International Journal of Information Security
https://doi.org/10.1007/510207-024-00825-z

REGULAR CONTRIBUTION

®

Check for
updates

AutoPKI: public key infrastructure for loT with automated trust transfer

Joel Hoglund' - Simon Bouget' - Martin Furuhed? - John PreuR Mattsson? - Goran Selander? - Shahid Raza’

© The Author(s) 2024

Abstract

IoT deployments grow in numbers and size, which makes questions of long-term support and maintainability increasingly
important. Without scalable and standard-compliant capabilities to transfer the control of IoT devices between service
providers, IoT system owners cannot ensure long-term maintainability, and risk vendor lock-in. The manual overhead must
be kept low for large-scale IoT installations to be economically feasible. We propose AutoPKI, a lightweight protocol to
update the IoT PKI credentials and shift the trusted domains, enabling the transfer of control between IoT service providers,
building upon the latest IoT standards for secure communication and efficient encodings. We show that the overhead for the
involved IoT devices is small and that the overall required manual overhead can be minimized. We analyse the fulfilment of
the security requirements, and for a subset of them, we demonstrate that the desired security properties hold through formal

verification using the Tamarin prover.

Keywords IoT - PKI - Digital certificates - Enrollment - Embedded systems

1 Introduction

IoT deployments are rapidly increasing, both in numbers
and in fields of use, including for safety and security-critical
applications. While there has been a related fast development
of accompanying security solutions, there is currently a lack
of services for long-term robustness and secure management.

Security solutions, such as secure communication and
authentication, have been adapted to suit relatively resource-
constrained Internet of Things devices. Based on these more
primitive cryptographic mechanisms, more complex services

< Joel Hoglund
joel.hoglund @ri.se

Simon Bouget
simon.bouget@ri.se

Martin Furuhed
martin.furuhed @nexusgroup.com

John Preufl Mattsson
john.mattsson @ericsson.com

Goran Selander
goran.selander @ericsson.com

Shahid Raza

shahid.raza@ri.se

RISE Research Institutes of Sweden, Stockholm, Sweden
Nexus Group, Stockholm, Sweden

Ericsson, Stockholm, Sweden

Published online: 02 March 2024

such as key establishment and certificate enrollment for IoT
have been proposed, and are getting standardized. Together
they form the basis of creating a Public Key Infrastructure,
PKI, capable of encompassing the Internet of Things.

One of the important application areas for a functional
PKI for IoT is the creation of services for long-term support
and maintainability of IoT deployment. This area is becom-
ing ever more important with the spread of IoT deployments.
For a sustainable IoT ecosystem, there must be mechanisms
for trust transfer, how to efficiently update the IoT PKI cre-
dentials and shift the trusted domains to handle when the
responsibilities of maintenance of IoT devices are shifted
from one service provider to another. To amend the current
gap where no well-defined protocol exists, in this work, we
map out and propose a solution with references to and inclu-
sions of existing protocols together with new proposals where
there are currently no specified mechanisms.

To have a real-world impact, the proposed solution must,
in addition to stringent security requirements, be scalable,
resource-efficient, and as far as possible build on agreed stan-
dards. To achieve scalability, the overhead in terms of manual
labour must be kept minimal. Based on the above descrip-
tion, the concrete problem formulation becomes: what is the
minimal procedure needed, in terms of manual intervention,
to securely shift the operation of one IoT device from one
service provider to another?

The criteria for a complete and successful transfer of trust
is when all involved IoT devices have enrolled and received

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-024-00825-z&domain=pdf

J.Hoglund et al.

new operational certificates, making them recognized as valid
participants of the target organization PKI while meeting all
the requirements defined for the proposed protocol.

The main contributions of the paper are as follows:

— A design of alightweight schema for trust transfer, which
allows the control of IoT deployments to be shifted
between service providers with minimal manual over-
head.

— A feasibility study using a prototype implementation for
constrained IoT devices.

— A theorem prover-based security analysis for critical pro-
tocol security requirements.

The work presented here continues and extends our work
presented in [1], with the formal theorem prover analysis
being the most significant addition, together with more in-
depth coverage of compact certificates.

The rest of this paper is organized as follows: Sect.2
presents a brief discussion of vital concepts for the proposed
protocol. Section3 presents related work. Section4 gives
a motivating scenario. Section5 presents our threat model
and assumptions. Section6 formalizes the requirements of
the proposed protocol. Section 7 explains the lifecycle oper-
ations of a PKI-enabled IoT device, including new PKI
optimizations which make the security functionality suffi-
ciently lightweight, and optional security mechanisms which
are needed for the strongest security guarantees. Section 8
presents the detailed scenario for AutoPKI together with our
proposal for formalizing the steps into a protocol with a max-
imal level of automation. Section 9 presents the results of the
feasibility evaluation, including a discussion from the busi-
ness perspective (10). In Sect. 11 we present the security
assessment of the requirements, before concluding the paper.

2 Towards automated PKI: background
technologies and challenges

This section introduces concepts and mechanisms which are
important for the creation of a PKI for IoT, which are referred
to in the rest of the paper.

2.1 Security services and PKI

When designing more complex security services, encap-
sulating lower-level mechanisms as basic security services
provides a useful abstraction.

To establish and maintain trust from a system perspec-
tive, authentication and authorization are two key security
services.

An authentication service provides the necessary trust-
worthy binding between an entity and, in the case of a PKI,

@ Springer

a public key. This functionality in turn can be used to create
an authorization mechanism, which ensures that an authenti-
cated actor can perform exactly the actions they are entitled
to and no other actions.

The full system needed to manage the authentication ser-
vices and their artefacts; certificates, keys, policies and roles,
forms a Public Key Infrastructure, PKI.

2.2 PKI hierarchies

A cornerstone of PKIs is authentication through publicly
available keys, keys encapsulated in certificates signed by a
certificate authority, CA. The certificate authorities are iden-
tified by their certificates, which can be either self-signed
or signed by another CA. This system of signed certificates
forms hierarchies up to the self-signed top/root CAs. The
resulting chains of certificates can be verified up to the top
nodes, but the self-signed root nodes need to be already
trusted [2].

The party traversing the certificate chain and performing
the authentication must have access to the top node certifi-
cates, in a trusted manner. Practically for IoT devices, this
means they should be equipped with the necessary root cer-
tificates in their local trust stores. The placement can happen
before deployment through factory pre-programming, and/or
dynamically through enrollment operations.!

The IoT devices act as leaf nodes at the lowest layers of the
CA hierarchies, together with the service provider servers,
with which the devices need to communicate. Figure 1 illus-
trates some alternatives for CA hierarchies, depending on the
trust relations between the entities, involving two different
service providers and IoT devices. For the task of securely
transferring control of IoT deployments, the implications of
the different CA hierarchies illustrated in 1 are the following:
If the trust hierarchies are completely separated, as in 1a, the
IoT device needs to be equipped with a root certificate for
CA1 in advance of the first enrollment, to be able to authenti-
cate CAl. Correspondingly the device must be updated with
a root certificate needed to authenticate CA2 in advance of
the trust transfer. In the case where the CAl is a sub-CA of
the permanent CA, as shown in 1b, it is sufficient to provide
an update with a root certificate for CA2. For the relation-
ships shown in lc and 1d, all entities can be authenticated
with only prior access to the certificate of the permanent CA.

There can be performance reasons to go beyond the min-
imal requirements for which root certificates that must be
added to the IoT device trust store. By providing additional
certificates from the servers with which the IoT device needs
to communicate, certificate reference-based authentication
can be enabled. This allows the communicating parties to

I Advancements in both IoT capabilities and solutions targeting IoT
have made PKI enrollment solutions feasible for IoT [3, 4].

AutoPKI: public key infrastructure...

(d) One trust root, one operational CA

Fig. 1 Different options for CA hierarchies. All arrows represent cer-
tificate issuing, green arrows for factory certificates, blue arrows for
operational IoT certificates (colour figure online)

send hashes of certificates, which the counterpart already
possesses, rather than full certificates and certificate chains.
This type of reference-based public key authentication is for
instance supported in EDHOC key establishment [5].

2.3 The concept of trust in PKI

From the PKI perspective, trust is something that can be
established between two or more parties with help from
the infrastructure and the concept of trusted root nodes [2].
The more general discussion on trust is a large topic with
a multitude of overlapping definitions. Two perspectives of
relevance for this work are: A systems perspective, defined as
trust that the system will provide the desired services, without
unintended or undesired side effects. Complemented by an
organizational perspective, defined as trust that the involved
parties will live up to the obligations they have agreed to, for-
malized through one or more contracts. Without the latter, the
involved parties will not reach the former, the confidence in
the system. For much more in-depth discussions on the con-
cept of trust see [6]. In order to automatize and scale up the
number of operations, it becomes crucial to provide mech-
anisms such that all relevant obligations can be tracked and
audited to the degree deemed necessary, with low overhead.

