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Abstract
Artificial Intelligence (AI)-based IDS systems are susceptible to adversarial attacks and face challenges such as complex
evaluation methods, elevated false positive rates, absence of effective validation, and time-intensive processes. This study
proposes aWCSAN-PSO framework to detect adversarial attacks in IDS based on a weighted conditional stepwise adversarial
network (WCSAN) with a particle swarm optimization (PSO) algorithm and SVC (support vector classifier) for classification.
The Principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) are used for feature
selection and extraction. The PSO algorithm optimizes the parameters of the generator and discriminator in WCSAN to
improve the adversarial training of IDS. The study presented three distinct scenarios with quantitative evaluation, and the
proposed framework is evaluated with adversarial training in balanced and imbalanced data. Compared with existing studies,
the proposed framework accomplished an accuracy of 99.36% in normal and 98.55% in malicious traffic in adversarial
attacks. This study presents a comprehensive overview for researchers interested in adversarial attacks and their significance
in computer security.

Keywords Intrusion detection systems · Adversarial attack · Security · Weighted conditional stepwise adversarial network
(WCSAN) · Particle swarm optimization (PSO)

1 Introduction

With the continuous evolution of the internet and widespread
usage, the number of network users has increased exponen-
tially. The quantity of internet-connected devices in finance
and e-commerce is growing, and they are evolving targets of
attacks, posing significant risk and driving significant dam-
age. Hackers are individuals who pose a threat to information
systems. Hackers use network and device flaws to conduct
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destructive operations, costing businesses and customers
financially. The primary objective of intrusion detection is
to differentiate between normal and abnormal information
breaches [1]. Network security aims to protect systems, net-
works, programs, data, and user accounts from unauthorized
access, modification, or disruption [2]. A single intrusion can
instantly render the system unavailable and impact the orga-
nization. IDS can be categorized into host-based (HIDS) and
network-based (NIDS) approaches. HIDS can observe and
evaluate the network traffic passing through its interfaces [3].
NIDS analyzes the network traffic across the total network
to detect known attacks [4]. DDoS attacks on a large scale,
spoofing, Man-in-the-middle attacks, etc., can be used to
conduct these malicious actions [5]. Practical procedures for
detecting and defending against attacks and continuousmon-
itoring are needed. Detecting different types of new attacks
is challenging [6].

Detecting intrusions is a critical task in cyber security.
Machine learning and deep learning techniques detect abnor-
mal behavior in IDS [7]. Both linear and nonlinear ML/DL
classifiers are exposed to adversarial attacks designed to
mislead the classification model. IDSs are vulnerable to
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attacks, though they have been widely used commercially
[8]. Conventional machine learning methods and strategies
are commonly employed for their high precision in detect-
ing attacks and low rate of false alarms. However, they have
been criticized for their failure to identify emerging threats.
Conventional machine learning methods need to improve
in detecting complex and novel attacks. Typical machine
learning models cannot detect slight modifications because
they cannot generalize information and identify new attacks
[9]. Adversarial attacks are a significant threat to modern
AI applications, especially with the increasing use of data-
oriented techniques and internet-based applications in critical
areas such as biometric authentication and cybersecurity
[10]. Adversarial attacks pose a risk when utilized to alter the
categorization [11]. Aminor disturbance can enablemalware
to bypass detection. An effective adversarial attack on an
IDS can bypass detection, posing a direct threat to machine-
learning-based intrusion detection systems [12].

An adversarial example is input to IDS that an attacker
has deliberately designed to cause the model to make mis-
classifications. Different adversarial attacks on IDS, such as
poisoning, model extraction, evasion, and inference attacks,
have been observed [13]. During poisoning strikes, the
attacker introduces false data points entering the practice
facility to manipulate the trained classifier into making pre-
dictions favoring the adversary. In adversarial attacks, the
attacker injects specially prepared data points into the testing
set. In model extraction attacks, the attacker pilfers trained
IDS; in inference attacks, the attacker infers sensitive data
from the training set [14]. Figure 1 illustrates the different
adversarial attacks on IDS. The attacker injects malicious
code into the training data and attempts to gain sensitive
information from the training data. The attacker attempts to
steal the information from the trained IDS. The IDS predicts
inaccurate classification.

From the attacker’s perspective, adversarial attacks can
possess changes to input data to enhance misclassification,
therebybypassing the IDS [15].Consequently,malicious net-
work packets are frequently incorrectly labeled benign due
to the intrusion classifier’s decision limits requiring clarifica-
tion. Therefore, these disruptions restrict the performance of
detectors based on ML and DL [16]. Defending IDS against
adversarial attacks should be further assessed. Many inves-
tigations have been carried out to detect adversarial attacks,
but the detection of adversarial attacks against IDS has yet to
be explored more [17–19]. The motivation of this study is to
design an adversarial attack mitigation strategy and analysis
of IDS. The major contributions of the proposed work are as
follows.

1. To propose a WCSAN-PSO framework for intrusion
detection in adversarial attacks.

2. To analyze the framework by incorporating feature
extraction (principal component analysis) and feature
extraction (least absolute shrinkage and selection opera-
tor)

3. To employ labeling attacks to identify known attacks
using a signature. The prediction can be made at the ini-
tial level, reducing bandwidth, computing resources, and
attack detection efficiency in IDS.

4. To generate adversarial samples based on the IDS traf-
fic characteristics. The IDS are trained with training
datasets, including real and attack network traffic sam-
ples obtained from WCSAN.

5. To develop and evaluate the framework using an opti-
mized PSO algorithm and SVC classifier with the
CIC-IDS2017 dataset, which contains different types of
contemporary attacks in IDS.

The remaining paper is formulated as follows. The theo-
retical background, related works, and problem statements
are discussed in Sect. 2. Section 3 illustrates the proposed
framework. Section 4 describes the performance analysis and
comparative study. The discussion is presented in Sect. 5. The
study limitations and futurework are demonstrated in Sect. 6.
Finally, the paper is concluded in Sect. 7.

2 Literature review

This section outlines the background of the study, includ-
ing the theoretical concepts of IDS and adversarial attacks.
The existing studies on IDS and adversarial attack detection
are highlighted with challenges. The problem statement is
presented.

2.1 Theoretical background

Researchers have aimed to design more sophisticated algo-
rithms since introducing artificial intelligence. Artificial
intelligence has extended, and deep learning has emerged as
a high-performing new approach [20]. This development was
significant in machine learning due to the significantly supe-
rior performance results compared to those achieved using
conventional methods [21]. DL has profited from utilizing
large datasets during training in recent years and has seen
hardware enhancements, particularly in GPUs [22]. Deep
learning has simplified problem-solving by automating the
fundamental stage of machine learning known as feature
extraction. Convolution is the process of integrating two sig-
nals to create a new signal. The first signal is the data, while
the subsequent is the filter [23]. DL’s flexibility is another
notable aspect. Deep learning requires extensive training
with a larger number of samples. Due to advancements in
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Fig. 1 Adversarial attacks in IDS

multicore PCs and GPUs, deep learning has accelerated sig-
nificantly by dramatically reducing training time with large
datasets [24].

Security measures like authentication and access con-
trol have been created to accomplish the goal of computer
security, which is to prevent unauthorized individuals from
accessing and altering information. These prevention mech-
anisms function as the primary line of defense [25]. The
Internet’s benefits, such as easy access to vast information,
also present the greatest risk to information security.An intru-
sion detection system (IDS) is a secondary defense measure
[26]. An IDS is a combination of two phrases: intrusion and
detection systems. Intrusion is the unauthorized access to
computer or network information intending to compromise
its CIA triad, i.e., integrity, confidentiality, or availability. A
detection system is a security measure designed to identify
illegal action. IDS is a security tool that monitors the CIA
triad [27].

