
International Journal of Information Security
https://doi.org/10.1007/s10207-024-00821-3

REGULAR CONTRIBUT ION

A context-aware on-board intrusion detection system for smart
vehicles

Davide Micale1 · Ilaria Matteucci2 · Florian Fenzl3 · Roland Rieke3 · Giuseppe Patanè1

© The Author(s) 2024

Abstract
Modern vehicles are becomingmore appealing to potential intruders due to two primary reasons. Firstly, they are now equipped
with various connectivity features like WiFi, Bluetooth, and cellular connections, e.g., LTE and 5G, which expose them to
external networks. Secondly, the growing complexity of on-board software increases the potential attack surface. In this article,
we introduce CAHOOTv2, a context-sensitive intrusion detection system (IDS), aiming at enhancing the vehicle’s security
and protect against potential intrusions. CAHOOTv2 leverages the vehicle’s sensors data, such as the amount of steering, the
acceleration and brake inputs, to analyze driver habits and collect environmental information. To demonstrate the validity of
the algorithm, we collected driving data from both an artificial intelligence (AI) and 39 humans. We include the AI driver to
demonstrate that CAHOOTv2 is able to detect intrusions when the driver is both a human or an AI. The dataset is obtained
using a modified version of the MetaDrive simulator, taking into account the presence of an intruder capable of performing
the following types of intrusions: denial of service, replay, spoofing, additive and selective attacks. The sensors present in the
vehicle are a numerical representation of the environment. The amount of steering, the acceleration and brake inputs given by
the driver are based on the environmental situation. The intruder’s input often contradicts the driver’s wishes. CAHOOTv2
uses vehicle sensors to detect this contradiction. We perform several experiments that show the benefits of hyperparameter
optimization. Indeed, we use a hyperparameter tuning paradigm to increase detection accuracy combining randomized and
exhaustive search of hyperparameters. As a concluding remark, the results of CAHOOTv2 show great promise in detecting
intrusions effectively.

Keywords Automotive · Intrusion detection system · Context-aware · Machine learning · Smart vehicle

1 Introduction

In 2021, there were around 236 million connected vehicles
worldwide. This number is projected to rise significantly by

B Ilaria Matteucci
ilaria.matteucci@iit.cnr.it

Davide Micale
davide.micale@parksmart.it

Florian Fenzl
florian.fenzl@sit.fraunhofer.de

Roland Rieke
roland.rieke@gmx.de

Giuseppe Patanè
giuseppe.patane@parksmart.it

1 Park Smart SRL, Catania, Italy

2 IIT-CNR, Pisa, Italy

3 Fraunhofer SIT, Darmstadt, Germany

2035, reaching approximately 863 million connected vehi-
cles [36]. Inside these vehicles, the electrical control units
(ECUs) play a crucial role in providing various functions for
the car [11]. These ECUs are interconnected through differ-
ent buses, such as controller area network (CAN), CAN-FD,
FlexRay, and automotiveEthernet. Various partitions of these
buses are interconnected as well via gateways, forming a
complex network within the vehicle.

Modern vehicles are not only connected to each other but
also to the roadside infrastructure units through V2X com-
munication. This enables each vehicle, and consequently the
driver, to receive information about the surrounding envi-
ronment that may influence driver’s decisions. In addition,
many newer vehicles are connected to the carmakers’ servers
via LTE or 5G. Carmakers collect information about the
car to offer services, e.g., sensors’ data, air conditioning
management, route planning and history, insurance premium
charges, maintenance history and battery management for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-024-00821-3&domain=pdf


D. Micale et al.

electrical vehicles. In particular, carmakers can offer access
to the sensors’ data to third parties.

As a result, vehicles are increasingly resembling a com-
puter on wheels: the on-board software is becoming even
more complex. Today’s vehicles contain hundreds of mil-
lions lines of code [7]. However, fully autonomous vehicles
that do not require any human intervention will contain up
to a billion lines of code [7]. For autonomous functionality,
cars need numerous sensors to keep track of the environ-
ment and the vehicle status [50]. The sensors’ data can be
accessed internally through the CAN bus protocol or from
the external using an OBD-II diagnostic port [43]. In case
of an autonomous car, sensors’ data are processed by pro-
grammable components, such as graphics processing units
(GPUs) and field-programmable gate arrays (FPGAs) [8], to
improve the driver’s experience.

In summary, the increasing connectivity of vehicles com-
bined with the increasing complexity of vehicle software can
facilitate vehicle intrusions. The attack surface in this envi-
ronment is the sum of the possible vulnerabilities that an
attacker can exploit in order to unauthorized extract, inject or
manipulate data. The attack surface can formally be defined
in terms of the actions and resources of a system that an exter-
nal user can attack. The work of Manadhata and Wing [25]
describes in detail how a system’s attack surface can be
defined and measured. Keeping the attack surface as small
as possible is a fundamental security measure.

Several examples of vehicular attacks have been reported
in the literature over the last decade. In 2016, a vulnerability
in the web browser of Tesla vehicles allowed an intruder to
remotely send messages in the CAN bus [5]. For instance,
Weinmann and Schmotzle found a vulnerability in a software
component of Tesla that allowed them to unlock the doors
and trunk, change seat positions and change both steering and
acceleration modes [47]. In general, an intruder may exploit
local or remote vulnerabilities of a car to gain some digital
access to it, either locally or remotely. She may then modify
the behavior of a target vehicle by sending customized CAN
frames that trigger a specific functionality on a receiving
ECU. Also, using a privilege escalation exploit, it is possible
to use the compromised vehicle to compromise surrounding
vehicles.

In 2022, the EUROPOL has arrested 31 criminals that
were selling a tool, marketed as a diagnostic tool, to replace
the original software of the vehicle. The software replacing
allowed the criminals to steal keyless cars from two French
carmakers without using the original keys [9].

The study of how to protect the CAN buses from in-
vehicle vulnerabilities is extremely important. The standard
ISO/IEC 27039:2015 [14] and the regulation number 155
of the UNECE (UNECE R155), delivered in 2021, of the
United Nations [32] prescribed the use of intrusion detec-
tion and prevention systems (IDPS) to monitor the vehicles

from intrusions.Under the IDPSumbrella, an intrusiondetec-
tion system (IDS) merely reports an intrusion alert, while
an intrusion prevention system (IPS) alerts and prevents the
intrusions. In particular, vehicular context-aware IDSs use
the semantic of the messages to detect intrusions.

In the last years, there has been an increase in interest in
the metaverse, a virtual 3D representation that mimics real
world [13]. Each user is represented by an avatar through
which she can interact with the virtual environment and other
users. [6] shows how to implement autonomous vehicles in
the metaverse and the opportunities offered by their deploy-
ment. First, the AI of autonomous vehicle can be tested in
safety. Users can use the autonomous vehicle as robot taxi
for free roaming. Also, the surveillance systems minimize
the risk of damage to cars by car-sharing customers. Finally,
all vehicles may be managed by a single system to increase
traffic safety.We argue that vehicles in themetaverse can also
be targeted by intruders and can be compromised. Hence, an
IDS plays a crucial role in protecting against potential intru-
sions. Also, the metaverse can be an opportunity to safely
test the IDS while intrusions are in progress.

In this article, we present CAHOOTv2, an enhancement of
CAHOOT [28], a context-aware IDS that can detect tamper-
ing with an in-vehicle message-sequence related to a driver’s
driving style. Indeed, CAHOOT is the first IDS based also
on context information able to detect replay and DoS attack
in addition to the spoofing attack.

Contextual information allows CAHOOTv2 to better
detect intrusions. For example, if a driver accelerates and a
sensor detects an obstacle in front of the vehicle,CAHOOTv2
classifies this behavior as a possible intrusion. The environ-
ment context is digitally represented by the sensors’ values.

1.1 Challenges

The challenges for CAHOOTv2 are:

– Performance: an IDS should be able to process in real
time the messages received from the vehicle’s sensors.
In addition, the low use of computing power enables its
implementation in low-cost devices.

– High detection accuracy: intrusions must be detected
highly effectively while keeping false positives low, i.e.,
mistakenly recognizing a driver input as an intrusion.

– Detection of several attacks: an IDS should recognize
effectively several types of intrusions.

– Training and validation of a machine learning model
using a dataset with several drivers: to demonstrate effec-
tiveness in detecting intrusions, the IDS should be trained
and tested on a dataset containing several drivers.

123



A context-aware on-board intrusion detection...

1.2 State of the art

The complexity of modern vehicles proposes several chal-
lenges in various aspects of both environmental and safety.
In the following, we briefly recall some literature on vehi-
cle communication and then we focus on the most relevant
works in the IDS field.

Fatemidokht et al. [10] investigate the difficulties in rout-
ing protocols for vehicular ad hoc networks (VANETs) in
intelligent transportation systems (ITS). In particular, they
propose VRU, a routing protocol that uses unmanned aerial
vehicles (UAVs) to improve data routing and identify hostile
vehicles. Their findings suggest that adding UAVs into auto-
motive networks can result in considerable improvements in
packet delivery ratio, detection ratio, end-to-end latency, and
overhead.

Sharma et al. [42] offer a misbehavior detection technique
to defend against interruptions induced by erroneous infor-
mation exchange in the Internet of Vehicles (IoVs), with a
focus on the security aspects of vehicular collaboration. The
suggested technique detects fake message generation attacks
andSybil attackswith high accuracy, contributing to the over-
all dependability of vehicular networks.

Deep reinforcement learning and Q-network are used
in [33] to improve pedestrian and autonomous vehicle safety.
The suggested approach achieves a greater prediction rate
accuracy than existing techniques by leveraging LiDAR sen-
sor data and cloud-based predictions. The combination of
intelligent observation and reinforcement learning not only
assures safer transportation for people and automobiles, but it
also helps to reduce fuel consumption and carbon emissions.

The research in [1] offers a high-performance long short-
term memory (LSTM) neural network predictor for predic-
tive modeling of hybrid electric cars. The research looks at
real-world driving scenarios and compares two architectures
for time series prediction models. The LSTM model sur-
passes other models in properly forecasting vehicle velocity
under various conditions, demonstrating its potential appli-
cation in real-time automotive controllers.

There are several works about the IDS in the vehicular
context. Jeong et al. [15] trains an autoencoder to detect
anomalies on the sensor values received by the ECUs. Of the
six tested layers for the autoencoder, the binary long short-
term memory (BiLSTM) is the most accurate.