3 Related work

Ownership Transfer: The closely related area of ownership
transfer for IoT has been studied from the perspectives of
single-user privacy protection and custom non PKI-based
solutions. In [7] the focus is on the privacy and protection of
smart home device data. A custom solution for creating user
profiles, and automatically detecting ownership changes for
individual devices is presented. Compared with our efforts,
this is on the opposite end of standard compliance, where
automatization is used not for reducing costs and handling
scale, but for the convenience of individual users and end-
user privacy protection.

In [8] a custom non-standard solution is proposed, where
the authors specifically do not assume PKI support from the
devices. Their focus is on ensuring forward and backward
security between the former and new owners. The solution
is based on symmetric keys and a trusted third party. Despite
the differences in assumptions concerning PKI support and
standard compliance, they investigate a similar scenario as
we do, and some of their requirements have relevance to our
solution as well.

Identity based encryption and certificateless cryptogra-
phy: Identity based encryption, ID, where public keys for
an entity can derived using only relatively short and pub-
licly known identifiers, offers a more lightweight alternative
to standard PKI, with respect to the PKI certificate han-
dling. These solutions rely on a completely trusted third-party

@ Springer

J.Hoglund et al.

Private Key Generator, PKG, to provide the private keys,
introducing a single point of failure for the entire system. In
addition, they have difficulties handling revocation since this
requires a full withdrawal of the publicly known identity. To
overcome the key escrow problem where the PKG has full
knowledge of all private keys, certificateless cryptography
solutions have been proposed, where also the user takes part
in the key generation process. This on the other hand rein-
troduces the need to distribute the public keys, as they can
no longer be computed only from the public information. In
addition the offered security will depend on the underlying
schema, with no widely accepted models available [9, 10].

Certificateless cryptography is an active area of research,
with new models and mechanisms being proposed, including
attempts to limit resource needs [11]. For IoT deployments
with known organizational boundaries and no outside inter-
operability needs, they might offer an efficient alternative.
The overall conclusion is that the certificateless solutions are
currently not capable of providing building blocks for large-
scale interoperable key management services.

Further PKI alternatives: For scenarios with IoT devices
that are incapable of running PKI mechanisms at all, sev-
eral different custom-made solutions have been proposed.
Even for the most constrained devices such as RFID, there
are proposals for mutual authentication which, although the
master secrets are non-replaceable, include mechanisms to
avoid replay attacks [12]. For devices with more capabilities
[13] presents a hierarchical model, as well as a comparison
with other similar solutions.

These solutions do not offer real end-to-end security, intro-
duce complex intermediaries, and are currently not being
standardized. Parts of the solutions which are proposed
specifically for local wireless sensor networks (WSNs), could
be used complementary with full-fledged PKI mechanisms
to solve issues related to initial bootstrapping and initial link
layer security key distribution.

4 E-health use case: loT ownership change
and AutoPKI

To introduce the trust transfer problem, and give a motivat-
ing example that illustrates some of the involved actors, we
present a brief high-level use case where the proposed pro-
tocol applies.

A municipality wants to invest in e-health solutions to
strengthen its elderly care monitoring capabilities. The goal
is to equip beds with a number of wireless sensors to detect
movement and rise an alarm if the person in the bed is on
the brink of falling out. Since the municipality lacks the
operational resources themselves, they procure the purchase,
installation, and operation from an external service provider,
SP1 hereafter. To prevent vendor lock-in, the municipality

@ Springer

demands that open standards must be used and that the capa-
bilities to shift the service provider must be ensured. The
monitoring system must also be easy to integrate with exist-
ing systems in the municipality for the handling of personnel
and access to personal data.

After some time of operation, the municipality wants to
upgrade their system for personnel access. As the new solu-
tion would require costly modifications to work with the
existing IoT service provider they decide to swap service
providers with someone already capable of interacting with
the new personnel access system.

The municipality does a new procurement and instructs
the original service provider to hand over operations to the
selected new service provider, SP2. The new service provider
securely gains control of the IoT devices and continues the
monitoring services.

A protocol is needed for the interactions involved in the
handover to be both secure and efficient in terms of mini-
mal manual efforts. In the following, we present an enabling
PKI environment, details on the required interactions, and
how our proposed protocol fulfils desired security properties
while enabling a high degree of automatization.

5 System and threat model

The main targets of the proposed protocol are IoT deploy-
ments with device-to-server communication as the most
common communication pattern. We consider IoT devices
constrained in terms of both bandwidth and computational
resources. They are computationally powerful enough to
perform asymmetric crypto operations, but to keep energy
budgets limited, computationally expensive operations must
be used sparsely. In addition, devices often communicate
using radio, over wireless low-power networks, which adds
packet size constraints and the need to handle packet losses.

We assume the Dolev-Yao adversarial model [14], where
the potential attackers have full access to the network. They
can eavesdrop any message being sent, record messages, and
inject both old and modified messages into ongoing commu-
nication. Regarding the IoT devices themselves it is assumed
that they are not physically tampered with. Regarding the
cryptographic functions used, it is assumed that they cannot
be broken within the relevant time span.

As a baseline, we assume that the involved service
providers establish mutual trust, in such a way that they will
not actively attack the counterpart. Unless prevented, they
might still be interested in gathering leaked data. We return
to these assumptions in relation to remote attestation (Sect.
8.3) and our formal analysis, where we also consider the case
where SP1 acts as an attacker (Sect. 11).

AutoPKI: public key infrastructure...

6 Requirements

Based on the above description of challenges and threats,
we arrive at the following requirements for a trust transfer
protocol.

FRI: Integrity protection If the protocol terminates, we are
certain that an attacker has not been able to modify any proto-
col message received by the IoT device. FR2: Man-in-middle
resistance An adversary cannot use eavesdropped traffic to
successfully hijack a transfer protocol session.

FR3: Forward security The old service provider shall not get
access to any private data which can compromise the privacy
of the new service provider and its onward operations.

FR4: Backward security The new service provider shall not
get access to any private data belonging to the old service
provider, which is not explicitly agreed to be shared.

These functional requirements make statements about the
desired state at the end of a completed protocol run. In addi-
tion, we identify the following non-functional requirements,
related to scalability and interoperability:

NFRI: Automatization The protocol must offer the desired
functionality with a minimum of manual intervention.
NFR2: Resource efficiency The protocol must allow all oper-
ations directly involving the IoT devices to be sufficiently
lightweight to run on relatively resource-constrained devices.
NFR3: Standard compliance To be feasible for adoption by
the industry, the protocol must build upon existing and ongo-
ing standardization efforts wherever possible.

7 AutoPKl life cycle

The main enabler for an IoT device to gain access to a number
of crucial security services is to be part of a PKI. It is neces-
sary for the goal of offering standard-based interoperability
and preventing vendor lock-in. Making resource-constrained
IoT devices parts of a PKI is a nontrivial task. To give the
context for how the task can be achieved, we present existing
and proposed solutions for how an appropriate environment
for trust transfer can be created. We cover the first stages in
the PKI for IoT life cycle, while adhering to existing stan-
dards for all steps wherever possible. A high-level overview
of the life cycle is shown in Fig. 2. A more detailed diagram
of the initial life cycle phases is given in Fig. 3.

Scope and limitations We address the issues directly related
to public key management, needed to guarantee the required
security services. In addition, a deployment might have other
functional requirements such as downtime constraints that
need to be treated separately and factored in when scheduling
the actions to be performed.

Involved actors In the first steps of the life cycle description
the following actors and roles (briefly mentioned in Sect. 4)
are relevant to specify: CA: A well-established and reliable

C: Initial requirement C: Update
specification requirements
\V4

(C+SP1 : Procurement\
and contract
negotiations

A agreement on contract and SLA
y

SP1: Acquisition and
setup

& J

deployment
A 4

CA1: Enrollment
|\ “ J
v certificate expiration
C+SP1: Regular
operations software updates
4 " N\

Device retirement

Change of
operator

Fig.2 The IoT life cycle

certificate authority (Permanent CA): A certificate authority
that can be trusted for an extended period of time, suitable for
providing long-lived trust root(s) to the initial device trust-
store.

SU: The IoT service user, who is also the system owner
(owner/user). This is the actor (company or organization)
who uses the IoT system to achieve a goal. The goal can
be internal, as a service end user, or as a part of providing
services to other third parties.

SP1: The initial IoT service provider; the company which
is in charge of configuring the IoT devices, installing them
and, initially, maintaining them.

CA1: The initial operational CA; the certificate author-
ity with which SP1 has made an agreement to provide
operational certificates, including certificate renewals when
needed. It can be the same as the permanent CA.

