter space)
or be obtained by using other information about the data.

The secondmethod is theMLEoptimization, aMonteCarlomethodwhich evaluates
expectations over conditioned stochastic trajectories. The bridge sampling scheme
we used requires the noise fields to span the entire q-space to allow guiding the
landmarks towards their target.With high nonlinearity asmay happenwith large initial
momentum and high gradients of the noise fields, guiding the trajectories towards their
target with high-probability bridges can be challenging. In general, the stochastic
nature of the algorithm makes it harder to control than the matching provided by
the moment equation. The bridge sampling scheme can be interpreted as a gradient
flow, as discussed in [3] when applied to images. It allows the likelihood of observed
images to be evaluated without a prior image registration step. The method may thus
be applicable to image analysis problems, and more generally for inexact matching of
shapes in which case the requirement of the noise to span the q-space may be relaxed.

The inference of noise parameters treated here can be extended to more general
statistical inference problems on shape spaces. Inferring the initial q0 positions can
be regarded as estimating a most-likely mean, thereby drawing similarities to the
Frechét mean [20] and to means defined by the maximum likelihood of probability
distributions in nonlinear spaces [54]. When generalized to images, the approach can
be used for simultaneous estimation of template images [35], possible time-dependent
transformations in the momentum as caused for example by disease processes [47],
and population variation in the spatial noise correlation.

It is possible to generalize the stochastic equations we have introduced here to allow
for time-dependent noise amplitude as done in [21] for fluid dynamics. In this case,
the noise fields could be advected by the diffeomorphism and only the initial condition
of the noise field would have to be inferred. This requires the choice of a meaningful
advection scheme. By construction of its metric LDDMM is right-invariant, and the
flow energy is therefore measured in Eulerian coordinates. This leads us to define
stochastic flows that are compatible with this right-invariant geometry thus giving
noise in Eulerian coordinates. In the deterministic setting, left-invariant metrics [53]
provide a Lagrangian view of the metric that thus, in a medical context, follows the
advected anatomy. We leave it as an open and very relevant problem to consider
advected, or left-invariant Lagrangian noise.
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Extending the inference methods presented here to other data structures, in particu-
lar to infinite-dimensional shapes spaces, would again constitute an interesting future
direction. As discussed in detail at the end of Sect. 2, we believe that the methods pre-
sented here with suitable modifications can be applied also for infinite-dimensional
representations of shapes, and that additional methods could be introduced, such as
stochastic filtering for further data assimilation of the results in infinite-dimensional
cases, see e.g. [5].
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Appendix A: Bridge Sampling

We here follow [15] and the later paper [42] to argue for the almost sure hitting of a
target v for the guided process (3.15) and to find the correction term ϕ(q,p, t). For
completeness, we will explicitly derive the correction term following the program in
[15, Theorem 5]. The guided SDE (3.15) differs from the previous schemes in using
the function φt,T : R2d N → R

d N to predict the endpoint, and, importantly, in that the
diffusion field � is not invertible resulting in a semi-elliptic diffusion. We handle the
first issue by repeated application of the Girsanov theorem. This also accounts for the
unboundedness of the drift term b(q̂, p̂) coming from the momentum of the landmarks
in the same way as [42]. We do not here argue for the t → T limit of the expectation
of the correction term that in the elliptic case follows from [15,42].

Let b(q,p) be the drift in (3.6) in Itô form. Because this drift is unbounded, we
construct b̃(q,p) in Theorem 3.4 to be an approximation so that the q-part b̃q is
bounded on R

d N . To construct a map φt,T : R2d N → R
d N satisfying the conditions

of the theorem, let φt,T be the q-part of the time T solution to the ODE ∂t (qt ,pt ) =
b̃(qt ,pt ) started at time t with initial conditions (q,p). This ODE corresponds to the
deterministic ODE (2.3), however using the drift approximation to ensure ∂tφt,T (q,p)

is bounded. Then the process φ̃t,T (q̂,p̂)−q̂
T −t is defined, bounded and continuous on [0, T ].

The SDE

(
dq̂
dp̂

)
= b̃(q̂, p̂)dt − �(q̂, p̂)�q̂(q̂)†(q̂ − v)

T − t
dt + �(q̂, p̂)dW (A.1)

123

http://creativecommons.org/licenses/by/4.0/


686 Foundations of Computational Mathematics (2019) 19:653–701

differs from the Itô form of the SDE (3.15) by

(b(q,p) − b̃(q,p))dt − �(q,p)�q(q)†(ϕt,T (q,p) − q)

T − t
dt . (A.2)

As argued by [42], A.1 has a unique solution satisfying limt→T q̂ = v a.s., and the
processes A.1 and (3.15) are absolutely continuous with respect to each other. The
correction term ϕ(q,p, t) can be derived from [42, Theorem 3] and the difference A.2.
For completeness,we give the derivation in the landmark case that proves Theorem3.4.

