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Abstract In this paper, we develop the theory of the discrete moving frame in two
different ways. In the first half of the paper, we consider a discrete moving frame
defined on a lattice variety and the equivalence classes of global syzygies that result
from the first fundamental group of the variety. In the second half, we consider the
continuum limit of discrete moving frames as a local lattice coalesces to a point. To
achieve a well-defined limit of discrete frames, we construct multispace, a general-
isation of the jet bundle that also generalises Olver’s one-dimensional construction.
Using interpolation to provide coordinates, we prove that it is a manifold containing
the usual jet bundle as a submanifold. We show that continuity of a multispace mov-
ing frame ensures that the discrete moving frame converges to a continuous one as
lattices coalesce. The smooth frame is, at the same time, the restriction of the multi-
space frame to the embedded jet bundle. We prove further that the discrete invariants
and syzygies approximate their smooth counterparts. In effect, a frame on multispace
allows smooth frames and their discretisations to be studied simultaneously. In our last
chapter we discuss two important applications, one to the discrete variational calculus,
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and the second to discrete integrable systems. Finally, in an appendix, we discuss a
more general result concerning equicontinuous families of discretisations of moving
frames, which are consistent with a smooth frame.

Keywords Discrete moving frame · Discrete invariants · Local and global syzygies
of invariants · Multispace · Discrete and smooth Maurer–Cartan invariants · Finite
difference calculus of variations · Discrete integrable systems

Mathematics Subject Classification 14H70 · 17B80 · 49M25 · 53A55 · 53C99 ·
58A40

1 Introduction

The theory and the applications of Lie group-based moving frames are now well
established, and provide an “invariant calculus” to study differential systems which
are either invariant or equivariant under the action of a Lie group. Associated with
the name of Cartan [7], who used repères mobile to solve equivalence problems in
differential geometry, the ideas go back to earlier works, for example by Cotton [9]
and Darboux [14].

Moving frames were further developed and applied in a substantial body of work,
in particular to differential geometry and exterior differential systems; see for example
papers by Green [19] and Griffiths [20]. From the point of view of symbolic computa-
tion, a breakthrough in the understanding of Cartan’s methods for differential systems
came in a series of papers by Fels and Olver [16,17], Olver [51,52], Hubert [27–29],
and Hubert and Kogan [30,31], which provide a coherent, rigorous, and constructive
moving framemethod. The resulting differential invariant calculus is the subject of the
textbook, [38]. There are now an extensive number of applications, including to the
integration of Lie group invariant differential equations [38], to the Calculus of Varia-
tions and Noether’s Theorem, (see for example [21,22,37]), and to integrable systems
(for example [40,43–45]). Moving frame methods have been extended to Lie pseudo-
groups [54]. We note that the calculation of invariants of Lie group actions, using
older “infinitesimal” methods, are well documented in many texts (see for example,
[2,53]). The use of moving frames to calculate invariants compares favourably to the
older methods in those cases where the frame can be explicitly calculated, since then
the invariants are obtained by the substitution of the frame into the group action, while
infinitesimal methods rely on the solution of first-order quasi-linear partial differential
equations. Even where the frame cannot be calculated, the full symbolic “invariant
calculus” using moving frames, is still available, as is explained in detail in the text,
[38]. For calculating Lie symmetry groups, however, the infinitesimal methods will
always be needed, as the equations for the infinitesimals are linear, while those for the
group parameters themselves are highly nonlinear.

The first results for the computation of discrete invariants using group-based mov-
ing frames were given by Olver who called them joint invariants in [52]; modern
applications to date include computer vision [50] and numerical schemes for systems
with a Lie symmetry [34–36,41,56]. While moving frames for discrete applications
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as formulated by Olver do give generating sets of discrete invariants, the recursion
formulae for differential invariants which were so successful for the application of
moving frames to calculus-based results, do not generalise well to joint invariants. In
particular, joint invariants do not seem to have recursion formulae under the shift oper-
ator that are computationally useful. To overcome this problem, the authors, together
with Jing Ping Wang, introduced the notion of a discrete moving frame which is
essentially a sequence of frames [42]. In that paper we prove discrete recursion for-
mulae for small computable generating sets of invariants, which we call the discrete
Maurer–Cartan invariants, and investigated their syzygies, that is, their recursion rela-
tions. The main application to date has been to discrete integrable systems, with the
authors of [47] proving that discrete Hamiltonian structures for Wn-algebras can be
obtained via a reduction process. We note that a sequence of moving frames was
also used in [35] to minimise the accumulation of errors in an invariant numerical
method.

In this paper, we extend the theory of discrete moving frames in two ways. The
first is to consider a discrete moving frame defined on a lattice variety, which can be
thought of as the vertices, or 0-cells, together with their adjacency information, in a
discrete approximation of a manifold. We describe their associated cross sections and
define Maurer–Cartan invariants and local syzygies. In Sect. 3.2 we further classify
global syzygies and prove that they are associated with topological aspects of the
variety, like representatives of the discrete fundamental group of the lattice variety,
with properties like twisting.

The second extension, beginning in Sect. 4 and for the rest of the paper, is to consider
families of discrete frames and how their continuum limits may define smooth frames.
Our interest in this second case is how discrete invariants and their recursion relations
limit to differential invariants and their differential syzygies. We show not only that
the limits exist, but also that a well-defined continuum limit of discrete frames may
be achieved by embedding it in a smooth family of discrete ones.

In order to provide a general framework, we construct a manifold which we call
the lattice-based multispace and which generalises, in some sense, the curve-based
multispace of Olver [51]. The multispace is a generalisation of the jet bundle which
contains the jet bundle as a submanifold. It also contains the space of lattices as an
open subset. The main problem with the definition of the lattice multispace is the fact
that multivariate interpolation is not well-defined in general. To avoid this problem we
restrict the lattices to sets of points covered by the general construction of de Boor and
Ron [11–13], to what we call corner lattices. A corner lattice is one with just enough
data to guarantee the approximation of a smooth jet. We restrict as well the types of
coalescencing that can take place to be those along hyperplanes.We show that de Boor
and Ron’s interpolating family is well defined on corner lattices and is smooth under
coalescing, smooth in the sense that the associated Lagrange polynomials converge
to the Hermite ones as the vertices of the lattice coalesce (Fig. 1). Once the choice of
lattice and conditions on coalescing are settled,we canuse the interpolating coefficients
to define the coordinate system in the multispace manifold. We notice that one can
possibly consider other forms of lattices and coalescing, and that our theory will hold
true as far as the smoothness of de Boor–Ron’s family is preserved.
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Fig. 1 Under coalescence of the points at which the interpolation is calculated, Lagrange interpolation
becomes Hermite interpolation, ending with the Taylor approximation to a surface when all the interpo-
lation points coalesce. By taking coordinates for the lattice-based multispace to be the grid points and
the Lagrange interpolation coefficients, the jet bundle is naturally embedded. a Lagrange interpolation, b
Hermite interpolation, c Taylor approximation

Once the multispace is proved to be a smooth manifold, we can naturally define a
group action on it, and hence we can talk about smoothmoving frames onmultispaces.
A moving frame on the lattice-based multispace is, simultaneously, a smooth moving
frame defined on the jet bundle, and a frame defined on local difference approximations
to the derivatives, depending on what point of the multispace the moving frame is
evaluated. By defining amoving frame onmultispaces, one has simultaneously the full
power of both the smooth and the discrete frames, and the smoothness of themultispace
frame will ensure that we can move freely between discrete, discrete/differential and
smooth frames, ensuring that the discrete frame converges to the continuous one as
the points in the corner lattices coalesce to create the jet. We also show that the
continuity carries over to invariants and syzygies as well. Therefore, any smooth
geometric construction carried out with a multispace lattice, invariants and syzygies,
ensures that the final discrete, or discrete/differential result, is an approximation of the
corresponding continuous construction.

In Sect. 5 we use the multispace construction in two different applications. The
first application is to a class of finite difference variational shallow water systems,
which have both the correct continuum limit as well as the necessary symmetries
for Noether’s theorem to yield conservation laws for energy, and linear and angular
momenta, in both the finite difference case and the smooth limit. This is motivated
by the desire to achieve an analogue of the conservation of potential vorticity in a
numerical approximation to these equations.

The second application concerns discretisations of completely integrable systems.
Most well-known completely integrable PDEs are linked to some geometric back-
ground and the PDE can be interpreted as, for example, the equation induced on
invariants by a geometric evolution of curves, or like the Codazzi–Mainardi equations,
are associated with the geometry of some type of surface. Discrete lattice systems also
have similar interpretations [3]. The question to ponder is whether or not the same
geometric construction performed in the continuous case to generate the PDEs can
be carried out in the discrete case, while guaranteeing that the result will be a dis-
cretisation of the PDE; this might be useful as a base to study the more interesting
questions of when the discretisation will be also completely integrable. Here we show
two such processes. The Boussinesq equation is induced on centro-affine invariants
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by an evolution of star-shaped curves. We construct the multispace version of the
construction to obtain a geometric discretisation. We show that a modification of the
construction generates an integrable discretisation which appeared in [47]. The study
of how these different discretisations might be related is underway. In the second
example we describe the multispace version of the well-known construction of the
Sine–Gordon equation as the Codazzi–Mainardi equations for Euclidean surfaces of
negative constant curvature. This interpretation has been widely used to study pseudo-
spherical surfaces as generated by solutions of Sine–Gordon, see [8] and [57]. Every
step of the construction is guaranteed to discretise the continuous version, while pre-
serving the geometric meaning of the elements involved. The Sine–Gordon is in fact
one of several equations describing the surface, but which decouples from the oth-
ers. In this discretisation the equations remains coupled and its integrability is not
clear, but the construction itself is a non-trivial example of the use of mixed discrete-
smooth moving frames. The connection between multispace and integrability is under
study.

Finally, in an appendix, we discuss a more general result concerning the discreti-
sation of smooth moving frames, and the continuum limit of equicontinuous families
of discrete moving frames, with an example.

2 Background

2.1 Moving Frames

Given a Lie group G acting on a manifold M with a left action, so that

G × M → M, h · (g · z) = (hg) · z,

one can define a right (resp. left) group-basedmoving frame as amapwhich is equivari-
ant with respect to the action on M and the inverse right (resp. left) action of G on
itself, specifically,

ρ : M → G, ρ(g · z) = ρ(z)g−1 (resp. ρ(g · z) = gρ(z)) .

We call such an equivariant map a right (resp. a left) moving frame. The inverse of a
right moving frame is a left one, and vice versa.

Given a group G acting on a manifold M , the existence of a moving frame on the
open subset U ⊂ M is guaranteed if:

(i) the orbits of the group action all have the same dimension and foliate U ,
(ii) there is a transverse cross section K to the orbits such that for each orbit O, the

intersection O ∩ K contains a single point, and
(iii) the group element taking z ∈ O(z) (whereO(z) is the orbit through z) toO(z)∩

K, is unique.

In this case, a rightmoving frameρ : U → G is given byρ(z)·z ∈ K, that is,ρ(z) is the
unique element of G taking z to the unique element ofK∩O(z). SinceK is transverse
to the orbits, the framedefines local coordinates given by z �→ (ρ(z), ρ(z)·z) ∈ G×K.
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In the continuous case of moving frames, the manifold M could be the jet space
J (�)(Rp, M). In this case it is known [17] that provided the action is locally effective
on subsets, as � grows the prolonged action of G on J (�)(Rp, M) becomes locally
free. The work of Boutin [5] discusses what happens for products Mq as q grows,
with G acting with the diagonal action. In any event, we make the assumption that
for large enough dimension, there is a neighbourhood of the identity in the group in
which a moving frame can be obtained locally.

A common way to obtain the moving frame is through a normalisation process.
One can describe normalisation equations as those defining the transverse section,
K, to the orbits of the group. If the normalisation equations are given as {� = 0},
then the conditions above for the existence of a moving frame are the conditions
under which the implicit function theorem can be applied to solve �(g · z) = 0 for
g = ρ(z). Since both g = ρ(h · z) and g = ρ(z)h−1 solve �(g · (h · z)) = 0, and
the implicit function guarantees a unique solution, then ρ(h · z) = ρ(z)h−1, that is, ρ
is equivariant. Typically, the normalisation equations, for which K is the zero set, are
algebraic. Indeed, in many applications, the cross section is a coordinate plane, so that
the normalisation equations involve certain coordinates being set to a constant. Since
there will be many transverse cross sections to the orbits, the choice of K can greatly
decrease (or increase) the calculations involved. Part of the “art” of themoving frame in
applications is the choice of cross section, or equivalently, the choice of normalisation
equations.

Given a moving frame (left or right) one can generate all possible invariants of the
action. Indeed, if ρ is a right moving frame, the expressions

ρ(u) · v

for any u, v ∈ M are clearly invariant; their coordinates are called the normalised
invariants. One can easily see that any invariant of the action is a function of these,
using the replacement rule: If I : M → R is invariant under the action, so that
I (g · v) = I (v) for all g ∈ G, then setting g = ρ(u), one obtains

I (ρ(u) · v) = I (v).

Different choices of the manifold M gives rise to different familiar cases. For
example, if M is the jet space J (∞)(Rp, P) for some manifold P where G acts,
and G acts on M via the natural prolonged action given by the chain rule, then ρ

would generate moving frames on p-submanifolds and the invariants will be standard
differential invariants (curvatures, torsions, etc). If M = Pk is the Cartesian product
of a manifold P where G acts, and G acts on M through the diagonal action, then the
invariants are the so-called joint invariants (see [52]).

Remark 2.1 In this portion of the paper, we are interested in the induced action on
N -gons, that is, on sets of N points in M , or alternatively, an element of M N .

The authors of [42] defined discrete moving frames, essentially a choice of group
element associated with each vertex in an equivariant way. The discrete moving frame
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can be defined to act naturally under the shift operator, greatly simplifying calculations
with discrete (difference) equations. We next review this definition.

Let G N denote the Cartesian product of N copies of the group G. Allow G to act
on the left on G N using the diagonal action g · (gr ) = (ggr ). We also consider what
we have called the “right inverse action” g · (gr ) = (gr g−1).

Definition 2.2 (Discrete moving frame) We say a map

ρ : M N → G N

is a right (resp. left) discrete moving frame if ρ is equivariant with respect to the
diagonal action of G on M N and the inverse right (resp. left) diagonal action of G on
G N . Since ρ((xr )) ∈ G N , we will denote by ρs its sth component, that is ρ = (ρs),
where ρs((xr )) ∈ G for all s. Equivariance means,

ρs(g · (xr )) = ρs((g · xr )) = ρs((xr ))g
−1 (resp. gρs((xr )))

for every s. Clearly, if ρ = (ρs) is a right moving frame, then � = (ρ−1
s ) is a left

moving frame.

Remark 2.3 In any given application, it is advisable to ensure the parity of an action
and of the equivariance of a frame; see [38] for a discussion of the subtleties involved.
In what follows, we will use ρ to denote a right frame, and � to denote a left frame.

As in the original group-based moving frame definition, if (us) ∈ M N , one can
define invariants,

I r
s = ρs · ur

for a right frame, or I r
s = �−1

s · ur for a left frame. The coordinates of these invariants
for any r generate all other invariants even when s is fixed (see [42]). We note that the
action induces an action on the coordinate functions, the same as it induces an action
on any function, specifically, g · f (ur ) = f (g · ur ). The components of I r

s will be
invariant as I r

s is, and they are called the normalised invariants.
We next describe a smaller set of invariants, the so-calledMaurer–Cartan invariants.

Definition 2.4 Let (ρs) be a right (resp. left) discrete moving frame evaluated along
an N -gon. Then the element of the group

Ks = ρs+1ρ
−1
s

(
resp. �−1

s �s+1

)

is called the right (resp. left) s-Maurer–Cartan element for ρ (resp. �). We call the
equation ρs+1 = Ksρs (�s+1 = �s Ks) the discrete right (resp. left) s-Frenet–Serret
equation.
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(a) (b)

(c) (d)

Fig. 2 In b and c,� is connected. The subsets in a, d are not connected; the subset in a has four components
and that in d has three

The coordinates of the Maurer–Cartan elements, together with the normalised
invariants I s

s , generate all other invariants. See [42] for more details. Note that for
G ⊂ GL(n, R) a matrix group, the Maurer–Cartan invariants will be the components
of the Maurer–Cartan matrices.

2.2 Lattices

Lattices are subsets of Z
p with a variety of properties. We first define adjacency.

Definition 2.5 Two points m, n ∈ Z
p are said to be adjacent if

∑
j

|m j − n j | = 1.

Definition 2.6 We say that a subset � ⊂ Z
p is a connected lattice if it consists of

a single point, or, if between any two points m1, m2 ∈ � there is a path, m =
n1, n2, . . . nN = m2 such that ni is adjacent to ni+1 for i = 1, . . . , N − 1.

This definition is illustrated in Fig. 2. Natural operators on Z
p are the well-known

shift operators, namely Ti , i = 1, . . . , p where

Ti (n1, . . . , ni , . . . , n p) = (n1, . . . , ni + 1, . . . , n p).

We will also consider lattices in a manifold.

Definition 2.7 The image of a lattice � ⊂ Z
p in a manifold M by a map � : � → M

is denoted by L , and is also called a lattice. We assume this map to be injective, a
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condition which will be relaxed under controlled conditions in the second part of this
paper. The adjacency in L is determined from that of �.

Since we will be working in coordinate charts, we can assume from the beginning
that the lattice L ⊂ M is contained within one coordinate chart for the manifold, so
that for all practical purposes we can assume the manifold is R

n , or a parametrised
surface with the parameters serving as local coordinates. We will also assume that
lattices are connected as one can study each connected component separately.

The lattice itself does not need to be covered with one lattice neighbour-
hood,however. We define next a lattice variety, which will allow us to work on lattice
models of spheres and tori.

Remark 2.8 Another name for our lattice variety could be ‘lattifold’, since we define
it to be a manifold like object but modelled on Z

p rather than R
p. The construction

given here is related to that given in [39].