7.1 Procurement, SLAs and smart contracts
The starting point for the scenario is that a company or an

organization, SU, has identified a need that can be fulfilled
with an IoT system. The IoT system needs to be clearly

@ Springer

J.Hoglund et al.

|
spl >
trust agreement N

<SLA> 4

MAC ID readout

MAC IDs + CSRs

A

<PKCS#10>
Factory certificates
Ll
<x5bag>
C?K I
- trust agreement N
A <SLA> "
|, Factory certificates
N <x5bag>
CA 1 path .
<URI> g
Factory certificate
+Private key
+Initial CA trust store
+CA 1 path
Shipped and deployed
Bootstrapping
<nitial enroliment, using <EST-coaps> or <LICE>>
https://gitlab.com/msc-generator v8.4

Fig.3 The IoT device’s initial life cycle stages, showing the standards
used for setup and enrollment. Red arrows correspond to operations
where manual intervention is expected. Green arrows are deployment-
specific, while black arrows are standard-based and fully automated
(colour figure online)

specified, ordered, deployed, and thereafter maintained. The
deployment could be within the SU’s own premises, or
within any other area where they have obligations to per-
form monitoring or offer services that can be aided by the
IoT installation.

As part of the procurement process, the SU specifies
service-level agreement conditions that must be met. In this
work, we focus on those directly related to PKI and trust
management. This includes specifying that the chosen IoT
service provider must be able to transfer the role of sys-
tem maintainer to a new service provider without breaching
agreed security guarantees. The demands could also specify
additional criteria for minimal service disruptions during any
system update.

SLAs and Smart Contracts In line with the efforts to lessen
the burden of manual intervention in any software service
operation, service-level agreements, SLAs, can be used to
formalize contractual agreements in a manner suitable for
automated checking [15]. Specifically, to lessen the depen-

@ Springer

dency on additional trusted third parties, smart contracts (SC)
running on blockchain infrastructure have been proposed
for the automatizing and monitoring of service-level agree-
ments. This type of solution could potentially further remove
the need for human involvement. Early proposals such as
[16] considered cloud environments, while newer works also
address IoT scenarios. For example, in [17] the authors pro-
pose a Hyperledger Fabric-based system for SLA compliance
assessment, with applications for IoT. Smart contracts them-
selves cannot directly access data outside of their blockchain
environment, hence, a solution for monitoring service param-
eters will depend on so-called oracles, data feeds that connect
the contracts to off-chain information [18].

The field of using SCs for SLA monitoring is an active area
of research, where more work is needed before the solutions
have reached industry maturity. From the perspective of our
trust transfer proposal, details on how SLAs are monitored
and acted upon are outside the scope.

An IoT provider who accepts the required conditions gets
the order. Together the SU and the IoT service provider, here-
after SP1, formalize the requirements in a contract containing
the agreed upon service-level agreement. Besides quality of
service specifications, the parties clarify the service end-
points to be used for accessing services and data.

7.2 Device acquisition, factory credential and
firmware preparations

The SP1 acquires IoT devices that meet the functional sens-
ing and actuation requirements of the customer, as well as
the non-functional requirements regarding security protocol
support and update capabilities. The section corresponds to
the Acquisition and setup stage of Fig. 2.

A vital part of a PKI capable of handling IoT devices with
minimal manual intervention is how to prepare the devices,
such that they can perform initial authentication operations
once deployed. To perform mutual authentication, the device
must be able to identify itself to a server and have means to
authenticate the server with which it is communicating.

The practical solution is to pre-program devices with a
secret factory key and a factory certificate, plus an initial
truststore containing server certificates. For the general case,
the device needs both the server certificates forming the cer-
tificate chain up to the CA root of the factory certificate,
plus additional root certificates to authenticate servers with
certificates belonging to other root CAs.

AllToT devices come with unique IDs when they are deliv-
ered from the manufacturer. In the following, we assume that
the SP1 uses the unique device IDs provided by the man-
ufacturer as the basis for the device names in the factory
certificates. The device IDs might be matched between a list
of IDs and stickers on the devices, or through QR codes, or

AutoPKI: public key infrastructure...

extracted through some programming port. The exact mea-
sures will depend on the device type at hand.

If the IoT device is equipped with a secure and protected
hardware module, it can implement the 802.1AR standard
for Secure Device Identities, DevIDs [19]. The hardware
requirements make the standard less suitable for the most
constrained IoT devices, but for sufficiently capable devices
the module can be used to also offer physical tampering pro-
tection.

The SP1 has an agreement with a CA that they trust,
allowing them to order long-lived factory certificates. This
agreement must be compatible with the conditions in the
SLA made with the SU regarding the long-term availability
of the CA. The IoT factory certificate should have a lifetime
corresponding to the lifetime of the IoT device itself. Hence
it is extra important to strive for access to an entity that can
reply to inquiries about the certificate revocation status for
all of the expected device lifetime.

The SP1 generates cryptographic keypairs and creates cer-
tificate signing requests, CSRs, for all IoT devices that should
receive factory certificates. The requests are communicated
to the permanent CA, which creates factory certificates and
sends them back. This communication takes place over the
regular Internet and is therefore not restricted in terms of
bandwidth. The certificate signing requests can therefore be
sent using the verbose PKCS#10 standard [20]. Since the tar-
gets are [oT devices, it is beneficial if the resulting factory
certificates are compact. Using the proposed C509 certificate
format results in significantly more compact certificates com-
pared with X509, especially when using ECC crypto keys,
offering the strongest cryptographic guarantees at relatively
short key lengths [21] (see also Sect. 7.3 below). The CSRs
as well as the replies can be sent one by one as needed or col-
lected and sent in batches. All of the communication happens
over a TLS-secured communication link. If the key pairs for
the factory certificates are generated outside of the target IoT
devices, extra care must be taken to ensure the private keys
are not leaked. Preferably they should be kept in a Hardware
Security Module, HSM, and destroyed on the server side after
being uploaded to the target devices.

It is worth emphasizing that the long-term factory certifi-
cates should be restricted in terms of operational capabilities,
allowing only the authenticating of the device for doing an
enrollment operation and special device updates. The initial
post-deployment enrollment is what assigns an operational
certificate to the device, with the needed capabilities to oper-
ate within the SP1 infrastructure. Hence the devices need to
be given information on which CA to contact for operational
enrollment.

SP1 contacts a CA which will act as the operational CA,
CALl. Unless CAl is the same as the permanent CA, the
operational CA needs to be updated about the identities of
the devices to which it should be prepared to grant opera-

tional certificates to. This is solved by sharing the factory
certificates. A proposed format with minimal overhead is an
x5bag, in which certificates are wrapped in byte strings, and
placed in a CBOR array [22]. In return, the SP1 is given the
URI that the IoT devices should contact for the enrollment
of operational certificates.

The data exchange between the SP1 and the CA1 can be
fully automatized, given a pre-existing contract which spec-
ifies the rights for any device, which can authenticate itself
using a private key corresponding to one of the shared factory
certificates, to request an operational certificate.

At this point, the SP1 is equipped with the data needed
to do the initial programming of devices, which provides the
device with its initial firmware, including a factory private
key, factory certificate, initial truststore, an SP server URI
and information on the CA-URI. The initial programming
and data transfer to the IoT devices take place in a trusted
environment.

The steps covered until this point are illustrated in Fig. 3
up until "Shipped and deployed".

7.3 C509 certificates

One of the obstacles to using PKI for IoT has been the pro-
hibitive overhead created by having to handle lengthy X.509
certificates. To reduce the overhead we have proposed a more
compact encoding using CBOR, the C509 certificate format
[21]. Besides the savings due to CBOR being more compact
than ASN.1, the encoding makes use of domain knowledge to
extend the savings beyond general compression. It includes
compression of elliptic curve points, replacement of long
OIDs with short integers and removal of known static fields.
The format can either be used natively, if the involved CAs
and servers understand the format or in a compatibility mode
where the certificate signature verification is done on a recon-
structed X509 certificate.

The format of the current C509 version is given by the
following CDDL.:

Listing 1 C509Certificate

C509Certificate = [
TBSCertificate,

issuerSignaturevalue : any,

; The elements of the following group are used
in a CBOR Sequence:
TBSCertificate = (
c509CertificateType: int,
certificateSerialNumber:
CertificateSerialNumber,
issuer: Name,
validityNotBefore: Time,
validityNotAfter: Time,
subject: Name,

@ Springer

subjectPublicKeyAlgorithm:
AlgorithmIdentifier,
subjectPublicKey: any,
extensions: Extensions,
issuerSignatureAlgorithm:

AlgorithmIdentifier,

)

CertificateSerialNumber = ~biguint

Name = [* RelativeDistinguishedName] / text
/ bytes

RelativeDistinguishedName = Attribute / [2*
Attribute]

Attribute = (attributeType: int,
attributevalue: text) //
(attributeType: ~oid, attributeValue: bytes)

Time = ~time / null

AlgorithmIdentifier = int / ~oid /
[algorithm: ~oid, parameters: bytes 1]

Extensions = [* Extension] / int
Extension = (extensionID: int, extensionValue
:any) //

(extensionID: ~oid, ? critical: true,
extensionValue: bytes)

The C509 work has been expanded beyond an initial IoT
profile coverage (corresponding to RFC 7925 [23]) to spec-
ify identifiers for a more general set of extensions, attributes
and algorithms for keys and signatures. Together, these cover
a wide range of well-behaved cases, while allowing more
lengthy byte representations of rare cases. Certificates com-
pliant with a number of significant certificate profiles, such as
IEEE 802.1AR, CNSA, and RPKI, can be encoded, resulting
in a good general RFC 5280 coverage. Consequently, unless
the service provider has very specific needs, not only the IoT
certificate but also the server certificates that the IoT device
needs to handle can be compactly C509 encoded, greatly
reducing the overhead for PKI-related communication and
certificate handling.