From the perspective of deployment-based IDS, it can be
further categorized as Host-based IDS (HIDS) or Network-
based IDS (NIDS) [28]. HIDS is installed on a single
information host. The task is to monitor all activities on a
single host, scanning for security policy violations and suspi-
cious activities [29]. The primary disadvantage is the need to
deploy it on all hosts that need intrusion protection, leading
to additional processing overhead for each node and ulti-
mately reducing the performance of the IDS. On the contrary,
NIDS is installed on the network to safeguard all devices and
the entire network from intrusions. The NIDS continually
observes network traffic to detect security breaches andviola-
tions [30]. IDS can be grouped into two categories depending
on the model used: signature-based IDS and anomaly-based
IDS. Signature-based IDS stores pre-defined attack signa-
tures in a database and monitors the network for any matches
against these signatures. Anomaly-based IDS monitors net-
work traffic and compares it to the standard usage patterns of
the network [31]. Adversarial attacks create samples using

a natural sample and the victim instance. Generative adver-
sarial networks (GANs) are a potent category of generative
models that employ two networks trained concurrently in a
zero-sum game, with one network dedicated to data genera-
tion and the other to discrimination [32]. A GAN consists of
two elements: a generator and a discriminator. The generator
simulates the data distribution to create adversarial examples
and deceive the discriminator, which attempts to differenti-
ate between fake and real examples [33]. Adversarial attacks
pose evolving difficulties, requiring ML models to enhance
their protection and resilience.Many studies in cybersecurity
and IDS have explored the risk of adversarial examples and
proposed potential strategies to counter them [34].

2.2 Related works

Machine learning is a subset of artificial intelligence focusing
on algorithms and scientific models computer systems uti-
lize. ML involves constructing a mathematical model using
training data to make predictions or decisions [35]. ML tech-
niques are commonly utilized in IDS research because they
classify new data based on patterns from historical data.With
the advancement of deep learning methods, they began to be
extensively utilized in intrusion detection system research
[36]. Ferdowsi et al. [37] proposed a study on distributed
adversarial networks on IDS systems, and 2365 sampleswere
considered. The authors reached both higher 20% accuracy
and 25% precision than standalone IDS. Caminero et al.
[38] conducted a study introducing adversarial reinforcement
learning for IDS and developed a new technique that inte-
grates the environment’s behavior into the learning process.
The Random Forest, Random Tree, MLP, J48, and Naive
Bayes classifiers are evaluated for performance analysis. The
Radom Tree classifier achieved an accuracy of 96.23%, pre-
cision of 95.90%, f1-score of 94.80%, and recall of 95.80%.
Qiu et al. [39] presented a study using adversarial attacks on
network intrusion detection systems. The authors employed
two methods, i.e., reproduction of the black box model with
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training data and feature extraction of packets. The FGSM
techniquewasused for iteration andachieved a94.31%attack
success rate. Alhajjar et al. [40] presented a study using par-
ticle swarm optimization, genetic algorithm, and generative
adversarial networks to detect attacks in NIDS. The pro-
posed method is applied to two datasets, i.e., NSL-KDD and
UNSW-NB15, and achieves an accuracy of 98.06% using
the PSO algorithm. The study [41] explored targeting super-
vised techniques by creating adversarial instances utilizing
the Jacobian-based Saliency Map attack and analyzing clas-
sification behaviors in IDS. The authors used two methods,
i.e., RF and J48, and achieved a precision of 94%, recall of
94%, and f1-score of 94% using RF.

Chatzoglou et al. [42] presented a study on attack detec-
tion in the IEEE 802.11 network using the AWID3 dataset. It
significantly enhances and expands examining evidence of an
extensive array of attacks launched within the IEEE 802.1 X
extensible authentication protocol frameworks. Smiliotopou-
los et al. [43] presented a comprehensive approach to iden-
tifying lateral movement, which is the tactic of an advanced
persistent threat group using supervised machine learning
methods. The authors achieved an f-score of 99.41% and
an AUC of 0.998 while considering an unbalanced dataset.
Yu et al. [44] proposed an intrusion detection system based
on multi-scale convolutional neural networks for network
security communication. The proposed deep learning based
on the MSCNN model is tested on five different types of
attacks and achieves an enhanced accuracy of 4.27% reached
to others. Chatzoglou et al. [45] studied machine learning-
driven IDS to identify Wi-Fi threats behind schedule. The
authors used the 802.11 security-based AWID dataset. The
study achieved an f1-score of 99.55% and 97.55% using
shallow and deep learning techniques repetitively without
optimization. Khan et al. [46] explored an in-depth study
of IDS based on deep learning methods with various IDS.
The public IDS datasets are comprehensively analyzed and
discussed in the research. The study demonstrated various
performance criteria used objectively to assess deep learning
approaches for IDS. The authors further highlighted the chal-
lenges and solutions while implementing IDS. Chatzoglou
et al. [47] studied detecting application layer attacks onWi-Fi
networks and used the AWID3 dataset. The study considered
802.11 and non-802.11 network protocol features. The dif-
ferent classifiers are DT, LightGBM, and Bagging. MLP and
AE were used to evaluate the performance and presented an
attack detection performance of 96.7%. Usmani et al. [48]
examined distributed DOS and detected DOS. It’s difficult
to stop these attacks early. The authors used deep learning
based on the long short-term memory technique and deci-
sion tree to classifyARPSpoofing attacks. They presented an
accuracy of 99% and 100% utilizing LSTM and DT, respec-
tively. Ramachandran et al. [49] designed an active method
for detecting ARP spoofing. It can accurately identify the

true correspondence between MAC and IP addresses during
an attack.

Pawlicki et al. [50] proposed an artificial neural network
using an IDS to identify adversarial attacks. The false positive
rate of adversarial evasion attack prediction based on ANN is
higher. Taheri et al. [51] presented a study on malware detec-
tion on adversarial mobile networks. They used a two-stage,
real-time adversarial deep learning approach. The authors
presented an accuracy of 96.03% using the C4N technique in
normal conditions, but with adversarial attacks, the accuracy
was reduced to 40%. Yang et al. [52] presented network-
based intrusion detection with adversarial autoencoders with
DNN (SAVAER-DNN). The NSL-KDD and UNSW-NB15
are used to evaluate the model. The proposed model yielded
an accuracy of 93.01% and an f-score of 93.54%. Quresh
et al. [53] proposed a study on adversarial attack detection
on IDS using the Jacobian Saliency Map Attacks technique.
They proposed an RNN-ADV model based on a radon neu-
ral network and used the NSL-KDD dataset for training. The
proposed model achieved an accuracy of 95.6% in a normal
scenario, but in the adversarial scenario, the accuracy falls
by 47.58%.

Debicha et al. [54] presented a study using multi-
adversarial networks against NIDS. The authors developed
and executed transfer learning-based adversarial detectors,
individually obtaining a subset of the data handedvia the IDS.
The proposed model is evaluated using the CIS-IDS2017
and NSL-KDD datasets. The proposed DNN-IDS model
yielded an attack detection rate of 71.69% and 74.05% using
the NSL-KDD and CIS-IDS2017 datasets in the adversarial
scenarios. Roshan et al. [55] presented a study generating
adversarial methods using the Fast Gradient Sign Method,
Jacobian Saliency Map Attack, Carlini & Wagner, and Pro-
jected Gradient Descent in NIDS. The CIS-IDS2017 dataset
was used. The authors demonstrated an accuracy of 98.7%
using the FSGM method in adversarial conditions. Alotaibi
et al. [56] presented a study on the sustainability of deep
learning-based techniques on IDS using adversarial attacks.
The study proposed a CNN-based IDS model, and the CIS-
IDS2017 dataset has been used.Different techniques are used
to generate adversarial attacks. The proposed model yielded
an accuracy of 89.40% in adversarial attack detection. Paya
et al. [57] proposed a method of detecting adversarial attacks
against machine learning in IDS. The proposed model uses
various classifiers to determine intrusions and utilizes Multi-
Armed Bandits with Thompson sampling to choose the
optimal classifier for each input dynamically. The authors
demonstrated an accuracyof 93.04%.The existing IDSattack
detection studies are summarized in Table 1.