Definition 2.9 A lattice variety L ⊂ M is a set that can be covered by a countable
number of lattices Lα ⊂ M , each of which is the image under an injection φα of a
connected lattice �α ⊂ Z

p for some fixed p. Every adjacency in L is contained in at
least one of the Lα . Furthermore, in the overlap Lα ∩ Lβ , the gluing map φα ◦ φ−1

β

preserves adjacency. We call (Lα, φα) a local lattice coordinate system.

Lattice coordinates essentially introduce a local order in the lattice (inherited from
Z

p through φα) so one can clearly define shifts. We say that a shift map is defined
at a point in L, if it is defined in at least one chart. Since the chart interchange maps
preserve adjacency, the existence of a shift map is well defined.

3 Moving Frames on Lattices and Lattice Varieties

Let L be a lattice variety and let N be the number of vertices in L, which we assume
to be either finite or at most countable. Let LN be the set of p-lattice varieties in M
with N vertices.

3.1 Moving Frames, Invariants and Maurer–Cartan Invariants

Let G be a group acting on LN (for example, if the lattice lives inside a manifold with
a group action, the action would be the one induced on the lattice), and for simplicity
assume that it is a left action (that is, g · (h · u) = (gh) · u. A parallel description can
be made for right actions.

A discrete moving frame will associate an element of the group to each vertex in
the lattice in an equivariant fashion.

Definition 3.1 (Moving frames on lattices) Let U be a subset of LN . We say

ρ : U → G N
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is a right (resp. left) discrete moving frame on U whenever ρ is equivariant with
respect to the action of G on LN and the inverse right (resp. left ) diagonal action of
G on G N . That is, if ρ = (ρi )

N
i=1 denotes the components of ρ in G N , then

ρi (g · L) = ρi (L)g−1 (resp. ρi (g · L) = gρi (L)),

with |�| = N .

If ρ is a right frame, then � = ρ−1 is a left frame, and it suffices to develop the
theory for only one of the parities. Henceforth, we restrict ourselves to right frames.
In general, moving frames exist only locally, which is the reason why we need to
restrict its domain in LN . Given a lattice variety L, and a coordinate system indexed
by � ⊂ Z

p, the moving frame ρ assigns group elements at each vertex (thus N of
them). We will call ρR the moving frame at the vertex R ∈ �. Note when the index is
applied we are assuming the use of local variety coordinates.

It is a simplematter to go from amoving frame to a discrete moving frame by taking
a family of cross sections, one per lattice vertex, as stated in the following result.

Proposition 3.2 Let {SR ⊂ M N | R ∈ �}, be a family of sections, indexed locally by
�, with SR transverse to the orbit of G at L viewed as a point of M N (recall that G
acts on M N by the diagonal action; transversality is with respect to the orbit in M N ).
Let g = (gR) ∈ G N be uniquely determined by the condition

gR · L ∈ SR (1)

for L ∈ LN and R ∈ � in some coordinate system for L. Then (gR) = (ρR) is a local
right discrete moving frame.

The proof of this statement is straightforward from the discussion of the moving
frame. We note that a moving frame is defined as an element of the group on the entire
lattice, but normalisation equations give frames defined only locally. The interchange
maps from one domain to another will play a role in what follows.

Remark on Notation From now on a multi-index will denote the use of local lattice
coordinates, while the lack of it will indicate global definitions. Also, we will denote
by ρR an individual component of ρ, or the moving frame at the vertex u R . Notice also
that even though we will denote by ρ(L) the moving frame along L, each ρR will, in
the examples, depend on only finitely many vertices.

Example 3.3 Consider 1-lattices—or polygons—in the Euclidean plane. The group
E(2) can be identified with the subgroup of GL(3, R) given by

g =
(
1 0
b 


)
(2)

with 
 ∈ O(2) and b ∈ R
2. It acts on R

2 as

(
1 0
b 


) (
1
u

)
=

(
1


u + b

)
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with u ∈ R
2. We choose as our transverse cross section, the one given in coordinates

by ρn · un = 0 and ρn · un+1 = e1||�un||, where �un = un+1 − un . If ρn is displayed
in the matrix representation as in (2), solving the system

ρn · un = 
nun + bn = 0, ρn · un+1 = 
nun+1 + bn = 
n�un = ||�un||e1

results in the left moving frame

�n = ρ−1
n =

(
1 0

−
−1
n bn 
−1

n

)
=

(
1 0 0

||�un||e1 un||�un || −J un||�un ||

)

where J =
(

0 1
−1 0

)
is the canonical symplectic matrix.

Definition 3.4 (Invariants and normalised invariants) We say the function on LN

I : LN → R

is a lattice invariant under the action of G if I (g ·L) = I (L) for any g ∈ G, L ∈ LN .
A local invariant will have the same property in some coordinate chart.

Given a right moving frame ρ on p-lattices, we call the invariants

IR = ρR(L) · L

the normalised invariants, where ρ(L) = (ρR(L)) with ρR(L) ∈ G. Once we choose
coordinates in L, given by (u J ), the local invariants are defined to be

I M
R = ρR((u J )) · uM

for R, M ∈ �. These are clearly invariants of the action.

The normalised invariants generate all other local invariants. In fact, they do gen-
erate them even when R is fixed.

Proposition 3.5 If I is any lattice invariant, then I can be written as a function of the
normalised invariants I N

R for any fixed R ∈ �.

Proof This is an immediate consequence of the so-called replacement rule. Let (uN )

represent the vertices of the lattice variety. If I = I ((uN )) is an invariant of the action,
then I (g · (uN )) = I ((uN )) for all g ∈ G, and in particular for ρR((u J )). Thus

I (ρR((u J )) · (uN )) = I ((I N
R )) = I ((uN ))

which shows us how to write I in terms of the normalised invariants with R fixed. 
�
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From this wealth of invariants we will be selecting a few, the so-called Maurer–
Cartan invariants. They are the discrete analogue of the invariants defining the classical
Frenet–Serret equations and, like their continuous counterpart, together with the set
{I R

R | R ∈ �} they will form a generating system.
From now on we will extend the shift operators in the standard way to algebraic

functions of u J using the properties Ti (u J u R) = Ti u JTi u R . We can also apply a shift
to ρJ by sending ρJ to ρJ+ei or we could apply it to ρJ by shifting the variables u R

that ρJ depends on. But notice that unless the sections in (1) are shifts of each other
(i.e. SR+ei = Ti SR for all i = 1, . . . p and all R ∈ �), these two operations do not
need to produce the same result. Given that in many of our situations and in all of our
examples we do assume the sections to be invariant under the shifts, we will abuse the
notation and denote all these maps by Ti , so that, for example, TiρJ = ρJ+ei .

Definition 3.6 (Maurer–Cartan invariants) Let ρ be a right moving frame along p-
lattices. We define the right (R, i)-Maurer–Cartan group element to be K(R,i), the
element of the group given by

K(R,i) = (TiρR) ρ−1
R = ρR+ei ρ

−1
R .

Its local coordinates (or the entries of the matrix, if G ⊂ GL(n, R)) will be called the
(R, i)-Maurer–Cartan invariants.

Definition 3.7 (Diagonal invariants) We denote further the set {ρR((u J )) · u R =
I R

R | R ∈ �} to be the set of diagonal invariants.

Theorem 3.8 Let ρ be any right moving frame. The (R, i) Maurer–Cartan invariants,
i = 1, . . . , p, R ∈ �, together with the diagonal invariants, ρR((u J )) ·u R = I R

R , R ∈
�, generate all other invariants for the action of G on LN .

Proof The proof is based on what are commonly known as the recursion formulae.
Directly from the definitions we get that

K(R,i) · I M
R = (TiρR)ρ−1

R · (ρR · uM ) = ρR+ei · uM = I M
R+ei

and from
K(R,i) · I M

R = I M
R+ei

(3)

we have

I M
R = K −1

(R,i) · I M
R+ei

.

Now, since � is connected, given M ∈ Z
p, any R ∈ Z

p is related to M ∈ Z
p

through either recurrently increasing or decreasing its individual components, using
the shift operator. At each step the invariant obtained when increasing or decreasing
the components in M is generated by those in previous steps and by Maurer–Cartan
invariants. Thus, we can start using I M

M and reach I M
R , for any R, using both versions

of the recursion formulas. This proves the statement of the theorem. 
�
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Example 3.9 The simplest example is the translation group viewed as a subgroup of
GL(n + 1, R) and acting on R

n as

g · u = π

((
1 0
a I

) (
1
u

))
= π

((
1

a + u

))
= a + u,

where π is the projection in the last n components. If (u R) is a p-lattice in R
n , a

transverse section to the orbit of the group at u R is given by u R = 0. Thus, the moving
frame is determined by g ·u R = 0, which implies a = −u R . The normalised invariants
are I M

R = ρR ·uM = uM −u R , while theMaurer–Cartanmatrices are ρR+ei ρ
−1
R whose

only non-constant entries are the Maurer–Cartan invariants u R − u R+ei , R ∈ �,
i = 1, . . . , n. It is straightforward to show that the I M

R can be written in terms of the

Maurer–Cartan invariants I R+ei
R . Note that in this example, I R

R = 0 for all R ∈ � and
they do not contribute to the generating set of invariants.

Example 3.3 cont. In the case of the Euclidean plane, we found a right moving frame
given by

ρn =
(

1 0
−
nun 
n

)
(4)

where


−1
n =

(
un||�un || −J un||�un ||

)
.

The normalised invariants in this case are given by

ρn · um = 
n(um − un) = 1

||�un||
(

un · (um − un)

det(un, um − un)

)

for any n, m. Notice that ρn · un+1 = ||�un||e1. The Maurer–Cartan matrix is given
by

ρn+1ρ
−1
n =

(
1 0

−
n+1
bn + bn+1 
n+1

−1
n

)
(5)

where

−
n+1
nbn + bn+1 = −
n+1(un+1 − un) = 1

||�un+1||
(−un+1 · �un

det(un+1, un)

)

and


n+1

−1
n = 1

||�un+1||
1

||�un||
(

un+1 · un det(un, un+1)

− det(un+1, un) un+1 · un

)

=
(

cosαn sin αn

− sin αn cosαn

)
,

whereαn is the angle between un+1 and un . Therefore, a generating set for theMaurer–
Cartan invariants are ||�un|| and αn , for all n. Since the normalised invariants are also
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generated by ||�un|| and the angle between un and um , the Maurer–Cartan invariants
generate all the basic ones. Note that, as in the previous example, I R

R = 0 for all R ∈ �

and they do not contribute to the generating set of invariants.

3.2 Maurer–Cartan Syzygies

In this section, we analyse in detail the relationships that can exist among the Maurer–
Cartan invariants.

Remark 3.10 (Syzygies involving the diagonal invariants) In some cases, the addi-
tional generating invariants, the “diagonal invariants” I R

R (see Definition 3.7) may
be non-constant. These invariants obey the trivial recurrence relations, Ti I R

R =
Ti (ρR · u R) = (TiρR) ρ−1

R+ei
I R+ei

R+ei
= I R+ei

R+ei
. It can happen that the Maurer–Cartan

and the diagonal invariants are not independent of each other, and these dependen-
cies can then be regarded as syzygies between them. Indeed, consider the group
G = (R,+) as a scaling action on the positive real line, ε · un = exp(ε)un with
the normalisation equation, ρn · un+1 = 1. Then ρn = − log un+1, I n

n = un/un+1
and ρn+1 · ρ−1

n = log I n
n . We conjecture that there are no syzygies involving the diag-

onal invariants that do not arise from either the trivial recurrence relations between
them given above, or those involving the Maurer–Cartan invariants described in this
section, together with the dependencies between the diagonal and the Maurer–Cartan
invariants.

3.2.1 Basic Local Syzygies

From the definition of Maurer–Cartan element, K(N ,i) = (TiρN ) ρ−1
N , we have

T j K(J,i) = (T jTiρJ )T jρ
−1
J = (T jTiρJ )ρ−1

J K −1
(J, j)

and also

Ti K(J, j) = (TiT jρJ )Tiρ
−1
J = (TiT jρJ )ρ−1

J K −1
(J,i).

Given that shifts commute, we obtain

(
T j K(J,i)

)
K(J, j) = (

Ti K(J, j)
)

K(J,i). (6)

This expression gives us a number of algebraic relationships between the different
Maurer–Cartan invariants. We will refer to these as basic local syzygies, a discrete
generalisation of the differential syzygies that are satisfied by differential invariants,
such as the Codazzi–Mainardi equations for Euclidean invariants defined on surfaces.
The above syzygies generate most of the possible algebraic relations among Maurer–
Cartan invariants. Further independent syzygies may be created by the topology of the
lattice L.
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Definition 3.11 We say two syzygies are equivalent up to basic syzygies if one of
them is an consequence of the other together with syzygies of the form (6).

To describe global syzygies, we need first to define the discrete fundamental group
of the lattice and related material standard in the study of the topology of graphs [48].

3.2.2 Discrete Fundamental Group

Let L be a p-lattice in M , that is, the image of a map from a connected p-dimensional
subset� ofZp to M . As before,wewill denote the image of J ∈ � asφ(J ) = u J ∈ M .
For simplicity, let us assume that � = Z

p, although one can apply much of what we
will say next to other cases. Notice that, in principle, we are allowing cases when the
map φ is not 1-to-1 so L does not need to have a trivial topology.

Definition 3.12 (Paths)We say a subset γ ⊂ L is a path of length r joining two points
a, b ∈ M , if it can be ordered as γ = {xi }r

i=0, with x0 = a, xr = b and xi adjacent to
xi+1, for all i = 0, . . . r − 1. We say the path is closed if a = b; we say it is simple if
xi �= x j for any i �= j (except perhaps x0 = xr if closed). Notice that by giving the
vertices of the path in a certain order we are implicitly assigning an orientation to it.
This will be relevant once we associate syzygies to closed paths.

Definition 3.13 (Edge) Given a path γ in a lattice, γ = {xi }r
i=0, we say the ordered

pair [xi , xi+1] is an edge of the path. The ordering gives an orientation of the edge.

Definition 3.14 (Sum of paths) Consider the set of all closed paths with base point
a. One can define the sum of two such paths by concatenation; that is, if {xi }r

i=0 and
{y j }s

j=0 are two paths, their sum is given by {xi } + {y j } = {zk}r+s+1
k=0 with

zi = xi , i = 0, . . . , r, zr+ j+1 = y j , j = 0, . . . , s.

If the paths are not closed, but xr = y0, one can equally define the sum of the paths
by concatenation.

Definition 3.15 (Basic homotopy) A transformation of a path {xi }, ψ({xi }) = {y j } is
a basic homotopy if {y j } is equal to {xi } except for
(1) adding or removing a subpath of the form [xi , xi+1] + [xi+1, xi ];
(2) changing a subpath of the form [xi , xi+1] + [xi+1, xi+2] by one of the form

[xi , z] + [z, xi+2], where xi , xi+1, xi+2, z form a basic square of the lattice.

Transformations (1)–(2) are called the two basic homotopies.

Figure 3 shows examples of basic homotopies.

Definition 3.16 We say the two paths {xi }r
i=0 and {y j }s

j=0 joining a and b, are homo-
topically equivalent if x0 = a = y0, xr = b = ys and either the paths are equal, or
one can be transformed to the other by a finite sequence of basic homotopies.

By construction, homotopy of paths joining a and b is an equivalence relation.
Figure 4 shows pairs of homotopic and nonhomotopic paths.
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Fig. 3 Examples of the two
basic homotopies applied to the
blue paths

Fig. 4 The red and blue paths on the left are homotopically equivalent, with the yellow and green paths
showing the sequence of basic homotopies required, while the ones on the right are not (Color figure online)

Definition 3.17 (Discrete fundamental group) Consider the space of all closed paths
based at a, and let π1(L , a) be the set of homotopy classes of these paths. The oper-
ation above endows π1(L , a) with a group structure. We call π1(L , a) the discrete
fundamental group of L .

The fundamental group does not depend on the point a chosen, as far as the lattice
is connected. (It suffices to join a to a different point b using a path γ , and use γ to
relate closed paths based on a to those based on b by conjugation, as done in the
continuous case.)

3.2.3 Syzygies Associated with Closed Paths on a Lattice and Global Syzygies

Assume we have a moving frame along a path. To each edge of the path we can
associate a Maurer–Cartan matrix of invariants as follows:

Assume either that xi = u J and xi+1 = Tku J = u J+ek , or that xi+1 = T −1
k u J =

u J−ek . To [xi , xi+1] we associate the matrix

K(J,k) = Tk(ρJ )ρ−1
J = ρJ+ek ρ

−1
J (7)
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in the first case, and

K −1
(J−ek ,k) =

(
Tk(ρJ−ek )ρ

−1
J−ek

)−1 = ρJ−ek ρ
−1
J (8)

in the second case.
We note that the choice of Maurer–Cartan matrix depends on the orientation of

the path, with an edge being associated with the inverse matrix if the orientation is
reversed.

Next we will associate a group element K (γ ) to each path γ on the lattice, namely,
the product of the Maurer–Cartan matrices along the path. From the definition of
the Maurer–Cartan matrices in terms of the discrete frame, it will be evident this
product telescopes to involve only the discrete frame at the endpoints of the path,
provided the discrete frame is defined along the whole path. Nevertheless, in terms of
the components of the Maurer–Cartan matrices, the Maurer–Cartan invariants, the
product will not telescope—this is the syzygy. Evaluating K (γ ) for closed paths γ ,
leads to relations on the invariants. It becomes important to find those relations which
are non-trivial, in the sense that they are not an algebraic consequence of basic local
syzygies, given in Eq. (6).

In what follows, we will show that K (γ ) is a homotopy invariant. Evaluating K (γ )

on closed paths which are not homotopic to the constant trivial path leads to relations
on the Mauer–Cartan invariants which cannot be obtained in terms of the basic local
syzygies.

We start with paths which lie in the domain of a discrete frame. This, of course,
need not be the case since the existence of moving frames is guaranteed only locally. If
we need to cover the lattice with several coordinate patches on which discrete moving
frames exist, we will obtain invariant transition matrices associated with the cover of
the lattice defined by the domains of the discrete moving frames. We discuss this more
involved case later in this section.