Proof of Theorem 3.4 Let f : W (R2d N ) → R be a nonnegative measurable function
on [0, t], t < T . Following [15], we define

h(q, t) := −�q(q)†(q − v)
T − t

noting that in the present case, we use the pseudo-inverse �q(q)† in h since �q(q) is
not invertible. Let now (q̃, p̃) be a solution to the SDE

(
dq̃
dp̃

)
= b̃(q̃, p̃)dt + �(q̃, p̃)h(q̃, t)dt + �(q̃, p̃)dW (A.3)

From the Girsanov theorem with unbounded drift [15, Thm.1], we have

E(q̃,p̃)

[
f (q̃, p̃)ϕb(q̃, p̃, t)

]
= E(q,p)

[
f (q,p, t)ϕ̃(q,p, t)

]
(A.4)

where

log ϕ̃(q,p, t) :=
∫ t

0
hT (q,p, s)dW − 1

2

∫ t

0
‖h(q,p, s)‖2ds , (A.5)

logϕb(q,p, t) :=
∫ t

0
(bq(q,p) − b̃q(q,p))T �q(q)†,T dW

−
∫ t

0

1

2
‖�q(q)†(bq(q,p) − b̃q(q,p))‖2ds . (A.6)

We now define an intermediate function

g(q, t) := (q − v)T A(q)(q − v)
T − t

, (A.7)

and compute

dg(q̃, t) = (q̃ − v)T A(q̃)(q̃ − v)
(T − t)2

dt + d
(
(q̃ − v)T A(q̃)(q̃ − v)

)

T − t
.
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Applying the product rule, we obtain for the second term

d
(
(q̃ − v)T A(q̃)(q̃ − v)

) = 2(q̃ − v)T A(q̃)dq̃ + (q̃ − v)T (
d A(q̃)

)
(q̃ − v)

+
∑

i, j

2d[Ai j (q̃), (q̃ − v)i (q̃ − v) j )] .

Writing the process 1
2g(q̃, t) in integral form,

1

2

∫ t

0
dg(q̃, s) =

∫ t

0

(q̃ − v)T A(q̃)(q̃ − v)
2(T − s)2

ds +
∫ t

0

(q̃ − v)T A(q̃)dq̃
T − s

+
∫ t

0

(q̃ − v)T
(
dA(q̃)

)
(q̃ − v)

2(T − s)

+
∑

i, j

∫ t

0

d[Ai j (q̃), (q̃ − v)i (q̃ − v) j )]
T − s

.

Note that the first term
∫ t
0

(q̃−v)T A(q̃)(q̃−v)
2(T −s)2

ds of the right-hand side is the negative of

the term − 1
2

∫ t
0 ‖h(q̃,p, s)‖2ds in (A.5). The second term expands to

∫ t

0

(q̃ − v)T A(q̃)dq̃
T − s

=
∫ t

0

(q̃ − v)T A(q̃)b̃(q̃, p̃)ds

T − s
+

∫ t

0

(q̃ − v)T �q(q̃)†,T dW

T − s

where the second term of the right-hand side is the negative of
∫ t
0 hT (q̃,p, s)dW .

Rearranging terms and inserting in (A.5),

log ϕ̃(q̃,p, t) =
∫ t

0
hT (q̃,p, s)dW − 1

2

∫ t

0
‖h(q̃,p, s)‖2ds

= −1

2
g(q̃(t), t) + 1

2
g(q̃(0), 0) +

∫ t

0

(q̃ − v)T A(q̃)b̃(q̃, p̃)ds

T − s

+
∫ t

0

(q̃ − v)T
(
dA(q̃)

)
(q̃ − v)

2(T − s)
+

∑

i, j

∫ t

0

d[Ai j (q̃), (q̃ − v)i (q̃ − v) j )]
T − s

.

We can now use the Girsanov theorem again to change the drift from (A.3) to (A.1).
For this, we define

logϕϕ(q,p, t) :=
∫ t

0

(ϕt,T (q,p) − q)T �q(q)†,T dW

T − t

−
∫ t

0

‖�q(q)†(ϕt,T (q,p) − q)‖2ds

2(T − t)2
.
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Then let ϕ(q,p, t) be the function satisfying

logϕ(q,p, t) = − log ϕ̃(q,p, t) − 1

2
g(q, t) + 1

2
g(q(0), 0)

+ logϕ(q,p, t)b + logϕϕ(q,p, t) .

Now (A.4) and the definition of logϕ gives

EP(q̂,p̂)

(
f (q̂, p̂)ϕ(q̂, p̂, t)

) = e
1
2 g(q(0),0)

EP(q,p)

[
f (q,p)e− 1

2 g(q,t)
]

(A.8)

with (q̂, p̂) a solution to (3.6). Thus

lim
t→T

E(q̂,p̂)

[
f (q̂, p̂)ϕ(q̂, p̂, t)

]

E(q̂,p̂)

[
ϕ(q̂, p̂, t)

] = lim
t→T

E(q,p)

[
f (q,p)e− 1

2 g(q,t)
]

EP(q,p)

[
e− 1

2 g(q,t)
] = E(q,p)|v

[
f (q,p)

]

where convergence of the right-hand side limit to the conditioned process follows from
Lemma A.1. The limit expression (3.18) for the density follows from Lemma A.2 and
(A.8). ��

LemmasA.1 andA.2 follow [15] and [42]withminormodifications to clarifywhere
the assumption 1 on the density of the process (qt ,pt ) is needed in the semi-elliptic
case.