The overall protocol design is agnostic to the certificate
format used, as long as viable protocols for enrollment, revo-
cation and secure communication establishment in general
exist. This means that other compact formats such as implicit
ECQV certificates could be used instead, if the issues regard-
ing certificate management are resolved [24].

7.4 Deployment and initial enrollment

The device is physically installed in its target environment.
Depending on the contract between the SP1 and the SU, this
can be done by the SP1, by the SU themselves or by a trusted
third party.

@ Springer

J.Hoglund et al.
&

loT.
J Server
Revocatidn management i

Secure communlcatogﬁ‘
i

Fig.4 The IoT interactions during normal operations

Software update(s)
<SuIT> g

A full specification of a concrete deployment needs to
address further practical details, such as bootstrapping, seed-
ing of the device time source and if there are policies to use
for re-assigning dynamic MAC addresses. These issues are
highly dependent on the operator and the deployment sce-
nario. For example, how to securely provision a time source
is an open issue. The latest available relevant standards, such
as BRSKI, allow IoT devices to ignore the certificate valid-
ity periods during initial authentication if the device has not
yet been given a reliable current time [25]. In the following,
we assume that the deployment-specific bootstrapping issues
have been solved.

Upon startup, the [oT device contacts the CA1 to do initial
enrollment and be given an operational certificate. The device
authenticates itself through the factory certificate which is
registered with the CA1. The factory certificate also serves
to authorize the request for an operational certificate. Mutual
authentication is done as part of establishing a secure channel,
using either a DTLS or EDHOC handshake.

The IoT device sends a certificate signing request to the
operational CA, using the proposed C509 CBOR format [21],
or the less compact PKCS#10-format for legacy systems. The
CA replies with an operational certificate, in either C509 or
X509 format.

The choice of format depends on whether the enrollment
is done following the older EST-coaps [26] or the proposed
more flexible EDHOC-based enrollment protocol [4]. If the
device is using the proposed compact enrollment protocol the
enrollment message exchange can be encapsulated already
inside an EDHOC handshake.

IoT devices with sufficient computational resources are
capable of generating the key pair themselves, which is the
preferred solution whenever available, as the private key
never needs to leave the device. For the most constrained
devices, a similar enrollment approach is feasible also for
requesting a server-generated key pair.

Note on trust: The IoT device trusts the operational CA,
given that the device has authenticated it during the hand-
shake, and believes the given CA-URI to be valid.

AutoPKI: public key infrastructure...

7.5 Normal operations

After the enrollment, the IoT device is equipped with an
operational certificate which is recognized by the servers it
needs to communicate with, and has an updated truststore
which ensures that the device can perform authentication of
all endpoints of relevance.

During normal operations, the SP1 ensures the IoT devices
are kept up to date with software upgrades, following the
SUIT architecture mechanisms [27]. Before the operational
certificate expires, the device will do re-enrollment with the
CALl. The normal operations are illustrated in Fig. 4.

8 loT trust transfer
8.1 Introduction and problem formulation

A motivating high-level use case was given in Sect. 4. In gen-
eral terms, the IoT service user, SU, decides that they want
to switch service providers for their IoT services while main-
taining their existing deployments and installations. This is
the high-level goal which should be achieved with a minimum
of service disruptions and with a minimal need of human
intervention.

Today the operations needed for a secure ownership trans-
fer between operators are insufficiently specified. Without
clear protocols, the task becomes at best very labour inten-
sive with several manual steps which need to be tailor-made
to the specific scenario. At worst, impossible.

In the following we detail the needed steps, referring to
existing standards where applicable, and proposing solutions
for the missing parts. An illustration of the resulting protocol
flow is given in Fig. 5, and the pseudocode for the main actors
is listed in the three procedures below.

8.2 Additional involved actors

In addition to the actors introduced in 7, the following are
included.

SP2: A second IoT service provider; the company selected
by the SU to overtake the responsibilities to maintain the [oT
devices from SP1.

CA2: second operational CA; the certificate authority with
which SP2 has made an agreement to provide operational
certificates.

8.3 Preparations for operator change

If the need arises for the customer to switch service providers,
the initial contract (see 7.1) specifies that the current service
provider SP1 needs to contact the designated new service
provider, SP2. This step might include manual efforts, in

Procedure SP1 procedures

Overall prerequisites Existing SLAs between SP1 and SP2, as
well as between SP2 and CA2

procedure trust_transfer()
Input :SP2 URI, List of certificates

prepare UpdatelnfoList
secure_send(SP2, UpdatelnfoList)
wait_for(ServerTransferMessage)
receive(ServerTransferMessage)

if valid(outer_signaturesps) then

foreach loT_device C UpdateList do
prepare loTTransferMessage tm:
signaturegp) < signgp) (payloadgspa, signaturesps,
fallbackURI)
tm < (payloadgp>, signatureg p>, fallbackURI,
signaturegpy)
iot_device_update(loT_device, tm)

end

else

| abort and rise error
end

end procedure

procedure iot_device_update(td, tm)
Input : target device td, [oTTransferMessage tm

if final sw updates then
‘ perform_iot_update(td)
end

send(tm)

end procedure

forming a specific contract which specifies the details of
transactions which are about to take place. Specifically, it
needs to specify a starting date from when SP2 must be ready
to start maintaining the IoT devices, within the total allowed
time span defined by the SU.

SP1 and SP2 need to agree on the state of the [oT firmware,
in particular, which services and which versions of the ser-
vices the IoT devices will provide at the time of shifting the
maintenance responsibilities. A solution to automatize the
auditing of the IoT device state is to use remote attestation.

Remote attestation, RA, is an advanced security service
that has attracted increased attention over the last couple of
years. In remote attestation, a device produces a proof of its
current state, regarding software, hardware, or both, which is
checked and verified by a trusted third party to be in accor-
dance with the expected output.

To offer the strongest security guarantees, RA relies on
access to a trusted hardware component for the device being
attested, such as TPM or Arm TrustZone. More constrained
IoT devices do not have access to these dedicated hardware
resources. There are also software-based RA solutions and
hybrid versions with limited requirements on protected mem-

@ Springer

J.Hoglund et al.

Procedure SP2 procedures

Procedure IoT device procedures

procedure info_sharing(uil)
Input : UpdatelnfoList uil

foreach cert C uil do
| assert certupdate_period & SLAupdate_period
end

Parse factory certificates into xSbag collection
secure_send(CA2, x5bag)
wailt_for(CA2_path_msg)
receive(CA2_path_msg)

Prepare ServerTransferMessage stm:
foreach cert C uil do

Prepare payloadj,t p:

set time limits -

if use RA then

| payloadiyr p-RA_URI <~ RA_URI
end
payloadj,t p.updateURI <— SP2 server URI
if update before enrollment then

| payload,r p.updateFlag <— TRUE
end -
payloadj,t p.enrollURI <— CA2_path
payload;, |p.signature <— signgpo (payloady,y 1p)
end
Add payloads into stm
signgpa (stm)
secure_send(SP1, stm)
end procedure

procedure cm_processing (cm)
Input : ConfirmationMessage cm

if valid(outer_signaturecy:.1o1 .op_key) then
if valid(inner_signaturecy:ioT . factory_key) then
| Include IoT in set of valid devices

end
end
1£ V IoT: cm is received then
| TrustTransfer completed
end
end procedure

Optional remote attestation
Receive and validate the results of remote attestation

Optional software updates
provide software updates to requesting IoT devices

ory areas. There is active research in the area [28] as well as
a large ongoing IETF standardization effort [29].

In addition to agreeing on the RA details, the parties will
declare which certificates to be used for signing protocol data.

When the trust relationship is established and a transfer
specification contract is formed, the old service provider can
share device information with the new service provider.

The information exchange needs to contain the following
data items:

— The factory certificates for every involved IoT device for
which the responsibility of maintenance is about to be
transferred from SP1 to SP2.

@ Springer

procedure trust_transfer start (tm)
Input :loTTransferMessage tm

if valid(signature;,.sp1) then
parse, save and update: raURI, updateURIgp,, enrollURIca2,
fallbackURIgp;, payload.signaturegp,
reset

end

end procedure

procedure trust_transfer continue()

if update before enrollment then
‘ check_for_updates(updateURIgp,)

end

if use RA then

prepare evidence

perform RA using raURI

end

1f enrollment(enrollURIcpz) is successful then

if valid(payload.signaturegp,) then
spURI <« updateURIgp,
prepare ConfirmationMessage cm:
inner_signg, < sign facrory_key(10T_ID)
cm < signuew_op_key (SPURI, inner_sign.,)
send(SP2, cm)
resume normal operations

end

else

\ abort, rollback pointers contact SP1 using fallbackURIgp;
end

end procedure

— The earliest and the latest switch-over time for each

involved device.