Pascale et al. [34] introduce an IDS that uses a Bayesian
network to detect malicious messages on the CAN bus. The
autonomous AI offered by the driving simulator CARLA is
used to generate the dataset for model training.

In RAIDS [16] and [21] the IDSs detect intrusions exploit-
ing the images from the on-vehicle camera and the CAN
messages. Eachwork uses two convolutional neural networks
trained to detect spoofing attacks.

Xue et al. [48] introduced an IPS that uses the vehicle
dynamics to detect intrusions. In particular, the authors define
policies starting from the specifications of the target vehicle,
in-vehicle messages and onboard sensors to detect intrusion
that could affect the safety of the driver.

The detection of sequence context anomalies can be done
using different approaches. Rieke et al. [41] used process
mining. Levi et al. [22] and Narayanan et al. [29] proposed
work using hiddenMarkov models. Theissler et al. [45] used
a one class support vector machine (OCSVM), while the
work of Kang et al. [18] uses neural networks. Marchetti et
al. [27] used detection of anomalous patterns in a transition
matrix. Taylor et al. [44] and Kalutarage et al. [17] used
frequency of appearance of a CAN sequence messages.

Lo et al. [24] developed an hybrid neural network IDS
composed by a convolutional neural network (CNN) and a
long short-term memory (LSTM).

Rajapaksha et al. [39] propose an IDS that uses gated
recurrent unit neural network trained only using benign data
over CAN messages. A minimum probability threshold is
estimated to detect the intrusion. The authors evaluated the
work against several publicly available datasets.

Karopoulos et al. [19] propose a new vehicular IDS tax-
onomy where each IDS belongs to multiple categories. Also
the authors provide a survey of the publicly released datasets,
simulation tools and IDSs.

The survey of Grimm et al. [12] focuses on the benefits of
the context-aware approach on several security fields and the
related work. Al-Jarrah et al. [2] provide a survey of IDSs
and categorize them. The authors also note the importance
of considering the semantics of data and context to detect
anomalies.

Micale et al. [28] introduce CAHOOT, the context-aware
IDS that detects intrusions either on AI and human drivings
for several attacks types. The algorithm is tested using sev-
eral machine learning algorithms in a dataset made by five
humans on a simulator. Random Forest obtained the best
results.

The advantages of CAHOOTv2with respect to CAHOOT
are:

– CAHOOTv2 is trained to detect two variants of spoofing
attack.

– CAHOOTv2 improves intrusion detection accuracies
with respect to CAHOOT. The machine learning algo-
rithms present parameters that must be set before the
training process starts and may influence the gener-
ated model. These parameters are called hyperparame-
ters [49]. The process of searching the hyperparameters
that improve the performance of the models is called
hyperparameter tuning [49]. In CAHOOTv2, we design
a paradigm that selects the best hyperparameters to use.

123



D. Micale et al.

– To validate the performance of the algorithm, we also
expanded the dataset by collecting driving data from 39
people.

Also, the advantages of CAHOOTv2 over related context-
aware IDSs works are:

– CAHOOTv2 detects replay attacks in addition to DoS,
spoofing attacks and variants.

– CAHOOTv2 detects intrusions that target steering, throt-
tle and brake instead of only steering or steering and
brake.

– CAHOOTv2 detects intrusions on both AI and human
driving.

– CAHOOTv2 has a low use of computational resources.

1.3 Article’s structure

The article is structured as follows: the next section presents
the attack model. Section3 describes the CAHOOTv2 algo-
rithm. Section4 shows the results of our experiments.
Section5 concludes the paper with suggestions of future
improvements of the algorithm.

2 Attackmodel

As attack model we consider an internal intruder that can be
deployed in: a) ECUs that control the steering wheel, engine
and brake b) sensors. The attacker is able to forge and sniff
messages and performs the following attacks:

– DoS attack: the intruder is able to deny driver input
by generating CAN frames in which payload values for
steering, throttle and brakes are set to zero.

– Replay attack: the intruder is able to re-use valid CAN
frames with a malicious or fraudulent aim.

– Spoofing attack: the intruder is able to generate a valid
CAN frame. For example, the forged framemay generate
a valid signal to activate an ECU functionality. We also
consider two spoofing attack variants presented in [16]:

– Additive attack: the intruder uses the current valid
CAN frame payload and adds a random value in
±[0.2, 0.9] to simulate an abrupt steering, acceler-
ation or brake.

– Selective attack: the intruder introduces a CAN frame
that contradicts the driver’swill. The intruder uses the
current valid CAN frame payload and flips the sign if
the payload absolute value is greater than 0.3 or adds
a random value in ±[0.5, 1].

3 CAHOOTv2 algorithm

The CAHOOTv2 algorithm is based on CAHOOT [28] and
aims to detect more attacks and increase accuracy over the
older one by optimizing hyperparameters.

CAHOOTv2 inherits several characteristics from CAHO
OT:

– CAHOOT has the ability to detect intrusions while a car
is moving by analyzing the semantic of CAN messages.

– The algorithm CAHOOT leverages machine learning
(ML) techniques for the intrusion detection.

– The algorithm can also detect intrusions when the driver
and the intruder generate the same CAN message value.

– The driver can be a human or an AI.
– CAHOOT detects three types of intrusions that target
steering, throttle and brake.

In general, CAHOOTv2 is an IDS consisting of a machine
learning model that is trained with driving sessions per-
formed by a driver and intrusion attempts performed by an
intruder. The ML algorithm is shown how the driver accel-
erates, brakes, and steers differently than the intruder would
in the same environmental situation. This situation is rep-
resented by the vehicle’s sensors values. The ML algorithm
we use is random forest with the hyperparameters selected
by our paradigm. This paradigm first selects hyperparame-
ter values randomly and then performs an exhaustive search
among the hyperparameter values that performed best.

In the following, we show the motivation that lead us
to improve CAHOOT by developing a refined version of
the algorithm, named CAHOOTv2. We describe paradigm
CAHOOTv2, the pseudocodes of the attacks and how we
integrate them on the intruder’s behavior. Then, we explain
the paradigm responsible for improving the accuracy.

3.1 Motivation

The motivation for CAHOOTv2 is:

– We use random forest as machine learning method to
obtain an IDS that is highly accurate on detection and
really fast, as shown in Sect. 4.

– CAHOOTv2 is trained to detect different types of attacks.
In particular, we trained CAHOOTv2 to detect the replay
attack that is themost difficult to detect: the intrudermim-
ics the behavior of a legit driver to go unnoticed in the
eyes of the IDS.

– To demonstrate the validity of the CAHOOTv2 algo-
rithm, we use a simulator to simulate several driving
situations and roads. Also, the simulator allows to easily
collect driving data from several human drivers and AI.

123



A context-aware on-board intrusion detection...

Fig. 1 Inference simulation sequence workflow of the vehicle

3.2 MetaDrive

To evaluate CAHOOTv2, we use a modified version of
MetaDrive [23]. MetaDrive is a driving simulator written
in Python capable of procedurally generating infinite driv-
ing scenarios. Also, the simulator provides a pre-trained AI.
We add a logging system in order to collect the values of
simulated sensors’ vehicle. Also, we introduce an intruder
into the MetaDrive simulation workflow (Fig. 1) that sends
malicious driving inputs. The in-vehicle communication is
represented by a set of messages of two Python lists: the
steering messages and the throttle/brake messages sent by
both the intruder and the legit driver.

For each step of the intrusion detection workflow (Fig. 1):

– Within the simulator, theManager starts a new simulation
step requesting new vehicle’s inputs.

– The legit driver sends driving inputs while an intruder
forges fake ones.When the driver is the AI, an AI compo-
nent gets the values from the vehicle’s sensors component
and decide what inputs send.When the driver is a human,
the simulator gets the inputs from a keyboard, a joystick
or a steering wheel.

– Messages are sent to the set of messages present in the
Pool messages component. These messages are read by
CAHOOTv2.

– The CAHOOTv2 algorithm distinguishes forged mes-
sages from the legit ones.

– The component responsible for the steering and the
throttle/brake receives the steering wheel and the throt-
tle/brake messages and runs them to the simulated
vehicle.

– The simulator clears the set of messages to be able to fill
it again in the next simulation step.

Keep note that in the detection phase CAHOOTv2 does
not need both legit and forged messages. If the intruder does
not forgemessages, CAHOOTv2 receives only the legit mes-
sages and establishes their legitimacy.

In the training phase, CAHOOTv2 collects at each simula-
tion step the messages of the driver and the intruder from the
Pool messages (Fig. 2). CAHOOTv2 needs both messages to
train the intrusion detection model.

Similar to humans, AI systems control a vehicle by
sending commands for steering, throttle, and brakes based
on environmental information. While humans rely on their
eyes to estimate the distance from nearby obstacles, AI
employs LIDAR and/or vehicle cameras for this purpose.
Both humans and AI respond to environmental conditions
based on prior experiences, resulting in specific combina-
tions of steering, throttle, and brake inputs. The overarching
objective for both human andAI drivers is, to reach a destina-
tion, utilizing the vehicle’s sensors to gather environmental
data and input from the driver. CAHOOTv2 utilizes training
data to understand how humans and AI react to environ-
mental information and is also trained to handle responses
to intruders. Because the intruder performs actions that are
often inconsistent with those that a driver would perform
based on the environment, the intruder’s actions are detected
by CAHOOTv2.

In the following, we describe how the intruder forges the
messages inside the simulator and howCAHOOTv2 exploits
themessages of drivers and intruders to generate amodel that
detects intrusions.

3.3 Intruder’s behavior

In CAHOOTv2, the intruder frequently changes the attacks
randomly choosing among the five described in Sect. 2. The
duration of attacks is randomly chosen in an arbitrary interval
of steps duration.

Listing 1 and Listing 2 describe the behavior of the
intruder. In particular, Listing 1 describes the algorithm pre-
pare_attack that plans the duration of each vehicle intrusion,
while Listing 2 delves the algorithm launch_attack.

Figure 3 provides an overview of the intruder’s entire
behavioral process.