Based on the review of existing studies, some research
specifically concentrates on identifying DDoS attacks. Other
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Table 1 Summary of existing IDS attack detection studies

References no Method Dataset Outcome Gaps

Ferdowsi et al. [37] GAN-based IDS, ANN IoTD Accuracy 89%, Focused ANN to identify
attacks and
time-consuming
process

Caminero et al. [38] RF, RT, MLP, J48, and NB NSL-KDD Accuracy 80%, F1 score
79%

Focused on detecting
IDS attacks but not
considered
optimization
techniques

Qiu et al. [39] DNN, FGSM Mirai Attack success rate
94.31%

Focused attack detection
is DL-based NIDS but
has not been
considered an
optimization method

Alhajjar et al. [40] DT, PSO, GA, LDA, KNN NSL-KDD,
UNSW-NB15

Accuracy 98.06% Parameter optimization
is not considered

Anthi et al. [41] J48, RF, JSMA Power plant F-score 80% in
adversarial conditions

Feature selection and
optimization are not
considered

Pawlicki et al. [50] ANN, RF, AdaBoost, SVM CIS-IDS2017, Precision 11%, recall
99%, f1-score 20%

Not focused on feature
extraction and
optimization

Taheri et al. [51] Robust-NN, C4N Drebin, Contagio,
Genome

F1-score 69.29%, Recall
69.73%, Precision
68.86%

Not focused on data
preprocessing and
feature selection

Yang et al. [52] SAVAER-DNN NSL-KDD,
UNSW-NB15

Accuracy 93.01%,
F-score 93.54%

Two datasets are
combined, but
preprocessing, feature
extraction and
optimization are not
considered

Qureshi et al. [53] RNN-ADV, JSMA,MLP NSL-KDD Accuracy in normal
conditions of 63.41%.
Accuracy 71.38%,
Precision 47.23% in
adversarial attack using
RNN-ADV IDS model

Not focused on the
implementation model

Debicha et al. [54] DNN-IDS,
FSGM,PGD,CQ,DF,

NSL-KDD,
CIC-IDS2017

Accuracy 74.05% using
the DNN-IDS model in
adversarial conditions

The study did not focus
on preprocessing,
feature extraction, and
optimization
techniques

Roshan et al. [55] FGSM, JSMA, PGD,
C&W,

CIC-IDS2017 Accuracy 98.7% in
adversarial attack
scenario using FGSM
method

The study did not focus
on feature extraction or
explore the impact of
balanced and
unbalanced data in
adversarial scenarios

Alotaibi et al. [56] CNN, FGSM,BIM,PGD,
Auto-PGD

CIC-IDS2017 Accuracy 89.40% using
the CNN-IDS model in
adversarial conditions

Not focused on
processing, bias in the
dataset

Paya et al. [57] Apollon-IDS, MLP,
RF,LR,NB

CIC-IDS2017,
CSE-CIC-IDS-2018,
CIC-DDoS-2019

Accuracy 93.04%,
F1-score 88.35%, using
Apollon-IDS

The model takes more
training time and
computation resources
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Table 1 (continued)

References no Method Dataset Outcome Gaps

Proposed WCSAN-PSO
framework

PCA, LASCO,WCSAN,
PSO, SVC

CIC-IDS2017 Improved accuracy,
precision, and AUC
value in adversarial
attack detection

The study uses the PCA,
LASCO, WCSAN,
PSO, and SVC
techniques to design
the WCSAN-PSO
framework

significant attacks are not considered. Likewise, a straight-
forward ANN was deployed in one case, processing with-
out feature selection, and no optimization techniques were
applied. Similarly, a fundamental artificial neural network
was used in one case, operating without feature selection
and without applying any optimization techniques. Also, in
a few studies, the proposed IDS model with machine and
deep learning performed well in normal scenarios. However,
the accuracy and other evaluation parameters are decreased
in an adversarial attack scenario. Most existing approaches
demonstrated in this study for detecting machine and deep
learning are the main targets of adversarial attacks. Still, they
are complex evaluation processes with high false positive
rates, no effective validations, time-consuming processes,
require higher bandwidth and high computing resources for
processing, challenge in maintenance, and larger memory
consumption. Further, ML and DL-based IDS are vulnerable
to adversarial attacks. Unknown adversarial attacks can still
bypass machine and deep learning-based IDS because they
are trained on known adversarial attacks, which is a shortfall
in the adversarial training process.

To overcome the existing research gap, the proposed
framework is designed with a unique attack leveling pat-
tern while maintaining and updating the signature database
so that in case any known attack is detected. The prediction
can be made at the initial level, reducing bandwidth, com-
puting resources, and attack detection efficiency in IDS. The
proposed framework utilizes a WCSAN to construct a cor-
rected training data set with correct labels. PCA has adopted
feature extraction and LASSO for feature selection. The PSO
algorithm optimizes the parameters of the generator and dis-
criminator in WCSAN to enhance the adversarial training of
IDS.

2.3 Problem statement

IDS is used to automate a variety of cybersecurity responsi-
bilities.Most of these techniques employ supervised learning
algorithms, which rely on data from the specific field to train
the method to classify arriving information into clusters. Let
i denote the clean malicious traffic data from a given dataset,
and o denote the predicted class of network traffic sample

by IDS. The processing of the IDS model is defined by 0
g : i → o. These algorithms are vulnerable to malicious
attacks, in which a malicious attacker known as an adver-
sary deliberately alters the input data to mislead the learning
algorithm into misclassification. The adversarial sample is
defined using Eq. 1.

i∗ � i + δ (1)

where i∗ means the adversarial example generated from i
and δ means the magnitude of the adversarial perturbation.
Adversarial sample generation and training of IDS for classi-
fying training samples into true and adversarial instances are
required. The loss associated with adversarial sample gener-
ation can be minimized using Eq. 2.

argmin‖δ‖, i∗ �� i (2)

The probability (Padv) of training data belonging to a spe-
cific class m (m � true or adversarial) misclassified by the
discriminator module is determined using Eq. 3.

Padv � Nmisclassi f ied

Ttrain
(3)

Nmisclassi f ied indicates the number of training instances
misclassified by the discriminator. Ttrain indicates the total
training instances.

Theobjective function for optimizing the adversarial train-
ing dataset for IDS is defined by Eq. 4.

Gadv � w1.δ + w2.Padv (4)

Objective function minimization is the optimization prob-
lem for developing a corrected adversarial training dataset for
IDS. Table 2 depicts the notations of the problem definition.