— Firmware code and/or service description(s) of the soft-

ware that the IoT device is running. There are several
possible alternatives, which are affected by if SP2 is to
continue using the same software that is already avail-
able on the devices, and to what degree the source code
of the components is shared. We propose the state of the
device software is shared through sharing references to
the relevant SUIT manifests.

— Optionally, if remote attestation is to be performed, SP1

needs to share the information needed for a verifier to
evaluate the response from the device being attested. The
mandatory information represented as a CBOR array is
specified in CDDL as follows:

Listing 2 UpdateInfoList

UpdateInfolList = [* DeviceUpdateInfo]
DeviceUpdateInfo = (
factoryCertificate: TBSCertificate,
updateTimeNotBefore: Time,
updateTimeNotAfter: Time,
versionInfo: (suit-manifest-seg-number,

suit-reference-uri),

AutoPKI: public key infrastructure...

SP 1l

_ trust agreement
- L

UpdatelnfoList

trust agreement

A
A 4

Factory certificates

CA 2 path
<JWT: URI>

Server-

1

" TransferMessage
Software updates

A

v

loT-TransferMessage

A 4

RA

Remote attestation

SPl
RA report

Software updates

< Enroliment, using <EST-coaps> or <LICE> >

. Confirmation-
Message

https://gitlab.com/msc-generator v8.4

Fig. 5 AutoPKI, Operator change. Automated operations in black,
optional operations in gray

This update information, encoded as an array of pairs, is
signed by SP1 using JSON Web Signatures. Described so far
are the interactions up until the UpdateInfoList-arrow in Fig.
5.

The designated SP2, in turn, needs to perform the required
actions with an operational CA of choice, that will become
responsible for new operational certificates, corresponding to
the procedure that SP1 previously carried out together with
CAL before the initial deployment. In short, given an exist-
ing trust relationship between the parties, forward the factory
certificate list to the CA2, and get a CA-URI token back. In
addition to these administrative steps, the SP2 configures an
update server endpoint, and prepares a ServerTransferMes-
sage, following the format given below.

Listing 3 ServerTransferMessage

TransferMessageList = [* (TransferMessageInfo,
Signature)
]
TransferMessageInfo = (
ResetTimeNotBefore: Time,
ResetTimeNotAfter: Time,
raURI: bstr / null,
updateURI: (bstr, bool),
enrollURI: bstr,

If remote attestation is used, the ServerTransferMessage
contains the remote attestation URI. The updateURI is set to
the SP’s own update server, with a flag to indicate if devices
should contact the update server before the enrollment. We
assume the same URI can also be used by the device to report
data, hence it will be used to update the main service provider
pointer after a successful transfer operation. The CA2 path is
set as the enrollURI. This payload is signed, and the transfer
info plus signature is included in a list with items for each
target IoT device.

8.4 Performing the service provider change

When SP1 has received the ServerTransferMessage from
SP2, it parses the set of claims, copies the fields, and adds
a fallback URI which is set to the SP1 update server, into
individual IoTTransferMessages for each target IoT device.
SP1 can, if needed, perform a last remote software update
to the target devices. The set of transfer message claims is
treated as the payload of COSE_Signl objects, which are
signed, resulting in signed CBOR Web Tokens sent to each
target IoT device.

Listing 4 IoTTransferMessage
IoTTransferMessage = (

ResetTimeNotBefore: Time,
ResetTimeNotAfter: Time,

raURI: bstr / null,
updateURI: (bstr, bool),
enrollURI: bstr,
SP2_signature: bstr,
fallbackURI: bstr

After the [oT transfer message has been received and val-
idated, the individual IoT devices reset themselves back to
a state agreed upon in the agreement between SP1 and SP2,
where the resulting state includes the updated information
about the new server endpoints to contact after reset.

Upon restarting, the device will optionally first contact
the remote attestation server, to participate in a RA challenge
response. Depending on the updateURI flag, it can contact the
SP2 update server. Thereafter, the device does re-enrollment
with CA2 The device will receive a new operational certifi-

@ Springer

J.Hoglund et al.

cate, recognized by the relevant SP2 endpoints, as well as
additional needed truststore updates.

It should be noted that the device truststore after the last
SP1 operation must contain certificates capable of authen-
ticating CA2. Additionally, if remote attestation is used, or
the optional pre-enrollment SP2 updates are needed, the trust
roots of the RA server and the SP2 update server endpoint
must be present in the trust store. The least complex scenario
is when the SP2 endpoint can be authenticated by certificates
in the [oT truststore in its initial state. This is trivially the case
when the CA hierarchies correspond to 1c or 1d. Otherwise,
there must be a truststore update that is not rolled back by
the SP1 reset operation.

In the same way, as in the initial enrollment situation, the
10T device trusts the new CA, given the device is capable of
authenticating the server during a secure session establish-
ment.

If any of the steps permanently fails, such as aremote attes-
tation failure, or failure to authenticate with the CA2 or the
SP2 update server, the IoT device will use the fallback URI to
once more contact the SP1 update server. For completeness,
SP1 might now require the device to perform a new remote
attestation, to verify its state after the interactions with SP2.

To prevent impersonation attacks, our formal modelling
showed the necessity to conclude the trust transfer with a
commit phase, using a confirmation message after the suc-
cessful enrollment. Only at this point the IoT device can
validate the SP2 signature contained in the transfer message,
redirect the permanently stored local SP pointer from SP1 to
SP2 and send a confirmation message to SP2. The confirma-
tion message is constructed by the device by first creating an
inner signature, by signing the device id using its factory key.
Thereafter signing the SP2-URI and the inner signature by its
new operational key for the SP2 domain. Instead of sending
two separate signatures, this double signature is sufficient as
the payload, by which the IoT device can demonstrate both
its identity and having performed a successful enrollment.

8.5 Continued operations

After the new enrollment operations, the device is fully recon-
figured as part of the SP2 management domain and will
communicate with the SP2 servers based on its new con-
figuration.

8.6 Certificate revocation checking

In the proposed protocol the effort to check the revocation
status of IoT device certificates, both operational and long-
term factory certificates, is put on the Internet servers. They
can handle existing relatively heavy-weight protocols such
as OCSP or CRLs. To extend revocation-checking capabil-

@ Springer

ities to constrained devices, more lightweight mechanisms
are needed, as proposed in [30].

9 AutoPKIl: implementation and evaluation

Based on the protocol design goals, to target resource-
constrained devices, the critical target is to show that the
protocol overhead is sufficiently small to match IoT device
capabilities.

9.1 Implementation

In the following, we validate the proposed building blocks
in terms of messaging, computational and memory overhead
using a Contiki-NG OS-based prototype implementation in
C for constrained IoT platforms.

A complete AutoPKI system involves both the IoT-
specific components as well as a number of server-side
components. In our test setup, the server-side components
are represented by relatively basic test modules, which have
served to validate that the server side functionality does not
pose any performance bottlenecks. A full setup includes,
for the CAs: functionality for enrollment and revocation,
which could be based either around the legacy X.509 for-
mat, with a small component for C509 conversion or a more
modern setup working directly with C509 in native format.
The enrollment could be done over DTLS, OSCORE or inte-
grated with EDHOC [3, 4]. For both the CAs and the service
providers: components for bulk handling of factory certifi-
cates, and for communicating URI metadata in a web-token
format. For the service providers: components for process-
ing of Transfer- and Confirmation messages. Optionally
and finally, components for remote attestation and software
updates.

9.2 Evaluation

This section reports the micro benchmarks corresponding
to the critical protocol operations from the constrained IoT
device point of view. Our tests have been performed on the
nRF52840-DK platform, which is a relatively powerful but
relevant target IoT device with an Arm Cortex-M4, 802.15.4-
radio and 256 kB RAM. It should be noted that the required
cryptographic operations are hardware agnostic. Most of the
underlying functionality has also been demonstrated to work
on even more constrained platforms, such as the Zolertia
Firefly [3, 31]. While the required crypto operations can
be performed on the older generation of IoT platforms, the
available memory becomes a limiting factor for fitting a com-
plete system while still having space available for normal
operations. With this perspective, the current mid-range IoT
devices, as represented by the selected nRF platform, form a

AutoPKI: public key infrastructure...

Table 1 Protocol message size in bytes, lower bounds for compact
certificates

Message/operation CoAP size (B)

DTLS, X.509 EDHOC, C.509
Protocol specific
DeviceUpdateInfo > 400 > 230
Factory certificate > 320 > 150
IoTTransferMessage > 287 > 287
ConfirmationMessage > 90 > 90
Related operations
Handshake > 1700 > 575
Enrollment > 1170 > 550
Total size for an IoT device > 3247 > 1502

suitable target for IoT deployments capable of updates and
long-time support.