123



D. Micale et al.

Fig. 2 Training simulation sequence workflow of the vehicle

Listing 1 Prepare Attack

1 function prepare_attack(steering, throttle_brake,
current_attack, steering_history,
throttle_brake_history, index_history, prev_steering,
prev_throttle_brake, stop_attack_time, min_duration
, max_duration, slot_time)

2 should_attack_change ← stop_attack_time <= Current
timestamp

3

4 if should_attack_change
5 num_slots ← Select an integer number between

min_duration and max_duration
6 stop_attack_time ← Current timestamp + num_slots ∗

slot_time
7

8 current_attack = None
9

10 (steering f orged , throttle_brake f orged , current_attack,
index_history, prev_steering, prev_throttle_brake)
= launch_attack(steering, throttle_brake,
current_attack, steering_history,
throttle_brake_history, index_history,
prev_steering, prev_throttle_brake)

11

12 steering_history ← Append steering to steering_history
13 throttle_brake_history ← Append throttle_brake to

throttle_brake_history
14

15 return (steering f orged , throttle_brake f orged ,
current_attack, stop_attack_time, steering_history,
throttle_brake_history, index_history,
prev_steering, prev_throttle_brake)

The algorithm prepare_attack determines whether the
current attack should be continued or altered, i.e., the algo-
rithm compares the actual time with the moment at which the
intrusionmust be halted (line 2). If the attack gets stopped and
replacedwith a new attack type, the algorithm determines the
duration of the new attack as time slots. The number of slots
between the minimum and maximum is randomly chosen by
the algorithm (line 5). As a result, the attack will terminate at
the sum of the actual time and the product of the number of
slots and the duration of each slot (lines 6). To mimic several

attacks in a single driving session, the attacks are periodically
halted and replaced with new ones.

Whether or not the attack should be changed, the function
launch_attack is invoked (line 10). The function receives
in input the steeringlegit and throttle_brakelegit to even-
tually perform an additive or selective attack. When the
function ends the execution, it returns the new forged mes-
sages along with the current kind of attack, the index of
the following messages that the replay attack must repeat,
i.e., index_history, and the last pair of fabricated messages
that the spoofing attack must reproduce, i.e., prev_steering
and prev_throttle_brake. Then, the human/AI steering and
throttle_brake inputs are logged in the arrays steering_his
tory and throttle_brake_history (lines 12 and 13). These
arrays may eventually be employed in the replay attack. The
attack inputs are never added to the arrays since the replay
attack’s purpose is to replicate human/AI inputs, hence the
attack should only repeat human/AI inputs.

Finally, the algorithm returns the intruder’s steering and
throttle_brake values, the kind of attack now in execution,
the time when the attack will be halted, and the steer-
ing and throttle_brake history values, the index_history,
prev_steering and prev_throttle_brake (line 15).

Listing 2 Launch Attack

1 function launch_attack(steeringlegit,
throttle_brakelegit, current_attack,
steering_history, throttle_brake_history,
index_history, prev_steering,
prev_throttle_brake)

2 bootstrap ← False
3 if current_attack = None
4 bootstrap ← True
5

6 current_attack ← Randomly select one
from "DoS", "Spoofing",
"Replay", "Additive", "Selective"

7

8 if current_attack = "DoS"
9 (steering, throttle_brake) ← dos_attack()

10 if current_attack = "Spoofing"

123



A context-aware on-board intrusion detection...

Fig. 3 Inference simulation
sequence workflow of the
vehicle

start

Yes

No

Should the attack
change?

Establish when
to change the

attack

Choose
randomly an

attack

DoS

Spoofing Replay

Selective

Additive

Get the
inputs

from the
driver

Send the
forged

messages

Store the inputs
from the drivers

11 (steering, throttle_brake) ←
spoofing_attack(bootstrap,
prev_steering, prev_throttle_brake)

12

13 prev_steering ← steering
14 prev_throttle_brake ← throttle_brake
15 if current_attack = "Replay"
16 (steering, throttle_brake, index_history) ←

replay_attack(bootstrap,
steering_history, throttle_brake_history,
index_history)

17 if current_attack = "Additive"

18 (steering, throttle_brake) ←
additive_attack(steeringlegit,
throttle_brakelegit)

19 if current_attack = "Selective"
20 (steering, throttle_brake) ←

selective_attack(steeringlegit,
throttle_brakelegit)

21

22 return (steering, throttle_brake, current_attack
, index_history, prev_steering,
prev_throttle_brake)

123



D. Micale et al.

Listing 2 depicts the algorithm launch_attack. It is in
charge of maintaining active and in progress attack or decide
which attack should be run. The Spoofing and Replay attacks
need the variable bootstrap that represents if the attack is in
progress or not, i.e., the variable tracks if a new attack must
be launched or a previous attack must continue. The variable
is False when the attack is active (line 2) and True in case
the attack is not active (line 4). In case an attack is not in
progress, the attack type is randomly chosen between DoS,
spoofing, replay, additive and selective (line 6). Based on the
current attack type, an attack is launched (lines 8 to 20). In
case of spoofing attack, the new steering and throttle_brake
messages forged by the intruder are stored, respectively, in
prev_steering and prev_throttle_brake (lines 13 and 14).

Finally, the launch_attack function returns the attack’s
steering and throttle_brake values, the current type of attack,
the index_history value selected by the replay attack func-
tion the last time it is launched, and the previous steering and
throttle_brake values used by the spoofing attack (line 22).

3.3.1 Description of considered attacks

The dos_attack function sets steering and throttle_brake
functions to 0.

The spoofing_attack function sets the steering and the
throttle_brake variables with random values (Listing 3). In
case the attack is not yet started, the algorithm randomly
chooses values between the minimum and maximum valid
values (lines 2 to 4). In case the attack is in progress, the steer-
ing and the throttle_brake are the same values that the func-
tion set in the previous step (lines 5 to 7). Finally, the function
returns the steering and throttle_brake values (line 9).

Listing 3 Spoofing Attack

1 function spoofing_attack(bootstrap,
prev_steering, prev_throttle_brake)

2 if bootstrap = True
3 steering ← Choose randomly a float

number between minimum and
maximum acceptable value

4 throttle_brake ← Choose randomly a
float number between minimum and
maximum acceptable value

5 else
6 steering ← prev_steering
7 throttle_brake ← prev_throttle_brake
8

9 return (steering, throttle_brake)

The replay_attack function repeat a sequence of steer-
ing and throttle_brake values previously seen and con-
tained, respectively, in the arrays steering_history and
throttle_brake_history (Listing 4). These arrays can be
empty, i.e., previously human/AI inputs does not exist
because the driving session is just started. In case the arrays

are empty, there are no previous inputs to repeat so the
steering and throttle_brake are set to 0 (lines 4 and 5).
In case the arrays are not empty and the attack is not yet
started, the algorithm randomly selects from which position
of the array starts to repeat the previous inputs through the
setting of index_history variable (line 8).

Whether or not the attack has already been launched, the
algorithm uses the index_history to select the steering and
throttle_brake values from the respective arrays history (line
10 and 11). Then, the index_history variable is updated by 1
so, in case the attack continues, the replay_attack function
will use the next steering and throttle_brake pair of the his-
tory (line 13). Keep note that the index_history will never
point to a non-existing element of the arrays history because
a new pair (steering, throttle_brake) will be added in the
arrays history by the function simulate_attack at lines 12
and 13. This pair will contain the last inputs of the driver.
Finally, replay_attack function returns the inputs and the new
index_history (line 15).

Listing 4 Replay Attack

1 function replay_attack(bootstrap,
steering_history, throttle_brake_history,
index_history)

2 history_len ← Size of the array
steering_history

3 if history_len = 0
4 steering ← 0
5 throttle_brake ← 0
6 else
7 if bootstrap = True
8 index_history ← Choose randomly an

integer number between 0 and
history_len-1

9

10 steering ← steering_history[index_history]
11 throttle_brake ← throttle_brake_history

[index_history]
12

13 index_history ← index_history + 1
14

15 return (steering, throttle_brake, index_history)

Additive and selective attacks add a random value to
steeringlegit and throttle_brakelegit . The sum operation,
made by the additive and selective attacks, may lead to a
value that is not valid. The function limit_value (Listing 5)
ensures that values greater than the upper_bound, i.e., the
maximum valid value, are changed to upper_bound (lines 5
and 6) and values lower than the lower_bound, i.e., the min-
imum valid value, are changed to lower_bound (lines 7 and
8). In case the value is in [lower_bound, upper_bound],
the function returns the value as it is (line 10). In MetaDrive,
upper_bound and lower_bound are set to 1 and -1, respec-
tively.

123



A context-aware on-board intrusion detection...

Listing 5 Limit value

1 function limit_value(value)
2 upper_bound ← maximum acceptable value
3 lower_bound ← minimum acceptable value
4

5 if value > upper_bound:
6 return upper_bound
7 if value < lower_bound:
8 return lower_bound
9

10 return value

The additive_attack function sets the steering and thro
ttle_brake with random values (Listing 6). First, two val-
ues are randomly generated in ±[0.2, 0.9] (lines 2 and
3). Then, these values are added to steeringlegit and
throttle_brakelegit . Next, steering and throttle_brake
are sent as input to the limit_ f unction (lines 8 and
9). Finally, the function returns the limited steering and
throttle_brake values (line 11).

Listing 6 Additive Attack

1 function additive_attack(steeringlegit,
throttle_brakelegit)

2 random_value_1 ← random value in ±[0.2, 0.9]
3 random_value_2 ← random value in ±[0.2, 0.9]
4

5 steering ← steeringlegit + random_value_1
6 throttle_brake ← throttle_brakelegit +

random_value_2
7

8 steeringlimited ← limit_value(steering)
9 throttle_brakelimited ←

limit_value(throttle_brake)
10

11 return (steeringlimited, throttle_brakelimited)

The selective_attack function creates a steering and
throttle_brake pair based on the value of the legit ones
(Listing 7). In case, steeringlegit is in ±[0, 0.3], a random
value in ±[0.5, 1] is added to steeringlegit (lines from 2
to 4). In case steeringlegit is not in ±[0, 0.3], the forged
steering is the legit one with the sign flipped (lines 5 and
6). Similarly, the forged throttle_brake is generated (lines
from 8 to 12). Then, limit_value is launched on steering
and throttle_brake (lines 14 and 15). Finally, the limited
forged steering and throttle_brake are returned (line 17).

Listing 7 Selective Attack

1 function selective_attack(steeringlegit,
throttle_brakelegit)

2 if steeringlegit in ±[0, 0.3]
3 random_value ← random value in ±[0.5, 1]
4 steering ← steeringlegit + random_value
5 else
6 steering ← -steeringlegit
7

8 if throttle_brakelegit in ±[0, 0.3]

9 random_value ← random value in ±[0.5, 1]
10 throttle_brake ← throttle_brakelegit +

random_value
11 else
12 throttle_brake ← -throttle_brakelegit
13

14 steeringlimited ← limit_value(steering)
15 throttle_brakelimited ←

limit_value(throttle_brake)
16

17 return (steeringlimited, throttle_brakelimited)

3.3.2 Instances extraction paradigm

CAHOOTv2 requires a training dataset that contains both
legit and forged messages. We label them as follows:
steeringlegit , steering f orged , throttle_brakelegit and thr
ottle_brake f orged , alongside with the sensors’ values
(Table 1).