3 Methodology

This section describes the proposed WCSAN-PSO-based
framework. The proposed framework is illustrated in Fig. 2.
First, the publicly available CIC-IDS2017 dataset [58]
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Table 2 Notations of problem definition

Symbols Description Problem definition

i* Adversarial sample for
data ‘i’

Injection of i* into input
data forces IDS to
larger
misclassifications

δ The magnitude of the
adversarial
perturbation

The magnitude of
adversarial
perturbation influences
adversarial training
against unknown
adversarial attacks

Padv Probability of
misclassifications by
the discriminator

Padv affects the
adversarial training of
IDS

Gadv The objective function
for optimizing the
adversarial training
dataset for IDS

Gadv must be minimized
for efficient
adversarial training of
IDS

(https://www.unb.ca/cic/datasets/ids-2017.html) is collected
and normalized using preprocessing. Network traffic PCA
extracts features and selects the feature using LASSO. These
methods are further complemented by the subsequent steps
involving labeling attacks and managing signature lists,
resulting in reduced system bandwidth usage and stream-
lined computing processes. Then, WCSAN is employed to
create a corrected training dataset with correct labels of
true and adversarial network traffic instances for IDS adver-
sarial training. PSO optimizes the parameters of WCSAN
to enhance the adversarial training process. The primary
focus of the proposed framework is leveraging signatures
to identify destructive patterns. Signatures are distinct traits

or patterns connected to particular sorts of attacks. The sys-
tem can effectively identify well-known attack patterns by
employing and updating signatures based on the known
attacks. High bandwidth utilization and computing pro-
cesses for device connection could be drawbacks of existing
approaches. This systemalleviates the problemby effectively
managing signatures and minimizes the data that must be
sent over the network. The IDS is trained on a corrected
adversarial training dataset to classify true and adversar-
ial samples. Finally, IDS is trained on true network traffic
data to classify the true samples into benign and malicious
instances. The efficiency of the IDS is validated with the pro-
posedWCSAN-PSO-based adversary training by comparing
without adversary training and classification with the SVC
classifier.

3.1 Data collection

This study uses the publicly available Canadian Institute for
Cybersecurity CIS-IDS2017 dataset ( https://www.unb.ca/
cic/datasets/ids-2017.html). The dataset is available in both
CSVandPCAPs format. It includesmost updated attacks like
Bot, PortScan, Infiltration, Web Attack Brute Force, Web
Attack Sql Injection, Heartbleed, SSH-Patator, DoS Hulk,
FTP-Patator, DoSGoldenEye, Web Attack XSS and DoSs-
lowloris, and normal records. The CIC Flow Meter analyzes
the network traffic features of this dataset. Table 3 shows the
description of the dataset.

Fig. 2 The proposed framework
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Table 3 Description of the dataset

Dataset Normal Attack Total

Training 49105 – 49,104

Testing 59,415 1966 12,277

Total 108,520 1966 61,381

3.2 Data preprocessing using normalization

Each network traffic feature sample is preprocessed to
remove the irrelevant network traffic features. Noisy data can
insignificantly influence the forecast of any influential data.
The missing values and noises are moved from the dataset in
data cleaning [59]. The labels in the dataset have string values
encoded into numerical values corresponding to each label.
Before feeding the dataset to IDS, the features are correctly
scaled to 0 and 1 to avoid some features overlooking others
[60]. The maximum normalization approach is employed.
Assume the variables as ax � axy , . . . . . . .., axm , where x ∈
n, y ∈ m. The number of variables is defined by ‘n,’ and the
number of data corresponding to each variable is defined by
’m’. The normalization for each network traffic variable is
performed using Eq. 5.

Gx
y � axy − min(ax )

max(ax ) − min(ax )
(5)

where Gx
y defines the standardized value of a specific vari-

able, and axy denotes the actual value of a specific variable.
Min (ax ) and max (ax ) refer to the minimum and maximum
value of a variable ax correspondingly.

3.3 Principle component analysis using feature
extraction

Using PCA, essential features that contribute to the PCA
intrusion detection process are extracted from the prepro-
cessed feature set. PCA has been widely used because of its
simplicity, ease of understanding, and lack of constraining
parameters. Employing PCA, m-dimensional network traffic
variables can be l-dimensional reduction network traffic fea-
tures [61]. To fulfill its dimension reduction objectives, the
PCA eliminates data duplication, compromising the smallest
quantity of information. These steps of PCA are as follows.

Step 1: The stages are grouped into PCA using Eq. 6
among the following groups: h � h1, h2, . . . .., hJ .

∝� 1

j

j∑

n�1

ha (6)

where j shows the decisionmade in the example n� 1, and…,
j

Step 2:Employing the samplemean, the covariancematrix
for the test set is computed using Eq. 7.

P � 1

j

j∑

a�1

(ha− ∝)(ha− ∝)o (7)

where P is the sample set’s correlation matrix.
Step 3: The feature values and vectors of the samples’

covariance matrix may be identified using Eqs. 8, 9, and 10.

P � K .�.KT (8)

� � diag
(
λ1, λ2, ...,λs

)
λ1 ≥ λ2 ≥ . . . ≥ λs ≥ 0 (9)

K � [
k1, k2, ..., ks

]
(10)

P is the quality values of m covariance matrices that have
been organized diagonally and are down-ordered; attribute
values of covariance matrices λj are shown below, together
with the property vector. kj Of feature value λj is used to
create a quality matrix. K, i � 1…, s.

Step 4: For the first l-row main items, use Eq. 11 to cal-
culate the cumulative deviations pension contribution using
feature vectors and feature ratings produced from the first
l-row primary components.

θ �
∑l

j�1 λ j

/
∑n

i�1 λ j
(11)

where θ shows the cumulative variations contribution level
of the past l-row fundamental modules and is typically equal
to or more than 0.9, the component should, in theory, be
as high. The component θ of has to be properly chosen for a
problem to be resolved from a realistic viewpoint. Particulars
of an originally restated selection: If the value is properly
selected, the main components for k-row collection may be
determined.

Step 5: Utilize and reduce the collected vector size with
q-row features using Eqs. 12 and 13.

A � Kl (12)

X � A.Y (13)

The relevance of quality for the first k-row (l ≤ n), P is
a matching quality vector, was used to create the character-
istic matrix. A feature’s first k rows matrix Ql , should be
filled. Unbent information may then be converted from m-
dimensional (Y) into linear (X), the dimensions needed for
linearization.
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3.4 LASSO-based feature selection and labeling
attack detection

A safe and effective method for selecting a small number
of significant network traffic characteristics from the above-
obtained feature set is feature selection. These methods
usually remove superfluous or inconsequential functionali-
ties or characteristics deeply correlated in the information
without causing significant data loss [62]. It is a popular
model for simplifying translation and ramping up supposi-
tion by lowering variance. The estimated LASSO function
can be calculated using Eqs. 14, 15, and 16.

βlasso � argβmin

⎧
⎪⎨

⎪⎩
1

2

M∑

x�1

⎛

⎝ jy − β0 −
t∑

y�1

ixyβy

⎞

⎠
2

+ λ
∑t

y�1

∣∣βy
∣∣

⎫
⎪⎬

⎪⎭

(14)

βlasso � argβmin
M∑

x�1

⎛

⎝ jy − β0 −
t∑

y�1

ixyβy

⎞

⎠
2

(15)

t∑

y�1

∣∣βy
∣∣ ≤ p (16)

LASSO replaces each correlation value with a continu-
ous component that shortens at zero. Anticipating the feature
selection technique is advantageous. It reduces the unutilized
sum of squares forced to submit to a total of the entire corre-
lation coefficient estimation to less than full conformity. The
LASSO improves the direct learning model, precision, and
accuracy by combining the benefits of perimeter depressive
episodes and subset shortlisting.