Definition 3.18 Assume a discrete frame exists along a path γ . The product of the
Maurer–Cartan matrices along γ is denoted K (γ ). Specifically, for the path {xi }r

i=0,
we have

K
(
{xi }i=r

i=0

)
= K ([xr−1, xr ]) · · · K ([x0, x1]),

where K ([xi , xi+1]) is the Maurer–Cartan element associated with the edge [xi , xi+1]
as in (7) and (8) so that K ([xi , xi+1]) = K −1([xi+1, xi ]). If γ is the constant (trivial)
path, we define K (γ ) = e.

It is evident that if γ = γ1+γ2, then K (γ ) = K (γ2) · K (γ1). (See Definition 3.14).
In Fig. 5, we illustrate the basic local syzygy, in the form K ({x1, x2, x3, x1}) = e

along a closed path of length four.

Proposition 3.19 Let γ1 and γ2 be two paths joining a and b in the lattice L for which a
discrete moving frame exists. Assume that γ1 is homotopic to γ2, then K (γ1) = K (γ2).
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Fig. 5 In this Figure, we see
that along the closed path
(x1, x2, x3, x4 = x1) we have
K4K3K2K1 = e, the identity in
G. This is equivalent to the basic
local syzygy, Eq. (6)

Proof Since a homotopy is a finite composition of basic homotopies, it suffices to
show that if γ1 and γ2 differ by a basic homotopy, then K (γ1) = K (γ2).

In the case (1), this is trivial since the only difference between K (γ1) and K (γ2)

is a product of the form Ki K −1
i = e. In the case (2) it is equally simple since they

differ only by a product Ki Ki+1 appearing in K (γ1) and K j K j+1 appearing in K (γ2),
with Ki Ki+1 = K j K j+1 being a local syzygy since their vertices form a square in
the lattice. 
�

The discussion thus far lifts naturally to lattice varieties, since adjacency and local
shift maps are well defined. The following corollary is an immediate consequence of
the previous proposition.

Corollary 3.20 If our lattice variety is covered by one coordinate system and there
exists a moving frame defined everywhere, each class [γ ] of the fundamental group of
the lattice defines what we will call a global syzygy of the Maurer–Cartan invariants,
in the form K (γ ) = e.

For example, if a discrete frame is defined on an annular lattice L , then there will
be a path not homotopic to the constant path within L , but K (γ ) = e for all closed
paths.

Before turning to consider paths which move through different domains, we note
the following.

Important Assumptions We already have the assumption on the coordinate charts Lα

which cover our lattice variety, that every edge appears in at least oneLα , and so every
Maurer–Cartan matrix can be written in (at least one) coordinate system. We assume
further that every edge is in a domain of a discrete frame. In this way, every Maurer–
Cartan matrix, every transition matrix, and their local products can be expressed with
respect to a single set of coordinates. By taking a refinement of our coordinate cover
as necessary, we therefore assume that our cover consists of sets which are domains of
both frames and coordinate charts and that every edge appears in at least one element
of the cover.

We can associate a group element K to a path moving through different domains,
by patching local products of Maurer–Cartan matrices, assuming the local neighbour-
hoods where the different discrete frames are defined overlap. Overlapping conditions
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are often used to coordinate the geometry in different coordinate domains; in our
case, the existence of overlap in the domains of the frames is needed to coordinate
the frame on adjacent parts of the path where the domains change. On paths in our
lattice varieties, overlapping of domains is guaranteed by the condition that every
edge, that is, every pair of adjacent points, lies in at least one of the domains. Indeed,
suppose we have two subpaths {x0, . . . , xi } and {xi+1, . . . , x j } of a path, and assume
we can find a moving frame ρs at xs , s = 0, . . . i and a different moving frame ρ̂s for
s = i + 1, . . . , j . Since the edge [xi , xi+1] must lie in a domain, then at least one of
xi or xi+1 must lie in both domains, or there is a third domain so that we can split our
path into three subpaths, {x0, . . . , xi }, {xi , xi+1}, {xi+1, . . . , x j }, each of which lie in
the domain of a frame.

So, consider two subpaths {x0, . . . , xi } and {xi , xi+1, . . . , x j } of a path, where
xi is the guaranteed point of overlap, and where we have a moving frame ρs at xs ,
s = 0, . . . i and a different moving frame ρ̂s for s = i, i + 1, . . . , j . Then we
define M(xi ) = ρ̂iρ

−1
i so that ρ̂i = M(xi )ρi . Clearly, since both ρi and ρ̂i are right

equivariant, the matrix M(xi ) is invariant. Then, to the path γ = {x0, . . . , x j } we can
associate the product of invariant matrices

K (γ ) = (ρ̂ j ρ̂
−1
j−1)(ρ̂ j−1ρ̂

−1
j−2) · · · (ρ̂i+1ρ̂

−1
i )M(xi )(ρiρ

−1
i−1) · · · (ρ1ρ0)

= K̂ j−1 . . . K̂i M(xi )Ki−1 . . . K0

with the invariant matrix M(xi ) linking the Maurer–Cartan matrix in one coordinate
system to the next.

Definition 3.21 If a vertex x lies in the domains of both the discrete frame ρ and the
discrete frame ρ̂, we say the group element

M(x; ρ̂, ρ) = ρ̂(x)ρ(x)−1 (9)

is the transition Maurer–Cartan matrix at the vertex x , associated with the change of
frame from ρ to ρ̂.

If a vertex lies in the intersection of several frame domains, there will be co-cycle
conditions. For example, if x ∈ dom(ρα) ∩ dom(ρβ) ∩ dom(ρδ), then clearly

M(x; ρδ, ρβ)M(x; ρβ, ρα)M(x; ρα, ρδ) = e. (10)

Two equal closed paths can have different group elements K (γ ) if the choices of
either the initial or the final moving frames are different. Thus, our element of the
group depends not only on γ but also on the initial and final choice of moving frame.
In this case we will denote the group element above

K (γ ;α, β)

for the element of the group that starts in dom(ρα) and ends in dom(ρβ), and where
these are the choices of frame for the calculation of the initial and final Maurer–Cartan
matrices. By analogy, we will also denote by M(x;α, β) the matrix M(x; ρα, ρβ).
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Fig. 6 Several ways a path can
move through an interchange

Lemma 3.22 K (γ ;α, β) does not depend on the choice of coordinates or moving
frames one chooses along γ , only on the initial and final ones.

Proof Assume at some point x wemake different choices of moving frame at a point x
in the overlap of (at least two) different frame domains, so we move from ρμ to ρη for
one path and from ρμ to ρν for the other. In that case we introduce the transition factor
M(x; η,μ) in one of the lifts, and M(x; ν, μ) in the other one, and we continue the
different paths using the corresponding choices. At some point we need to come back
to a common choice, even if that happens only at the end of the path. But when we
expand the different factors of K (γ ;α, β) in terms of moving frames, the intermediate
factors all vanish as we saw before, and the difference is only at the beginning and at
the end of the product. Thus, without losing generality we can assume that we come
back to a common moving frame right after we introduce the split.

That is, a path includes the factor

M(x;β, η)M(x; η,μ),

while the other includes

M(x;β, ν)M(x; ν, μ).

But using (10) we have that both these factors are equal to M(x;β,μ), and hence they
are equal. 
�

We now argue that K (γ ;α, β) is still a homotopy invariant for paths that start
and end with the α and β choice of moving frame, even if the path moves through
changing domains of discrete frames (and changing coordinate systems). Consider
Fig. 6, in which we assume that [x, y], [y, z] are edges in the domain of ρ, while [x, t]
and [t, z] are edges in the domain of ρ̂.
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We consider paths γi running from x0, in the domain of ρ, to y0 in the domain of ρ̂.
If γ1 goes via x and t , then we must switch from ρ to ρ̂ at x . We achieve this by using
the matrix M(x) = ρ̂(x)ρ(x)−1 (which is invariant as the frames are right frames),
and then defining K (γ1) to be

K (γ1) = K̂ ([t, y0])K̂ ([x, t])M(x)K ([y, x])K ([x0, y])
= ρ̂(y0)ρ̂(t)−1

(
ρ̂(t)ρ̂(x)−1

) (
ρ̂(x)ρ(x)−1

)
ρ(x)ρ−1(y)ρ(y)ρ(x0)

−1

= ρ̂(y0)ρ(x0)
−1.

Considering the path γ2 from x0 to y0 via z results in

K (γ2) = K̂ ([t, y0])K̂ ([z, t])M(z)K ([y, z])K ([x0, y])

which is also equal to ρ̂(y0)ρ(x0)−1 by a similar argument, and thus we have

K (γ1) = K (γ2). (11)

Since we have homotopy invariance of the K element within domains, in this way
we can see that even passing through a change of domain, we maintain homotopy
invariance.

In order to prove homotopy invariance in general, we construct a “lift” L̄, ofL, with
respect to a cover, satisfying our assumptions, of L. We can use this lift to keep track
of which discrete frame we are using at each point on our paths in L. The lift L̄ that
we construct is not a lattice variety in general, and does not lie in M , but nevertheless
serves our purpose here. To construct L̄, we take the disjoint union of the charts,
together with their edges (adjacencies), and for every x ∈ Lα ∩ Lβ , we take a new
adjacency, or edge, [x |α, x |β ], and let this be a new edge in L̄, with the associated
Maurer–Cartan element being ρβρ−1

α , the transitionMaurer–Cartanmatrix. See Fig. 7,
which shows the lifting for the case of Fig. 6. Define the projection from L̄ to L as
the natural projection that collapses the different copies of the vertices which lie in
intersections of charts. That is

π : L̄ → L, π(xi ) =
{

xi if xi belongs only to one domain

x if xi = xα where xα is a lift of x ∈ Lα

.

A path γ̄ in L̄ is a lift of a path in L when the projection of γ̄ is γ . Lifts may not
be unique, as they depend, for example, on the element of π−1(a) at which the path
begins, where a is the initial vertex of γ .

Changing from one frame to another along a path is, in L̄, simply proceeding from
one vertex to another, with the transition Maurer–Cartan elements, Definition 3.21,
being the group element associated with the new edge. We note that a change of
coordinates simply changes the local labelling of the points, and so is less important
when considering the group element associated with a path.
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Fig. 7 The situation of Fig. 6
translated to L̄, the “lift” of L

We now show that in L̄ we have new basic local syzygies obtained from the transi-
tion Maurer–Cartan matrices. These new local syzygies allow us to obtain a result
similar to that of Proposition 3.19, but for the more general situation where we
need to change domains of our moving frames. Consider Fig. 8. Let the domain
of ρ be Lα and the domain of ρ̂ be Lβ . Consider the simple closed path γ =
{x |α, x |β, y|β, y|α, x |α}. If K ([yβ, xβ ]) = ρ̂(y)ρ̂(x)−1, K ([xβ, xα]) = ρ̂(x)ρ(x)−1,
K ([yβ, yα]) = ρ̂(y)ρ(y)−1, K ([yα, xα]) = ρ(y)ρ(x)−1, the K element for this path
is,

K (γ ) =
(
ρ(x)−1ρ(y)

) (
ρ(y)ρ̂(y)−1

) (
ρ̂(y)ρ̂(x)−1

) (
ρ̂(x)ρ(x)−1

)
= e

showing this path defines a basic syzygy in L̄.
Finally, we define the monodromy of a closed path in L. When such a path is lifted

to L̄ it need not be closed, as it may begin in one frame domain and return in another.
Consider the lift γ̄ of a path γ beginning at x0 in the domain of the frame ρα , and
ending at x0 in the domain of the frame ρβ . We can close the path in L̄, by adding to γ̄ ,
the edge [x0|β, x0|α], but in principle this need not happen. Therefore, the element of
the group associated with the lift would not be equal to e, but rather to M(x;α, β) (or
its inverse, depending on the orientation). We call this group element the monodromy
of the lift.

We can now state the more general theorem concerning homotopy invariance.

Theorem 3.23 To each path γ in the lattice variety L, and to each choice of initial
and final moving frame, we can associate a group element, K (γ, α, β), such that if γ1
and γ2 are homotopic in L, then K (γ1, α, β) = K (γ2, α, β).
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Fig. 8 New edges in L̄ give rise to new local syzygies, here, K ([yβ , xβ ])K ([xβ , xα]) = K ([yβ, yα])
K ([yα, xα])

Proof We first note that L̄ has essentially a global moving frame, in the sense that
every vertex has an equivariant group element associated, namely ρα for xα and ρβ

for xβ . Hence we can define K (γ ) for any path, the same way we did previously.
We first note that if {ā} is any closed path lifting the trivial path {a} to L̄, then the

co-cycle conditions (10) are given by K (ā) = e. When we lift a path γ to L̄, we need
to keep track of which discrete frame we are working in, but as we saw before, the
element K (γ ;α, β) is affected only by the beginning and end choices.

Assume two paths are homotopically equivalent, and let us lift the homotopy. By
construction of L̄, we can assume the endpoints of the lift of the homotopic paths also
remain fixed and determined by the α and β choices. As in the proof of Proposition
3.19, it will suffice if we show that two paths that differ by one of the basic homotopies
have the same K (γ ;α, β), even if we need to change the moving frame domain. But
this was already proved in the argument concerning Eq. (11). 
�

The syzygy of any closed path γ , where the domain of the discrete frames are
considered to be the same at the end and at the beginning, is K (γ ;α, α) = K (γ ) = e,
while those where α �= β will have a non-trivial monodromy K (γ ;α, β) = M �= e.
Furthermore, different choices of α give rise to the same syzygy: the group elements
are related by conjugation

K (γ ;α, α) = ραρ−1
β K (γ ;β, β)ρβρ−1

α ,

and the transition matrices ραρ−1
β are essentially a change of coordinates. Indeed, a

frame defines a local coordinate system of the formU ×KwhereU is a neighbourhood
of the identity in G and K is the cross section which has invariants for coordinates
[38, Chapter 4]. We thus have the following corollary.

Corollary 3.24 Let [γ ] be the homotopy class of a closed path γ in L. Each element
[γ ] of π1(L) gives rise to a syzygy on the Maurer–Cartan invariants, in the form
K (γ ) = e.
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Fig. 9 Discrete toroidal lattice
variety, with periodicities
T1 = 8 and T2 = 6 (Color figure
online)

Notice that associating a syzygy to a closed path with a monodromy is essentially
the same as associating a syzygy to the closed path for which the beginning and end
moving frames are the same. Indeed, K (γ ;α, α) = K (γ, α, β)M(x;β, α), and hence
K (γ ;α, α) = e is the same syzygy as K (γ ;α, β) = M(x;α, β).

Example 3.25 Consider a bi-periodic lattice L = {zn,m}n,m∈Z with zn+kT1,m = zn,m

and zn,m+kT2 = zn,m for some periods T1, T2 ∈ Z. For simplicity, assume we can find
a global moving frame ρ = (ρn,m). The topology of this lattice is comparable to that
of a torus, and one can easily show that

π1(L) = Z
2.

The two generators of π1(L) (marked in Fig. 9 with different colours) are represented
by the two global syzygies

K0,m K1,m . . . KT1−1,m = e, Kn,0Kn,1 . . . Kn,T2−1 = e.

If a global moving frame does not exist, then the product might be equal to a mon-
odromy matrix that will depend on the choice of moving frame at the beginning and
the end of the closed path. If we choose the same moving frame, then the syzygy will
be independent of the point chosen as beginning and end, and it will be as above.

4 Continuous Limits of the Discrete Picture: Lattice-Based Multispace

In this section we show how one can construct a continuous moving frame embedded
in a smooth family of discrete frames by coordinating the transverse sections that
determine them in a way that guarantees the convergence of the discrete family to the
continuous one. This is achieved using our lattice-based multispace, in which deriv-
atives and their finite difference approximations exist in a single manifold containing
both the jet bundle and Cartesian products of the base space. Both smooth and discrete
frames are then part of a single frame on this multispace, and their relationship is given
by the continuity of the multispace frame under coalescence. We show in this case
that not only moving frames but also discrete invariants and local discrete syzygies
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converge to differential invariants and differential syzygies respectively. We will use
our multispace constructions to describe discretisations of integrable systems, and to
finite difference models of variational systems, in Sect. 5. In the Appendix, we will
show that more generally, an equicontinuous family of discrete frames will converge
to a smooth frame.

First of all, we recall the definition of “multispace for curves”, as developed by
Olver in [51]. Olver provides coordinates for his space of pointed curves in terms of the
Lagrange approximation of the curve via interpolation at specific (given) points. The
coordination of the discrete and the smooth pictures is a consequence of the fact that
Lagrange interpolation becomes Hermite interpolation under coalescence. In order to
provide coordinates for our higher-dimensional generalisation of Olver’s construction,
we need to restrict our ‘pointed surfaces’ to those where the Lagrange and Hermite
interpolations are similarly related and to where the interpolations vary in a smooth
manner with respect to the data. The details of the interpolation are critical, since the
coefficients of the interpolation polynomial will define the desired coordinates.We use
the theory of multivariate polynomial approximation due to de Boor and Ron, [11–13],
described in Sect. 4.2. We then describe our lattice-based multispace and prove that it
is a manifold. In fact, we detail two related versions of multispace, one containing the
jet bundle J (M, R) and one containing the jet bundle J (U, M) where U ⊂ R

p for
any p ≤ dim M . Both arise in the applications. Thereafter we show that the limit of
the discrete Maurer–Cartan matrices are the smooth Maurer–Cartan matrices and that
the local syzygies (Eq. 6) limit to the so-called zero curvature condition of the smooth
Maurer–Cartan matrices, in Sect. 4.4. We also describe mixed discrete/continuous
cases.

4.1 Olver’s Multispace for Curves

The idea behind the definition of multispace is to create a manifold where both dis-
crete and continuous cases coexist in one overarching smooth construction, where
the continuous frame is a limit of the discrete, and the limit of the discrete data is
the continuous data. Multispace resembles the jet spaces, but includes also discrete
versions of the jet spaces.