The instances_extraction paradigm extracts the instances
of the dataset to generate the final dataset. The new dataset
contains messages organized in pairs, each one is labeled
as T when it contains only legit messages, otherwise it
is labeled as F (Table 2). With the organization in pairs,
CAHOOTv2 is able to detect intrusions when an intruder
sends the same message the driver sent. Let us suppose that
the driver is not turning the steering wheel, i.e., steeringlegit
is equal to 0, while the intruder starts a DoS attack, i.e.,
steering f orged is equal to 0 (Table 1, row 3). The paradigm
considers both the steering message forged by the intruder
and the driver as legit since they are equal. However, based
on the throttle_brakelegit and throttle_brake f orged the
paradigm raises an alert (Table 2, rows 9 and 10). In case
both the driver and the intruder send the same pair of mes-
sages (Table 1, row 4), the algorithm inserts in the dataset
only an instance labeled with T (Table 2, row 11).

We execute the instances_extraction function (List-
ing 8) in the initial dataset and the function returns the dataset
insextracted which contains the final produced dataset.

The algorithm begins by reading each instance of the
initial dataset ins (line 3) and organizing the messages into
two arrays. Each array comprises tuples formed of steering
or the throttle_brake message and a Boolean value denoting
the legitimacy of the message.

The two arrays are employed for arranging all of the
instances in the initial dataset in a way in which legit and
forged messages can be easily distinguished: legitimate mes-
sages are loaded into the arrays (lines 12 and 13), whereas
forged messages are added only if they differ from the legit
messages (lines from 15 to 18).

The steeringlegit , steering f orged , throttle_brakelegit
and throttle_brake f orged messages are removed from
instance (line 20).

123



D. Micale et al.

Table 1 Example of instances before run instances extraction paradigm [28]

timestamp steeringlegit steering f orged throttle_brakelegit throttle_brake f orged ...

01/01/2022 12:00:00.000 0.695 0.403 0.020 −0.001 ...

01/01/2022 12:00:00.100 0.045 0.494 −0.042 −0.533 ...

01/01/2022 12:00:00.200 0.0 0.0 −0.042 0.0 ...

01/01/2022 12:00:00.300 0.0 0.0 0.0 0.0 ...

Table 2 Example of instances
after run instances extraction
paradigm [28]

timestamp steering throttle_brake ... label

01/01/2022 12:00:00.000 0.695 0.020 ... T

01/01/2022 12:00:00.000 0.695 −0.001 ... F

01/01/2022 12:00:00.000 0.403 0.020 ... F

01/01/2022 12:00:00.000 0.403 −0.001 ... F

01/01/2022 12:00:00.100 0.045 −0.042 ... T

01/01/2022 12:00:00.100 0.045 −0.533 ... F

01/01/2022 12:00:00.100 0.494 −0.042 ... F

01/01/2022 12:00:00.100 0.494 −0.533 ... F

01/01/2022 12:00:00.200 0.0 −0.042 ... T

01/01/2022 12:00:00.200 0.0 0.0 ... F

01/01/2022 12:00:00.300 0.0 0.0 ... T

As a result, instance now contains the engine runtime as
well as the sensor values.

The algorithm generates numerous instances based on
instance, one for each combination of the steering and throt-
tle_brake messages found in steering_array and throttle_
brake_array, respectively (lines 25 and 26).

Next, each instance is labeled "T" if it only contains mes-
sages from the driver or "F" if it contains at least onemessage
from the intruder (lines from 28 to 31).

Finally, all labeled instances are inserted into the
insextracted dataset (line 33). The algorithm returns the
dataset insextracted after reading all the instances in ins (line
35).

Listing 8 Instances Extraction Paradigm

1 function instances_extraction(ins)
2 insextracted ← empty array
3 for each instance in ins
4 steeringlegit ← instance[“steeringlegit "]
5 steering f orged ← instance[“steering f orged"]
6 throttle_brakelegit ←

instance[“throttle_brakelegit "]
7 throttle_brake f orged ←

instance[“throttle_brake f orged"]
8

9 steering_array ← empty array
10 throttle_brake_array ← empty array
11

12 steering_array ← steering_array
⋃

(steeringlegit, True)
13 throttle_brake_array ← throttle_brake_array⋃

(throttle_brakelegit, True)

14

15 if steeringlegit != steering f orged
16 steering_array ← steering_array

⋃

(steering f orged, False)
17 if throttle_brakelegit != throttle_brake f orged
18 throttle_brake_array ←

throttle_brake_array
⋃

(throttle_brake f orged, False)
19

20 remove from instance the columns
“steeringlegit ", “steering f orged",
“throttle_brakelegit ", “throttle_brake f orged"

21

22

23 for each (steering, is_steering_legi t) in
steering_array

24 for each (throttle_brake,
is_throttle_brake_legi t) in
throttle_brake_array

25 instance[“steering"] ← steering
26 instance[“throttle_brake"] ←

throttle_brake
27

28 if is_steering_legi t == True and
is_throttle_brake_legi t == True

29 instance[“label"] ← "T"
30 else
31 instance[“label"] ← "F"
32

33 insextracted ← insextracted
⋃

instance
34

35 return insextracted

123



A context-aware on-board intrusion detection...

3.4 Model generation

Themodel generation paradigm uses the instances extraction
paradigm to create the training and testing datasets (List-
ing 9).

More specifically, after randomly splitting the dataset into
a training set and a testing set (line 2), the instances for train-
ing and testing are retrieved (lines 3 and 4).

We perform the extraction paradigm independently on the
training and testing sets to ensure that all combinations of
steering and throttle_brake messages from the same initial
instance are not disseminated between training and testing
set but remain in the same set. The existence of extracted
instances of the same original one in both training and test-
ing sets causes data leakage [20]. Data leaking occurs when
information from the training set appears unexpectedly in the
testing set.

Then, a feature selection (FS) paradigm ranks all features
using the gain ratio [38] (GR) approach (line 6). Based on the
ranks, the best features are selected: the features with rank
equal to zero are removed (line 7). Then, the worst features
are removed (lines 9 and 10) from both the train and test sets.

Next, the hyperparameters_tuning function is called (line
12). Then, a random forest classifier is initialized using the
hyperparameters received (line 14). Finally, a random forest
model is trained using the train dataset ins_b ftrain which
returns a trained model (line 16).

Listing 9 Model Generation

1 function generate_model(inslabelled , num_i terations,
cross_validation, params_distrandom_search )

2 (instrain , instest ) ← split randomly the instances as training
and testing sets from inslabelled

3 ins_extractedtrain ← generate_dataset(instrain)
4 ins_extractedtest ← generate_dataset(instest )
5

6 ranking ← GR(instances)
7 f eatures>0 ← discard features with rank = 0 from ranking
8

9 ins_b ftrain ← ins_extractedtrain with features f eatures>0
10 ins_b ftest ← ins_extractedtest with features f eatures>0
11

12 paramsbest ← hyperparameters_tuning(ins_b ftrain ,
ins_b ftest , num_i terations, cross_validation,
params_distrandom_search)

13

14 r f ← initialize a Random Forest using paramsbest
15

16 model ← train r f using ins_b ftrain
17 return model

3.5 Hyperparameter tuning paradigm

While the parameters of a model are learned from the dataset
in the training phase through themachine learning technique,

the hyperparameters should be set manually by the data sci-
entist before starting the training phase. In most cases, the
default hyperparameters present in theML frameworks work
well. However, the hyperparameters can be tuned to find a
model that performs better [37]. In Random Forest, the ML
algorithm used in CAHOOTv2, the hyperparameter types are
about the structure of each tree present in the forest, the struc-
ture of the forest and the randomness. In the following, we
introduce someof the hyperparameters that can befine-tuned,
e.g., the number of trees and the maximum number of fea-
tures. A random forest model is made of trees. The number
of trees is one of the factors that influence the complexity of
the model. As the number of trees in the model increases, the
generalization error of the model will decrease until it tends
toward the limit, i.e., the excessive increase of trees will not
reduce the accuracy caused by the overfitting [4]. However,
toomany treeswill increase the computational cost. Each tree
is made of a series of nested if-then-else statements where a
feature of the data is tested, e.g., the vehicle speed is greater
than 30km/h. Each leaf node corresponds to a prediction. In
our study case, the prediction is the presence or absence of
intrusion. When growing a tree, the feature selected for each
node is selected from a random drawn subset of features. A
low maximum number of features of each split lead to less
correlated trees. A forest of low correlated trees is more sta-
ble than the one with high correlated trees[37]. However, if
the maximum number of features is set too low, it may result
in the construction of trees that primarily rely on irrelevant
features. This can consequently lead to trees with low accu-
racy.

Listing 10 depicts hyperparameters_tuning paradigm.
Because there are several possible combinations of hyperpa-
rameters, it is not feasible to try all the possible combinations
to find the best one. In the first phase, the paradigm creates
several random forests with random combinations of hyper-
parameters and searches a subset of the best hyperparameters
(lines from 2 to 23). Then, it tries every combinations of
hyperparameters present in the subset to find the hyperpa-
rameters with the best accuracy (lines from 25 to 34). Each
combination is tested using the cross-validation technique to
ensure that the hyperparameters are valid for the entire dataset
and not only for a specific test set. The random forests gener-
ated in the first phase are trained and tested using the training
dataset. Instead, in the second phase the random forests are
trained using train and test set. Although the first phase is
performed on a limited number of hyperparameter combina-
tions, this phase is computationally very onerous especially
for large datasets. To speed up the computation, we apply the
first phase only to the train set. There is only a minority of
data in the test set, so discarding the test set has a limited
impact on the search for the best hyperparameters.

In the following, we explain in detail the first and the
second phases. In the inputs of hyperparameters_tuning a

123



D. Micale et al.

bi-dimensional array params_distrandom_search is present
that contains for each type of hyperparameter a list of pos-
sible values that should be tried by the paradigm. First,
the paradigm creates a list with the name of the hyper-
parameters that will be tested (line 2). Then, the array
params_accuraciesrandom_search containing the pairs of
hyperparameters chosen and the accuracy obtained by the
random forest algorithm is defined (line 4). The num_i terat
ions variable defines how many random combinations of
hyperparameters are tested in the first phase.