9.2.1 Messaging overhead

To demonstrate the feasibility of the protocol, and the accept-
able overhead for IoT devices we calculate the sizes of
involved messages and transactions.

As shown in Table 1 the [oTTransferMessage and the Con-
firmationMessage, the protocol messages specifically sent
to and from the IoT devices, constitute only a few hun-
dred bytes. This is when using 256-bit keys, resulting in
64-byte signatures, plus CWT encapsulation. Since this is
small compared with the handshake and enrollment opera-
tions, networks and devices which are capable of handling
the related PKI operations will have no difficulties with the
added AutoPKI messages.

9.2.2 loT computational and time overhead

With the exception of the remote attestation operations,
which are highly dependent on the type of RA performed, the
only added operations with significant computational impact
for the IoT devices are the signature checks related to the IoT
transfer message, and the two signature generations needed
for the confirmation message. The signature checking of the
COSE_Signl is the same type of operation that is performed
as part of an EDHOC handshake. On the nRF52840 platform,
one signature verification operation takes 21 ms, when the
signature is done using the commonly used P-256 curve. The
time needed for one signature generation is slightly less, 20
ms. This can be compared with a full EDHOC handshake
which needs around 90 ms of active CPU time for the IoT
device when using the same ECC curve.

9.2.3 loT memory overhead

The functionality needed for the authentication operations
is of the same type that is used for EDHOC and OSCORE.
By reusing the crypto libraries, no extra memory footprint
will be taken into account for crypto operations, and less
than a kilobyte for the transfer message and confirmation
message handling. Our implementations of required crypto
functionality used by both OSCORE and EDHOC need
approximately 6 kB of ROM, plus 5 kB more of EDHOC
specific code, for the nRF52840 platform.

Solutions for remote attestation of IoT devices have been
successfully emulated on IoT devices as limited as the old
TmoteSky platform with 48 kB ROM, 10 kB of RAM and
access to 1IMB of flash [32], and could therefore coexist with
the required PKI components on more capable devices such
as nRF52840.

10 Non-functional requirement compliance

The functional requirements are assessed below in Sect. 11.
Here we focus on evaluating compliance with the non-
functional requirements.

NFRI: Automatization The feasibility analysis illustrates that
besides the initial trust agreements and SLA establishments,
all other operations can be fully automated. This is a key
requirement to enable large-scale IoT deployments with PKI
support, through the reduction of the PKI costs per device.

Currently, the pricing models for CA services are complex
and dependent on a long range of customer requirements.
The requirements can be both security guarantees, such
as requirements on dedicated hardware security modules
(HSM) and organizational constraints, such as which of the
organizational constructs depicted in Fig. 1 which need to
be supported. The requirements, together with the needed
volumes, all affect the resulting price offer.?

Specifically for the cost of individual certificates, for the
few CA providers which share any certificate pricing infor-
mation online, the lowest per certificate cost found is starting
from 7.95 USD per year, as of April 2022 [33]. This price
range is infeasible for large-scale IoT deployments. Depend-
ing on the deployment scenario, companies might benefit
from running their own CA service. In general, self-signed
certificates are not automatically recognized and trusted by
external parties, and for anon-CA company to be verified and
trusted as a globally trusted sub-CA comes with a significant
effort. While the solution could lower the cost per individual
certificate, the total cost will depend on the cost of the CA
software, and the maintenance costs stemming from keeping

2 Nexus company policies.

@ Springer

J.Hoglund et al.

the complex software and related infrastructure trusted and
up to date.

The current situation illustrates the need for continued
development towards standards, increased automatization,
and reduced costs per device.

NFR?2: Resource efficiency All the needed building blocks
have been demonstrated in versions suitable for modern con-
strained IoT devices. Since the transfer functionality is vital
but rarely used, it is crucial to reuse already existing crypto
functionality on the device, resulting in a minimal added
overhead.

NFR3: Standard compliance All security-critical compo-
nents are contained within existing or proposed standards.
The combination of secure upgrades and remote attestation is
still an area where only initial standardization solutions have
been proposed. The modular approach proposed for AutoPKI
makes it relatively easy to upgrade parts of the protocol to
incorporate for example new remote attestation mechanisms,
or new crypto algorithms to be used for authentication or
encryption services.

11 AutoPKI: security assessment

The security assessment of the protocol builds upon the
derivations done in the SIGMA paper [34]. A correctly con-
structed protocol will keep the security properties offered by
the individual components, and hence be capable of offer-
ing the intended security services as long as the components
keep their security guarantees.

We model and formally prove two statements which
together cover the requirements FR1 and FR2. To explain
the formal verification of the protocol security properties,
we first briefly introduce the modelling tool, Tamarin. We
then explain the modelling, discuss the results and reason
about the assessment of the remaining requirements.

11.1 Introduction to Tamarin prover

The Tamarin prover is an open-source formal verification
modelling tool, designed specifically to aid the verification
of communication protocols.? The tool operates in the sym-
bolic model, which means that protocol variables are not
instantiated with concrete values. Instead, it is the relation-
ship between variables which is evaluated. For example, it is
not possible to read out any actual value of a fresh pseudo-
random variable, but one knows that it cannot be derived from
any other variable. Facts about the state of the world are mod-
elled as a multi-set of logic predicates. Actions, both in the
protocol and by a potential attacker are modelled as a set of

3 Available online at https://tamarin-prover.github.io/.

@ Springer

transition rules for this multi-set of facts. The security proper-
ties are modelled as first-order logic formulas. The tool is able
to reason about an unbounded number of protocol instances
running in parallel, only limited by memory and compute
power. A verification run might not terminate, but if it does
it results in a 100%-certainty proof that the stated security
properties are verified. The details of the tool-generated proof
are barely human-readable and not interesting on their own,
the value lies in the correspondence between the high-level
abstract symbolic model and the concrete protocol being
modelled.

The above-presented capabilities together with previous
positive experience with the tool made Tamarin a suitable
choice for our modelling tasks. Other theorem provers could
potentially also have been used.

11.2 Modelling choices

The Tamarin prover by default has a Dolev-Yao adversary
model, introduced in Sect. 5. In short, an adversary has full
control of the network and can listen, record, block, delay,
and modify all messages. On the other hand, the adversary
is in general not capable to break cryptographic functions
without the corresponding keys.

In addition, we extend the capabilities of the adversary
with the capacity to learn SP1 private keys. This allows
us to model SP1 colluding with the adversary. Certificate
Authorities are modelled as entities with an identity, the cor-
responding role ’CA’, and the control of a private long-term
key, ’ltk_CA’. Additionally, a CA can be a 'Root CA” which
provides factory certificates for IoT devices, and an ’opera-
tional CA’ that controls one or multiple URI.

Certificates are modelled as a public key, signed with a
private CA key.

We assume the CAs’ public keys are safely known by all
involved SPs, i.e. there is no risk for the SPs that the CA
public key will be spoofed, manipulated or replaced with a
key controlled by the attacker or otherwise compromised. We
do not assume that an IoT device enjoys the same privilege,
and we explicitly model how and where a device learns the
public keys of the CAs that it trusts.

To limit the search space for the prover and ease the proof
generation, SP1 and SP2 are modelled as separate roles, with
only one instance of each role active in the protocol. We claim
this is done without loss of generality, as SP1 can freely
collude with the adversary in our model, so adding more
instances of SPs would not give any additional capabilities
to the adversary, nor enable new attacks.

Similarly, we allow only one instance of CA to provide
factory certificates to the [oT devices. On the other hand, SP1
can own an unbounded number of devices, and an unbounded
number of Transfers can happen in parallel.

https://tamarin-prover.github.io/

AutoPKI: public key infrastructure...

An IoT device is modelled as an entity with a fixed ID and
the *Device’ role, and initially nothing else; the provisioning
of the factory certificate is explicitly part of the model.

Since we model the CAs directly with a public/private
key pair, and not certificates for themselves, we do not model
certificate chains with intermediate CAs. In other words, each
CA acts as its own trust root. However, as we mentioned
earlier, a CA is allowed to act as both a root/long-term CA
and as an operational CA at the same time, which allows the
tool to explore all possible combinations with one, two, or
three different trust roots for a given instance of transfer.

through this setup, the most challenging case (seen in
Fig. 1a), can be modelled, and slight simplifications of cases
(b), (¢) and (d) can be modelled with the certificate chains
collapsed. Assuming that the certificate chain validation
mechanisms work as intended for the involved parties and
do not introduce new vulnerabilities, the properties proven
in our model hold in any possible configuration of CAs.

The enrollment process is modelled through one single
rule, even though in practice it consists of several message
exchanges. This represents an unmodified standard protocol,
which is assumed to either run to completion or be fully
aborted.

Communications with the IoT device are sent through the
adversary-controlled network, as well as communications
involving SP1 since it can collude with the adversary. On
the other hand, communications between SP2 and its CA
are assumed to go through a secure channel (e.g. protected
with TLS) and are not sent through the adversary-controlled
network in our model.