Given a manifold M , define the nth jet space of M at p ∈ M , and denote it by J n
p ,

to be the equivalence class of submanifolds of M with order of contact n at p. The jet
bundle is defined as

J n(M) = ∪p∈M J n
p ,

with the standard bundle structure.We letC (n) = C (n)(M) denote the set of all (n+1)-
pointed curves contained in M ; that is, the set of (z0, . . . , zn; C), where C is a curve
and zi are n + 1 points in C , not necessarily distinct. We denote by

ni = #{ j | z j = zi }

the number of points that coincide with zi .
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Definition 4.1 (Multispace for curves) Let C and C̃ be two (n + 1)-pointed curves

C = (z0, . . . , zn; C); C̃ = (̃z0, . . . , z̃n; C̃).

The distinguished points can coincide.We say thatC and C̃ have nth ordermulticontact
if, and only if there exists a permutation π : {0, 1, . . . , n} → {0, 1, . . . , n} such that

zi = z̃π(i), and jni −1C |zi = jni −1C̃ |zπ(i) , for each i = 0, . . . , n,

where jkC denotes the kth jet of the curve C .
The nth-order multispace, denoted M (n), is the set of equivalence classes of (n+1)-

pointed curves in M under the equivalence relation of nth-order multicontact. The
equivalence class of an (n + 1)-pointed curve C is called its nth-order multijet and is
denoted by jnC ∈ M (n).

When all the points are distinct, then two curves belong to the same equivalence
class whenever they have the distinguished points zi in common. Thus, we can identify
this special subsetwith the off-diagonalCartesian product, denoted by M�(n+1) in [51].
On the other hand, if all the points coincide, then the class is equal to the jet class.
Thus, both extremes can be found in one space, together with all the intermediate
cases. In the first part of [51] the main result is the following theorem.

Theorem 4.2 If M is a smooth m-dimensional manifold, then its nth order multispace
M (n) is a smooth manifold of dimension (n + 1)m, which contains the off-diagonal
part M�(n+1) of the Cartesian product space as an open, dense submanifold, and the
nth order jet bundle J n(M) as a smooth submanifold.

The topology is inherited from that of the manifold M , and the proof is based
on finding coordinate systems in a neighbourhood of an equivalence class jnC. The
coordinate system is given by the classical divided differences and their limits. That is,
given a curve C with n + 1 distinguished points {z0, . . . , zn} and with a certain order
of contact ni −1 at each point, there exists a unique polynomial p of degree n such that
p(zi ) = C(zi ) and such that p(k)(zi ) = C (k)(zi ) for any k ≤ ni and any i = 0, . . . , n.
The polynomial is a natural representative of the class C and its coefficients provide
smooth coordinates in a neighbourhood of C. Of particular importance is that the
coordinates are smooth under the coalescence of points zi . For more details, see [51].

In the second part of the paper [51], the author assumes there is a Lie group G
acting on the manifold M , and he defines the action of this group on the multispace as
that naturally induced by it: the action on the differential part is the prolonged one, and
explicit formulae for the action of the group on classical divided differences are given.
He also explains how, assuming that one chooses a cross section to the orbit of the
group at a point C, and requiring the local cross section to be transverse also to the jet
space (thus defining a cross section for the prolonged action on J n); then one can find
amoving frame for the action of the group on the multispace with the desired property,
that is, the resultingmoving framewill be the standard continuousmoving framewhen
restricted to jets, and the discrete one when restricted to M�(n+1). The overarching
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Fig. 10 Coalescence of distinguished points in a pointed curve does not require the points to be adjacent,
in some sense, on the curve. Here the coalescence takes place along the straight line. Note there needs to
be a well-defined tangent of C at the point of coalescence

continuity of the multispace manifold guarantees that one is the continuous limit of
the other as the points coalesce.

We note several features of Olver’s multispace for pointed curves:

(i) the curveC is not parametrised and the points zi on the curve need not be labelled
in order with respect to some parametrisation,

(ii) coalescence can take place between any two of the zi on the curve, see Fig. 10,
(iii) none of the zi are distinguished in the sense that one of them is a natural base

point for a projection of the multispace to M ,
(iv) the pointed curve jnC is essentially a set of points with a contact condition at

each point.

In our construction of a higher-dimensional lattice-based multispace, and hence its
restriction to a single variable, only a version of property (iv) remains.

Our next section describes an interpolation scheme which can be applied to our
geometric construction.

4.2 Multivariate Interpolation

One of the main problems with multivariate interpolation is that the solution to the
interpolation problem is not unique in general and it might not even exist; a well-
known theorem describing this phenomena is the Mairhuber–Curtis Theorem [60].
For example, if we fix the values of a function f (x, y) at the two points (1, 2), (−1, 1)
and we want to find a polynomial in x and y of minimum order, such that it coincides
with the function at those points, we can use f (x, y) = a + bx or f (x, y) = a + by,
and there is no reason why we would chose one over the other. On the other hand,
if we fix the value of the function at (1, 2) and (1,−1), then the first choice is not
appropriate unless the function has the same value at both points, while the second
one works. Thus, the choice of interpolating polynomial might depend on the data, it
might not be unique, or even exist, and sometimes there is no reason to favour one
choice over a different one. In the p = 1 interpolation case none of these problems
exist.
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Thus, a main question in multivariate interpolation is: is there a family of polyno-
mials which can interpolate the values of a given function and which has properties
like generality, minimal degree, uniqueness and having a well-defined Hermite poly-
nomial (one for which not only the values of the polynomial, but also its derivatives
at the points coincide with those of the function) as points coalesce? These are the
properties we will need if we want to use them to define smooth coordinates in our
multispace. This question was answered by de Boor and Ron in [11–13]; we describe
below their solution to the interpolation problem as it applies to our particular case.

Interpolation Notation Let� be the set of p-variate polynomials, and�′ its algebraic
dual. Let � be a subspace of �′. We will denote by �k the subset of polynomials of
degree less than or equal to k.

Definition 4.3 We say that P ⊂ � is correct for � if for any continuous linear
functional F on �, there exist a unique q ∈ P such that

F(λ) = λ(q)

for any λ ∈ �. We also say P interpolates �.

The dual space �′ can be identified with functions analytic at the origin o, using
the bilinear form

〈 f, q〉 =
∑

J∈Zp
+

D J f (o)D J q(o)

J ! , (12)

where q is a p-variate polynomial and f is a function analytic at the origin. One can
also use formal power expansions at the origin instead of analytic functions in the
obvious way, without too much trouble. See [11,12] for more details.

Example 4.4 (Lagrange Interpolation) If � is spanned by point-evaluations, � =
〈λθ 〉θ∈
 with λθ (p) = p(θ), θ ∈ R

p, finding P correct for � solves a Lagrange
interpolation problem. Indeed, if
 represents afinite number of points in the parameter
space D ⊂ R

p, and λθ is evaluation at an element of 
, then one can check that
the power series representing λθ is the Taylor expansion of eθ ·x (see [11,12]). An
analytic function F defines a continuous linear functional on � via (12) and F(λθ ) =
〈F, eθ ·x〉 = F(θ). Thus, P is correct if for any F there exists p ∈ P such that

F(λθ ) = F(θ) = λθ (p) = p(θ)

for all θ ∈ 
, which is the definition of Lagrange interpolation, see Example 4.9.

Example 4.5 (Hermite Interpolation) If we choose instead the set

� = {λq,θ }θ∈
,q∈V ⊂�

where

λq,θ (p) = λθ (q(∇)(p)) = q(∇)(p)(θ)
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and where ∇ is the gradient vector and q ∈ V ⊂ � is a properly chosen polyno-
mial with coefficients reflecting the differential data we need to match (for example,
q(x, y) = x2 if wewish tomatch the second derivative in x), then the associated power
series representing λq,θ is q(x)eθ ·x (see [11,12]). Therefore, finding P correct for �

is equivalent to finding a family of polynomials P such that for any linear functional
on � represented by an analytic function F , there exists a unique polynomial p ∈ P
with the property

F(λq,θ ) = 〈F, q(x)eθ ·x〉 = q(∇)(F)(θ) = λq,θ (p) = q(∇)(p)(θ)

for all θ ∈ 
 and all q ∈ V . The different choices of V allow us to find unique
polynomials that coincide with F and different choices of derivatives, or combinations
of derivatives, on 
. This is the solution to the Hermite interpolation problem, see
Example 4.10.

Definition 4.6 Given a formal power series at x = 0, call it f , we denote by f↓ the
homogeneous term in the power expansion of f of lowest order.

For example, if θ, x ∈ R
p, eθ ·x↓ = 1.

Definition 4.7 Given a finite subset � ⊂ �′, we can identify each of its elements
with formal power series at the origin using (12), and we can consider �̂ to be the
vector space spanned by � as represented by these series. Define the vector space

�↓ := span{ f↓, f ∈ �̂}.

For example, if we consider the planar case, and 
 = {(1,−1), (0, 2)}, then
e(1,−1)·x = 1 + x − y + · · · and e(0,2)·x = 1 + 2y + · · · . Since e(1,−1)·x − e(0,2)·x =
x − 3y + · · · , we have that �↓ is the linear space spanned by the polynomials

p1(x, y) = 1 = e(1,−1)·x
↓ and p2(x, y) = x − 3y = (

e(1,−1)·x − e(0,2)·x)
↓.

From now on, if 
 is a data set, we say that �↓ is continuous on 
 if whenever the
data 
′ is close to 
 in the standard product topology, then �′↓ is close to �↓ in the
standard topology of polynomial spaces.

The following theorem is a compilation of results found in [13]. Since our construc-
tions are lattice based, we assume that � is defined as in the Lagrangian interpolation
associated with a lattice of points 
 ⊂ R

p, in which case we also write � as �
. We
omit the superscript 
 where the dependence of � on 
 is clear.

Theorem 4.8 [13] The space �↓ has the following properties:

(1) Well defined. For any finite 
, the assignment � → �↓ exists, is unique and
�↓ is correct for �.

(2) Continuity. Recall that �k is the set of p-variate polynomials of degree less or
equal to k. If �k ⊆ �↓ ⊆ �k+1, then the assignment � → �↓ is continuous
with respect to 
.

(3) Coalescence �⇒ Osculation. That is, the Lagrange interpolation becomes
the Hermite interpolation under coalescence, provided the coalescence is well
controlled, so that data points coalesce along embedded curves.
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(4) �↓ is closed under differentiation and it is spanned by a homogeneous basis.
(5) Minimal degree. �↓ has minimal degree.
(6) Monotonicity. If 
 ⊂ 
′, then �
↓ ⊂ �
′

↓ .
(7) Cartesian product �⇒ tensor product. If 
 and 
′ are two data sets, then

�
×
′
↓ = �
↓ ⊗ �
′

↓ . (13)

(8) Constructible. The space �↓ can be constructed in finitely many arithmetic
steps.

Notice that once an interpolating family is chosen, the actual interpolation problem
reduces to solving a linear system of equations. Indeed, one would choose a linear
combination of a basis generating �↓ and write a linear system for the coefficients
using the values of the function we wish to interpolate on the interpolating data. The
solution of the linear system will define the proper combination of the basis and hence
the interpolating polynomial for the function.

It is essential that our construction of multispace ensures that the interpolation
problem satisfies Properties (2) and (3) of the above theorem. To quote de Boor and
Ron [13], concerning Property (2) in the above theorem, (note that �↓ is denoted as
�
 in the original [13])

“…If
 ⊂ R
3 consists of three points, then one would choose�
 ⊂ �1 (as our

scheme does) but if one of the three points approaches some point between the
two other points, this choice has to change in the limit and hence cannot change
continuously. As it turns out, our scheme is continuous at every 
 for which
�k ⊆ �
 ⊆ �k+1, for some k.”

Next, we quote deBoor andRon [13], concerning Property (3) in the above theorem.

“…If, eg, a point spirals in on another, then we cannot hope for osculation. But
if, eg, one point approaches another along a straight line, then we are entitled to
obtain, in the limit, a match at that point also of the directional derivative in the
direction of that line.”

These limitations on continuity and coalescencemean that in our construction of our
multispace, we cannot be as free in our choice of generalisation of the one-dimensional
pointed curves used to construct Olver’s one-dimensional multispace, as might seem
possible. We return to this discussion in Sect. 4.3.

Example 4.9 In the Lagrange interpolation case, assume 
 ⊂ R
p is given, as before,

by (1, 2) and (−1, 1), and assume {λθ }θ∈
 are the associated point-evaluation func-
tionals. Thus, we have two series generating �̂, namely

ex+2y = 1 + x + 2y + o(||x||), e−x+y = 1 − x + y + o(||x||).

A basis for the vector space generated by these two series are the series of ex+2y =
1 + x + 2y + o(||x||) and ex+2y − e−x+y = 2x + y + o(||x||), and so

�↓ = span{1, 2x + y}.
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If we choose as 
 the points (1, 2) and (1,−1), then the generators of �̂ are the same
as before, but

�↓ = span{1, y}

as expected.
If we choose four points of the form (1, 2), (1 + ε, 2), (−1, 1), (−1, 1 + ε), then

the four series generating �̂ are

f1 = 1 + (1 + ε)x + 2y + 1

2
((1 + ε)x + 2y)2 + o(||x||2),

f2 = 1 − x + (1 + ε)y + 1

2
(−x + (1 + ε)y)2 + o(||x||2)

and

f3 = 1 + x + 2y + 1

2
(x + 2y)2 + o(||x||2),

f4 = 1 − x + y + 1

2
(−x + y)2 + o(||x||2).

Since ( f1 − f3)↓ = εx and ( f2 − f4)↓ = εy, if ε �= 0, then 1, x and y will be three
of the four generators for �↓. A fourth will be given by

(
1

ε
(2( f1 − f3) + f2 − f4) − f3 + f4

)

↓
= (2 + ε)x2 − 1 − ε

2
y2,

and hence

�↓ = span

{
1, x, y, (2 + ε)x2 − 1 − ε

2
y2

}

will generate the interpolating polynomials.

Example 4.10 In the Hermite interpolation case, assume we would like to instead find
interpolating polynomials that coincide with a function at (1, 2) and (−1, 1), and, say,
with its partial with respect to x at (1, 2) and with respect to y at (−1, 1). In this
case, the polynomials qi generating the Hermite data are, at (1, 2), q1(x, y) = x , and
at (−1, 1) q2(x, y) = y. One can see (see [11,12]) that λq1,(1,2) is represented by
the analytic function f (x) = xex+2y , while λq2,(−1,1) is defined by g(x) = ye−x+y .
Since � = span{λ(1,2), λ(−1,1), λq1,(1,2), λq2,(−1,1)}, �̂ has four generators, namely

f1 = xex+2y = x + x2 + 2yx + o(||x||2), f2 = ye−x+y = y − xy + y2 + o(||x||2)
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and

f3 = ex+2y = 1 + x + 2y + 1

2
(x + 2y)2 + o(||x||2),

f4 = e−x+y = 1 − x + y + 1

2
(−x + y)2 + o(||x||2).

Some simple and direct calculations show that ( f3)↓ = 1, ( f1)↓ = x , ( f2)↓ = y and
(2 f1 + f2 − f3 + f4)↓ = 2x2 − 1

2 y2. Thus,

�↓ = span

{
1, x, y, 2x2 − 1

2
y2

}
.

The interpolating polynomials in the previous example converge to these as ε → 0.

We are now ready to define a lattice-based multispace in several variables.

4.3 Multispaces in Several Variables

We define two related versions of multispace, the first containing the jet bundle
J �(M, R) and the second containing the jet bundle J �(U, M) where U ⊂ R

p is
open.

We first recall that a point in the jet bundle Jr (M, R) is represented by a triple
[x, f, U ]r where x ∈ U ⊂ M , the set U is open, and f : U → R, is a Cr function.
We say that the triple [x, f, U ]r ∼ [x ′, f ′, U ′]r if x = x ′ and if, in some coordinate
chart containing x , f and f ′ have the same derivatives up to order r , [26, p. 60]. The
equivalence class [x, f, U ]r is known as the r -jet of f at x . If Tr ( f )(x) is the order
r Taylor polynomial of the (sufficiently smooth) function f at x , then [x, f, U ]r ∼
[x, Tr ( f )(x), U ]r , so we speak of Tr ( f )(x) as being the r -jet of f at x . Further,
the coefficients of the r th-order Taylor polynomials form local coordinates of the jet
bundle Jr (M, R). It is this construction that we generalise first.

To construct our multispace which both contains and generalises the jet space
J �(M, R), we proceed as follows:

1. We first define the kinds of lattices� that we will take as the models of domains for
a mixed discrete-continuous jet at a point in M . They will be sets of points in Z

p

with “directional multiplicities” or more precisely, “required contact conditions”
attached. Our model lattices will come equipped with a base point. We show
further that these models have the properties required for the de Boor and Ron
interpolation of functions on them to be smooth, both as their image in M is varied
and under coalescence.

2. Next, for a model lattice � ⊂ Z
p ⊂ R

p, we let U ⊂ R
p be an open set, diffeo-

morphic to the unit disc in R
p, containing �. Let φ be a diffeomorphic map of

U into M , and f : φ(U ) → R a function. Our multijet will then be an equiv-
alence class of quadruples [�, φ, f, U ], where [�, φ, f, U ] ∼ [�′, φ′, f ′U ′], if
the base points of φ(�) and φ(�′) agree; if φ(�) = φ′(�′) as sets; if whenever
u J = φ(xJ ) = φ′(x ′

J ′) the required contact conditions on xJ and x ′
J ′ are the
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Fig. 11 After coalescence, the zeroth-order contact condition at u J ′ is replaced by D( f ′)|u J (v) =
D( f )|u J (v) where v = D(φ)|xJ (w)

same; and if the contact conditions induced on φ(�) by those on � are all zero
when evaluated on f − f ′, see Fig. 11.

3. Finally, the multispace fibre over x will be defined as the union of all equivalence
classes of multispace jets with base point x . Our coordinates on the fibre are those
which assign to each [�, φ, f, U ], both the coefficients of the image of � and the
coefficients of the de Boor and Ron interpolant polynomial. In this way, we have
the usual bundle topology on our multispace which relates naturally to both local
coordinates on M and to the coordinates on the fibre over x . Our multispace con-
tains the jet bundle J �(M, R) for each �, as an embedded submanifold, specifically
as multijets where the lattice is a single point with multiplicity

(p+�
p

)
(the number

of derivative terms up to order � on p-space), and the interpolation is given by the
�th order Taylor polynomial.