Lemma A.1 Let (q,p) be a solution to (3.6) satisfying Assumption 1 and the conditions
of Theorem 3.4. Let 0 < t1 < t2 < · · · < tn < T be a finite set of time point in [0, T ]
and let f ∈ Cb(R

n2d N ). Let ψt be the process

ψt = e− 1
2 g(q,t) = e− ‖�q(q)†(q−v)‖2

2(T −t) , (A.9)

with g as defined above. Then

lim
t→T

E(q,p)[ f ((q1,p1), . . . , (qn,pn))ψt ]
E(q,p)[ψt ]

= E(q,p)[ f ((q1,p1), . . . , (qn,pn))|qT = v] . (A.10)

Proof Following [15], we write

E(q,p)[ f (q1,p1, . . . ,qn,pn)ψt ]
E(q,p)[ψt ] =

∫
Rd  f (t,q)e− ‖�q(q)†(q−v)‖2

2(T −t) dq
∫
Rd 1(t,q)e− ‖�q(q)†(q−v)‖2

2(T −t) dq
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with

 f (t,q) =
∫

Rn2d N
f (q1,p1, . . . ,qn,pn)·

P(q0,p0;q1,p1, t1) · · ·P(qn,pn;q, t − tn)d(q1,p1) · · · d(qn,pn)

Note that  f is continuous by assumption. We now apply a change of variable q =
v + (T − t)

1
2 q′ to get

(T − t)−
d
2

∫

Rd N
 f (t,q)e− ‖�q(q)†(q−v)‖2

2(T −t) dq

=
∫

Rd N
 f (t, v + (T − t)

1
2 q′)e− ‖�q(v+(T −t)

1
2 q′)†q′‖2

2 dq′

→  f (T , v)
∫

Rd N
e− ‖�q(v)†q′‖2

2 dq′ .

From assumption 1,  f (t,q) is continuous and bounded. Because � is bounded,

e− ‖�q(v+(T −t)
1
2 q′)†(q′)‖2

2 ≤ e− c‖q′‖2
2 for some constant c and the dominated convergence

theorem implies the limit. We conclude that

lim
t→T

E(q,p)[ f (q1,p1, . . . ,qn,pn)ψt ]
E(q,p)[ψt ] =  f (T , v)

1(T , v)
.

The result now follows from the definition of  f , see [15]. ��

If only the density P(q0,p0;q, t) is of interest, the following result holds assuming
only continuity and boundedness ofP(q0,p0;q, t) for fixed initial conditions (q0,p0).

Lemma A.2 Let (q,p) be a solution to (3.6) with the conditions of Theorem 3.4 and
assume the process has a density P(q0,p0;q,p, t) and that P(q0,p0;q, t) is contin-
uous in t and q and bounded on {(q, t)|T − ε ≤ t ≤ T }. Let ψt be the process defined
above. Then

P(q0,p0;q, T ) =
( |A(v)|

2πT

) d
2

lim
t→T

E(q,p)[ψt ] . (A.11)

Proof The result follows from the convergence of 1(t,q) in Lemma A.1. ��
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Appendix B: Moment Equation for Stochastic Landmark

Cluster ExpansionMethod

We explain the basics of this method, which can be found in more details in, for
example, [38] with application in the context of semiconductor physics. This method
is used when one seeks the dynamics of the expected value of N particles that we will
write here 〈N 〉. One cannot solve the complete system, especially if the number of
particles is large, thus we want to approximate the expected value of products in term
of only a few independent variables. For this, we apply the cluster expansion, which
begins by writing

〈2〉 = 〈2〉s + �2 〈2〉 := 〈1〉 〈1〉 + �2 〈2〉 , (B.1)

The next decomposition is

〈3〉 = 〈3〉s + 〈1〉 �2 〈2〉 + �3 〈3〉 , (B.2)

and so on and so forth. We then only compute the dynamics for the singlets 〈1〉 and the
correlations, up to some chosen order. In the sequel, we will only consider the doublet
correlations �2, and in this case, we have the general decomposition

〈N 〉=〈N 〉s +〈N − 2〉s �2 〈2〉+〈N − 4〉s �2
2 〈2〉 +

∑

i

〈N − 2i〉s �i
2 〈2〉 + O(�3) .

In the context of quantummechanics, where the particle operators do not commute,
extra care is needed especially for the sign of the term. Here we will consider qα

i and
pα

i as our particles, and as they commute, the expansions are simpler than in [38]. We
directly compute two of them for illustration, up to quadratic order,

〈qα
i pβ

j 〉 = 〈qα
i 〉 〈pβ

j 〉 + �2 〈qα
i pβ

j 〉
〈qα

i qβ
j pγ

k 〉 ≈ 〈qα
i 〉 〈qβ

j 〉 〈pγ

k 〉 + 〈qα
i 〉 �2 〈qβ

j pγ

k 〉 + 〈qβ
j 〉 �2 〈qα

i pγ

k 〉
+ 〈pγ

k 〉�2 〈qα
i qβ

j 〉 .