A data instance’s label indicates whether the instance is
normal or suspicious. The labeled data set for training is
obtained. Anomaly behaviors are often dynamic; for exam-
ple, new anomalies can develop without labeled training
information. This work used four classification levels, pre-
sented in Table 4: 0 for begin network traffic as non-attack,
1 for attacks. If any attack is an attack, the types of attacks
are maintained and updated in the dataset so that similar
attacks can be predicted earlier while consuming bandwidth
and computing resources. The flow diagram for maintain-
ing the attack dataset and attack labeling is demonstrated
in Fig. 3. Initially, information about network traffic behav-
ior is gathered for system analysis. After data gathering, the
information is labeled to differentiate between known and
unknown behavior. The system uses the suggested frame-
work to identify and categorize unknown or novel assaults
when it detects one different fromknown signatures. The pro-

Table 4 Log entry of labeled data

Classification Log Label Predicted
label

0 BENIGN Non-attack Non-attack

1 Bot Attack Attack

PortScan Attack Attack

Infiltration Attack Attack

Web Attack
Brute Force

Attack Attack

Web Attack Sql
Injection

Attack Attack

Heartbleed Attack Attack

SSH-Patator Attack Attack

DDoS Attack Attack

DoS Hulk Attack Attack

FTP-Patator Attack Attack

DoSGoldenEye Attack Attack

Web Attack XSS Attack Attack

DoSslowloris Attack Attack

posed framework quickly recognizes the attack and does not
need further processing if the acquired data sample matches
known attack signatures. The IDS decides whether to gener-
ate alerts, take appropriate action in response, or do additional
analysis based on the labeled data. This approach reduces the
total amount of data sent over the network, which assists in
preserving bandwidth resources while maintaining the accu-
racy of threat detection through signatures.

3.5 Handling the class imbalance problem

The class imbalance is a common problem in IDS. The sub-
stantial difference between the number of typical scenarios
and the low frequency of attack cases is the root cause of
this problem. The syntheticminority oversampling technique
(SMOTE) is used in this study to address the issue. The
SMOTE technique interpolates between the given data points
to generate fictional cases for the underrepresented class.
The preprocessed data are correctly handled, which includes
encoding class variables, deleting unnecessary features, and
handling missing values [7]. The datasets are then split into
training and testing datasets associated with characteristics
(a) and labels (b). The instances are built using the SMOTE
training set of data using Eq. 17.

(17)

asynthetic � aminori ty + randomnumber

∗ (n − aminori ty)

123



K. Barik et al.

Fig. 3 Flow diagram of labeling

Fig. 4 Architecture of the WCSAN-based IDS
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Let’s assume there is a dataset with labels b and
features a. The K-nearest neighbors of each minority
instance,a_minori ty, from the minority class must be
located. In (a_minori ty), a synthetic instance a_synthetic
is created for every neighbor n. The random number that
controls the interpolation between a_minori ty and n is a
random number between 0 and 1.

3.6 Weighted conditional stepwise adversarial
network particle swarm optimization
(WCSAN-PSO)

3.6.1 Weighted conditional stepwise adversarial network
(WCSAN)

The generator (G) generates adversarial network traffic fea-
ture values from the network traffic records. The generator
is based on a convolutional neural network. It includes the
input, convolutional, pooling, and output layers [63]. Net-
work traffic data, which usually includes features, is received
by the input layer ofWCSAN-based IDS. This data forms the
basis for further analysis. G takes true network traffic features
and Gaussian noises δ as input and generates an adversarial
network traffic feature vector using Eq. 18. This generated
feature vector is labeled as an adversarial traffic sample.

[
I ∗] � {

i∗1 , i∗2 , . . . . . . , i∗h
}
, i∗ �� i (18)

where
[
I ∗]means the adversarial network traffic feature vec-

tor, i indicates the clean network traffic features, and i∗ means
the adversarial network traffic features. The adversarial train-
ing dataset combines true (clean) and adversarial network
traffic features. This adversarial training dataset is sent as
input to the discriminator module of WCSAN. The discrim-
inator module of WCSAN is designed based on a neural
network.Discriminators are trainedon an adversarial training
dataset (I’) to distinguish between true and adversarial net-

work traffic samples. Game training is used to modify model
feature weights between the network entities to update the
model’s generalization capacity. The output of the discrimi-
nator can be defined using 19.

OD �
{
1, I j ′isadversarial

0, I j ′istrue (19)

where I j ′ means the j th sample of the adversarial train-
ing dataset (I’), and OD means the adversarial classification
result of the discriminator (D). The adversarial classifica-
tion result of the discriminator is that one of the samples
is predicted as adversarial and zero if the sample is true.
The corrected training dataset containing correct labels of
true and fake network traffic records obtained from the dis-
criminator is provided to the IDS. The proposed architecture
is shown in Fig. 4. The discriminator module’s corrected
training dataset is useful to identify and resist adversarial
attempts to IDS. First, the IDS is trained to discriminate
between samples that are categorized as adversarial sam-
ples and samples that are true instances. The IDS acquires
the capacity to distinguish between efforts at subversion by
adversaries and normal network traffic during the training
phase. Then, the IDS continues a further training program to
distinguish between two types of network data:malicious and
benign. The IDS can distinguish between malicious activity
that could be an attack and regular network traffic, which
does not affect the system’s performance due to its dual clas-
sification capacity.

The corrected training dataset obtained from the discrim-
inator module is used to train the IDS on adversarial attacks.
The IDS is initially trained to classify samples into true and
adversarial instances. Then, the IDS are trained to categorize
the true network activity samples into benign and malicious
network data. The proposed algorithm for WCSAN-based
adversarial classification is presented in Algorithm 1.
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Algorithm 1 WCSAN-based adversarial classification

The flow diagram of the WCSAN-based adversarial clas-
sification is presented in Fig. 5.

3.6.2 Particle swarm optimization (PSO)

PSO optimizes the parameters of the generator and discrimi-
nator modules ofWCSAN to enhance the performance of the
adversarial training of IDS. The PSO algorithm is associated
with the social behavior of birds flocking and fish school-
ing [64]. When an independent fish or bird (quantum-state)
decides on where to keep moving, three components are rec-
ognized at the same time: (a) its prevailing movable strategy
(rate of change) based upon that inertia of the movement, (b)
it is ideal position so far with, and (c) the most robust option
that its neighbor particles have accomplished thus far using
Eqs. 20 and 21. In the automated system, the particles form a

swarm, and each material can represent an effective solution
to the issue.

(20)

B p+1
x � e∗B p

x + f1 ∗ Rand() ∗ (t px − I px )

+ f ∗
2 Rand() ∗ (t pk − I px )

I p+1x � B p
x + B p+1

x (21)

Ix � (Ix1, Ix2, .., IxM ) (22)

Bx � (Bx1, Bx2, .., BxM ) (23)

where x represents the number of active nodes, p is the num-
ber of points, and B and I are the granules’ kinetic energy and
placement matrices. Equations 22 and 23 show that M par-
ticle dimensions can represent B and I in an N-dimensional
problem (22).
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The inertia weight e adjusts the predisposition to enhance
global adventure (smaller e). The natural inclination to
accommodate local adventure (larger e) to fine-tune this same
current search agent (larger e), Rand (), comes back with a
spontaneous ranging between [0, 1], and f1 and f2 are con-
stant operating numbers used to control the influence of tx
and tk . After each particle’s velocity has been updated, the
locations of the particles are updated using Eq. 23. Equa-
tions 24 and 25 construct the particles’ initial position and
velocity vectors.

Ix , g � Imin + (Imax − Imin) × q1 (24)

Bx , g � Bmin + (Bmax − Bmin) × q2 (25)

The PSO algorithm is presented in Algorithm 2.

Algorithm 2 PSO algorithm

4 Result and analysis

This section presents the analysis of IDS with the WCSAN-
PSO framework in classifying network traffic into benign
and malicious samples. The evaluations are employed in the
Python environment. The experimental setup was carried out
on a single PC with 64-bit Windows 11 and an Intel Pentium
CPU with 32 GB RAM and 500 GB SSD. The study uses
an SVC classifier for classification [65]. The performance
indicators for the analysis of the proposed framework are
precision, accuracy, F1-score, recall, ROC, and AUC value,
which are explained below.