The secondmultispace wewill define, containing J �(�, M)where� is an open set
of R

p, is related to the first, by considering the function f , in the above construction,
to be each of the coordinate functions on M , evaluated on the image of U .

4.3.1 Basic Definitions

As before, from now on we will assume that our lattices are connected.

Definition 4.11 We say the lattice � has an �-corner distribution, or a corner distri-
bution of length �, if it has the following inductive description:

If p = 1, the lattice is a connected lattice with �+1 vertices. Notice that the number
� refers to the degree of the derivative one gets when all points coalesce into one point,
not to the number of points in the sublattice.
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Fig. 12 Corner lattices will
allow the definition of finite
differences needed to
approximate a Taylor
polynomial

Fig. 13 A forward p = 3
corner lattice of length � = 3

For any p the lattice is a connected lattice containing � + 1, (p − 1)-dimensional
disjoint corner lattices of lengths 0, 1, . . . , �. Figure 12 shows four corner lattices
for p = 2 of lengths 4, 3, 2 and 2 (clockwise from the first quadrant). Figure 13
shows a forward p = 3 corner distribution. We will consider corner lattices with a
distinguished point x0.

Corner distributions contain exactly enough points to define interpolating poly-
nomials that will converge to Taylor polynomials upon coalescing. For example, if
p = 2, and � = 2, and u0,0 is the base point, a possible interpolating polynomial will
have coefficients which are a linear combination of the terms

1,�x f (u0,0),�y f (u0,0),�
2
x f (u0,0),�

2
y f (u0,0),�y�x f (u0,0)

where �x |u0,0 is the operator �x |u0,0( f ) = f (u1,0) − f (u0,0), and similarly with
�y |u0,0 . To be able to uniquely determine an interpolating polynomial with those
coefficients we will need to use all the vertices in a corner distribution like the one in
the first quadrant of Fig. 12, with length � = 2 instead of 3. Different corner lattices
will produce different types of interpolating polynomials, using forward, backwards
or other types of differences.
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From now on we will assume that all lattices � have a corner distribution of length
� with base point x0. When several lattices are involved we will denote the base point
of � by x� and the base point of φ(�) by u� = φ(x�).

Lemma 4.12 Assume our data 
 is given by evaluating a function on the points of a
corner lattice � of length �. Then

�↓ = ��.

Proof Consider the monomials corresponding to polynomials of order �. That is all
monomials of the form x I where |I | ≤ � is a multi-index I = (i1, . . . , i p) and

x I = xi1
1 . . . x

i p
p . We want to show that these monomials are generators for �↓. Thus,

we want to show that they generate f↓, where f is any possible linear combination
of eθ ·x , θ ∈ 
. Therefore, it suffices to show that the coefficients of the monomials
x I , |I | ≤ �, in the Taylor expansions of eθ ·x form an invertible matrix. Notice that we
have the same number of monomials as points and hence the matrix is square.

Next, notice that the coefficients of these Taylor expansions are multiples of the
monomials themselves evaluated at the point θ (since we are simply substituting xi

by θi xi in the expansion). Therefore, the matrix of coefficients is given by a multiple
of the matrix with rows (θ I ), θ ∈ 
, where θ I has the different monomials in some
prescribed order. This means that if the matrix were not to be invertible, we would
have a combination

∑
I aI θ

I = 0 for aI ∈ R which will be valid for all θ ∈ 
. That
is, the points in 
 lie in an algebraic variety of order �.

But this is not possible: Our points lie on � + 1 distinct hyperplanes, and � of them
contain enough points to make the hyperplane unique (only one of them contains a
single point and does not determine it). Thatmeans the polynomialmust factor through
the � linear equations that define the hyperplanes and must have at least order �. But
the extra single point left does not belong to any of the hyperplanes, and hence to
ensure the point also lies in the variety we will need to use a polynomial of order at
least � + 1. Therefore, the matrix of coefficients is invertible and

�↓ = ��.


�
This lemma ensures that property (2) in Theorem 4.8 is satisfiedwhenwe use corner

lattices.Next,we consider coalescence of the points in the lattice, leading to a change in
the lattice, an increase in the contact order and to our Lagrange interpolation becoming
a Hermite interpolation. We restrict the coalesce to be along coordinate hyperplanes
in the model lattices; we call these kinds of coalescence hyperplane coalescence. See
Fig. 14. Forbidden coalescences are also illustrated in Fig. 15.We note that hyperplane
coalescence maintains the basepoint of the lattice, although not in general the contact
condition there. Coalescence means, in effect, that we consider some lattice points to
not be distinct.

Since we want the multispace to be closed under hyperplane coalescence, we
consider coalesced model lattices to come equipped with certain required contact
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Fig. 14 Corner lattices under repeated coalescence of hyperplanes, indicated by black arrows. A red arrow
indicates a zeroth- and a first-order contact condition is required at that point in the interpolation, an arc
indicates a zeroth-, first- and second-order contact condition, a plane indicates all zeroth-, first- and second-
order contact conditions in the plane are required. The squared points are the base points (Color figure
online)

Fig. 15 Examples of forbidden coalescence.We restrict coalescence to being along coordinate hyperplanes,
which maintains a coordinate structure

conditions specified at particular points of the lattice. Suppose two points, u0 and
u1 = u0 + hv coalesce as h → 0. Then the interpolation goes from matching the
values of the function f at u0 and u1, to matching the values f (u0) and D( f )|u0(v).
See Fig. 11.
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Repeated coalescence leads to higher-order Hermite interpolation problems. If you
begin with a corner lattice and coalesce along hyperplanes repeatedly, you will arrive
at a single point at which the interpolation for a function f is simply the Taylor
polynomial for f , with the order of the Taylor polynomial being the length of the
corner lattice. In this way, the jet bundle J �(M, R) is a subset of our multispace. See
Fig. 14.

From now on we will abuse the notation and denote the (coalesced) model lattice
also as � and the contact conditions on it by C(�). Under the map φ : U ⊃ � → M ,
φ(�) inherits contact conditions which we will denote by C(φ(�)).

The result of Lemma 4.12 remains unchanged under coalescence, as shown in the
next lemma.

Lemma 4.13 Assume � is a hyperplane coalesced corner lattice of length �. Then
�↓ = ��.

Proof We can show this by induction. Assume that θ̂ Ĵ = θJ +hei approaches θJ along

the ei direction, that is, as h → 0, for J ∈ �, Ĵ ∈ �̂ (that is for those data points in a
hyperplane coalescing into another one, � and �̂ are indexing the two hyperplanes).
Except for the coalescing of a corner, we would have more than one point coalescing
into one since we are using limits of hyperplanes. That is, for a given J , we will have
more than one Ĵ limiting it. Once more we want to prove that the coefficients of the
monomials x I in the expansion of exp(θ · x), for any θ �= θ̂ Ĵ and xi exp(θJ · x) for a

given J ∈ �, and any Ĵ ∈ �̂ related under the limit, define an invertible matrix. Let us
fix J ∈ � and let us number those limiting θJ as θ j , j = 1, . . . , p. As in the proof of
Lemma 4.12, the coefficient of x I in exp(θi ·x) is given by θ I

i /I !, and one can directly
check that the coefficient of x I in xi exp(θ j · x) is given by

1

I !θ
I−ei
j ki

if I = (k1, . . . , kp) and I −ei = (k1, . . . , ki −1, . . . , kp), for j ∈ J . Assume that the
matrix formed by these coefficients is not invertible. It means that there is a polynomial
of degree � of the form ∑

|I |≤�

aI xI (14)

that vanishes on all θ ∈ 
 except for θ̂ j . As we saw in the proof of Lemma 4.12,
we would need an �-order polynomial to describe a polynomial vanishing on those
points, given by the product of � linear equations representing the � hyperplanes (one
of them will not be unique if it corresponds to a corner, since it is determined only
by one point, but we can just make any choice). Now, if the lemma were not true, we
would additionally need to satisfy the relation
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Fig. 16 The data for a multispace element. The figure shows functions f and f ′ which agree on the contact
conditions at the lattice points, φ(�). We have [�, φ, f, U ] ∼ [�, φ, f ′, U ]

∑
|I |≤�

aI θ
I−ei
j ki = 0,

where I = (k1, . . . , kp). This is simply the derivative of the polynomial (14) with
respect to xi . Thus, the polynomial (14) needs to have order of contact 2 at the points
on the hyperplane that coalesced, Typically onewould need a second-order polynomial
along the hyperplane to achieve that, which would increase the degree of (14) to �+1.
Higher orders of contact would result from a higher number of coalescing hyperplanes
and the order of the polynomial would generically increase accordingly, proving the
lemma. 
�

The definition of elements of our multispace as equivalence classes of functions
which agree on images of lattices, is illustrated in Fig. 16.

Definition 4.14 Wedefine themultispace (M, R)
(�)
p as the set of equivalence classes of

quadruples [�, φ, f, U ], where (�, C(�)) is a (possibly hyperplane coalesced) corner
lattice of length �;U is an open set of R

p for some p ≤ dim(M), diffeomorphic to the
unit disc and containing �; the map φ : U → M is an embedding of U into a single
coordinate chart of M , and the map f : φ(U ) → R is smooth of order �. We say two
quadruples are equivalent, [�, φ, f, U ] ∼ [�′, f ′, φ′, U ′], if the base points of φ(�),
φ(�′) agree, that is φ(x�) = φ′(x�′), if φ(�) = φ′(�′), C(φ(�)) = C(φ′(�′)) and
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the contact conditions evaluate to zero on f − f ′, that is, both f and f ′ satisfy the
same contact conditions on each vertex of φ(�). (We note the contact conditions are
linear.)

4.3.2 The Main Theorem: Multispaces are Manifolds Which Contain the Jet Bundle

Denote by L�
p(M, R) the subset of (M, R)

(�)
p given by non-coalesced lattices, that is a

lattice with zeroth-order contact conditions at every vertex. Denote also by J �
p(M, R)

the space of regular jets of maps from p-dimensional submanifolds of M to R. The
main purpose of this section is to prove the following theorem.

Theorem 4.15 Let M be a manifold of dimension m. Then, there exists a topology
and a differential structure that makes (M, R)

(�)
p into a smooth manifold of dimension

(m+1)
(p+�

p

)
, with the jet space J �

p(M, R)as a smooth submanifold and withL�
p(M, R)

as an open submanifold.

Before we start proving the theorem we recall that the main difficulty in defining
interpolating polynomials is determining the family of polynomials with which we
choose to interpolate. Once this is determined, the actual interpolating coefficients
are simply given by the solution of a linear system of equations defined by the equal-
ity conditions we need to satisfy at the chosen points. Therefore, they will change
smoothly insofar as the linear system (and hence the family of interpolating polyno-
mials) changes continuously. Lemmas 4.12 and 4.13 together with Theorem 4.8 show
that we are indeed in the smooth regime of the de Boor and Ron interpolation method.

Proof First of all, let us show that (M, R)
(�)
p is a bundle over the manifold M . Let us

call x� the base point of �. The fibre over u ∈ M is the set of equivalence classes,
[�, φ, f, U ] where u satisfies φ(x�) = u. Define π : (M, R)

(�)
p → M to be the

projection map
π([�, φ, f, U ]) = φ(x�) = u. (15)

Let us first restrict toL�
p(M, R). In order to have awell-defined coordinate labelling

on the lattice,we need to describe an ordering on the vertices. Thefirst pointwill always
be the base point. Although any ordering will do, we can order them by induction: if
the lattice is one-dimensional we move from smallest coordinate to largest coordinate
in R. If the lattice is two-dimensional, then we order the hyperplanes from smallest
length to largest length, and then order in each hyperplane as in the one-dimensional
case. In addition to its place in the ordering of the lattice points, each point in the
lattice will have a coordinate in M . Since the image of the lattice lies in a single
coordinate chart, these coordinates are consistent across the lattice, once the chart is
designated. Thus the dimension of the set of embedded lattices is m

(p+�
p

)
. This set

can be considered as a submanifold of M N , where N = (p+�
p

)
, with the subspace

topology, and evidently has coordinates in terms of the coordinates on M .
If the lattices are coalesced, the coalesced vertices will have repeated coordinates,

as many as the multiplicity requires. The set of coalesced lattices will have measure
zero since it is the level set of some functions depending on coordinates.
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If we now consider the relevant polynomial interpolation p f of a (sufficiently
smooth) function f on the embedded image of the corner lattice, we find that it can be
described by

(p+�
p

)
coefficients. Since, by construction, [�, φ, f, U ] ∼ [�, φ, p f , U ],

we may add these coefficients to the coordinates of the equivalence class. That these
coefficients can be used as coordinates follows from knowing that we are in the regime
where the de Boor and Ron interpolation is unique and depends smoothly on the data,
and from the fact that the coordinates of interpolations on the coalesced lattices are
well behaved limit points of those on the non-coalesced lattices.

A simple counting tells us that we have, in total, (m + 1)
(p+�

p

)
coordinates needed

to specify the equivalence class in each element of the fibre.
The bundle (M, R)

(�)
p is taken to be the disjoint union of the fibres, and π as in (15)

is its projection. We may take the usual bundle topology given by the smoothness of
the local trivialisations defined by the coordinates

V ⊂ (M, R)(�)p → R
m(p+�

p ) × R
(p+�

p )

which turns the space into amanifold. Themap π is clearly smooth since the basepoint
is simply the first element in the list of lattice points.

We have already shown that J �
p(M, R) ⊂ (M, R)

(�)
p , indeed, it is embedded as the

submanifoldwhose first set of coordinates is the diagonal� in M N , where N = (p+�
p

)
.

We note the standard jet space is J �(M, R) = J �
m(M, R).

Notice that if we perturb slightly an uncoalesced lattice �, the lattice will remain
uncoalesced, and so the subspace of classes of the form [�, φ, f, U ], with � an unco-
alesced corner lattice, is open. 
�
Remark 4.16 Although we have required the image of a lattice in M to be within a
single coordinate chart of M , this restriction is perhaps not vital. The generalisation
requires, firstly, keeping track of which chart as well as the coordinate given by the
chart, in the lattice part of the coordinates for the multispace element. Secondly, it
requires the construction of interpolations which agree on intersections of coordinate
charts.

We now construct our second multispace, (�, M)
(�)
p , where � ⊂ R

p, p ≤ dim M ,
which represents local approximations to embedded parametrised p-submanifolds in
M .

Definition 4.17 We define the multispace (�, M)
(�)
p to be the set of equivalence

classes of triples [�, φ, U ] where � ⊂ U ⊂ � ⊂ R
p is a (possibly coalesced)

lattice of length �; U is an open set of � ⊂ R
p, diffeomorphic to the unit disc, where

φ : U → M is smooth of order � and where φ(U ) is contained in a single coordi-
nate chart of M . We say two triples are equivalent, [�, φ, U ] ∼ [�′, φ′, U ′] if the
base points of �, �′ agree; if φ(�) = φ′(�′); if C(φ(�)) = C(φ′(�′)); and if φ(U )

and φ′(U ′) have the same order of contact (as submanifolds) at φ(�) as indicated by
C(φ(�)).
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Theorem 4.18 Let M be a manifold of dimension m. There exists a topology and
a differential structure that makes (�, M)

(�)
p into a smooth manifold of dimension

2m
(p+�

p

)
.

Proof The proof of this theorem is almost identical to that of Theorem 4.15. In local
coordinates in M , we can write φ = (φ1, . . . , φm). Wewould then apply the process in
Theorem 4.15 to produce m

(p+�
p

)
coordinates that determine the lattice, plus m

(p+�
p

)
coordinates determining the interpolating polynomial for φk with data �, for each
k = 1, . . . , m. The remainder of the proof is identical to that of Theorem 4.15. 
�

The main purpose of our multispace construction is to show that a frame on a
multispace is simultaneously a frame on the jet bundle and a frame on the set of all
local lattice-based discretisations. We now proceed to discuss how the group action
on M induces a group action on multispace. We then show that a moving frame on
multispace is simultaneously a smooth and a discrete frame, with the smooth frame
being the limit of the discrete, and that the discrete Maurer–Cartan invariants and their
syzygies coalesce to the smooth ones.

4.3.3 The Action of a Group on (M, R)
(�)
p

Let G be a group acting on M × R,

G × M × R → M × R.

Recall the equivalence classes in (M, R)
(�)
p have the form [�, φ, f, U ] where � ⊂

U ⊂ R
p, φ : U → M and f : φ(U ) → R. Then for each g ∈ G there is an induced

action on the map (φ, f ) : U × φ(U ) → M × R given by (g · (φ, f )) (x, z) =
g · (φ(x), f (z)).

Denote the components of g·(φ, f ) to be g·(φ, f ) = ((g · (φ, f ))1, (g · (φ, f ))2) ∈
M × R. Then the action of G on (M, R)

(�)
p is given by

g · [�, φ, f, U ] = [�, (g · (φ, f ))1, (g · (φ, f ))2, U ].

We note that (g · (φ, f ))1 may be an embedding only for g in a neighbourhood of
the identity. In this case we would have a local group action as defined in [53]. Since
the action of G on M × R preserves the order of contact, this action is independent of
the representative of the class and is thus well defined on (M, R)

(�)
p .

If, in a particular application G acts only on M , one can extend to an action on
M × R by taking g · (z, t) = (g · z, t), that is the identity action on the R coordinate.

If � is a single point so that [�, φ, f, U ] is an element of J �
p(M, R), the induced

action is the standard prolonged action, that is, as induced by the chain rule, while if
the lattice � is uncoalesced and the group does not act on the parameter R, the action
is the diagonal action on M N where N = (p+�

p

)
.
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4.3.4 The Action of a Group on (�, M)
(�)
p

Let G be a group acting on M

G × M → M

and let [�, φ, U ] ∈ (�, M)�p be an element of ourmultispace. Sinceφ : U ⊂ � → M ,
we may define g · φ : U → M by (g · φ)(x) = g · (φ(x)). Define the action of G on
M (�)

p to be

g · [�, φ, U ] = [�, g · φ, U ].