A combination of hyperparameters is randomly gener-
ated (from line 6 to 9). For each type of hyperparameter
present in params_distrandom_search , an hyperparameter is
uniformly randomly chosen between all the possible values.
Then, a random forest r f is initialized using the hyperparam-
eters chosen. Next, r f is trained using the cross-validation
technique on the training dataset with the best features. The
cross_validation variable defines the number of folds. The
average accuracy is registered, alongside the list of the hyper-
parameters, in params_accuracy [“accuracy"] (lines 9 and
12). Then, the tuple is appended to the array of pairs hyperpa-
rameters/accuracy params_accuraciesrandom_search (line
14).

Once the params_accuraciesrandom_search is populated,
the paradigm looks for a subset of the best features. First,
the array params_distexhaustive_search that will contain the
subset of the best hyperparameters is defined (line 16). Then,
the paradigm selects the best hyperparameters of each type.
For each hyperparameter type paramname, the accuracies
present in params_accuraciesrandom_search are grouped by
paramname to obtain the average accuracy of each group
(line 18). Then, the third quartile [26] is calculated on the
average accuracies of the groups (line 20). The hyperparam-
eters that have average accuracies greater or equal to the
third quartile are inserted in params_distexhaustive_search
(line 23). Hence, about 25 percent of the highest accuracies
are selected for each type of hyperparameter.

Next, the train and test sets are combined to obtain the
entire dataset (line 25). The variables that will contain the
best hyperparameters and the relative accuracy are defined
(lines 27 and 28). Then, each possible combination of hyper-
parameters in params_distexhaustive_search is tested using
cross-validation on the entire dataset (lines from 29 to 31). In
case, the accuracy obtained is greater than the value currently
in accuracybest , the best hyperparameters and accuracy vari-
ables are updated (lines from 32 to 34). Finally, the paradigm
returns the hyperparameters that obtained the best accuracy.

Listing 10 Hyperparameters Tuning Paradigm

1 function hyperparameters_tuning(ins_b ftrain,
ins_b ftest, num_i terations, cross_validation,
params_distrandom_search)

2 paramsname ← get the names of parameters
in params_distrandom_search

3

4 params_accuraciesrandom_search ← empty array
5 for num_i terations:
6 params ← Empty array
7 for each paramname in paramsname:
8 params[paramname] ← choose

uniformly random a
hyperparameter in
params_distrandom_search[paramname]

9 params_accuracy["params"] ← params
10

11 r f ← initialize a Random Forest with
params as hyperparameters

12 params_accuracy["accuracy"] ← train r f
using cross_validation-fold cross
validation applied to ins_b ftrain

13

14 params_accuraciesrandom_search ← append
params_accuracy in
params_accuraciesrandom_search

15

16 params_distexhaustive_search ← empty array
17 for each paramname in paramsname:
18 grouped_accuracies ← group

params_accuraciesrandom_search by
paramname and calculate the
average accuracy of each group

19

20 third_quartile ← calculate the third
quartile on grouped_accuracies[
"accuracy"]

21

22 params_accuraciesbest_subset ← get the
elements in grouped_accuracies on
which grouped_accuracies["accuracy"]
≥ third_quartile

23 params_distexhaustive_search[paramname] ←
params_accuraciesbest_subset ["params"]

24

25 ins_b f ← ins_b ftrain ∪ ins_b ftest
26

27 paramsbest ← None
28 accuracybest ← 0
29 for each params combination in

params_distexhaustive_search:
30 r f ← initialize a Random Forest with

params as hyperparameters
31 accuracy ← train r f using

cross_validation-fold cross
validation applied to ins_b f

32 if accuracy > accuracybest:
33 paramsbest ← params
34 accuracybest ← accuracy
35

36 return paramsbest

4 CAHOOTv2 evaluation

Hereafter, we describe how we evaluate the CAHOOTv2
algorithm on a dataset we generated by the MetaDrive sim-
ulation workflow depicted in Sect. 3.2.

123



A context-aware on-board intrusion detection...

Table 3 Features
description [28]

Feature Description Example Unit

Speed Speed of the vehicle 55 km/h

Throttle_brake Amount of throttle or braking 0.55 N/A

Steering Rotation of the steering wheel −0.25 N/A

Last_position_x/y Position of the vehicle at
coordinate x/y

125 N/A

Dist_to_left/right_side Distance from the left/right lane 0.423 m

Fuel_consumption Fuel consumption since the start of
the driving session

33.12 N/A

Engine_runtime_minute /
second / millisecond

Minutes / seconds / milliseconds
elapsed from engine start

39 minutes / s / ms

Yaw_rate Angular acceleration on vertical
axis

0.089661 N/A

Project_distance /
velocity_to_vehicle_n_x/y

Vehicle’s projection distance /
velocity to the n-th nearest
vehicle on coordinate x / y

0.187 N/A

Fig. 4 Boxplots of genders

4.1 Dataset

The dataset is generated using the driving simulator
MetaDrive. Table 3 shows the features present in the dataset
generated by the MetaDrive simulator.

We aim to obtain an IDS able to work with either humans
and AI. Therefore, we decided to collect a dataset that con-
tains data made by an AI and 39 people. In particular, one
person uses a keyboard while the remaining 38 use a Thrust-
master TMX [46]. Regarding the gender of the drivers, four
drivers are females, while the remaining 35 are males.

Figure 4 shows the ages grouped by the gender. Female
drivers ages are between 19 and 27 in average 22.25 years
old and median of 21.5, while male drivers ages are between
20 and 44 in average 24 years old and median of 22. Overall,
the drivers’ ages are between 19 and 44 with an average of
23.82 and median of 22.

AI driving data are collected using the pre-trained AI
present inMetaDrive to maintain the consistency of the same
simulated vehicle in use between the AI and human drivers.

4.2 Machine learning algorithms

The CAHOOTv2 paradigm is implemented by using python-
weka-wrapper3 [40] for the feature selection algorithm gain
ratio and scikit-learn [35] that efficiently implements random
forest (RF) [4].

Models generated using the random forest technique
obtain good results. However, tuning the hyperparameters,
RF is able to achieve the best results. In the first experiment,
we run the hyperparameters_tuning paradigm on CAHOOT
algorithm with the dataset present in [28], hereafter called α.
This dataset contains data made by the MetaDrive’s AI and 5
people using a Thrustmaster TMX. In the second experiment,
we run CAHOOT and CAHOOTv2 on the dataset presented
in the previous section, hereafter called β.

4.3 Experiments setup

To evaluate CAHOOTv2, we use several metrics, such as:
Accuracy, Precision and Recall.

Accuracy represents how often the model is making a cor-
rect prediction.

Accuracy = TP + TN

TP + TN + FP + FN
(1)

where

– TP (true positive) is the number of instanceswhere at least
one sensor’s value is forged that are correctly predicted.

123



D. Micale et al.

Table 4 Hyperparameters tested
in hyperparameters_tuning
paradigm

Hyperparameter Description Values

num_estimators The number of trees that
make up the forest

[100, 200, 300, 400, 500,
600, 700, 800, 900, 1000]

max_ f eatures The number of features
considered for the split

[“log2", “sqrt"]

min_samples_spli t The minimum number of
samples required to split
an internal node

[2, 7, 12, 18, 23, 28, 34, 39,
44, 50]

min_samples_lea f The minimum number of
samples required to be at
a leaf node

[1, 6, 11, 17, 22, 28, 33, 39,
44, 50]

bootstrap Whether to use the entire
dataset to build each tree
or a bootstrap sample

[true, false]

cri terion The function used to
measure the quality of a
split

[“gini", “entropy"]

– TN (true negative) is the number of instances where all
the sensors’ values are legit that are correctly predicted.

– FP (false positive) is the number of instances where all
the sensors’ values are legit but incorrectly predicted.

– FN (false negative) is the number of instances where at
least one sensor’s value is forged but incorrectly pre-
dicted.

Precision measures the ability of the classifier not to pre-
dict as forged an instance that is legit. It is calculated as
follows:

Precision = TP/(TP+FP) (2)

Recall measures the ability of the classifier to find all
forged instances. It is calculated as follows:

Recall = TP /(TP+FN) (3)

The dataset is randomly split in a training set that contains
85% of instances and a test set that contains the remaining
15%.

The intruder sends forged steering and throttle_brake
messages while the driver is driving the simulated vehicle.
Also, multiple attacks on each driving session are simulated
through the setting of maximum and minimum duration of
an attack, respectively, to 2 and 1 slots.

Table 4 shows the hyperparameters that we test in hyper-
parameters_tuning paradigm. We use 100 as number of
iterations in the first phase.

We aim to detect the instances that contain at least
one sensor’s value forged from the steering and the
throttle_brake.

Table 5 Features selected by CAHOOT on α (percentage of each rank
with respect to the sum of the ranks of the features)

Features Rank percentage(%)

steering 46.7

throttle_brake 32.4

speed 7.4

yaw_rate 6.6

f uel_consumption 2.3

last_posi tion_y 1.3

last_posi tion_x 0.9

engine_runtime_minute 0.5

engine_runtime_second 0.5

dist_to_le f t_side 0.4

project_distance_to_vehicle_1_y 0.3

dist_to_right_side 0.2

project_veloci ty_to_vehicle_0_y 0.2

4.4 Evaluation of hyperparameters_tuning

In the following, we compare the model that is trained by
using the default hyperparameters with the one that is trained
using the best hyperparameters. The experiment is conducted
on the same train and test set on dataset α.

Table 5 contains the list of features selected for the two
models. To better distinguish features rankings, each feature
rank is shown as a percentage of the sum of all the ranks.

The steering and throttle_brake messages are the most
important features. The worse features are the distance from
the right lane and the projection of velocity of the nearest
vehicle in the y axis. The engine runtimes minutes and sec-
onds are at the half of the table, while the engine runtime
milliseconds was discarded.

123



A context-aware on-board intrusion detection...

Table 6 Accuracy, precision
and recall comparison on α of
CAHOOT with default and best
hyperparameters

CAHOOT with best hyperparameters CAHOOT with default hyperparameters

Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)

96.0 96.9 97.6 95.5 96.0 97.9

Test only human drivers

97.6 98.2 98.5 97.2 97.6 98.6

Test only MetaDrive’s AI driver

83.9 88.1 90.7 82.7 85.5 92.5

Test only replay attack

93.5 96.2 94.8 93.4 95.3 95.5

Test only DoS attack

96.8 96.6 98.8 96.3 95.8 98.9

Test only spoofing attack

97.4 97.7 98.9 96.7 96.6 99.1

Table 6 shows that the search of hyperparameters increases
the accuracy of 1.5%. The recall is 0.3% lower than themodel
trained with the best hyperparameters, but the precision is
0.9% higher, i.e., false negatives increased slightly but false
positives decreased.