Accuracy is the proportion of correct classifications of
network traffic instances out of total samples made by the
IDS, using Eq. 26.

Accuracy � l + m

l + m + n + 0
(26)
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Fig. 5 Flow diagram of WCSAN

where l (known as true positive) denotes the quantity of true
malicious network traffic instances correctly classified as
malicious network traffic instances, m (known as true neg-
ative) indicates the amount of true benign network traffic
instances accurately categorized as benign network traffic
instances, n (false positive) represents the number of true
benign network traffic instances misclassified as malicious
network traffic instances, and o (false negative) denotes the
number of true malicious network traffic instances misclas-
sified as benign network traffic.

Precision is determined as the proportion of network traf-
fic samples correctly identified as malicious out of samples
identified as malicious instances, using Eq. 27.

Precision � l

l + n
(27)

The recall is defined as the proportion of network traffic
samples correctly identified as malicious out of total mali-
cious network traffic samples, using Eq. 28.

Recall � l

l + o
(28)

The weighted ratio is the F1-score of recall and precision,
using Eq. 29.

F1 − score � 2 ∗ precision ∗ recall

precision + recall
(29)

The Detection Rate (DR) can be defined using Eq. 30.

DR � TP

TP + FN
(30)

where TP stands for True Positive and FN for False Negative.
The Area Under the ROC Curve (AUC) is a commonly

utilized performance measure in classification assignments.
The metric quantifies the ability of a classification model
to differentiate between positive and negative instances by
calculating the probability that a randomly selected positive
instance will be ranked higher than a randomly selected neg-
ative instance. The ROC curve illustrates the relationship
between the true positive rate (DR) and the false positive
rate (1-specificity) across different classification points, with
specificity calculated using Eq. 31.

specificity � TN

TN + FP
(31)

where TN stands for True Negative and FP for False Positive.
The AUC is the area under the curve, ranging from 0 to

1. A value of 1 signifies an ideal classifier, while a 0.5 value
indicates an ineffective classifier. Greater AUC values sig-
nify superior model performance in differentiating between
positive and negative samples.

To evaluate the effectiveness of the proposed IDS with
the WCSAN-PSO defense framework in adversarial attacks,
we have chosen the attack leveling, as illustrated in Fig. 3.
Three scenarios are presented in this section, demonstrated
in Fig. 6. In the first scenario, the IDS is trained with the
original network traffic dataset and generates network traffic
samples with no defence mechanism and without an adver-
sarial attack dataset. In the second scenario, the IDS is trained
with the original network traffic dataset and adversarial sam-
ples generated from WSCAN with no defence mechanism.
The classification is based on an imbalanced dataset for the
first and second scenarios. In the third scenario, IDS is trained
with the original network traffic dataset, adversarial samples
generated from WSCAN, and a corrected training dataset
with a defence mechanism. The proposed framework is eval-
uated in both balanced and imbalanced datasets.

4.1 Scenario 1

The original network traffic dataset is pre-processed and nor-
malized, features are extracted using PCA, and features are
selected using LASCO. The attacks are leveled. Network
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Fig. 6 Three evaluation scenarios for the analysis of IDS in adversarial attacks

Table 5 Transformed extracted features with generated network samples and original network dataset

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

− 2.3874579 − 0.0520089 0.4039036 − 0.4212386 − 0.4444382 − 1.0774039 0.2511127 0.183508 − 0.2085869 − 0.0637675

− 2.800229 − 0.298451 0.5778567 1.9874548 − 0.1287246 − 0.8104782 − 1.700661 1.3027706 0.1607661 − 0.1771233

0.7000989 1.4046537 − 4.1112846 − 0.889538 − 0.4381019 0.0350623 1.0478822 − 1.0805345 0.0869719 0.0903951

0.685761 1.2945483 − 3.7652078 − 0.9346478 − 0.1077882 − 0.0921702 1.039185 − 0.8611829 0.0214558 0.0956127

0.3151581 2.0196977 − 1.5316126 − 1.2665882 0.5241469 − 0.7385545 0.8348879 − 0.3901929 − 0.3537512 0.0472945

samples are generated and combined with the original traf-
fic to the dataset to train the IDS with no adversarial attack
samples and without a defense mechanism. The imbalanced
dataset is used, and the transformed extracted features with
the combination of generated network samples and the orig-
inal network dataset are illustrated in Table 5. The outcomes
are tested with the testing dataset.

The four performance evaluation parameters considered
are accuracy, recall, F1-score, and precision. The outcomes
are presented in Table 6, and it achieved an accuracy of
93.58% in detecting normal traffic and 90.74% in detect-
ing malicious traffic without an adversarial scenario and no
defense mechanism.

Figure 7 demonstrates the Receiver Operating Character-
istic (ROC) curvewith the Area under the ROCCurve (AUC)
value and shows an AUC value of 0.92 in the imbalanced
dataset in scenario 1.

Table 6 The IDS before adversarial attacks on the dataset

Performance indicators Category Outcome (%)

Accuracy Benign 93.58

Malicious 90.74

Precision Benign 70.67

Malicious 68.35

Recall Benign 78.58

Malicious 77.67

F1-score Benign 75.12

Malicious 74.89

4.2 Scenario 2

In scenario 2, the adversarial samples are generated with
WCSAN. The IDS is trained with the original network
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Fig. 7 ROC Curve with the AUC
value

dataset, and the adversarial samples are generated using the
WCSAN with no defence mechanism and without adversar-
ial training. The imbalanced dataset is used in scenario 2, and
the transformed extracted features with the combined adver-
sarial sample and the original training dataset are illustrated
in Table 7. The outcomes are tested with the testing dataset.

The four performance evaluation parameters considered
are accuracy, recall, F1-score, and precision. The outcomes
are presented in Table 8. The IDS yielded in the detection of
normal packets an accuracy of 92.78%, precision of 74.67%,
recall of 77.58%, and f1-score of 75.12% in an adversarial
attack scenario. In detecting attacks, IDS achieved an accu-
racy of 85.72%, precision of 69.35%, recall of 73.67%, and
f1-score of 75.89% in adversarial attack scenarios. How-
ever, the accuracy, precision, recall, and F1-score of the
IDS with no defense mechanism, tested on a network traf-
fic dataset with adversarial samples, was lower than the one
without adversarial examples. This signifies that the adver-
sarial attacks generated by the WCSAN compromise the
performance of the IDS compared to scenario 1. Adversarial
samples increase the number of false positives and force the
IDS to learn erroneous decision limits, as seenby the decrease
in IDS performance in an adversarial environment. This sig-
nifies that the outcome is impacted by detecting adversarial
attacks in scenario 2.

The performance of the IDS with WCSAN-PSO-based
adversarial training is further tested. The WCSAN is trained

Table 8 IDS performance after adversarial attacks with no defense

Performance indicators Category Outcome (%)

Accuracy Benign 92.78

Malicious 85.72

Precision Benign 74.67

Malicious 69.35

Recall Benign 77.58

Malicious 73.67

F1-score Benign 75.12

Malicious 75.89

for 1000 iterations to check the performance in determin-
ing adversarial samples from each 200 iterations. The scatter
plot of true versus adversarial samples for the WCSAN
method is illustrated in Fig. 8. The orange distinguishes
true network traffic samples, and the blue indicates adver-
sarial samples. Table 9 depicts the classification accuracy of
the discriminator of WCSAN for real and adversarial sam-
ple discrimination. PSO significantly enhances the WCSAN
method’s accurate and adversarial sample discrimination per-
formance.