Again, since the action of G on U × M preserves the order of contact, this action is
independent of the representative of the class and is thus well-defined on (�, M)

(�)
p .

Further, the action restricted to J �
p(�, M) ⊂ (�, M)

(�)
p is the standard prolonged

action induced by the chain rule.
Notice that one could consider more general actions on M × U , but we will omit

it here to avoid further complications.

4.3.5 Moving Frames on (M, R)
(�)
p , (�, M)

(�)
p

We are now in a familiar situation: we have a smoothmanifold (M, R)
(�)
p , or (�, M)

(�)
p

and the action of a Lie group G on it. Thus, we can investigate the use of the standard
moving frames method developed in [17] to establish the existence of a moving frame
for the multispace.

Assume the action of the group G on (M, R)
(�)
p , or (�, M)

(�)
p , is such that the

existence of a local moving frame is guaranteed (see Sect. 2.1). Let us choose a point
in L ∈ (M, R)

(�)
p or (�, M)

(�)
p and let S be a section transverse to the orbit of G

through L . Using the standard moving frame method, we would get a local moving
frame ρ, defined for all L̂ ∈ (M, R)

(�)
p , or (�, M)

(�)
p in some neighbourhood of L , as

the group element such that ρ · L̂ ∈ S. That is, ρ is an equivariant continuous map

ρ : U ⊂ (M, R)(�)p → G (resp. ρ : U ⊂ (�, M)(�)p → G)

where U is an open neighbourhood of L .

Remark 4.19 We note that there are results detailing conditions under which an action
on a jet bundle will become free and regular for a sufficiently large prolongation, that
is, by considering sufficiently high-order derivative terms [17]. A discussion of the
related results for a product action, under a sufficiently large number of products,
is given by Boutin [5]. We conjecture that similar results will hold for actions on
multispace.

Before proving our results, we give a simple example. The first example refers to
the multispace, (R2, R)

(�)
1 .
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Example 4.20 We consider the two-dimensional group G = R
+

� R acting on M ×
R = R

2 × R as (λ, ε) · (x, y, u(x, y)) = (x, y, λu + ε). We take φ to be the identity
map for simplicity. At the corner lattice � = {(x0, y0), (x0 + h, y0), (x0, y0 + k)}
with (x0, y0) the base point, the multijet coordinates are the lattice coordinates, and
the coefficients of the linear interpolant to some function u on these three points. The
interpolant is

p(u)(x, y) = A + B · (x − x0) + C · (y − y0)

= u(x0, y0) + u(x0 + h, y0) − u(x0, y0)

h
(x − x0)

+u(x0, y0 + k) − u(x0, y0)

k
(y − y0).

Thus the coordinates coming from the interpolant are

(A, B, C) =
(

u(x0, y0),
u(x0 + h, y0) − u(x0, y0)

h
,

u(x0, y0 + k) − u(x0, y0)

k

)
.

We see that the coefficients are functions of u at the lattice points and so the induced
group action on these coordinates is the natural action on functions. We thus have

(λ, ε) · (A, B, C) = (λA + ε, λB, λC).

Under coalescence, A → ux and B → uy , and the group action is indeed then that
obtained via prolongation (i.e. the chain rule) on the jet coordinates.

Remark 4.21 (The restriction of a multispace frame to the embedded jet bundle defines
a smooth frame) In the above example, we have given the normalisation equations as
being for the uncoalesced lattice. The normalisation equations for the frame on the
coalesced lattices and the embedded jet bundle are given implicitly by the relevant
continuum limit (if this does not exist, or the result is not smooth on all multispace,
then we do not have a frame onmultispace).We note that normalisation equations for a
frame on multispace in a domain which includes the embedded jet bundle, necessarily
defines normalisation equations for a smooth frame on the embedded jet bundle, by
restriction, even where their definition is given implicitly by a continuum limit. This
is illustrated in Example 4.23.

Theorem 4.22 Assume ρ is a local moving frame for the action of G on (M, R)
(�)
p

(resp. (�, M)�p) determined by a section transverse to an orbit of G. Assume that

the section is also transverse to the orbit through a point L ∈ J (�)
p (M, R) (resp.

J �(�, M)), that is, the domain of the multispace frame includes L.
Denote by ρ(Q) the multispace frame at Q, and by ρ(L) the smooth moving frame

which is obtained by the restriction of the normalisation equations for ρ to the jet
space, evaluated at L. If L and Q have the same base point, then as Q coalesces to
L,

ρ(Q) → ρ(L).
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Proof We prove the result for (M, R)
(�)
p , the other case being similar. Notice that ρ(L)

is the standard moving frame on jet spaces obtained through a section transverse to
the prolonged orbits, which is the multispace section restricted to the jet bundle. We
note that J �

p(M, R) is a submanifold of (M, R)
(�)
p , invariant under the action of the

group, so that the orbit of G through a point L ∈ J �
p(M, R) is equal to the prolonged

orbit.
The proof is now immediate from the fact that the moving frame on (M, R)

(�)
p is a

smooth map. 
�
In Appendix, we will show a different convergence theorem for families of discrete

frames.

Example 4.23 Continuing with our previous Example 4.20, a moving frame ρ is
defined by (λ, ε) · (A, B, C) = (0, 1,∗ ) where ∗ will be the invariant, (λ, ε) · C |ρ .
This yields (λ, ε)|ρ =

(
h

u(x0+h,y0)−u(x0,y0)
,− hu(x0,y0)

u(x0+h,y0)−u(x0,y0)

)
or in the standard

matrix representation of this group,

ρ =
⎛
⎝

h

u(x0 + h, y0) − u(x0, y0)
− hu(x0, y0)

u(x0 + h, y0) − u(x0, y0)
0 1

⎞
⎠ . (16)

We saw that as h → 0, we obtain the correct induced group action on ux . We now see
further that the limiting frame

ρ(x, u, ux ) =
⎛
⎝

1

ux
− u

ux
0 1

⎞
⎠ (17)

is obtained both from the limit of the normalisation equations, (λ, ε) · (ux , u) = (1, 0)
as well as being the limit of the frame itself. We therefore have a frame on multispace,
so that both the discrete and the smooth cases are handled by the one calculation of
the frame on multispace.

4.4 The Continuous Limit of Invariants and Syzygies

We return to our discussion of discretemoving frames in the previous section, in which
we have a lattice variety LN embedded in some manifold, and a discrete frame is a
map ρ : LN → G N where N is the number of points in the lattice. Suppose now that
adjacent vertices in the lattice variety begin to coalesce. Under what conditions will
the discrete frame converge to a smooth frame, ρ̄? Furthermore, under what kinds of
conditions will we have

ρn+1ρ
−1
n ∼ ρ̄(z + εv)ρ̄(z)−1 ∼ exp

(
ε (Dρ̄) ρ̄−1

)
(18)

whereD is an invariant differential operator?Andwhenwill the discrete local syzygies
converge to the local differential syzygies?
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Example 4.24 Let us go back to our running Example 4.20. Setting ρi = ρ(xi ,

yi , u(xi , yi ), u(xi + hi , yi ), u(xi , yi + ki )) and calculating ρ1ρ
−1
0 , we have, using

Eq. (16),

ρ1ρ
−1
0 =

⎛
⎝

h1(u(x0 + h0, y0) − u(x0, y0)

h0(u(x1 + h1, y1) − u(x1, y1))

h1(u(x0, y0) − u(x1, y1)

u(x1 + h1, y1) − u(x1, y1)
0 1

⎞
⎠ .

If we now set (x1, y1) = (x0+ h̄, y0) and h0 = h1 = h (say), so that the second lattice
is the shift of the first, by (h̄, 0), then

d

dh̄

∣∣
h̄=0ρ1ρ

−1
0

=
⎛
⎝−ux (x0 + h, y0) − ux (x0, y0)

u(x0 + h, y0) − u(x0, y0)
− hux (x0, y0)

u(x0 + h, y0) − u(x0, y0)
0 0

⎞
⎠

→h→0

(
−uxx

ux

∣∣
(x0,y0)

−1

0 0

)

= ρxρ
−1|J 2(M).

Alternatively, using the method we will apply in Example 4.29, we have setting u(x +
h̄, y) = u(x, y) + h̄ux (x, y) + O(h̄2), that

ρ1ρ
−1
0

=
⎛
⎝ 1 − ux (x0 + h, y0) − ux (x0, y0)

u(x0 + h, y0) − u(x0, y0)
h̄ + O(h̄2)

hux (x0, y0)

u(x0 + h, y0) − u(x0, y0)
h̄ + O(h̄2)

0 1

⎞
⎠

∼ exp

⎛
⎝h̄

⎛
⎝−ux (x0 + h, y0) − ux (x0, y0)

u(x0 + h, y0) − u(x0, y0)
− hux (x0, y0)

u(x0 + h, y0) − u(x0, y0)
0 0

⎞
⎠

⎞
⎠

∼ exp
(
h̄ρxρ

−1) (19)

as above. We note that ∂/∂x is an invariant operator since the independent variables
are invariant under the action, so that ρxρ

−1 is invariant. Cases where the independent
variables participate in the action require more care, as we indicate below.

Ourfirst theoremconcerns the convergence of the discreteMaurer–Cartan invariants
to the smooth Maurer–Cartan invariants of the smooth frame.

We consider the case where the discrete frame (ρR) on the lattice variety LN ⊂ M
can be viewed as a multispace frame ρ, with

ρJ = ρ([�J , φ, U ]), u J = φ(xJ ),

where xJ is the basepoint of �J .
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Assume the point Ti x J is also part of �J so that Ti u J = φ(Ti x J ). If we have a
path from Ti (u J ) to u J in the multispace indicating their coalescence, we can use the
multispace frame to differentiate Ti (ρJ )ρ−1

J with respect to the path parameter at u J .
We state and prove the next theorem for a multispace of the formM = (�, M)�p, and
then we discuss the other case in Remark 4.26.

Theorem 4.25 Let a multispace M with the embedded jet bundle J be given. Let a
path in M be given, ε �→ [�(ε), φ, U ] for 0 ≤ ε ≤ 1. Let u(ε) be the base point of
φ(�(ε)). Assume that both paths and the coalescence φ(�(ε)) → φ(�0) lie in the
domain of a multispace frame ρ. Set ρ(ε) = ρ([�(ε), φ, U ]), that is, ρ evaluated at
the point [�(ε), φ, U ]. If v = d/dε|ε=0u(ε), then

lim
�(0)→�0

[
d

dε

∣∣∣
ε=0

ρ(ε)ρ−1(0)

]
= (D(v)ρ) ρ−1 (20)

where D(v) = ∑
vi∂/∂xi is the directional derivative.

The theorem follows from standard results concerning smooth functions on mani-
folds.

Remark 4.26 For a multispace of the form M = (M, R)
(�)
p , it is possible that the

independent variables participate in the group action, and then (D(v)ρ) ρ−1 may not
be invariant. We recall that a smooth frame on a jet bundle yields a canonical, maximal
set of invariant differential operators. Indeed, on a manifold with coordinates u, if
g · u = ũ, then we define

Di = ∂

∂ ũi

∣∣∣
g=ρ

=
(

∂ũ
∂u

)−T

i j

∣∣∣
g=ρ

∂

∂u j
(21)

Rewriting the partial derivatives in (20) in terms of the invariantised derivatives, by
inverting Eq. (21), yields an expression from which the right hand side of Eq. (18)
may be obtained, provided we are careful about the curve ε → u(ε) used in Theorem
4.25 to obtain v.

Consider the example of a scaling action on a single independent variable, so M
is the positive real line, and G is the group of positive real numbers under standard
multiplication. Suppose f : M → R is invariant under the group action. Let the
frame be given by ρ([�, φ, f, U ]) = 1/u where u is the image of the basepoint of
�. Then the single invariant operator is u∂/∂u. If we take our path of coalescence to
be u(ε) = u + ε, then D(v) in the statement of the Theorem will not be invariant.
However, if we take u(ε) = (1 + ε)u, then it will be.

Suppose that D(v) = ∑
i vi∂/∂ui . Inverting Eq. (21) yields expressions of the

form ∂/∂ui = ∑
k AikDk , so that

D(v) =
∑

i

vi

∑
k

AikDk =
∑

k

(∑
i

vi Aik

)
Dk =

∑
k

v̄kDk = D(v̄)
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where the last equality defines the vector v̄. To ensure that D(v̄) is an invariant direc-
tional derivative, we must have that the components of v̄ are either constants or more
generally, invariants.

We note that for the operators Di defined in (21), that Diρρ−1 can be calculated
using only the equations for the transverse section that determines the frame and the
infinitesimal action, see [38] for details.

Example 4.27 (Special Euclidean group action on curves in the plane) The group is
SO(2)�R

2 with the standard linear action of translation and rotation of curves on the
plane, specifically,

(
x(t)
y(t)

)
�→

(
x̃(t)
ỹ(t)

)
=

(
cos θ sin θ

− sin θ cos θ

) (
x(t) − a
u(t) − b

)
.

If one takes the standard matrix representation of SO(2) � R
2, so that the action

involves the inverse of the group element, then the equivariance of the frame will be
ρ(g · z) = gρ(z).

The multispace frame calculation is as follows. We take an order 2 interpolation as
we wish to achieve a multispace approximation of the curvature. If we interpolate the
curve (x(t), u(t)) at � = {t0, t0 + h1, t0 + h2} with base point t0, we get

p(x(t)) = A(x) + B(x).(t − t0) + 1

2
C(x).(t − t0)

2

= x(t0) + (h2
1 − h2

2)x(t0) + h2
2x(t0 + h1) − h2

1x(t0 + h2)

h1h2(h2 − h1)
(t − t0)

+ (h2 − h1)x(t0) − h2x(t0 + h1) + h1x(t0 + h2)

h1h2(h2 − h1)
(t − t0)

2,

and similarly for p(u(t)) = A(u) + B(u).(t − t0) + 1
2C(u).(t − t0)2. The induced

action on the coefficients is that induced on (x(t), u(t)) so for example

g · B(u) = (h2
1 − h2

2)g · u(t0) + h2
2g · u(t0 + h1) − h2

1g · u(t0 + h2)

h1h2(h2 − h1)

= 1

h1h2(h2 − h1)

[
(h2

1 − h2
2)(cos θ(x(t0) − a) + sin θ(u(t0) − b))

+ h2
2(cos θ(x(t0 + h1) − a) + sin θ(u(t0 + h1) − b)))

− h2
1(cos θ(x(t0 + h2) − a) + sin θ(u(t0 + h2) − b))

]
.

The normalisation equations g · A(x) = 0, g · A(u) = 0 and g · B(u) = 0 yield the
frame at � to be

a = x(t0), b = u(t0), tan θ = (h2
1 − h2

2)u(t0) + h2
2u(t0 + h1) − h2

1u(t0 + h2)

(h2
1 − h2

2)x(t0) + h2
2x(t0 + h1) − h2

1x(t0 + h2)
.

123



228 Found Comput Math (2018) 18:181–247

In the limit as h2 → h1, we have

tan θ → ut (t0 + h1) − 2u(t0 + h1) + 2u(t0)

xt (t0 + h1) − 2x(t0 + h1) + 2x(t0)

and then finally as h1 → 0, we have tan θ → ut/xt as expected, indeed, yielding the
smooth frame as determined by the limit of the normalisation equations.

If we take the standard matrix representation of SO(2) � R
2 to represent the

frame, with the equivariance as above, then the invariant Maurer-Cartan matrix will be
ρ([�′, u, φ, U ])−1ρ([�, u, φ, U ]), and the components of this yield the discrete mul-
tispace Maurer–Cartan invariants for this frame. Further, ρ · B(x) → (

x2t + u2
t

)1/2
so that we may treat ρ · B(x) as the multispace approximation to the infinitesimal
arc-length.

In the above example, we used an invariant parameter t to describe the curve
(x(t), u(t)). If instead we parametrise the curve as (x, u(x)), so that the parame-
ter participates in the group action and the operator ∂/∂x is not invariant, then
greater care is required. For example, the group action on the interpolation curve,
written as p(u)(x) = A(x, u) + B(x, u)(x − x0) + C(x, u)(x − x0)2, looks like
g · p(u)(x) = A(̃x, ũ) + B(̃x, ũ)(x − x̃0) + C (̃x, ũ)(x − x̃0)2. Solving for the multi-
space frame in this case seems nontrivial. Such examples will be examined elsewhere.

Now assume we have four lattice points, u J , T1u J , T2u J and T2T1u J = T1T2u J ,
and that we have two paths connecting u J with T2T1u J = T1T2u J via each of the T1u J

and T2u J respectively. If we can associate the discrete frame with a multispace frame
and differentiate the local syzygy associated with the discrete frame with respect
to the path parameters at u J , we obtain the differential syzygy associated with the
multispace frame at u J . Indeed, let a discrete frame (ρJ ) at the points u J , T1u J , T2u J

and T1T2u J be associated with the multispace frame ρ so that ρJ = ρ(z J ) for some
z J = [�J , φ, U ] in the relevant multispaceM, u J = φ(xJ ). Then, the local syzygy
is

T1(K2)K1 = T2(K1)K2, K1 = ρ(T1z J )ρ(z J )−1, K2 = ρ(T2z J )ρ(z J )−1,

(22)
where Ti z J = [Ti�J , φ, U ] and Ti�J is the shift of �J by Ti , with base point Ti x J

and Ti u J = φ(Ti x J ) = φ(xJ+ei ). Here we are assuming that the shifts of �J remain
within U . Now let zi

J (εi ) be paths in the multispace lying within U , with zi
J (0) = z J ,

zi
J (1) = Ti z J , zi

J (εi ) = [�i
J (εi ), φ, U ] and ui

J (εi ) = φ(xi
J (εi )), xi

J (εi ) the base point
of �i

J (εi ). We denote

v = d

dε1

∣∣∣
ε1=0

u1
J (ε1), w = d

dε2

∣∣∣
ε2=0

u2
J (ε2),

and

Kv = d

dε1

∣∣∣
ε1=0

ρ(z1J (ε1)))ρ(z J )−1, Kw = d

dε2

∣∣∣
ε2=0

ρ(z2J (ε2)))ρ(z J )−1.
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We assume that the parametrisation of these paths with respect to ε yield invariant
differential operators in the case where the independent variables participate in the
group action, see Remark 4.26.