This sort of expansion can fit a more geometrical framework, where the final equa-
tions for the first moment will preserve the original structure of the equations. This
was developed first in [33] and later in [28,29]. We will not use this method here for
a good reason related to the form of the equations. A key step in these papers is to
expand the expected value of the Hamiltonian in terms of a finite number of moments,
to enable computation of the equation of motion. In our case, the Hamiltonian has a
kernel function, which generally cannot be expanded in a finite sum of polynomial
terms. By doing the computations directly, we will be able to do another approxima-
tion for the kernels, that is, we will assume that they commute with the operation of
expectation. A more subtle approximation can be done using the Heaviside function
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but will give a much larger number of terms in the expansion, see “Appendix B.6” for
no clear improvements of the solution.

To perform this expansion on the Fokker–Planck equation associated with the land-
mark dynamics, we will use several simplifications:

• Gaussian noise fields σl in (4.1),
• for a kernel K (x), we will assume that 〈K (x)〉 ≈ K (〈x〉) and
• only the second-order correlations �2 will be considered in this expansion.

These assumptions can be relaxed but the resulting equation may be difficult to com-
pute.

First Moments

Recall the backward Kolmogorov operator on qα
i

L qα
i = ∂h

∂ pα
i

+ 1

2

∑

l,γ,δ

∂σα
l (qi )

∂qγ

i

σ
γ

l (qi ), (B.3)

which is used to compute the time evolution of the singlet

d

dt
〈qα

i 〉 = 〈pα
j 〉 K (〈qi 〉 − 〈q j 〉) −

∑

l,γ,δ

1

2σ 2
l

σα
l (〈qi 〉)(〈qγ

i 〉 − δ
γ

l )σ
γ

l (〈qi 〉) . (B.4)

In this case, the equation only depends on the singlet of the momentum variable. We
thus compute
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L pα
i = − ∂h

∂qα
i

+ 1

2

∑

l,γ,δ

pγ

j

∂σ
γ

l (qi )

∂qδ
i

∂σ δ
l (qi )

∂qα
i

− 1

2

∑

l,γ,δ

pγ

i

∂2σ
γ

l (qi )

∂qα
i ∂qδ

i

σ δ
l (qi ) . (B.5)

which similarly gives the time evolution of the momentum singlet in two terms as

d

dt
〈pα

i 〉 = Ap + Bp,

where

Ap = 1

α2

∑

j,γ

K (〈qi 〉 − 〈q j 〉) 〈pγ

i pγ

j (q
α
i − qα

j )〉

Bp =
∑

l,γ

1

2σ 2
l

〈pγ

i 〉 σ
γ

l (〈qi 〉)σα
l (〈qi 〉) .

We then expand Ap further using the cluster expansion method on the triplet to get

Ap = 1

α2

∑

j,γ

K (〈qi 〉 − 〈q j 〉)(〈pγ

i pγ

j qα
i 〉 − 〈pγ

i pγ

j qα
j 〉)

≈ 1

α2

∑

j,γ

K (〈qi 〉 − 〈q j 〉)
(

〈pγ

i 〉 〈pγ

j 〉 〈qα
i 〉 + �2 〈pγ

i pγ

j 〉 〈qα
i 〉 + 〈pγ

i 〉 �2 〈pγ

j qα
i 〉

+ �2 〈pγ

i qα
i 〉 〈pγ

j 〉 − 〈pγ

i 〉 〈pγ

j 〉 〈qα
j 〉 − �2 〈pγ

i pγ

j 〉 〈qα
j 〉

− 〈pγ

i 〉 �2 〈pγ

j qα
j 〉 − �2 〈pγ

i qα
j 〉 〈pγ

j 〉
)

.

Already this term depends on the mixed correlations which we will compute shortly,
but we first compute the position correlation.

〈qq〉 Correlation

Recall the formula of the Kolmogorov operator applied to qα
i qβ

j ,

L (qα
i qβ

j ) = qα
i

∂h

∂ pβ
j

+
∑

l

σα
l (qi )σ

β
l (q j ) + 1

2

∑

l

qα
i σ

γ

l (q j )
∂σ

β
l (q j )

∂qγ

j

+ (i ↔ j),

(B.6)

which together with (4.5) gives the time evolution of the position correlation in the
form

d

dt
�2 〈qα

i qβ
j 〉 = Aqq + Bqq + Cqq ,
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where

Aqq =
〈

qα
i

∂h

∂ pβ
j

〉
− 〈

qα
i

〉
〈

∂h

∂ pβ
j

〉
+ (i ↔ j)

Bqq =
∑

l

〈
σα

l (qi )σ
β
l (q j )

〉

Cqq = 1

2

∑

l

〈
qα

i σ
γ

l (q j )
∂σ

β
l (q j )

∂qγ

j

〉
− 1

2

∑

l

〈
qα

i

〉
〈
σ

γ

l (q j )
∂σ

β
l (q j )

∂qγ

j

〉
+ (i ↔ j) .

We will denote by A the terms corresponding to the drift, by B the terms which are
not present in the first moments equation, and by C the other terms which only depend
on the noise and the derivative of the noise fields. We proceed by first approximating
the expectation of the kernels to get

Bqq ≈
∑

l

σα
l (〈qi 〉)σβ

l (
〈
q j

〉
)

Cqq ≈ − 1

2α2
l

∑

l,γ

�2

〈
qα

i qγ

j

〉
σ

γ

l (〈q j 〉)σβ
l (〈q j 〉) + (i ↔ j) .

where we also used the explicit form of σl as a Gaussian and its derivative. We will
now approximate the Aqq term to get

Aqq =
∑

k

〈
qα

i pβ
k K (q j − qk)

〉
−

∑

k

〈
qα

i

〉 〈
pβ

k K (q j − qk)
〉
+ (i ↔ j)

≈
∑

k

�2

〈
qα

i pβ
k

〉
K (

〈
q j

〉 − 〈qk〉) + (i ↔ j) .