Figure 9 demonstrates the ROC curve with the AUC value
and shows an AUC value of 0.84 in the imbalanced dataset
in scenario 2.

Table 7 Transformed extracted features with the combined adversarial sample and the original training dataset

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

0.8488575 0.7560821 0.8146192 0.6425675 0.3576311 0.4183124 0.8347974 0.8718762 0.8269289 0.8409152

0.9046618 0.8666568 0.7539278 0.8956943 0.7569068 0.7451112 0.9503375 0.642829 0.9042664 0.9279852

0.4679091 0.3894138 0.7861135 0.6702121 0.6995128 0.7555856 0.9398418 0.8276241 0.6017654 0.936344

0.7794187 0.8210003 0.8543053 0.7655664 0.8767144 0.5711125 0.5910316 0.6405485 0.6951845 − 0.1163267

0.9054413 0.8010286 0.8662278 0.7714617 0.7346173 0.9112899 0.9548118 0.9651832 0.8967986 0.3505101
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Fig. 8 Scatter plot of true versus adversarial samples in WCSAN a after 200 iterations. b After 400 iterations. c After 600 iterations. d After 800
iterations. e After 1000 iterations

Table 9 Classification accuracy of discriminator of WCSAN

Iteration Real sample Adversarial sample

199 0.98317855 1

399 0.98317855 1

599 0.98319892 1

799 0.98319892 1

999 0.98315819 1

4.3 Scenario 3

In scenario 3, The IDS is further trained on the combined
dataset, i.e., the normal original traffic and adversarial sam-
ples generated from scenario 2. The IDS is trained with a
corrected adversarial training dataset generated using the
proposed WCSAN-PSO defense. The common problem in
machine learning is addressing class imbalance, especially
in IDS. The SMOTE is used in this study to address the
data transformation issue from unbalanced to balanced. The
proposed framework is evaluated on both balanced and
imbalanced datasets. The third evaluation scenario with the
WCSAN-PSO defense mechanism with adversarial training
in the adversarial scenario is depicted in Fig. 6 and evaluated

using a balanced and imbalanced dataset. The value counts
for each data class in imbalanced and balanced datasets are
shown in Fig. 10 (a) and (b), respectively.

It demonstrates that the value counts are not equal in an
imbalanced dataset, and the value counts for all classes are
equal when the data are balanced. The extracted transformed
combined features for the corrected training and adversarial
samples dataset generated by WCSAN-PSO for the imbal-
anced dataset are demonstrated in Table 10 and 11.

Figure 11 illustrates the confusion matrix for classifying
network traffic samples into benign and attack samples by
IDSwithWCSAN-PSO-based adversarial training in the bal-
anced dataset.

Table 12 exhibits the proposed framework’s accuracy, pre-
cision, recall, and f1-score in detecting adversarial attacks
with defense mechanisms in normal and malicious scenar-
ios with adversarial training in the balanced dataset. Further,
using a signature database ismaintained for the knownattack;
it predicts initially without using bandwidth and computing
resources. Once an unknown attack is detected, the proposed
framework updates the signature database so that a similar
attack can be predicted at the initial stage next time. This sig-
nificantly enhanced the robustness and performance of the
framework. The proposed framework achieved an accuracy
of 99.36%, a precision of 98.96%, a recall of 97.56%, and
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Fig. 9 ROC curve with the AUC
value

Fig. 10 Value counts for each
class a imbalanced dataset.
b balanced dataset

Table 10 Transformed extracted features for the corrected training dataset and adversarial sample in the imbalanced dataset

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

0.1635971 0.2862763 − 0.3474317 − 0.9001193 0.9156828 − 0.2313149 − 0.790592 0.4767821 0.4169529 − 0.3781796

0.6447493 0.4485475 − 0.8793359 − 0.8039202 0.4526681 − 0.6978667 0.2069586 0.8472676 0.5431126 0.3478841

−0.3650534 0.6004493 − 0.3187721 − 0.6268917 0.4436878 − 0.5397366 − 0.1966288 0.3021472 0.3040808 0.206059

0.0454293 0.2957718 − 0.5242466 − 0.9403765 0.9371705 0.0972641 − 0.8363273 0.4402154 0.2895089 − 0.2385539

0.3529987 0.7379372 0.3213875 − 0.5913125 0.5550004 0.6555107 − 0.8531961 0.3473344 0.0643052 − 0.3071494

an f1-score of 95.54% in identifying normal samples. Mean-
while, detecting attacks yielded an accuracy of 98.55%, a
precision of 97.33%, a recall of 94.96%, and an f1-score
of 93.81%. This symbolizes that the proposed framework
enhances the performance of detecting malicious attacks in
adversarial scenarios after applying the defense mechanism
compared to scenario 2.

Figure 12 displays the ROC curve with the AUC value for
classifying network traffic samples into benign and attack
samples by the proposed framework using the balanced
dataset and achieving an AUC value of 0.99.

Table 13 displays the proposed framework’s accuracy,
precision, recall, f1-score, andAUCvalue in detecting adver-
sarial attacks with adversarial training with the imbalanced
dataset. The proposed framework performed an accuracy of

Table 11 Transformed extracted features for the corrected training dataset and adversarial sample in the balanced dataset

PC1 PC2 PC3 PC4 PC5 Pc6 PC7 PC8 PC9 PC10

0.7412561 0.3977996 0.6727271 0.7125944 0.5600536 0.7012566 0.7008215 0.8453897 0.6375687 0.7290632

0.9150863 0.9467107 0.5309644 0.8906117 0.9469074 0.572613 0.954946 0.975059 0.6177086 0.946415

0.9024052 0.8110246 0.0832738 0.860105 0.4311961 0.9057025 0.8233756 0.9682738 0.742722 0.8514427

0.7307583 0.7950293 0.1272996 0.6692681 0.5939809 0.7015559 0.7232251 0.8969641 0.5855946 0.7693119

0.9715712 0.9447051 0.279698 0.9250448 0.6990635 0.5575316 0.9361724 0.8332815 0.8031395 0.9500042
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Fig. 11 Confusion matrix in the
balanced dataset

Table 12 Performance analysis of the proposed framework in the bal-
anced dataset

Performance indicators Category Proposed

Accuracy Benign 99.36

Malicious 98.55

Precision Benign 98.96

Malicious 97.33

Recall Benign 97.56

Malicious 94.96

F1-score Benign 95.54

Malicious 93.81

98.92%, a precision of 97.95%, a recall of 96.58%, and an
f1-score of 92.64% in identifying normal samples. However,
detecting attacks achieved an accuracy of 95.55%, a precision
of 92.53%, a recall of 91.54%, and an f1-score of 92.35%.

Table 13 Performance analysis of the proposed framework in the imbal-
anced dataset

Performance indicators Category Proposed

Accuracy Benign 98.92

Malicious 95.55

Precision Benign 97.95

Malicious 92.53

Recall Benign 96.58

Malicious 91.54

F1-score Benign 92.64

Malicious 92.35

Figure 13 illustrates the ROC curve with the AUC value
using an imbalanced dataset, which yielded an AUC value of
0.97.

The summary of the comparative performance analysis of
the proposed framework using a balanced and imbalanced
dataset is depicted in Fig. 14. The AUC value in the balanced

Fig. 12 ROC curve with AUC
score in the balanced dataset
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Fig. 13 ROC curve with AUC
value in the imbalanced dataset

Fig. 14 Outcome comparison
with the imbalanced and
balanced dataset
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dataset is 0.99, as demonstrated in Fig. 12, whereas using
the imbalanced dataset is 0.97, as presented in Fig. 13. It
indicates that the performance of the proposed framework is
consistent but slightly better in the balanced dataset.