Theorem 4.28 After differentiating twice, once each with respect to the path parame-
ters ε1 and ε2 and coalescencing the lattice of the multispace point z J to its associated
jet point, and under the conditions just stated, the local syzygy, Eq. (22), becomes the
continuous basic syzygy associated to ρ(z J )

D(w)Kv = D(v)Kw + ([D(w),D(v)]ρ) ρ−1 + [Kv, Kw]. (23)

Proof The core of the proof is standard. We assume a matrix representation of the
frame, and note that Taylor’s Theorem is valid.

To ease the notation, we set ε1 = h and ε2 = k, and simplify to where v =
d/dh|h=0φ(x0 + he1) and w = d/dk|k=0φ(x0 + ke2) in local coordinates, so that we
evaluate our frame at the multispace elements with lattice basepoints at u J = φ(x0),
T1u J = u J,1 = φ(x0 + he1), T2u J = u J,2 = φ(x0 + ke2) and T2T1u J = u J,1,2 =
u J,2,1 = φ(x0 + he1 + ke2). We denote the partial derivative operators ∂/∂εi as ∂i .

Denoting TiρJ = ρJ,i we have

K J,1 = ρJ,1ρ
−1
J , K J,2 = ρJ,2ρ

−1
J ,

and for sufficiently small h and k, there will exist, dropping the index J for clarity,
matrices X1 and X2 in the Lie algebra of G such that

K1 = exp
(

h X1 + O(h2)
)

, K2 = exp
(

k X2 + O(k2)
)

.

We have
∂1ρ · ρ−1 = X1, ∂2ρ · ρ−1 = X2 (24)

and

T2X1 = X1 + k∂2X1 + O(k2), T1X2 = X2 + h∂1X2 + O(h2).

Then

T2K1 = exp
(

hT2X1 + O(h2)
)

= exp
(

h X1 + hk∂2X1 + O(k2, h2)
)

T1K2 = exp
(

kT1X2 + O(k2)
)

= exp
(

k X2 + hk∂1X2 + O(k2, h2)
)

.

Applying the Baker–Campbell–Hausdorff formula, [59],

log (exp(X) exp(Y )) = X + Y + 1
2 [X, Y ] + higher order brackets,
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we have

log (T2K1 · K2)) = h X1 + hk∂2X1 + k X2 + 1
2 [h X1 + hk∂2X1, k X2] + O(k2, h2)

= h X1 + k X2 + hk
(
∂2X1 + 1

2 [X1, X2]
) + O(k2, h2),

log (T1K2 · K1)) = k X2 + hk∂1X2 + h X1 + 1
2 [k X2 + hk∂1X2, h X1] + O(k2, h2)

= h X1 + k X2 + hk
(
∂1X2 + 1

2 [X2, X1]
) + O(k2, h2).

Equating the two formulae by imposing the local syzygy, differentiating with respect
to both h and k and then sending h, k → 0, yields, after a slight rearrangement,

∂2X1 − ∂1X2 = [X2, X1] . (25)

Finally, we need to rewrite Eq. (25) in terms of the invariant differential operators.
The formula given in Eq. (21) shows that the partial derivatives ∂i can be written as
a linear sum of the invariant operators with invariant coefficients. We must then back
substitute for the ∂i , including rewriting the Xi = ∂iρ ·ρ−1 in terms of theD jρ ·ρ−1.
The final result yields the extra terms in the case that the invariant operators do not
commute. 
�
Example 4.29 We conclude the running Example 4.20. We set the points (xi , yi ),
i = 1, 2, 3 to be (x1, y1) = (x0 + h̄, y0), (x2, y2) = (x0, y0 + k̄) and (x3, y3) =
(x0 + h̄, y0 + k̄). We then calculate the four matrices, K10 = ρ1ρ

−1
0 = exp (X10),

K31 = ρ3ρ
−1
1 = exp (X31), K20 = ρ2ρ

−1
0 = exp (X20) and K32 = ρ3ρ

−1
2 =

exp (X32). Direct calculation gives, setting �1F = F(x0 + h, y0) − F(x0, y0) for a
function F ∈ {u, ux , uy, uxy} in the formulae to ease the notation,

X10 = −h̄

⎛
⎝

�1ux

�1u

ux (x0, y0)

�1u
0 0

⎞
⎠ + O(h̄2)

X20 = −k̄

⎛
⎝

�1uy

�1u

uy(x0, y0)

�1u
0 0

⎞
⎠ + O(k̄2)

X31 = X20 − h̄k̄̃ X31 + O(h̄2, k̄2)

= X20 − h̄k̄

⎛
⎝

�1ux�1uy + �1uxy�1u

(�1u)2
h

uy�1ux + uxy�1u

(�1u)2

0 0

⎞
⎠ + O(h̄2, k̄2)

X32 = X10 − h̄k̄̃ X32 + O(h̄2, k̄2)

= X10 − h̄k̄

⎛
⎝

�1ux�1uy + �1uxy�1u

(�1u)2
h

ux�1uy + uxy�1u

(�1u)2

0 0

⎞
⎠ + O(h̄2, k̄2)

where this defines X̃31 and X̃32. The local syzygy is K31K10 = K32K20, and applying
the Baker–Campbell–Hausdorff formula to this yields
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X10 + X31 + 1

2
[X31, X10] = X32 + X20 + 1

2
[X32, X20] + O(h̄2, k̄2).

The equation for the lower order terms simplifies to

X̃32 − X̃31 = [X10, X20]. (26)

This last equation is straightforward to verify. Finally, taking the limit as h → 0,
Eq. (26) yields the differential syzygy for ρ evaluated on the jet bundle,

∂

∂y

(
ρxρ

−1
)

− ∂

∂x

(
ρyρ

−1
)

= [ρyρ
−1, ρxρ

−1],

where recall ρ on the jet bundle is given in Eq. (17).

Similar relationships exist when we take limits only in one of the variables, produc-
ing an evolution of discrete submanifolds. For example, if p = 2 and S has coordinates
(x, y), then if K i

J,2 = ρJ+e2(z
i
J )ρ(z J )−1 and NJ = d

dx (K J )K −1
J , then when we take

limits in the calculation in the proof of the theorem as xJ+e1 → xJ we have

d

dx
(K(J,2))K −1

(J,2) = NJ+e2 − K(J,2)NJ K −1
(J,2)

which is amixed syzygy that often appears describing invariant evolutions of polygons
in terms of coordinates in their moduli spaces, as in [42,47]. Among these evolutions
one often finds completely integrable discretisations of well-known completely inte-
grable PDEs. These results are really key to some of the applications in our next
section.

5 Applications

5.1 Application to the Design of a Lagrangian for a Variational Numerical
Scheme for a Shallow Water System

This example is motivated by the need for finite difference versions of variational
shallow water problems which are invariant under the so-called particle relabelling
symmetry. We consider the base space to have coordinates (a, b, t), where (a, b) is
the fluid particle label at time t = 0. The two-dimensional dependent variable space
is (x, y) = (x(a, b, t), y(a, b, t)), which is the position of the fluid particle at time t ,
so that (x(a, b, 0), y(a, b, 0)) = (a, b). The particle relabelling action is given by

g · a = A(a, b), g · b = B(a, b), Aa Bb − Ab Ba = 1

together with g · x = x , g · y = y and g · t = t . It can be seen that the particle
relabelling group is the group of area preserving diffeomorphisms of the (a, b) plane
(or at least the domain of interest in the (a, b) plane). Further, it is known that the
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invariants of this group action are x , y, t , and � = xa yb − xb ya and its derivatives
under the invariant differential operators,

∂

∂t
,

∂

∂x
= yb

�

∂

∂a
− ya

�

∂

∂b
,

∂

∂y
= − xb

�

∂

∂a
+ xa

�

∂

∂b
.

The aim is to design a multispace version of the Lagrangian for variational shallow
water problems, which have the form,

L[x, y] =
∫

L(x, y, xt , yt , xa yb − xb ya) da db dt. (27)

This family of Lagrangians is each invariant under translations in time, translations
in both a and b, rotations in the (a, b) plane, and more generally, the full particle
relabelling group. Noether’s Theorem [2,49,53] then yields conservation of energy,
linear and angular momenta, and potential vorticity [1].

If we take the simplest corner lattice with base point (a0, b0, t0) to be

� = {(a0, b0, t0), (a1, b1, t0), (a2, b2, t0), (a3, b3, t1)}

then the (linear) interpolation of x is given by

x(a, b, t) ∼ x(a0, b0, t0) + M(xa)(a − a0) + M(xb)(b − b0) + M(xt )(t − t0)

where this defines the coefficients M(xK ), and we have

M(xa) = 1

A

∣∣∣∣∣∣
1 x(a0, b0, t0) b0
1 x(a1, b1, t0) b1
1 x(a2, b2, t0) b2

∣∣∣∣∣∣
, M(xb) = 1

A

∣∣∣∣∣∣
1 a0 x(a0, b0, t0)
1 a1 x(a1, b1, t0)
1 a2 x(a2, b2, t0)

∣∣∣∣∣∣

and

M(xt ) = 1

(t1 − t0)A

∣∣∣∣∣∣∣∣

1 a0 b0 x(a0, b0, t0)
1 a1 b1 x(a1, b1, t0)
1 a2 b2 x(a2, b2, t0)
1 a3 b3 x(a3, b3, t1)

∣∣∣∣∣∣∣∣

where

A =
∣∣∣∣∣∣
1 a0 b0
1 a1 b1
1 a2 b2

∣∣∣∣∣∣

is the area, |(a1 − a0, b1 − b0) ∧ (a2 − a0, b2 − b0)|. The interpolant for y is similar,
with y(ai , bi , ti ) replacing x(ai , bi , ti ) in the above formulae.
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We consider the Lie group SL(2) � R
2 acting on the (a, b) plane as the standard

(right) equiaffine action,

(
a
b

)
�→

(
g · a
g · b

)
=

(
δ −β

−γ α

) (
a − ε1
b − ε2

)

so that (ε1, ε2) ∈ R
2 is the translation vector, and αδ − βγ = 1, and that g · x = x ,

g · y and g · t = t . This group is contained within the particle relabelling symmetry
group, and is just big enough to obtain the area invariant, which we do next.

The induced action on the coefficients in the interpolants is given by, for example,

g · M(xa) = 1

A

∣∣∣∣∣∣
1 x(a0, b0, t0) g · b0
1 x(a1, b1, t0) g · b1
1 x(a2, b2, t0) g · b2

∣∣∣∣∣∣
,

noting that g · A = A, indeed, A is an invariant as is easily seen.
We take the normalisation equations g · (a0, b0) = (0, 0), g · M(xa) = 1, g ·

M(xb) = 0 and g ·M(ya) = 0. Then the multispace frame is (ε1, ε2) = (a0, b0) and

(
δ −β

−γ α

)
=

(
M(xa) M(xb)
M(ya)
M(�)

M(yb)
M(�)

)

whereM(�) = M(xa)M(yb)−M(xb)M(ya). Evaluating the remaining coefficient
on the frame, we obtain the invariant,

I (M(yb))) = g · M(yb)

∣∣∣ρ
= M(�)

= 1

A

∣∣∣∣∣∣
1 x(a0, b0, t0) y(a0, b0, t0)
1 x(a1, b1, t1) y(a1, b1, t1)
1 x(a2, b2, t2) y(a2, b2, t2)

∣∣∣∣∣∣
.

Calculating the continuum limit of M(�) we obtain xa yb − xb ya , which is �, the
area invariant, as expected. Further, the continuum limit of the frame is

ρ →
(

xa xb
ya

xa yb − xb ya

yb

xa yb − xb ya

)
.

This is the smooth frame obtainedwith the smooth limit of the normalisation equations,
that is, {x̃a = 1, x̃b = 0, ỹa = 0}.

We observe that both M(xt ) and M(yt ) are invariant under the equiaffine action.
Thus, we propose the multispace analogue of the Lagrangian (27) to be

M (L[x, y]) =
∑
�

L (x, y,M(xt ),M(yt ),M(�)) A (t1 − t0) (28)
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Fig. 17 Length one lattices
stacked as a mesh, for a finite
difference variational problem.
Shown here is single time slice
for the shallow water problem

where the sum is over all corner lattices stacked into a mesh, as in Fig. 17. The factor
A (t1− t0) is the multispace approximation of the volume form, dadbdt , and is needed
to obtain the correct continuum limits for the conservation laws for energy and the
linear momenta.

Finite difference Euler Lagrange equations and Noether’s conservation laws can be
calculated in the standard way [23,32,33]; the details and the results of this calculation
will be explored elsewhere. It is interesting to observe that the multispace Lagrangian,
(28) is invariant under a discrete analogue of the particle relabelling symmetry. Indeed,
looking at Fig. 17, one can use a different element of SL(2) � R

2 on each basepoint
of each individual corner lattice, inducing an action on the whole of the corner lattice,
provided that certain consistency conditions hold, specifically, that if a vertex is in
the intersection of two corner lattices, that their image under the two different group
elements is the same. The Lagrangian (28) is clearly invariant under this discretisation

of the particle relabelling group, the discretisation being a subgroup of
(
SL(2) � R

2
)R

where R is the number of corner lattices on a time slice of the mesh. Using this
symmetry group to study the Lagrangian requires relaxing the assumption that we
use the same action of the group at every lattice (i.e. we relax the assumption of the
product action). This would require an extension of the theory developed in this paper,
which we consider elsewhere.

5.2 Discretisations of Completely Integrable PDEs

The geometry of curves and surfaces have been linked to integrable systems repeat-
edly in the literature, see [24,45,58], for example. A drawback of the application of
the results in this paper to finding completely integrable discretisations of completely
integrable systems is that one needs to choose a type of approximation (forward, back-
wards, linear or higher order, etc) a priori to find the limit. On the other hand, any
two choices of discrete moving frames (be the one associated with a certain type of
limit or any different one) will always be associated by a gauge transformation. This
means that if one finds a discrete integrable system associated with any given choice
of moving frame, one might be able to relate it to a different choice and perhaps link
it to the continuous case. This was done in [47], where the authors found discrete
integrable systems that were the discretisation of Adler–Gel’fand–Dikii integrable
evolutions, both of them linked to the projective geometry of curves and polygons.
The authors of [47] also found a way to obtain two Hamiltonian structures associated
with the discrete system through a reduction process, a process that was later extended
to other semisimple homogeneous spaces in [46]. Different approaches were used, for
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example in [3] and in other works of these authors to construct completely integrable
discretisations of integrable systems with the use of lattice models in Euclidean, pro-
jective and conformal geometry. Their approach is quite different from the one used in
[47] and in this paper, in that they choose lattices with different geometric properties
to achieve discretisations. The following are just some examples of the connection
between continuous and discrete models, in the equi-centro-affine and the Euclidean
space. Both of these examples use mixed multispace discrete/continuous models, and
although the first example only uses discrete coordinates to construct the multispace
moving frame, the second example will make full use of both.

5.2.1 Integrable Discretisations of Boussinesq Equations

In this example we make use of mixed differential/difference coordinates in the
multispace. For reasons that will become clear later, we will also assume that the
lattice variety has a monodromy in the discrete variable (a global property). That
is, un+T (t) = m · un(t) for any n ∈ Z, with T the period and some monodromy
m ∈ SL(3, R). This ensures that the invariants will be T -periodic in n.

Continuous Case First we describe the situation when we are in continuous jets with
two parameters (x, t). It is well known (see for example [6]) that the Boussinesq
equations

(q0)t + 1

6
q ′′′
1 + 2

3
q1q ′

1 = 0, (q1)t − 2q ′
0 = 0

where the prime denotes d/dx , can be obtained as the evolution induced on equi-
centro-affine curvatures by a certain evolution of curves. Let our manifold be M = R

3

with G = SL(3, R) acting linearly on it. Within M consider parametrised surfaces
on (x, t). Thus, in this example u(x, t) ∈ R

3, unlike in previous examples when we
consider graphs of the form (x, y, u(x, y)). Hopefully this will not confuse the reader.
We will define the following cross section:

ρ · u = e3, ρ · u′ = e2, ρ · u′′ = de1 (29)

where ei are the standard unit vectors in R
3. Clearly d = det(u, u′, u′′). This defines

uniquely a right moving frame whose left companion is given by

ρ−1 =
(
1

d
u′′, u′, u

)
.

Let us assume that
d = det(u′′, u′, u) = 1, (30)

that is we will parametrise the surface so that the curves associated with t fixed are
parametrised by the equi-centro-affine arc-length (these curves are in one-to-one cor-
respondence with projective curves, see [6]. In that case the left x-Maurer–Cartan
matrix associated with it is given by
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Q = ρ(ρ−1)′ =
⎛
⎝
0 1 0
k1 0 1
k2 0 0

⎞
⎠

where u′′′ = k1u′ + k2u. Next we will gauge this frame to a different left frame
ρ̂ = ρ−1g by the element

g =
⎛
⎝

1 0 0
0 1 0

−k1 0 1

⎞
⎠ .

The resulting x-Maurer–Cartan matrix is given by

K = g−1g′ + g−1Qg =
⎛
⎝
0 1 0
0 0 1
b a 0

⎞
⎠

where a = k1 and b = k2 − k′
1. Gauging the system can be seen as changing the

coordinates, the results can always be gauged back to the original setting.
We will next consider the syzygy

ut − u′′ + 2

3
au = 0 (31)

which describes a precisely chosen evolutionary equation for curves whose flow will
be tracing our parametrised surface. With this condition, the left t-Maurer–Cartan
matrix is easily seen to be given by

N = ρ̂−1ρ̂t =
⎛
⎝

−(w1 + 1/3a) w0 1
v1 w1 0
v2 w2

1
3a

⎞
⎠

for some entries vi , wi . The local basic syzygies (or the compatibility condition
between x and t) are given by

Kt = Nx + [K , N ]

and they can be used to solve for N so that

w0 = 0, w1 = 1

3
a, w2 = b + 1

3
a′, v1 = b + 2

3
a′, v2 = −b′ − 2

3
a′′.