It is now clear that the B termwill linearly increase the position correlation, which will
then exponentially increase by the C term and be affected by the momentum-position
correlation by the A term. We now proceed by computing the momentum correlation.

〈
pp

〉
Correlation

We compute the Kolmogorov operator on pα
i pβ

j to get

L (pα
i pβ

j ) = −pα
i

∂h

∂qβ
j

− 1

2

∑

l,γ,δ

pα
i pγ

j σ
δ
l (q j )

∂2σ
γ

l (q j )

∂qβ
j ∂qδ

j

+ (i ↔ j)

+ 1

2

∑

l,γ,δ

pδ
i pγ

j

∂σ δ
l (qi )

∂qα
i

∂σ
γ

l (q j )

∂qβ
j
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+ 1

2

∑

l,γ,δ

pα
i pδ

j
∂σ δ

l (q j )

∂qγ

j

∂σ
γ

l (q j )

∂qβ
j

+ (i ↔ j),

and using (B.5), we obtain the time evolution of the correlation in three terms as

d

dt
�2 〈pα

i pβ
j 〉 = App + Bpp + C pp,

where

App = −
〈

pα
i

∂h

∂qβ
j

〉
+ 〈

pα
i

〉
〈

∂h

∂qβ
j

〉
+ (i ↔ j)

Bpp = 1

2

∑

l,γ,δ

〈
pδ

i pγ

j

∂σ δ
l (qi )

∂qα
i

∂σ
γ

l (q j )

∂qβ
j

〉
+ (i ↔ j)

C pp = −1

2

∑

l,γ,δ

〈
pα

i pγ

j σ
δ
l (q j )

∂2σ
γ

l (q j )

∂qβ
j ∂qδ

j

〉
+ 1

2

∑

l,γ,δ

〈
pα

i

〉
〈

pγ

j σ
δ
l (q j )

∂2σ
γ

l (q j )

∂qβ
j ∂qδ

j

〉

+ 1

2

∑

l,γ,δ

〈
pα

i pδ
j
∂σ δ

l (q j )

∂qγ

j

∂σ
γ

l (q j )

∂qβ
j

〉

− 1

2

∑

l,γ,δ

〈
pα

i

〉
〈

pδ
j
∂σ δ

l (q j )

∂qγ

j

∂σ
γ

l (q j )

∂qβ
j

〉
+ (i ↔ j) .

We first approximate

C pp ≈ 1

2

∑

l,γ,δ

1

α2
l

σ
β
l (q j )σ

γ

l (q j )�2

〈
pα

i pγ

j

〉

− 1

2

∑

l,γ,δ

σ δ
l (q j )σ

γ

l (q j )
(〈

pα
i pγ

j (qβ
j − δ

β
l )(qδ

j − δδ
l )

〉
− 〈

pα
i

〉 〈
pγ

j (qβ
j − δ

β
l )(qδ

j − δδ
l )

〉)

+ 1

2

∑

l,γ,δ

σ δ
l (q j )σ

γ

l (q j )
(〈

pα
i pδ

j (q
γ

j − δ
γ

l )(qβ
j − δ

β
l )

〉

+ 〈
pα

i

〉 〈
pδ

j (q
γ

j − δ
γ

l )(qβ
j − δ

β
l )

〉)
+ (i ↔ j) .

The last two terms cancel as they are symmetric under the transpose operation because
of the sum on the free indices, thus the C term is

C pp ≈ 1

2

∑

l,γ,δ

1

α2
l

σ
β
l (q j )σ

γ

l (q j )�2

〈
pα

i pγ

j

〉
+ (i ↔ j) . (B.7)

We proceed with the Bpp term, which is also symmetric under the transpose oper-
ation, thus giving the approximation
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Bpp =
∑

l,γ,δ

1

α4
l

σ δ
l (qi )σ

γ

l (q j )
〈
pδ

i pγ

j (q
α
i − δα

l )(qβ
j − δ

β
l )