To better understand on which circumstances the cus-
tomized hyperparameters perform best, we calculated the
accuracy grouped by entity, i.e., humanor theMetaDrive’sAI
is driving the car, and by type of attack, i.e., DoS, spoofing
and replay. The model trained with custom hyperparame-
ters is 1.2% more accurate with respect to the model trained
with default hyperparameters on the MetaDrive’s AI driv-
ings. The attack that obtains the best accuracy increase is
spoofing attack, i.e., 0.7%. On the other hand, the accuracy
of replay attack increases only of 0.1%.

4.5 Evaluation of CAHOOTv2

In the following experiment, we compare three models: a
model trained using CAHOOTv2 paradigm, i.e., a model
trained to detect DoS, spoofing, replay, additive and selective
attacks using the best hyperparameters, amodel trained using
CAHOOTv2 with the default hyperparameters and a model
trained using CAHOOT paradigm, i.e., a model trained to
detect onlyDoS, spoofing and replay attacks using the default
hyperparameters. The experiment is conducted on the dataset
β.

Table 7 contains the list of features selected for the three
models. Keep note that CAHOOTv2 uses the same features
regardless the hyperparameters selected. The table shows that
CAHOOTv2 and CAHOOT discard only engine_runtime_
millisecond. While in CAHOOTv2 steering and throttle_
brake together represent 55.35% of the entire feature set,
in CAHOOT steering and throttle_brake together rep-

Table 7 Features selected by
CAHOOTv2, with default and
best hyperparameters, and
CAHOOT on β (percentage of
each rank with respect to the
sum of the ranks of the features)

Features Rank percentage

CAHOOTv2 (%) CAHOOT (%)

steering 31.83 52.31

throttle_brake 23.52 30.31

speed 9.0 3.91

dist_to_le f t_side 4.93 0.4

yaw_rate 4.47 1.16

last_posi tion_y 3.92 1.66

last_posi tion_x 3.33 1.95

energy_consumption 3.27 2.1

dist_to_right_side 3.07 1.89

project_distance/veloci ty_to_vehicle_n_x/y from 1.24 to 0.14 from 0.39 to 0.05

engine_runtime_second 0.69 0.18

engine_runtime_minute 0.56 0.17

123



D. Micale et al.

Table 8 Accuracy, precision
and recall comparison on β

between CAHOOTv2 and
CAHOOTv2 with default
hyperparameters

CAHOOTv2 CAHOOTv2 default hyperparameters

Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)

97.9 98.8 98.2 97.6 98.5 98.2

Test only human drivers

98.0 99.0 98.3 97.8 98.7 98.3

Test only MetaDrive’s AI driver

87.3 89.9 93.4 87.4 88.7 95.2

Test only replay attack

94.8 96.9 95.4 94.5 96.3 95.6

Test only DoS attack

96.5 97.1 97.4 96.3 96.8 97.4

Test only spoofing attack

99.6 99.5 99.9 99.4 99.3 99.9

Test only additive attack

97.7 99.5 97.3 97.3 99.2 97.1

Test only selective attack

99.6 99.7 99.8 99.5 99.5 99.8

resent 82.62% of the entire feature set. Consequently, the
remaining features are more important in CAHOOTv2. In
all the models, the most important features are steering,
throttle_brake and speed. While in CAHOOTv2 dist_to_
le f t_side and yaw_rate are, respectively, the fourth and
fifth most important features, in CAHOOT they are only the
ninth and the eighth most important features. In CAHOOT,
the fourth and fifth most important features are energy_con
sumption and last_posi tion_x .

In this case, Tables 8 and 9 show that CAHOOTv2 tuning
the hyperparameters obtains the best accuracy, i.e., 0.3% of
accuracy higher than the default hyperparameters and 8.2%
of accuracy higher than CAHOOT. The model trained with
the best hyperparameters increases the precision of 0.3%
while maintaining equal the recall with respect to default
hyperparameters. As stated in Sect. 4.3, precision and recall
are metrics that measure the disproportion between the true
positives with respect to the false positives and the true pos-
itives with respect to the false negatives, respectively. High
precision and high recall mean a low number of false pos-
itives and false negatives, respectively. Table 8 shows that
CAHOOTv2 has only 0.6%difference between precision and
recall. Hence, the false positives are slightly higher than the
false negatives.

Thebest hyperparameters allowed to increase the accuracy
in each test category and also reduce the differences between
the precision and recall.

Considering tests only on humans, the model with the
best hyperparameters obtains accuracy and precision scores
greater than the ones obtained by the default hyperparameters
and CAHOOT. Considering tests only on theMetaDrive’s AI
instances, the model with best hyperparameters has an accu-

racy slightly lower with respect to default hyperparameters,
i.e., 0.1%, but the model is more balanced. The difference
between precision and recall with the best hyperparameters
is 3.5%, while in the default hyperparameters is 5.5%.

Tables 8 and 9 show that the model easily detects intru-
sions on instances where the human is driving the vehicle.
On the other hand, it is more difficult to detect intrusions
on instances where the MetaDrive’s AI drives the vehi-
cle. Humans tend to make gradually driving adjustments,
whereas MetaDrive’s AI makes continuous and sudden
changes. Graduality allows the model to detect more pre-
cisely an intrusion in progress for human drivings.

CAHOOTv2 with the default hyperparameters is more
accurate than CAHOOT by +0.1% on replay and spoof-
ing attacks. Hence, model training on additive and selective
attacks allows CAHOOTv2 to increase accuracy on replay
and spoofing attacks. The use of hyperparameters further
increase the accuracies up to 0.4% on replay attack and up to
0.3% on spoofing attack. The most important increase is in
the replay attack because it is the most difficult one to detect.
However,CAHOOTis 0.3%more accurate thanCAHOOTv2
with default hyperparameters. The use of the best hyperpa-
rameters allows CAHOOTv2 to thin the gap with CAHOOT
with a decrease of accuracy of only 0.1%. Also, keep note
that precision and recall are more balanced in CAHOOTv2
with the best hyperparameters.

The additive attack and selective attack are easy to detect
for CAHOOTv2 regardless the hyperparameters. However,
the best hyperparameters allow the accuracy to increase up
to 0.4%. CAHOOT is able to detect these attacks but with
lower scores with respect to CAHOOTv2.

123



A context-aware on-board intrusion detection...

Table 9 Accuracy, precision and recall comparison of CAHOOT on β

Accuracy (%) Precision (%) Recall (%)

91.7 92.7 95.9

Test only human drivers

91.8 92.8 96.0

Test only AI drivers

83.6 85.4 94.1

Test only replay attack

94.4 95.9 95.7

Test only DoS attack

96.6 96.6 98.0

Test only spoofing attack

99.3 99.1 99.9

Test only additive attack

83.5 87.1 91.3

Test only selective attack

86.7 87.9 95.4

The easiest attack to detect in CAHOOT is the spoofing
attack, while in CAHOOTv2 with the default hyperparam-
eters is the selective attack. Finally, with the best hyperpa-
rameters spoofing and selective attack are equally easy to
detect.

Table 10 shows a comparison between the measures of
CAHOOTv2 and the main related work on context-aware
IDS with respect to the information provided in literature.
In fact, this works do not contain experiments on DoS and

replay attack. X-CANIDS [15] calls spoofing as masquerade
attack and does not provide the accuracy. CARDIAN [34]
created spoofing attacks on three scenarios where the car
goes straight and: 1) the intruder spoofs the brake sensor,
2) the intruder spoofs the gear, 3) the intruder spoofs the
temperature engine. The authors do not provide the accuracy
but they provide the TP, TN, FP and FN. Hence, it is possible
to calculate the average accuracy. In RAIDS [16] the authors
test it on several datasets on additive and selective attacks,
but they provided only the worst accuracy obtained in the
additive attack and the best accuracy obtained in the selective
attack. Also, they call the additive attack as abrupt attack and
the selective attack as directed attack. Finally, Kondratiev et
al. [21] test two different neural networks trained to detect
the intrusions. In Table 10, only the metrics of the best neural
network are shown. Authors provide only the recalls for the
additive attack while for the selective attack they provide
accuracies, precisions and recalls. Also, the authors call the
additive attack as random attack.

CAHOOTv2 consistently performs better than the related
work. In particular, CAHOOTv2 obtains the same accuracy
as CARDIAN in the spoofing attack. However, the preci-
sion and the recall are much better in CAHOOTv2 with,
respectively, +17.4%and+18.5%.CARDIAN is very good at
detecting legitimatemessages, but has some difficulty detect-
ing intrusions. CAHOOTv2 has an almost perfect recall
with 99.9% while X-CANIDS stops at 91.2%. The preci-
sion of CAHOOTv2 differs from X-CANIDS by only 0.5%.
CAHOOTv2 is more accurate with respect to the worst accu-
racy obtained by RAIDS in the additive attack, i.e., +8.2%,

Table 10 Comparison of lowest and highest accuracies on spoofing attack between CAHOOT and the main context-aware IDSs

Spoofing Additive Selective

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

CAHOOTv2 99.6% 99.5% 99.9% 97.7% 99.5% 97.3% 99.6% 99.7% 99.8%

CAHOOT 99.3% 99.1% 99.9% 83.5% 87.1% 91.3% 86.7% 87.9% 95.4%

X-CANIDS [15] N/A 99.0% 91.2% N/A N/A N/A N/A N/A N/A

CARDIAN [34] 99.6% 82.1% 81.4% N/A N/A N/A N/A N/A N/A

RAIDS [16] N/A N/A N/A ≥89.5% N/A N/A ≤99.9% N/A N/A

Kondratiev et al. [21] N/A N/A N/A N/A N/A 92.5% 73.7% 68.9% 98.3%

Table 11 Comparison of
evaluation time between
CAHOOT and the main
context-aware IDSs

Response time (μs) Device

Name Type

CAHOOTv2 29 Jetson Nano Embedded

CAHOOT 27 Jetson Nano Embedded

X-CANIDS [15] 8,060 Jetson AGX Xavier Embedded

CARDIAN [34] N/A N/A Embedded

RAIDS [16] <400,000 Raspberry Pi 3 Model B+ Embedded

Kondratiev et al. [21] 17,857 Intel Core i5-6300HQ Laptop

123



D. Micale et al.

Table 12 Abbreviations

Abbreviation Description

LTE Long-term evolution. Fourth-generation cellular
connection

5G Fifth generation cellular connection

IDS Intrusion detection system

AI Artificial intelligence

ECU Electrical control units

CAN Controller area network

CAN-FD Controller area network flexible data-rate

V2X Vehicle-to-everything

OBD-II On-board diagnostics II

GPU Graphics processing unit

FPGA Field-programmable gate arrays

ISO/IEC International Organization for Standardization and
the International Electrotechnical Commission

UNECE United Nations Economic Commission for Europe

IDPS Intrusion detection and prevention systems

IDS Intrusion detection system

IPS Intrusion prevention system

DoS Denial of service

BiLSTM Binary long short-term memory

OCSVM One class support vector machine

CNN Convolutional neural network

LSTM Long short-term memory

FS Feature selection

GR Feature selection

ML Machine learning

TP True positive

TN True negative

FP False positive

FN False negative

and it is slightly less accurate with the best accuracy obtained
by RAIDS in the selective attack, i.e., only −0.3% accurate.
Finally, CAHOOTv2 has a recall higher than Kondratiev et
al. [21] in the additive attack, i.e., 4.8%, and has a much
higher accuracy and precision in the selective attack, i.e.,
+25.9% and +30.8%, respectively.