11.3 Tamarin results and requirement assessment

In this subsection, we present the properties we have for-
mulated based on the model, that the Tamarin prover has
verified to hold true. We then map them back to our initially
formulated security properties.

Listing 5 The two Tamarin lemmas we have proved in the model
described above

lemma Secrecy:
"All data #i.
Secret (data) @ i
==> not (Ex #j. K(data) @ j)"

lemma Authenticity:
"All SP2 ID data #i.
Commit (SP2,ID,data) @ i ==>
(Ex #j. Running (ID,SP2,data) @ j)"

The first lemma, ’Secrecy’, means that any data tagged
as ’Secret’ during an execution of the protocol is indeed
unknown to the adversary. Or more formally, if data is tagged
secret at a timepoint i, then there does not exist any timepoint
j when the adversary knows the data.

The second lemma, ’Authenticity’, means that if SP2 can
’Commit’ to a transfer with the device ID, ID was indeed
’Running’ a transfer, and they both agree on the relevant data
exchanged during the transfer. In other words, there is guar-
anteed to be a correspondence between runs of the protocol
executed by SP2 and runs executed by the Device, SP2 cannot
’Commit’ to a transfer while being tricked by an attacker.

The ’Secret’, ’Running’, and ’Commit’ tags have been
added to the relevant rules in our model to ensure the desired
security guarantees:

— The private key of the new operational certificate used in
the confirm message received by SP2 is tagged *Secret’

— This certificate is also included in the data that SP2 *Com-
mits’ to.

— The corresponding ’Running’ tag is added by the IoT
device after a successful enrollment, with the new cer-
tificate it just obtained as the data.

An interesting point to note is that, during the proving
process, the Tamarin prover initially found an attack with the
initial protocol design. Seeing this attack, understanding and
patching the corresponding vulnerability, helped us refine our
design and specify the precise content of the signature sent
by the device in the final confirmation message.

The two lemmas are now automatically provable by

Tamarin built-in solver, using the default heuristic, and are
guaranteed to hold in any possible execution of the transfer
protocol in our model.
Interpretation Altogether, these two lemmas ensure that, if
the transfer protocol concludes properly from the point of
view of SP2, and it receives a confirmation message appar-
ently from the IoT device with ID, SP2 is guaranteed that
ID was properly transferred and it now has enrolled for an
operational certificate that SP2 can trust.

Comparing the Tamarin lemmas to the requirements
defined in Sect. 6, our formal model cannot by itself guaran-
tee all the desired properties, but it gives strong evidence that
the protocol is sound in principles. Let us study the different
requirements individually:

FRI: Integrity protection The content of the transfer message
received by the device is part of the data in the *Com-
mit’/’Running’ tags that the IoT device and SP2 agree upon,
and so FR1 is guaranteed in our model.

FR2: Man-in-the-middle resistance Similarly, our ’Authen-
ticity’ lemma with the associated ’Commit’/’Running’ tags
in the protocol rules ensures that any confirmation mes-
sage received by SP2 was indeed sent by the transferred
device, excluding any possibility of tampering by a man-
in-the-middle attacker. So FR2 is guaranteed in our model.
FR3: Forward security Our model guarantees: (a) from
the point of view of SP2, that the device enrolled to, and
now trusts, the actual CA2 that issues certificates for SP2

@ Springer

J.Hoglund et al.

(’Authenticity’ lemma); (b) the secrecy of the private key
of the new operational certificate that the device enrolled at
CA2, both from the point of view of the device and the point
of view of SP2 (’Secrecy’ lemma). However, to fully guar-
antee FR3, SP2 also needs a proof that the device is honest
and does not contain, for instance, a backdoor controlled by
SP1, hence the importance of the software update and remote
attestation process highlighted in Sect. 8.3. With this addi-
tional assumption, SP2 and the device can trust each other
and are guaranteed to have a secure access to each other pub-
lic key through CA2, and FR3 can be guaranteed.

FR4: Backward security This property relies mostly on SP1
doing its due diligence and erasing all sensitive data from the
devices before initiating the transfer proper (while SP1 still
has absolute control over the devices) and not so much on the
transfer protocol itself. Once again, it highlights the impor-
tance of the software update phase that takes place before the
transfer protocol itself.

11.4 Further considerations

While the solutions proposed in this paper fill an important
gap in terms of security mechanisms for IoT, there are open
issues, such as secure time sources and coordination with
link-level security solutions, which remain to be fully stan-
dardized.

An observation about reachability: In the procedure
described here the responsibility to initiate contact, specif-
ically after the factory reset, lies with the IoT devices. For
many deployments, this is the only available option, as net-
works with NAT can cause devices to be unreachable unless
the connection is initiated from within the network. While
IPv6 is increasing in usage, and could in theory offer all
devices globally accessible addresses, there are also security
reasons to hide resource-constrained devices from being eas-
ily found and attacked, for instance taken down through DOS
attacks.

When IoT deployments become more common and grow
in size, issues of long-term maintenance and the scalability
of the security services become critical. Making use of pro-
posed and available PKI solutions suitable for IoT we have
proposed a lightweight protocol for the transfer of control
of IoT deployments, with a minimal manual overhead. The
solution ensures the possibility of long-term support for IoT
deployments, preventing vendor lock-in. We have shown that
given the integrity of the secure building blocks, the protocol
maintains the desired security properties.

12 Conclusion

In the context of expanding Internet of Things (IoT) deploy-
ments, the challenges associated with long-term maintenance

@ Springer

and the scalability of security services assume paramount
importance. This necessitates viable Public Key Infrastruc-
ture (PKI) solutions tailored specifically for IoT environ-
ments. In this study, we propose a protocol designed for the
seamless transfer of control within IoT deployments, accom-
plished through the transference of trust from one operational
domain to another. A fundamental objective of this protocol is
to minimize manual intervention while ensuring the integrity
and security of the IoT ecosystem.

The proposed solution addresses the critical concerns of
establishing enduring support mechanisms for IoT deploy-
ments while mitigating the risks of vendor lock-in. To
validate our protocol, formal verification tools are employed.
The results of our analysis demonstrate that assuming the
integrity of the foundational secure components, the protocol
preserves the desired security properties. Through this work,
we contribute to the body of knowledge aimed at increasing
the robustness and reliability of IoT systems.

Acknowledgements This research is partially funded by the Swedish
SSF Institute PhD grant and by the EU H2020 projects ARCADIAN-
10T (Grant ID. 101020259) and VEDLIoT (Grant ID: 957197).

Author Contributions J.H. wrote the initial manuscript text, S.B. pro-
vided input on the formal modelling sections. J.H., M.F. and S.R. have
worked together on developing solutions for enrollment and revoca-
tion. J.LH., J.M., G.S. and S.R. have worked together on developing the
compact certificates. All authors reviewed the manuscript.

Funding Open access funding provided by RISE Research Institutes of
Sweden.

Data availibility The full data from the feasibility study are available
from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors have no conflicts of interest relevant to
the content of this article and the work covered does not involve any
human participants or animal usage.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Hoglund, J., Raza, S., Furuhed, M.: In 2022 IEEE International
Conference on Public Key Infrastructure and its Applications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

AutoPKI: public key infrastructure...

10.

11.

12.

15.

16.

17.

18.

19.

20.

21.

(PKIA)(2022), pp. 1-8. https://doi.org/10.1109/PKIA56009.2022.
9952223

Housley, R., Ford, W., Polk, T., Solo, D.: Internet X.509 Public Key
Infrastructure Certificate and CRL Profile. RFC 2459, RFC Editor
(1999)

Hoglund, J., Lindemer, S., Furuhed, M., Raza, S.: PKI410T: towards
public key infrastructure for the Internet of Things. Comput. Secur.
89 (2020). https://doi.org/10.1016/j.cose.2019.101658

Hoglund, J., Raza, S.: In: IEEE Conference on Communications
and Network Security, CNS 2021, Tempe, AZ, USA, October 4—
6, 2021 (IEEE, 2021). https://doi.org/10.1109/CNS53000.2021.
9705036

Selander, G., Mattsson, J., Palombini, F.: Ephemeral Diffie—
Hellman over cose (edhoc). Internet-Draft draft-ietf-lake-edhoc-
03, IETF Secretariat (2020)

Schoorman, F.D., Mayer, R.C., Davis, J.H.: An integrative model
of organizational trust: Past, present, and future. Acad. Manag. Rev.
32(2), 344 (2007)

Khan, M.S.N., Marchal, S., Buchegger, S., Asokan, N.: In: Privacy
and Identity Management. Fairness, Accountability, and Trans-
parency in the Age of Big Data, vol. 547, pp. 205-221 (2018).
https://doi.org/10.1007/978-3-030-16744-8_14

Gunnarsson, M., Gehrmann, C.: In: Proceedings of the 6th Inter-
national Conference on Information Systems Security and Pri-
vacy, vol. 1, ed. by S. Furnell, P. Mori, E. Weippl, O. Camp
(SciTePress, 2020), vol. 1, pp. 33-44. https://doi.org/10.5220/
0008928300330044