〉

≈
∑

l,γ,δ

1

α4
l

σ δ
l (qi )σ

γ

l (q j )
( 〈

pδ
i

〉 〈
pγ

j

〉 〈
qα

i

〉 〈
qβ

j

〉
+ �2

〈
pδ

i pγ

j

〉 〈
qα

i

〉 〈
qβ

j

〉

+ 〈
pδ

i

〉
�2

〈
pγ

j qα
i

〉 〈
qβ

j

〉
+ 〈

pδ
i

〉 〈
pγ

j

〉
�2

〈
qα

i qβ
j

〉

+ �2
〈
pδ

i qα
i

〉 〈
pγ

j

〉 〈
qβ

j

〉
+ �2

〈
pδ

i qβ
j

〉 〈
pγ

j

〉 〈
qα

i

〉

+ 〈
pδ

i

〉 〈
qα

i

〉
�2

〈
pγ

j qβ
j

〉
+ �2

〈
pδ

i pγ

j

〉
�2

〈
qα

i qβ
j

〉

+ �2
〈
pδ

i qα
i

〉
�2

〈
pγ

j qβ
j

〉
+ �2

〈
pδ

i qβ
j

〉
�2

〈
pγ

j qα
i

〉

− 〈
pδ

i

〉 〈
pγ

j

〉 〈
qα

i

〉
δ
β
l − �2

〈
pδ

i pγ

j

〉 〈
qα

i

〉
δ
β
l

− 〈
pδ

i

〉
�2

〈
pγ

j qα
i

〉
δ
β
l − �2

〈
pδ

i qα
i

〉 〈pγ

j 〉 δ
β
l

− 〈
pδ

i

〉 〈
pγ

j

〉 〈
qβ

j

〉
δα

l − �2

〈
pδ

i pγ

j

〉 〈
qβ

j

〉
δα

l

− 〈
pδ

i

〉
�2

〈
pγ

j qβ
j

〉
δα

l − �2

〈
pδ

i qβ
j

〉 〈
pγ

j

〉
δα

l

+ 〈
pδ

i

〉 〈
pγ

j

〉
δα

l δ
β
l + �2

〈
pδ

i pγ

j

〉
δα

l δ
β
l

)
.

We treat the two Hamiltonian terms separately by first writing them explicitly as

App =
∑

k,γ

1

α2

〈
pα

i pγ

j pγ

k (qβ
j − qβ

k )K (q j − qk)
〉

− 1

α2

∑

k,γ

〈
pα

i

〉 〈
pγ

j pγ

k (qβ
j − qβ

k )K (q j − qk)
〉
+ (i ↔ j)

=:
∑

k,γ

1

α2 (A1
pp − A2

pp) + (i ↔ j) .

We expand the first term to arrive at

A1
pp ≈ K (〈q j 〉 − 〈qk〉)

(〈
pα

i pγ

j pγ

k qβ
j

〉
−

〈
pα

i pγ

j pγ

k qβ
k )

〉)

≈ K (〈q j 〉 − 〈qk〉)
(

〈pα
i 〉 〈pγ

j 〉 〈pγ

k 〉 〈qβ
j 〉 + �2

〈
pα

i pγ

j

〉
〈pγ

k 〉 〈qβ
j 〉

+ 〈
pα

i

〉
�2 〈pγ

j pγ

k 〉 〈qβ
j 〉 + 〈

pα
i

〉 〈pγ

j 〉�2 〈pγ

k qβ
j 〉

+ �2
〈
pα

i pγ

k

〉 〈pγ

j 〉 〈qβ
j 〉 + �2

〈
pα

i qβ
j

〉
〈pγ

j 〉 〈pγ

k 〉
+ 〈pα

i 〉 〈pγ

k 〉�2 〈pγ

j qβ
j 〉 + �2

〈
pα

i pγ

j

〉
�2 〈pγ

k qβ
j 〉

+ �2
〈
pα

i pγ

k

〉
�2 〈pγ

j qβ
j 〉 + �2

〈
pα

i qβ
j

〉
�2 〈pγ

k pγ

j 〉
− 〈pα

i 〉 〈pγ

j 〉 〈pγ

k 〉 〈qβ
k 〉 − �2

〈
pα

i pγ

j

〉
〈pγ

k 〉 〈qβ
k 〉

− 〈
pα

i

〉
�2 〈pγ

j pγ

k 〉 〈qβ
k 〉 − 〈

pα
i

〉 〈pγ

j 〉�2 〈pγ

k qβ
k 〉

− �2
〈
pα

i pγ

k

〉 〈pγ

j 〉 〈qβ
k 〉 − �2

〈
pα

i qβ
k

〉
〈pγ

k 〉 〈pγ

k 〉
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− �2

〈
pγ

k qβ
k

〉
〈pα

i 〉 〈pγ

k 〉 − �2

〈
pα

i pγ

j

〉
�2 〈pγ

k qβ
k 〉

− �2
〈
pα

i pγ

k

〉
�2 〈pγ

j qβ
k 〉 − �2

〈
pα

i qβ
k

〉
�2 〈pγ

k pγ

j 〉
)
,

and the second term

A2
pp ≈ K (〈q j 〉 − 〈qk〉)

(〈
pα

i

〉 〈
pγ

j pγ

k qβ
j

〉
− 〈

pα
i

〉 〈
pγ

j pγ

k qβ
k )

〉)

≈ K (〈q j 〉 − 〈qk〉)
(

〈pα
i 〉 〈pγ

j 〉 〈pγ

k 〉 〈qβ
j 〉 + 〈

pα
i

〉
�2 〈pγ

j pγ

k 〉 〈qβ
j 〉

+ 〈
pα

i

〉
�2 〈pγ

j pβ
j 〉 〈qγ

k 〉 〈
pα

i

〉 〈pγ

j 〉�2 〈pγ

k qβ
j 〉

− 〈pα
i 〉 〈pγ

j 〉 〈pγ

k 〉 〈qβ
k 〉 − 〈

pα
i

〉
�2 〈pγ

j pγ

k 〉 〈qβ
k 〉

− 〈
pα

i

〉 〈pγ

j 〉�2 〈pγ

k qβ
k 〉 − 〈

pα
i

〉 〈pγ

k 〉�2 〈pγ

j qβ
k 〉

)
.