The outcome of the proposed framework is compared
based on adversarial attack detection on IDS with the exist-
ing studies, namely IDS-ANN [50], C4N [51], RNN-ADV
[53], DNN-IDS [54], JSMA [55], CNN-IDS [56] and Apol-
lon [57]. The comparative analysiswith the existing studies is
presented in Table 14 and Fig. 15. The proposed framework
achieved an accuracy of 98.55%, followed by IDS-ANNwith
an accuracy of 60%, C4N of 76.93%, RNN-ADV of 71.38%,
DNN-IDS of 74.05%, JSMA of 97.3%, CNN-IDS of 89.4%
and Apollon of 93.04%. The proposed framework yielded a
precision of 97.33%, and JSMA demonstrates a precision of
97.3%.

5 Discussion

The identification and mitigation of malicious behavior and
breaches of security is the preliminary function of IDS,which

is essential to safeguarding computer networks and sys-
tems. Traditional IDS, however, are susceptible to adversarial
attacks, inwhich hackersmodify or obscure network traffic to
avoid detection. Inadequate capacity for identifying known
network attacks at the beginning stage, high false alarm rates,
and inadequate feature engineering and selection increase the
usage of high bandwidth and compute resources. IDS should
successfully classify large-scale intrusiondata in the complex
network application environment. The proposed approach
addresses the issues by incorporating adequate feature selec-
tion. extraction and maintaining updated signature-based
systems, identifying the known attack at the initial stage and
thus reducing computing resources.

Three scenarios are presented in this study, demonstrated
in Fig. 6. In the first scenario, the IDS is trained with the
original imbalanced dataset, and network samples are gener-
ated and tested with no defense technique. The details of
the outcome with the SVC classifier are demonstrated in
Table 6, and an accuracy of 93.58% in normal and 90.74%
in attack detection is achieved. In the second scenario, the
IDS model with no defense mechanism is trained using the
original network traffic dataset and generated adversarial
samples from the WCSAN, as demonstrated in Algorithm
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Table 14 Comparative analysis
with the existing studies Performance

indicators
IDS-
ANN

C4N RNN-
ADV

DNN-
IDS

JSMA CNN-
IDS

Apollon Proposed

Accuracy 60 76.93 71.38 74.05 97.3 89.4 93.04 98.55

Precision 60 68.86 47.23 76.25 97.3 89.1 93.1 97.33

Recall 91 69.73 31.22 75.2 97.3 88.3 92.24 94.96

F1-score 11 69.29 37.59 74.22 97.3 89.21 88.35 93.81

Fig. 15 Performance evaluations
with the existing studies
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1. The performance is evaluated on the test imbalanced
dataset, and an accuracy of 92.78% in normal packets and
85.72% in attack detection is achieved, as demonstrated in
Table 8 with the SVC classifier. This symbolizes that the
adversarial attacks generated by the WCSAN reduce the
performance of the IDS. The IDS is further trained with
a corrected adversarial training dataset generated using the
proposed WCSAN-PSO defense in scenario 3. It is tested
on a dataset with an updated signature-based mechanism,
as demonstrated in Fig. 3. The PSO optimization is demon-
strated in Algorithm 2. The proposed framework is evaluated
in balanced and unbalanced datasets to validate its effective-
ness. The proposed framework in adversarial attacks with a
defense mechanism achieved an accuracy of 99.36% in nor-
mal and 98.55% in detectingmalicious attacks, as depicted in
Table 12. The ROC curve with AUC value is demonstrated in
Figs. 12 and 13 for balanced and imbalanced datasets, which
signifies the performance is consistent but slightly better in
the balanced dataset.

The comparative analysis with the existing studies in
adversarial attack scenarios is presented in Table 14 and
Fig. 15. However, it should be noted that existing stud-
ies are performed in different environments. The proposed
framework accomplished an accuracy of 98.55%, whereas
IDS-ANN of 60%, C4N of 76.93%, RNN-ADV of 71.38%,
DNN-IDS of 74.05%, JSMA of 97.3%, CNN-IDS of 89.4%
and Apollon of 93.04% in adversarial attack detection. The
process is similar to adversarial sample generation. However,
the proposed framework is distinct since it uses WCSAN-
PSO to make IDS more resistant to adversarial concerns

of known and unknown types while maintaining attack
signature datasets. An increase in the intrusion detection
performance of IDS with WCSAN-PSO-based adversarial
training in adversarial conditions demonstrates that it pushed
the IDS to learn and train efficiently between benign and
malicious network traffic. The framework can be adapted to
emerging adversarial techniques and attack patterns. Also,
the proposed framework can be scaled to manage large
datasets and high-throughput environments, making them
suitable for real-time and high-performance applications in
adversarial environments.

6 Limitations and future work

6.1 Limitations

This analysis of the study is based on one publicly available
dataset. The studymainly concentrated on the attacks present
in the dataset. The adversarial environment is extensive
and constantly changing. Focusing solely on these partic-
ular attacks may cover a partial range of threats faced in
real-world situations. The experiment used static datasets,
which may not fully represent network traffic’s dynamic and
evolving nature and adversarial behaviors. Real-world IDS
function in dynamic settings, and the research resultsmay not
completely correspond with these functional complications.
The study examined different adversarial defense methods,
but it was necessary to analyze all potential defense tools
comprehensively. Various defense strategies could produce

123



K. Barik et al.

varying outcomes, necessitating further research. The study
predominantly utilized traditional evaluation metrics such
as accuracy, precision, recall, f1-score, and AUC. Although
informative, these metrics must fully encompass the impact
of adversarial attacks on IDS systems. Further metrics and
practical testing could offer a more thorough evaluation.

6.2 Future work

Future research can explore the impact of emerging adver-
sarial attack techniques on NIDS systems. It is paramount to
stay updated on developing attack strategies to improve the
resilience of NIDS. There is a tremendous opportunity to cre-
ate a strong new framework to resist adversarial attacks for
IDS. This framework should surpass existing known attacks
and adjust to new threats, enhancing NIDS systems against
adversarial attacks. Incorporating comprehensibility and
model interpretation into NIDS models indicates significant
potential. Explicit model predictions help analysts quickly
detect adversarial attacks and develop efficient responses.
Heuristic-based solutions are proficient at identifying new
and unfamiliar threats, whereas verified countermeasures
efficiently combat recognized threats. Combining the two
achieves a thorough threat range, minimizing the chances
of missing threats and triggering false alarms. Therefore,
it would be a useful direction for research. The proposed
framework can be extended by using different attacks and
live datasets.

7 Conclusion

This study presented a proposedWCSAN-PSO-based frame-
work on aweighted conditional stepwise adversarial network
with particle swarm optimization and support vector classi-
fier for classification to effectively detect adversarial attacks
in IDS. The framework uses updated signature-based attack
detection to predict known attacks in the first stage, which
reduces computing resources. The study analyzed adversarial
attacks and defense mechanisms through three comprehen-
sive scenarios with practical and quantitative evaluation. The
proposed framework achieved an accuracy of 99.36% in
determining normal traffic and 98.55% in identifying mali-
cious traffic in an adversarial attack scenario. The proposed
framework yielded an AUC value of 0.99 in the balanced
dataset and 0.97 using an imbalanced dataset, which sig-
nifies consistency. Adversaries may modify many network
traffic features without affecting network behavior, making
it difficult to detect intrusions. The future goal is to study
the impact of the proposed framework on various ML and
DL techniques. This approach can be expanded to explore
the transferability concept in adversarial machine learning
with advanced techniques. The proposed framework can be

extended by considering different types of attacks, datasets,
and optimization techniques to enhance attack detection,
accuracy, and efficiency in reducing high false positive rates.
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