Finally, we evaluate the response time of CAHOOTv2
on intrusion detection (Table 11). We exported the Random
Forest model, previously trained by a server, into a NVIDIA
Jetson Nano Developer Kit. This device contains a NVIDIA
Maxwell GPU, 4 GB of RAM and four cores ARM Cortex-
A57 [31]. The evaluation of a single instance requires in
average 29μs.Wealso evaluateCAHOOTon the samedevice
obtaining 27μs, only 2μs faster thanCAHOOTv2 (Table 11).

CAHOOTv2 is at least 278 times faster compared to the
main related work. In particular, X-CANIDS takes 8,060μs
despite using themore powerfulNVIDIAJetsonAGXXavier

with 8 cores [30]. The use of an autoencoder made with BiL-
STM layers is computationally onerous. However, RAIDS
and [21] are the slowest methods because they process either
the images from the on-vehicle camera and sensors. CAR-
DIAN runs on an embedded device but the authors do not
provide the exact device model used for the evaluation and
the response time of the IDS.

Due toCAHOOTv2’s low use of computational resources,
driver data can be analyzed directly in the car and do not need
to be sent outside the vehicle, making CAHOOTv2 privacy
preserving.

5 Conclusions and future work

The high complexity of newer vehicles increases the attack
surfaces on which a vulnerability could be present. An intru-

123



A context-aware on-board intrusion detection...

Table 13 Notations

Notations Description

Hyperparameters Parameters that must be set before the
training process starts and may influence
the generated mode

Hyperparameters
tuning

The process of searching the
hyperparameters that improve the
performance of the models

Context-aware IDS Use the semantic of the messages to
detect intrusions

DoS attack Steering, throttle and brakes are set to zero

Replay attack The intruder re-uses valid CAN frames

Spoofing attack The intruder is able to generate a valid
CAN frame

Additive attack The intruder simulates an abrupt steering,
acceleration or brake

Selective attack The intruder introduces a CAN frame that
contradicts the driver’s will

MetaDrive Driving simulator written in Python

Instances extraction
paradigm

Extracts the instances of the dataset to
generate the final dataset where
messages are organized in pairs

Feature Selection
paradigm

Ranks and selects the best features

sion while the vehicle is in motion could endanger the lives
of the driver and passengers.

In this article, we introduced CAHOOTv2 that improves
the ability on intrusion detection of CAHOOT generating
more balanced models thanks to the best hyperparameters
used for the training phase. We also expanded the dataset
with additional drivers to better validate the results (Tables
12, 13).

Security solutions are strongly linked to safety, especially
when considering the automotive domain. CAHOOT and
CAHOOTv2 are designed to be an IDS, so malicious events
are just identified and no active reactions are implemented to
avoid that they may impact the vehicle’s safety. While driv-
ing a car, eventsmay occur that require exceptional responses
from the driver, e.g., a cat suddenly crossing the road forcing
an abrupt stop. If not properly trained, an IDS may interpret
these events as malicious. CAHOOT and CAHOOTv2 are
already trained to identify dangerous situations, e.g., one of
the simulated cars performed sudden overtaking or congested
traffic that forced the driver to make abrupt decisions.

As future work, we want to further improve our algorithm
to not only detect intruders but also identify drivers while
maintaining their privacy. Rather than endangering the lives
of thedriver andpassengers in thevehicle, the intrudermaybe
interested to introduce CAN messages to trick the vehicle’s
driver identification system to impersonate an authorized
driver. To prevent this, the intrusion detection component
of the algorithm may identify the forged messages and pre-

vent them to reach the driver identification component. As
another possible future scope, we will apply CAHOOTv2 to
real vehicles. The new vehicles may integrate Android Auto-
motive [3] which is an android operating system for vehicles.
Android automotive allows developers to create apps that use
the vehicle’s sensor data. CAHOOTv2 could be installed in
these vehicles as a download from thePlayStore.As shown in
Sect. 4, CAHOOTv2 can be integrated into low-cost devices
that enable affordable IDS production for older vehicles.

CAHOOTv2 can be installed not only for private vehicles,
but also for public transportation vehicles and emergency
vehicles. An intruder that attacks a bus can endanger more
lives than attacking a private vehicle. For this reason, the
introduction of an IDS for public transport vehicles is partic-
ularly important. Also, an intruder that aims at sabotaging an
ambulance may endanger the life of a patient who urgently
needs to reach the hospital for treatment. An intruder could
prevent a police car from chasing a getaway vehicle.

Finally, CAHOOTv2 is also capable of detecting intru-
sions in autonomous vehicles. Hence, CAHOOTv2 can be
installed in future self-driving cars to detect intrusions in a
timely and effective manner.

Another future scope is the introduction of CAHOOTv2
to vehicles of the metaverse. In future, we aim to refine the
algorithm to detect which sensor of the car is being attacked.
Also, wewill try newmachine learning techniques that could
help to increase the accuracy. In future, we will train the
IDS model by collecting data with environmental conditions
different from those actually present inMetaDrive: at present,
the simulator only simulates sunny days. The model should
also be trainedwith rain, snowand fog.Also,wewill consider
new driving scenarios, e.g., the driver drives fast because she
is late to an appointment.

Funding Open access funding provided by IIT - RENDE within the
CRUI-CARE Agreement.

Data availability The data that support this research activity have been
collected in a compliant way with respect to ethical and privacy regu-
lation. Data may be disclosed after the participant consent.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

123



D. Micale et al.

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Akl, N.A., El Khoury, J., Mansour, C.: Trip-based prediction of
hybrid electric vehicles velocity using artificial neural networks.
In: 2021 IEEE 3rd International Multidisciplinary Conference on
Engineering Technology (IMCET), pp. 60–65 (2021). https://doi.
org/10.1109/IMCET53404.2021.9665641

2. Al-Jarrah, O.Y., Maple, C., Dianati, M., Oxtoby, D., Mouzaki-
tis, A.: Intrusion detection systems for intra-vehicle networks: A
review. IEEE Access 7, 21266–21289 (2019)

3. “Android Open Source Project": What is android automo-
tive? (2023). URL:https://source.android.com/docs/automotive/
start/what_automotive?hl=en [retrieved: 11, 2023]

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

5. “CVE": Cve-2016-9337 (2016). URL:https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-9337 [retrieved: 11, 2022]

6. Deveci, M., Pamucar, D., Gokasar, I., Köppen, M., Gupta, B.B.:
Personal mobility in metaverse with autonomous vehicles using q-
rung orthopair fuzzy sets based opa-rafsimodel. IEEETransactions
on Intelligent Transportation Systems pp. 1–10 (2022). https://doi.
org/10.1109/TITS.2022.3186294

7. Diess, H.: Levers to unleash value (2020). URL:https://www.
volkswagenag.com/presence/investorrelation/publications/
presentations/2020/01-januar/January_2020_VWAG_Investor_
Roadshow.pdf [retrieved: 11, 2022]

8. Donzellini, G., Garavagno, A.M., Oneto, L.: Microprocessor Sys-
tems on FPGA, pp. 439–553. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-030-87344-8_5

9. “EUROPOL": 31 arrested for stealing cars by hacking keyless
tech (2022). URL:https://www.europol.europa.eu/media-press/
newsroom/news/31-arrested-for-stealing-cars-hacking-keyless-
tech [retrieved: 11, 2022]

10. Fatemidokht, H., Rafsanjani, M.K., Gupta, B.B., Hsu, C.H.:
Efficient and secure routing protocol based on artificial intelli-
gence algorithms with UAV-assisted for vehicular ad hoc net-
works in intelligent transportation systems. IEEE Trans. Intell.
Transp. Syst. 22(7), 4757–4769 (2021). https://doi.org/10.1109/
TITS.2020.3041746

11. Gmiden, M., Gmiden, M.H., Trabelsi, H.: An intrusion detection
method for securing in-vehicle can bus. In: 2016 17th International
Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (STA), pp. 176–180 (2016). https://doi.org/
10.1109/STA.2016.7952095

12. Grimm, D., Stang, M., Sax, E.: Context-aware security for vehi-
cles and fleets: a survey. IEEE Access 9, 101,809-101,846 (2021).
https://doi.org/10.1109/ACCESS.2021.3097146

13. Hollensen, S., Kotler, P., Opresnik, M.: Metaverse: the new mar-
keting universe. J. Bus. Strategy 44(3), 119–125 (2023). https://
doi.org/10.1108/JBS-01-2022-0014

14. “International Organitation for Standardization: Iso/iec
27039:2015, information technology — security techniques
— selection, deployment and operations of intrusion detection
and prevention systems (idps) (2015). URL:https://www.iso.org/
standard/56889.html [retrieved: 11, 2022]

15. Jeong, S., Lee, S., Lee, H., Kim, H.K.: X-canids: Signal-aware
explainable intrusion detection system for controller area network-
based in-vehicle network (2023)

16. Jiang, J., Wang, C., Chattopadhyay, S., Zhang, W.: Road Context-
Aware Intrusion Detection System for Autonomous Cars. Lecture

Notes in Computer Science p. 124–142 (2020). https://doi.org/10.
1007/978-3-030-41579-2_8