This term cancels the terms of the A1
pp proportional to 〈pα

i 〉 to give the approximation

App ≈ 1

α2

∑

k,γ

K (〈q j 〉 − 〈qk〉)
(
�2

〈
pα

i pγ

j

〉
〈pγ

k 〉 〈qβ
j 〉 + �2

〈
pα

i pγ

k

〉 〈pγ

j 〉 〈qβ
j 〉

+ �2

〈
pα

i qβ
j

〉
〈pγ

j 〉 〈pγ

k 〉 + �2

〈
pα

i pγ

j

〉
�2 〈pγ

k qβ
j 〉

+ �2
〈
pα

i pγ

k

〉
�2 〈pγ

j qβ
j 〉 + �2

〈
pα

i qβ
j

〉
�2 〈pγ

k pγ

j 〉
− �2

〈
pα

i pγ

j

〉
〈pγ

k 〉 〈qβ
k 〉 − �2

〈
pα

i pγ

k

〉 〈pγ

j 〉 〈qβ
k 〉

− �2

〈
pα

i qβ
k

〉
〈pγ

j 〉 〈pγ

k 〉 − �2

〈
pα

i pγ

j

〉
�2 〈pγ

k qβ
k 〉

− �2
〈
pα

i pγ

k

〉
�2 〈pγ

j qβ
k 〉 − �2

〈
pα

i qβ
k

〉
�2 〈pγ

k pγ

j 〉
)

+ (i ↔ j) .

We end this computation by approximating the dynamics of the mixed correlation.

〈
pq

〉
Correlation

We compute

L (pα
i qβ

j ) = −qβ
j

∂h

∂qα
i

+ pα
i

∂h

∂ pβ
j

+ 1

2

∑

l,γ

pα
i σ

γ

l (q j )
∂σ

β
l (q j )

∂qγ

j

−
∑

l,γ

pγ

i σ
β
l (q j )

∂σ
γ

l (qi )

∂qα
i

− 1

2

∑

l,γ,δ

qβ
j pγ

i

∂2σ
γ

l (qi )

∂qα
i ∂qδ

i

σ δ
l (qi ) + 1

2

∑

l,γ,δ

pδ
i qβ

j

∂σ
γ

l (qi )

∂qα
i

∂σ δ
l (qi )

∂qγ

i

.

Then, using (4.5) and (B.5) we obtain the time evolution of � 〈pα
i qβ

j 〉 as

d

dt
� 〈pα

i qβ
j 〉 = Apq + Bpq + C pq ,

123



Foundations of Computational Mathematics (2019) 19:653–701 697

where

Apq = −
〈
qβ

j
∂h

∂qα
i

〉
+

〈
qβ

j

〉 〈
∂h

∂qα
i

〉
+

〈
pα

i
∂h

∂ pβ
j

〉
− 〈

pα
i

〉
〈

∂h

∂ pβ
j

〉

Bpq = −
∑

l,γ

〈
pγ

i σ
β
l (q j )

∂σ
γ

l (qi )

∂qα
i

〉

C pq = 1

2

∑

l,γ

〈
pα

i σ
γ

l (q j )
∂σ

β
l (q j )

∂qγ

j

〉
− 1

2

∑

l,γ

〈pα
i 〉

〈
σ

γ

l (q j )
∂σ

β
l (q j )

∂qγ

j

〉

− 1

2

∑

l,γ,δ

〈
qβ

j pγ

i

∂2σ
γ

l (qi )

∂qα
i ∂qδ

i

σ δ
l (qi )

〉
+ 1

2

∑

l,γ,δ

〈
qβ

j

〉 〈
pγ

i

∂2σ
γ

l (qi )

∂qα
i ∂qδ

i

σ δ
l (qi )

〉

+ 1

2

∑

l,γ,δ

〈
pδ

i qβ
j

∂σ
γ

l (qi )

∂qα
i

∂σ δ
l (qi )

∂qγ

i

〉
− 1

2

∑

l,γ,δ

〈qβ
j 〉

〈
pδ

i
∂σ

γ

l (qi )

∂qα
i

∂σ δ
l (qi )

∂qγ

i

〉
.

We first approximate

Bpq ≈ 1

α2
l

∑

l,γ

σ
β
l (q j )σ

γ

l (qi )
(〈

pγ

i qα
i

〉 − 〈
pγ

i

〉
δα

l

)

C pq ≈ −
∑

l,γ

1

2α2
l

σ
β
l (q j )σ

γ

l (q j )�2

〈
pα

i qγ

j

〉
+

∑

l,γ

1

2α2
l

�2

〈
qβ

j pγ

i

〉
σ

γ

l (〈qi 〉)σα
l (〈qi 〉) .