We can further find two more syzygies given by

at − 2b′ − a′′ = 0, bt + 2

3
a′′′ + b′′ − 2

3
a′a.
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This system of equations is equivalent to the Boussinesq equation. Indeed, if a = q1
and b = 1

2q ′
1 − q0, we have

(q0)t + 1

6
q ′′′
1 + 2

3
q1q ′

1 = 0, (q1)t − 2q ′
0 = 0

which is the standard Boussinesq equation.

Multispace Case Assume now thatwemove in themultispace away from a continuous
jet to a mixed discrete/continuous multispace submanifold, where x is now discrete
and t is continuous. Let us choose lattices containing (xn, t), (xn+1, t), (xn+2, t) and
such that xr+1− xr = �xr = c is constant for any r . That is, we will restrict to lattices
with sides of equal length. The cross section (29) evaluated on lattices of this form
will be given by

ρ · un = e3, ρ · (un+1 − un)/c = e2, ρ ·
(
1

c2
(un+2 − 2un+1 + un)

)
= e1

where 1 = (1/c3) det(un+2, un+1, un) and ui = u(xi , t). The left moving frame
associated with this cross section is given by

ρ−1 =
(
1

c2
(un+2 − 2un+1 + un),

1

c
(un+1 − un), un

)

= (
un+2 un+1 un

)
⎛
⎝

c−2 0 0
−2c−2 c−1 0

c−2 −c−1 1

⎞
⎠

which can clearly be gauged to

η = (
un+2, un+1, un

)
.

The multispace subspace (30), when restricted to our partially coalesced lattices,
becomes

det(un+2, un+1, un) = c3 (32)

for all n. Let us introduce one last gauge by the matrix

g =
⎛
⎝

1 0 0
−an−1 1 0

0 0 1

⎞
⎠ ,

where an is to be found. If un+3 = kn
1un+2 + kn

2un+1 + un , then, the discrete x-
Maurer–Cartan matrix associated with ρ = ηg is given by

Kn =
⎛
⎝

0 1 0
bn an 1
1 0 0

⎞
⎠
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where bn = kn
2 and an = kn−1

1 . As before, the t-Maurer–Cartan matrix is given by

Nn = ρ̂−1
n (ρ̂n)t =

⎛
⎝

−(wn
1 + rn

2 ) wn
0 rn

0
vn
1 wn

1 rn
1

vn
2 wn

2 rn
2

⎞
⎠

and the local basic syzygy is

K −1
n (Kn)t = Nn+1 − K −1

n Nn Kn .

This syzygy solves for Nn in terms of ri

wn
0 = rn+1

1 ; wn
1 = rn+1

2 + anrn+1
1 + bnrn+1

0 ; wn
2 = rn+1

0 ;
vn
1 = rn−1

0 + bn−1rn
1 ; vn

2 = rn+2
1 − anrn+1

0 ,

and it provides the condition for preserving the restriction to the multispace subman-
ifold (32), namely

rn+2
2 + rn+1

2 + rn
2 + an+1rn+2

1 + bn+1rn+2
0 + bnrn+1

0 = 0. (33)

If the map rn
2 → rn+2

2 + rn+1
2 + rn

2 = (T 2 + T + 1)rn
2 is invertible (which is true if

N �= 3s for any s as shown in [47]), this condition solves for rn
2 in terms of rn

1 and rn
0 .

The syzygy also describes (an)t and (bn)t to satisfy

(an)t = (1 + anbn+1)r
n+2
0 − (anbnrn+1

0 + rn−1
0 )

+ (bn + anan+1)r
n+2
1 − (bn−1rn

1 + a2
nrn+1

1 ) + anrn+2
2 − anrn

2

(bn)t = rn+3
1 − (bnan+1rn+2

1 + rn
1 ) − (an+1 + bnbn+1)r

n+2
0

− b2nrn+1
0 + anrn

0 − (bnrn+2
2 + 2bnrn+1

2 ).

If further we impose the syzygy

(un)t + 1

bn−1
(un+2 − anun+1) + 2

3
un = 0 (34)

then we can see that rn
0 = 1

bn−1
, rn

1 = 0 and rn
2 = −(T 2 + T + 1)−1(T + 1) bn

bn
= − 2

3
is the solution of (33) for these choices. Then

(an)t = 1

bn+1
− 1

bn−2

(bn)t = −an+1

bn+1
+ an

bn−1
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and the changes

αn = − 1

bnbn+1bn+2
, βn = − an+1

bnbn+1

transform this equation in the integrable discretisation of Boussinesq

(αn)t = αn(βn+2 − βn−1)

(βn)t = αn−1 − αn + βn(βn+1 − βn−1).

This system appears in [25].
It is not clear to us how to systematically connect integrable discrete systems and

evolutions of polygons as given by (34). In the continuous case there is a general link
betweenHamiltonian evolutions at the level of the invariants and evolution of curves on
geometricmanifolds which are homogeneous of the form G/H or (G�R

n)/G with G
semisimple (see [43,44]), but the situation in the discrete case is not so clear in general.
In particular, the syzygies (31) and (34) are not the restriction of the same syzygy on
different points in the multispace, even when we account for all the different changes
introduced by gauges. Still, it is widely known that certain evolutions of polygons
result in completely integrable discrete systems (see, for example, [4] in the Euclidean
case and [3] in more cases with further restrictions on the lattices). The multispace
allows us to construct geometrically without the need to account for the limits. We
include one more example along these lines and further use of multispace in this area
will appear elsewhere.

5.2.2 Discretisation of the Sine–Gordon Equation

It is well known that the Codazzi–Mainardi equations for Euclidean surfaces in R
3

with constant negative Gauss curvature includes a Sine–Gordon equation, a well-
known completely integrable system, that decouples from the rest of the determining
equations for the surface. The Codazzi–Mainardi equations are simply syzygies for a
well-chosen moving frame, hence using the multispace framework we will be able to
find a discretisation of the Sine–Gordon equation with strong geometric meaning as
determining mixed lattice/surfaces with negative Gauss curvature. It is not clear to us
whether the discretisation below is completely integrable as it becomes part of a system
of equations defining the lattice/surface, rather than decoupling to discretise Sine–
Gordon individually. A discrete Sine–Gordon equation on lattices was also defined in
[3], although the conditions that the authors imposed on their lattices are not impose
here. Further study on the connection between both approaches will appear elsewhere.

We review the continuous case first.
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5.2.3 Sine–Gordon as Syzygy of Euclidean Surfaces with Constant Negative
Curvature

Let G be the Euclidean group represented as the subgroup of GL(4, R)

g =
(
1 0
v 


)
(35)

where v ∈ R
3 and 
 ∈ SO(3). The group acts in R

3 with the standard action g · u =

u +v which coincides with the one induced by g

(
1
u

)
. Let u(x, y) be a parametrised

surface and assume that x and y are normalised to measure the arc-length in the x
and y direction. That is, assume that ||ux || = ||uy || = 1. Let us define a moving frame
through the normalisations

ρ · u = 0, ρ · ux = e1, ρ · uy = cosαe1 + sin αe2

where α is the angle formed by ux and uy . Solving the equations we obtain that
v = −
u and


T = (
ux

1
sin α

(uy − cosαux ) n
)

where n = 1
sin α

(ux × uy) is the standard normal unit vector determined by the
parametrisation. Using the traditional notation uxx = �1

11ux + �2
11uy + en, uxy =

�1
12ux + �2

12uy + f n, uyy = �1
22ux + �2

22uy + gn, we can write the Maurer–Cartan
matrices as

N̂ = ρxρ
−1 =

(
0 0

−(
u)x 
x

) (
1 0
u 
T

)
=

(
0 0

−e1 
x

T

)

K̂ = ρyρ
−1 =

(
0 0

− cosαe1 − sin αe2 
y

T

)

where

N = 
x

T =

⎛
⎝

0 sin α�2
11 e

− sin α�2
11 0 1

sin α
( f − cosαe)

−e −1
sin α

( f − cosαe) 0

⎞
⎠ (36)

K = 
y

T =

⎛
⎝

0 sin α�2
12 f

− sin α�2
12 0 1

sin α
(g − cosα f )

− f −1
sin α

(g − cosα f ) 0

⎞
⎠ . (37)

123



Found Comput Math (2018) 18:181–247 241

Substituting these values in the local syzygy K̂x = N̂y + [K̂ , N̂ ] and selecting the R
3

component, we get the equation

0 =
⎛
⎝

− cosα

− sin α

0

⎞
⎠

x

−
⎛
⎝

0
− sin α�2

12− f

⎞
⎠ + cosα

⎛
⎝

0
− sin α�2

11−e

⎞
⎠

+ sin α

⎛
⎝

sin α�2
11

0
−1
sin α

( f − cosαe)

⎞
⎠ .

The last entry is trivial, the first solves for the value

�2
11 = −1

sin α
αx ,

while the second one simplifies to �2
12 = 0, whenever sin α �= 0. The SO(3) portion

of the syzygy is given by
Kx = Ny + [K , N ]. (38)

If we write down the equation that does not involve derivatives of the second funda-
mental form (the equations defined by the (1, 2) entry), we have

(
sin α�2

11

)
y

= − f

sin α
( f − cosαe) + e

sin α
(g − cosα f ),

which becomes

αxy = − 1

sin α
(eg − f 2).

If K is the Gauss curvature, we know that K = eg− f 2

EG−F2 , where E = ||ux || = G =
||uy || = 1 and F = ux · uy = cosα. Thus, the equation becomes

αxy = − sin αK

which is the Sine–Gordon equation whenever K is constant and negative.
Notice that this equation is not enough to determine the surface. Indeed, solving

for α only determines the first fundamental form (or metric), and the knowledge of the
Gauss curvature does not suffice to determine the second fundamental form. Indeed,
one would need two more equations to do so, given by the two remaining entries
(1, 3) and (2, 3) of the SO(3) portion of the local syzygy, i.e. (38). Thus, the surface
is determined upon solving a system of 3 equations, one of which decouples and is
equal to Sine–Gordon.
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5.2.4 A Differential–Difference Sine–Gordon Evolution as a Syzygy of a Mixed
Smooth-Discrete Lattice

Assumewehave a smooth family of polygons, or amixed (1, 1)-lattice (one continuous
direction and one discrete one) of the form yr , yr+1 in the y direction and continuous
1-jet in the x direction. As far as we use the same multispace cross section, we will
have guaranteed that discrete invariant data approximates the continuous one. Thus,
consider the transverse section

ρr · ur = ρr · u(x, yr ) = 0; ρr ·p ux = ||ux ||e1;
1

y1 − y0
(ρr · T ur − ρr · ur ) = ||�ur ||

�y0
wr

where ρr is as in (35); T ur = ur+1 = u(x, T yr ) = u(x, yr+1); ·p is the prolonged
action given by ρr ·p ux = 
ux ; andwr is a unit vector withwr = cosαr e1+ sin αr e2
where αr = αr (x) is the angle between ux and �ur , �ur = (T − 1)ur . From here,
the multispace cross section defines vr = −
r ur , 
r ux = ||ux ||e1 and 
r�ur =
||�ur ||wr . With these choices the right moving frame becomes

ρr =
(
1 0
vr 
r

)
, vr = −
r ur

with


T
r = (

tr nr br
)

tr = (ur )x

||(ur )x || ; nr = 1

sin αr

(
�ur

||�ur || − cosαr tr

)
; br = tr × nr .

From now on, and for convenience, wewill drop the subindex to denote position unless
the situation is confusing, indicating a change in position by the application of the shift
operator (T ku = ur+k). We will calculate the left Maurer–Cartan matrices, the more
geometrically significant one (those in the continuous case are right ones). The left
Maurer–Cartan matrices are given by

K̂ = ρT ρ−1 =
(

1 0
−
u 


)(
1 0
T u T 
T

)
=

(
1 0

||�u||w K

)

where K = 
T 
−1; and by

N̂ = ρ(ρ−1)t =
(

1 0
−
u 


) (
0 0

ux (
T )x

)
=

(
0 0

||ux ||e1 N

)

where N = 
(
−1)x . The local syzygies are given by

(K̂ )x = K̂T N̂ − N̂ K̂ . (39)
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As we did in the continuous case, and to ensure convergence, we will restrict to the
submanifold of the multispace defined locally by

||ux || = 1
||�ur ||
|�yr | = 1.

For simplicity we will restrict further to those lattices where |�yr | = ε for all r (and
hence ||�ur || = ε).

Equation (39) breaks into two equations, namely

wt = K e1 − Nw − e1 (40)

Kt = KT N − N K . (41)

Assume K factorises as

K = Y

(
� 0
0 1

)
(42)

with � ∈ SO(2), for some Y = exp

(
0 y

−yT 0

)
(this is always possible when T 
 is

closed enough to 
 so that K is closed enough to the identity). Assume further that

� =
(
cos k − sin k
sin k cos k

)
= (

v v̂
)

v and v̂ denoting the two columns of �. We will denote with a hat the transformation

v̂ =
(
0 −1
1 0

)
v = Jv, and so ŵ = Jw. Finally, denote N by

N =
(

� z
−zT 0

)
, � =

(
0 ν

−ν 0

)
, z =

(
z1
z2

)
. (43)

With this notation (40) can be rewritten and simplified to equations

− sy · v = z · w (44)

w · e1 = w · v + cy · v y · w (45)

αx = −ν + 1

sin α
(1 − cos k − cy · v y2) (46)

where s = 1
||y|| sin ||y||, c = 1

||y||2 (cos ||y|| − 1), and as usual yT = (y1, y2).
The remaining three equations that will determine the lattice/surface are given by

the three entries in the so(3) component (41). We will only reproduce the portion
corresponding to Sine–Gordon, that is the (2, 1) entry of (41). After some long, but
straightforward algebraic manipulations, the equation becomes

kx + c det(y, yx ) = T ν − cos ||y||ν + s det(y, z). (47)

123



244 Found Comput Math (2018) 18:181–247

Looking at (37) and (36), and comparing it to (42) and (43), we see that

s det(y, z)

discretises the determinant of the first two entries of the last column in both (37) and
(36). That is, s det(y, z) discretises

det

(
f e

1
sin α

(g − cosα f ) 1
sin α

( f − cosαe)

)
= − sin αK

were K is the Gauss curvature of the surface. Therefore, we can define

K = − s

sin α
det(y, z) = − sin ||y||

||y|| sin α
det(y, z)

to be the discrete Gauss curvature for the lattice/surface. Then, (47) becomes

kx + c det(y, yx ) = T ν − cos ||y|| − sin αK.

This will be a discretisation of Sine–Gordon, together with the other equations in the
system.
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Appendix: Equicontinuous Families of Discrete Frames

In this Appendix, we use the Arzela–Ascoli Theorem to give a general convergence
result for an equicontinuous family of moving frames. This provides a rigorous foun-
dation to a variety of examples involving the discretisation of a smooth frame.

Let M be a manifold, and let G be a Lie group with local metric d. The set G M

consists of all continuousmaps from M toG, andwegive it the compact-open topology,
defined as that generated by finite intersections of the so-called subbasic sets,

(A, V ) = { f ∈ G M | f (A) ⊂ V }

where A ⊂ M is open and V ⊂ G is compact. A sequence of maps converging in this
topology is uniformly convergent on compact subsets.

Definition 6.1 A family F ⊂ G M is said to be equicontinuous at y0 ∈ M if for all
ε > 0 there exists a neighbourhood U(y0) ⊂ M such that for all ρ ∈ F ,

ρ(U(y0)) ⊂ B(ρ(y0), ε) = {g ∈ G | d(g, ρ(y0)) < ε}.
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Theorem 6.2 Suppose that a family of left (resp. right) moving frames F ⊂ G M

satisfies the following:

(1) F is equicontinuous on M, and
(2) the set

{ρ(y) | ρ ∈ F}

has compact closure for each y.

Then F is a compact and equicontinuous family of moving frames.

Proof We give the proof for F a family of left frames, the proof for right frames is
analogous. The conditions of the Theorem are precisely those of the Arzela–Ascoli
Theorem, [15, XII, Theorem 6.4], which yields that the family F is compact and
equicontinuous. We need only show that its elements are also equivariant with respect
to the group action on M . Fix y ∈ M and f ∈ F , and let ε > 0 be given. By the
definition of the closure of the set F and the continuity of the group action, there is
a ρ ∈ F and a neighbourhood U of the identity e ∈ G such that for g ∈ U we have
both d( f (g · y), ρ(g · y)) < 1

2ε and d(g · f (y), g · ρ(y)) < 1
2ε. Then

d(g · f (y), f (g · y)) < d( f (g · y), ρ(g · y)) + d(ρ(g · y), g · f (y))

= d( f (g · y), ρ(g · y)) + d(g · ρ(y), g · f (y))

< ε,

so that f is equivariant, as required. 
�
Example 6.3 Consider the scaling and translation action of R

2 given on a equivari-
ant family of Lipschitz continuous curves (x, y(x)) in the plane by g · (x, y(x)) =
(x, exp(λ)y + k). A smooth frame is given by g · y = 0, g · yx = 1, or (exp(λ), k)

∣∣
ρ

=
(1/yx ,−y/yx ); the domain of this frame has yx > 0. Suppose now we wish to dis-
cretise this frame in a way that is compatible with the smooth frame and with forward
difference, that is yn+1 = yn +αyx . Then the discrete frame ρn would be obtained by
the normalisation equations, g · yn = 0, g · yn+1 = α, so that

ρn =
(

α

yn+1 − yn
,

−αyn

yn+1 − yn

)
.

This family of frames is straightforwardly seen to be equicontinuous, to have the
smooth frame as its continuum limit, and to have the smoothMaurer–Cartan invariants
as the limit of the discrete ones, provided the parameter α scales as the mesh size
xn+1 − xn .
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