Dent, A.W.: Certificateless Cryptography (Springer US, Boston,
MA, 2011), pp. 192-193. https://doi.org/10.1007/978-1-4419-
5906-5_314

Dent, A.W.: In: Public Key Infrastructures, Services and Applica-
tions, ed. by F. Martinelli, B. Preneel (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010), pp. 1-16

Karati, A., Islam, S.H., Karuppiah, M.: Provably secure and
lightweight certificateless signature scheme for I[IoT environments.
IEEE Trans. Ind. Inf. 14(8), 3701 (2018). https://doi.org/10.1109/
TI1.2018.2794991

Safkhani, M., Rostampour, S., Bendavid, Y., Sadeghi, S., Bagheri,
N.: Improving RFID/IoT-based generalized ultra-lightweight
mutual authentication protocols. J. Inf. Secur. Appl. 67, 103194
(2022) https://doi.org/10.1016/j.jisa.2022.103194

. AbuAlghanam, O., Qatawneh, M., Almobaideen, W., Saadeh, M.:

A new hierarchical architecture and protocol for key distribution
in the context of IoT-based smart cities. J. Inf. Secur. Appl. 67,
103173 (2022). https://doi.org/10.1016/j.jisa.2022.103173

Dolev, D., Yao, A.: On the security of public key protocols. IEEE
Trans. Inf. Theory 29(2), 198 (1983). https://doi.org/10.1109/TIT.
1983.1056650

Miiller, C., Gutierrez, A.M., Fernandez, P., Martin-Diaz, O.,
Resinas, M., Ruiz-Cortés, A.: Automated validation of compens-
able SLAs. IEEE Trans. Serv. Comput. 14(5), 1306 (2021). https://
doi.org/10.1109/TSC.2018.2885766

Uriarte, R.B., de Nicola, R., Kritikos, K.: In: 2018 IEEE Inter-
national Conference on Cloud Computing Technology and Sci-
ence (CloudCom) (2018), pp. 266-271. https://doi.org/10.1109/
CloudCom2018.2018.00059

Alzubaidi, A., Mitra, K., Solaiman, E.: In: 2021 IEEE International
Conference on Smart Internet of Things (SmartloT) (2021), pp.
74-81. https://doi.org/10.1109/SmartloT52359.2021.00021
Beniiche, A.: ArXiv arXiv:2004.07140 (2020)

IEEE Std 802.1AR-2018 pp. 1-73 (2018). https://doi.org/10.1109/
IEEESTD.2018.8423794

Nystrom, M., Kaliski, B.: PKCS #10: Certification Request Syntax
Specification Version 1.7. RFC 2986, RFC Editor (2000)
Mattsson, J.P., Selander, G., Raza, S., Hoglund, J., Furuhed,
M.: CBOR Encoded X.509 Certificates (C509 Certificates).

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Internet-Draft draft-ietf-cose-cbor-encoded-cert-03, IETF Secre-
tariat (2022)

Schaad, J.: CBOR Object Signing and Encryption (COSE):
Header parameters for carrying and referencing X.509 certificates.
Internet-Draft draft-ietf-cose-x509-08, IETF Secretariat (2020)
Tschofenig, H., Fossati, T.: Transport layer security (tls) / datagram
transport layer security (dtls) profiles for the internet of things. RFC
7925, RFC Editor (2016)

Ha, D.A., Nguyen, K.T., Zao, J.K.: In: Proceedings of the 7th Sym-
posium on Information and Communication Technology (Associa-
tion for Computing Machinery, New York, NY, USA, 2016), SoICT
’16, pp. 173-179. https://doi.org/10.1145/3011077.3011108
Pritikin, M., Richardson, M., Eckert, T., Behringer, M., Watsen, K.:
Bootstrapping remote secure key infrastructure (brski). RFC 8995,
RFC Editor (2021)

van der Stok, P., Kampanakis, P., Richardson, M., Raza, S.:
EST-coaps: Enrollment over Secure Transport with the Secure Con-
strained Application Protocol. RFC 9148, RFC Editor (2022)
Moran, B., Tschofenig, H., Brown, D., Meriac, M.: A Firmware
Update Architecture for Internet of Things. RFC 9019, RFC Editor
(2021)

Ankergard, S.FJ.J., Dushku, E., Dragoni, N.: State-of-the-art
software-based remote attestation: opportunities and open issues
for Internet of Things. Sensors 21(5) (2021). https://doi.org/10.
3390/s21051598

Birkholz, H., Thaler, D., Richardson, M., Smith, N., Pan, W.:
Remote attestation procedures architecture. Internet-Draft draft-
ietf-rats-architecture- 15, IETF Secretariat (2022)

Hoglund, J., Furuhed, M., Raza, S.: Lightweight certificate revo-
cation for low-power IoT with end-to-end security. J. Inf. Secur.
Appl. 73 (2023). https://doi.org/10.1016/j.jisa.2023.103424
Hoglund, J., Raza, S.: In: 2022 IEEE International Conference on
Cyber Security and Resilience (CSR) (2022), pp. 253-260. https://
doi.org/10.1109/CSR54599.2022.9850290

Dushku, E., Rabbani, M.M., Conti, M., Mancini, L.V., Ranise, S.:
SARA: Secure asynchronous remote attestation for IoT systems.
IEEE Trans. Inf. Forensics Secur. 15 (2020). https://doi.org/10.
1109/TIFS.2020.2983282

ComodoSSLstore. Comodo positive ssl certificate. https://web.
archive.org/web/20220420135513/https://comodosslstore.com/
positivessl.aspx (2022)

Krawczyk, H.: In: Advances. In: Boneh, D. (ed.) Cryptology—
CRYPTO 2003, pp. 400-425. Springer, Berlin (2003)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/PKIA56009.2022.9952223
https://doi.org/10.1109/PKIA56009.2022.9952223
https://doi.org/10.1016/j.cose.2019.101658
https://doi.org/10.1109/CNS53000.2021.9705036
https://doi.org/10.1109/CNS53000.2021.9705036
https://doi.org/10.1007/978-3-030-16744-8_14
https://doi.org/10.5220/0008928300330044
https://doi.org/10.5220/0008928300330044
https://doi.org/10.1007/978-1-4419-5906-5_314
https://doi.org/10.1007/978-1-4419-5906-5_314
https://doi.org/10.1109/TII.2018.2794991
https://doi.org/10.1109/TII.2018.2794991
https://doi.org/10.1016/j.jisa.2022.103194
https://doi.org/10.1016/j.jisa.2022.103173
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TSC.2018.2885766
https://doi.org/10.1109/TSC.2018.2885766
https://doi.org/10.1109/CloudCom2018.2018.00059
https://doi.org/10.1109/CloudCom2018.2018.00059
https://doi.org/10.1109/SmartIoT52359.2021.00021
http://arxiv.org/abs/2004.07140
https://doi.org/10.1109/IEEESTD.2018.8423794
https://doi.org/10.1109/IEEESTD.2018.8423794
https://doi.org/10.1145/3011077.3011108
https://doi.org/10.3390/s21051598
https://doi.org/10.3390/s21051598
https://doi.org/10.1016/j.jisa.2023.103424
https://doi.org/10.1109/CSR54599.2022.9850290
https://doi.org/10.1109/CSR54599.2022.9850290
https://doi.org/10.1109/TIFS.2020.2983282
https://doi.org/10.1109/TIFS.2020.2983282
https://web.archive.org/web/20220420135513/https://comodosslstore.com/positivessl.aspx
https://web.archive.org/web/20220420135513/https://comodosslstore.com/positivessl.aspx
https://web.archive.org/web/20220420135513/https://comodosslstore.com/positivessl.aspx

	AutoPKI: public key infrastructure for IoT with automated trust transfer
	Abstract
	1 Introduction
	2 Towards automated PKI: background technologies and challenges
	2.1 Security services and PKI
	2.2 PKI hierarchies
	2.3 The concept of trust in PKI

	3 Related work
	4 E-health use case: IoT ownership change and AutoPKI
	5 System and threat model
	6 Requirements
	7 AutoPKI life cycle
	7.1 Procurement, SLAs and smart contracts
	7.2 Device acquisition, factory credential and firmware preparations
	7.3 C509 certificates
	7.4 Deployment and initial enrollment
	7.5 Normal operations

	8 IoT trust transfer
	8.1 Introduction and problem formulation
	8.2 Additional involved actors
	8.3 Preparations for operator change
	8.4 Performing the service provider change
	8.5 Continued operations
	8.6 Certificate revocation checking

	9 AutoPKI: implementation and evaluation
	9.1 Implementation
	9.2 Evaluation
	9.2.1 Messaging overhead
	9.2.2 IoT computational and time overhead
	9.2.3 IoT memory overhead

	10 Non-functional requirement compliance
	11 AutoPKI: security assessment
	11.1 Introduction to Tamarin prover
	11.2 Modelling choices
	11.3 Tamarin results and requirement assessment
	11.4 Further considerations

	12 Conclusion
	Acknowledgements
	References