For the Hamiltonian term we obtain

A pq ≈ 1

α2

∑

k,γ

K (〈qi 〉 − 〈qk 〉)
( 〈

qβ
j pγ

i pγ
k qα

i

〉
−

〈
qβ

j

〉 〈
pγ

i pγ
k qα

i

〉

−
〈
qβ

j pγ
i pγ

k qα
k

〉
+

〈
qβ

j

〉 〈
pγ

i pγ
k qα

k

〉 )
+

∑

k,γ

K (〈q j 〉 − 〈qk 〉)�2

〈
pα

i pβ
k

〉

≈ 1

α2

∑

k,γ

K (〈qi 〉 − 〈qk 〉)
(
�2

〈
pγ

i qβ
j

〉
〈pγ

k 〉 〈qα
i 〉 + �2

〈
pγ

k qβ
j

〉
〈pγ

i 〉 〈qα
i 〉

+ �2

〈
qα

i qβ
j

〉
〈pγ

i 〉 〈pγ
k 〉 + �2

〈
pγ

i qβ
j

〉
�2 〈pγ

k qα
i 〉

+ �2

〈
pγ

k qβ
j

〉
�2 〈pγ

i qα
i 〉 + �2

〈
qα

i qβ
j

〉
�2 〈pγ

k pγ
i 〉

− �2

〈
pγ

i qβ
j

〉
〈pγ

k 〉 〈qα
k 〉 − �2

〈
pγ

k qβ
j

〉
〈pγ

i 〉 〈qα
k 〉

− �2

〈
qβ

j qα
k

〉
〈pγ

i 〉 〈pγ
k 〉 − �2

〈
pγ

i qβ
j

〉
�2 〈pγ

k qα
k 〉

− �2

〈
pγ

k qβ
j

〉
�2 〈pγ

i qα
k 〉 − �2

〈
qβ

j qα
k

〉
�2 〈pγ

k pγ
i 〉

)

+
∑

k,γ

K (〈q j 〉 − 〈qk 〉)�2

〈
pα

i pβ
k

〉
.
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Kernel Approximation

One of the approximations we did in the previous derivation of the moment equation
is to replace the expectation of a kernel by the kernel of the expected values.

If we expand the kernel in powers of its argument, we could compute the errors up
to any order. For example for a Gaussian kernel, the first few terms are

〈
K (qi − q j )

〉 − K (〈qi 〉 − 〈q j 〉) = − 1

2α2 (�2 〈q2
i 〉 − 2�2 〈qi q j 〉 + �2 〈q2

j 〉) + . . .

Themain problemwith this approximation with polynomials is that the approximation
to any order corresponds to having a kernelwith unbounded values for large arguments.
This results in nonphysical and large interactions of particles far away, which should
normally not interact. Obtaining a reliable expansion of a kernel function is thus a
difficult task in the moment approximation.

Nevertheless, one could consider the following higher order approximation of the
expected value of a Gaussian kernel

K (qi − q j ) = e−‖qi −q j ‖2/(2α2) ≈ θ(qi − q j )

(
1 − fα

1

2α2 ‖qi − q j‖2
)

, (B.8)

where the function θ(x) is given by

θ(x) =
{
1 if 1 − fα

‖x‖2
2α2 ≥ 0

0 if 1 − fα
‖x‖2
2α2 < 0,

(B.9)

and the coefficient fα is found such that this approximation is the best fit to the Gaus-
sian. In practice, we have fα ≈ 0.6, but this value depends on α in general. This cutoff
function θ is necessary here, otherwise, this approximation will not be bounded, lead-
ing to large errors in the dynamics. The expected value of this approximation assumes
that the θ function commutes with it, and only takes into account the approximation
of the quadratic term. It turned out that for all our experiments, these correction terms
did not substantially improve the result, thus we did not include them in the equations.

References

1. Stephanie Allassonnière, Yali Amit, and Alain Trouvé, Towards a coherent statistical framework for
dense deformable template estimation, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 69 (2007), no. 1, 3–29.

2. Alexis Arnaudon, Alex L Castro, and Darryl D Holm, Noise and dissipation on coadjoint orbits.
Journal of Nonlinear Science 28 (2018), no. 1, 91–145.

3. Alexis Arnaudon, Darryl D Holm, Akshay Pai, and Stefan Sommer, A stochastic large deformation
model for computational anatomy, Information Processing for Medical Imaging (IPMI), 2017.

4. D. G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bulletin of the American
Mathematical Society 73 (1967), no. 6, 890–896. MR0217444

5. Alan Bain and Dan Crisan, Fundamentals of stochastic filtering, Vol 3, Springer.
6. M Faisal Beg, Michael I Miller, Alain Trouvé, and Laurent Younes, Computing large deformation

metric mappings via geodesic flows of diffeomorphisms, International journal of computer vision 61
(2005), no. 2, 139–157.

123



Foundations of Computational Mathematics (2019) 19:653–701 699

7. Mogens Bladt, Samuel Finch, and Michael Sørensen, Simulation of multivariate diffusion bridges,
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78 (2016), no. 2, 343–369.

8. Martins Bruveris, François Gay-Balmaz, Darryl D Holm, and Tudor S Ratiu, The momentum map
representation of images, Journal of Nonlinear Science 21 (2011), no. 1, 115–150.

9. Martins Bruveris and Darryl D Holm, Geometry of image registration: The diffeomorphism group and
momentum maps, Geometry, mechanics, and dynamics, 2015, pp. 19–56.
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