17. Kalutarage, H.K., Al-Kadri, M.O., Cheah, M., Madzudzo, G.:
Context-aware anomaly detector for monitoring cyber attacks on
automotive can bus. In: ACM Computer Science in Cars Sym-
posium, CSCS ’19. Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3359999.3360496

18. Kang, M.J., Kang, J.W.: A novel intrusion detection method using
deep neural network for in-vehicle network security. In: 2016 IEEE
83rd Vehicular Technology Conference (VTC Spring) (2016)

19. Karopoulos, G., Kambourakis, G., Chatzoglou, E., Hernández-
Ramos, J.L., Kouliaridis, V.: Demystifying in-vehicle
intrusion detection systems: A survey of surveys and a meta-
taxonomy. Electronics 11(7) (2022). https://doi.org/10.3390/
electronics11071072. https://www.mdpi.com/2079-9292/11/7/
1072

20. Kaufman, S., Rosset, S., Perlich, C., Stitelman, O.: Leakage in
data mining: formulation, detection, and avoidance. ACM Trans.
Knowl. Discov. Data 6(4), 1–21 (2012). https://doi.org/10.1145/
2382577.2382579

21. Kondratiev, V., Kuznetsov, A.: An algorithm for intrusion detection
into the control system of an unmanned vehicle. In: 2021 Interna-
tionalConference on InformationTechnology andNanotechnology
(ITNT), pp. 1–5 (2021). https://doi.org/10.1109/ITNT52450.2021.
9649295

22. Levi, M., Allouche, Y., Kontorovich, A.: Advanced analytics for
connected cars cyber security. CoRR arxiv:1711.01939 (2017)

23. Li, Q., Peng, Z., Xue, Z., Zhang, Q., Zhou, B.: Metadrive: Com-
posing diverse driving scenarios for generalizable reinforcement
learning. arXiv preprint arXiv:2109.12674 (2021)

24. Lo, W., Alqahtani, H., Thakur, K., Almadhor, A., Chander, S.,
Kumar,G.:Ahybrid deep learningbased intrusion detection system
using spatial-temporal representation of in-vehicle network traf-
fic. Vehicular Communications 35, 100,471 (2022). https://doi.org/
10.1016/j.vehcom.2022.100471. https://www.sciencedirect.com/
science/article/pii/S2214209622000183

25. Manadhata, P., Wing, J.: An attack surface metric. IEEE Trans.
Softw. Eng. 37, 371–386 (2011). https://doi.org/10.1109/TSE.
2010.60

26. Mann, P.S.: Introductory Statistics. Wiley, New York (2009)
27. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus mes-

sages through analysis of id sequences. In: 2017 IEEE Intelligent
Vehicles Symposium (IV), pp. 1577–1583 (2017)

28. Micale, D., Costantino, G., Matteucci, I., Fenzl, F., Rieke, R.,
Patanè, G.: Cahoot: a context-aware vehicular intrusion detection
system. In: 2022 IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), pp.
1211–1218 (2022). https://doi.org/10.1109/TrustCom56396.2022.
00168

29. Narayanan, S.N.,Mittal, S., Joshi,A.:Obd securealert: An anomaly
detection system for vehicles. In: IEEEWorkshop onSmart Service
Systems (SmartSys 2016) (2016)

30. “NVIDIA": NVIDIA® Jetson AGX XavierTM. URL:https://www.
nvidia.com/en-gb/autonomous-machines/embedded-systems/
jetson-agx-xavier/ [retrieved: 07, 2023]

31. “NVIDIA": NVIDIA® Jetson NanoTM. URL:https://www.nvidia.
com/en-gb/autonomous-machines/embedded-systems/jetson-
nano/ [retrieved: 07, 2023]

32. “Official Journal of the European Union": Uniform provisions con-
cerning the approval of vehicles with regards to cybersecurity
and cybersecurity management system (2021). URL:http://data.
europa.eu/eli/reg/2021/387/oj [retrieved: 11, 2022]

33. Vijayakumar, P., Rajkumar, S.C.: Deep reinforcement learning-
based pedestrian and independent vehicle safety fortification using
intelligent perception. Int. J. Softw. Sci. Comput. Intell. 14(1), 1–33
(2022). https://doi.org/10.4018/IJSSCI.291712

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/IMCET53404.2021.9665641
https://doi.org/10.1109/IMCET53404.2021.9665641
https://source.android.com/docs/automotive/start/what_automotive?hl=en
https://source.android.com/docs/automotive/start/what_automotive?hl=en
https://doi.org/10.1023/A:1010933404324
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9337
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9337
https://doi.org/10.1109/TITS.2022.3186294
https://doi.org/10.1109/TITS.2022.3186294
https://www.volkswagenag.com/presence/investorrelation/publications/presentations/2020/01-januar/January_2020_VWAG_Investor_Roadshow.pdf
https://www.volkswagenag.com/presence/investorrelation/publications/presentations/2020/01-januar/January_2020_VWAG_Investor_Roadshow.pdf
https://www.volkswagenag.com/presence/investorrelation/publications/presentations/2020/01-januar/January_2020_VWAG_Investor_Roadshow.pdf
https://www.volkswagenag.com/presence/investorrelation/publications/presentations/2020/01-januar/January_2020_VWAG_Investor_Roadshow.pdf
https://doi.org/10.1007/978-3-030-87344-8_5
https://www.europol.europa.eu/media-press/newsroom/news/31-arrested-for-stealing-cars-hacking-keyless-tech
https://www.europol.europa.eu/media-press/newsroom/news/31-arrested-for-stealing-cars-hacking-keyless-tech
https://www.europol.europa.eu/media-press/newsroom/news/31-arrested-for-stealing-cars-hacking-keyless-tech
https://doi.org/10.1109/TITS.2020.3041746
https://doi.org/10.1109/TITS.2020.3041746
https://doi.org/10.1109/STA.2016.7952095
https://doi.org/10.1109/STA.2016.7952095
https://doi.org/10.1109/ACCESS.2021.3097146
https://doi.org/10.1108/JBS-01-2022-0014
https://doi.org/10.1108/JBS-01-2022-0014
https://www.iso.org/standard/56889.html
https://www.iso.org/standard/56889.html
https://doi.org/10.1007/978-3-030-41579-2_8
https://doi.org/10.1007/978-3-030-41579-2_8
https://doi.org/10.1145/3359999.3360496
https://doi.org/10.3390/electronics11071072
https://doi.org/10.3390/electronics11071072
https://www.mdpi.com/2079-9292/11/7/1072
https://www.mdpi.com/2079-9292/11/7/1072
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1145/2382577.2382579
https://doi.org/10.1109/ITNT52450.2021.9649295
https://doi.org/10.1109/ITNT52450.2021.9649295
http://arxiv.org/abs/1711.01939
http://arxiv.org/abs/2109.12674
https://doi.org/10.1016/j.vehcom.2022.100471
https://doi.org/10.1016/j.vehcom.2022.100471
https://www.sciencedirect.com/science/article/pii/S2214209622000183
https://www.sciencedirect.com/science/article/pii/S2214209622000183
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TSE.2010.60
https://doi.org/10.1109/TrustCom56396.2022.00168
https://doi.org/10.1109/TrustCom56396.2022.00168
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
http://data.europa.eu/eli/reg/2021/387/oj
http://data.europa.eu/eli/reg/2021/387/oj
https://doi.org/10.4018/IJSSCI.291712


A context-aware on-board intrusion detection...

34. Pascale, F., Adinolfi, E.A., Avagliano, M., Bellacosa, E., Coppola,
S., Santonicola, E.: Cardian: A context aware cybersecurity system
for real time diagnostic intrusion detection using a probabilistic
approach with bayesian network. In: 2022 6th International Con-
ference on System Reliability and Safety (ICSRS), pp. 424–429
(2022). https://doi.org/10.1109/ICSRS56243.2022.10067343

35. Pedregosa, F., Varoquaux,G.,Gramfort, A.,Michel,V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., Duchesnay, E.: Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011)

36. Placek, M.: Connected car fleet by region 2021-2035 (2022).
URL:https://www.statista.com/statistics/1155517/global-
connected-car-fleet-by-market/ [retrieved: 11, 2022]

37. Probst, P., Wright, M., Boulesteix, A.L.: Hyperparameters and
tuning strategies for random forest. Wiley Interdiscipl. Rev. Data
Mining Knowl. Discov. 9, e1301 (2019). https://doi.org/10.1002/
widm.1301

38. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

39. Rajapaksha, S., Kalutarage, H., Al-Kadri, M.O., Madzudzo, G.,
Petrovski, A.V.: Keep the moving vehicle secure: Context-aware
intrusion detection system for in-vehicle can bus security. In: 2022
14th International Conference on Cyber Conflict: Keep Moving!
(CyCon), vol. 700, pp. 309–330 (2022). https://doi.org/10.23919/
CyCon55549.2022.9811048

40. Reutemann, P.: python-weka-wrapper3 (2020). URL:https://
fracpete.github.io/python-weka-wrapper3/index.html [retrieved:
11, 2022]

41. Rieke, R., Seidemann,M., Talla, E.K., Zelle, D., Seeger, B.: Behav-
ior analysis for safety and security in automotive systems. In:
Parallel, Distributed and Network-Based Processing (PDP), 2017
25nd Euromicro International Conference on, pp. 381–385. IEEE
Computer Society (2017)

42. Sharma, R., Sharma, T.P., Sharma, A.K.: Detecting and preventing
misbehaving intruders in the internet of vehicles. IJCAC 12(1),
1–21 (2022). https://doi.org/10.4018/ijcac.295242

43. “Snap-on Incorporated": Global obd vehicle com-
munication software manual (2013). URL:https://
www.snapon.com/Files/Diagnostics/UserManuals/
GlobalOBDVehicleCommunicationSoftwareManual_
EAZ0025B43.pdf [retrieved: 11, 2022]

44. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly
detection for the automotive CANbus. In: 2015World Congress on
Industrial Control Systems Security (WCICSS), pp. 45–49 (2015)

45. Theissler, A.: Anomaly detection in recordings from in-vehicle
networks. In: Proceedings of Big Data Applications and Princi-
ples First International Workshop, BIGDAP 2014 Madrid, Spain,
September 11-12 2014 (2014)

46. “Thrustmaster”: TMX Force Feedback. URL:https://www.
thrustmaster.com/products/tmx-force-feedback/ [retrieved: 11,
2022]

47. Weinmann, R.P., Schmotzle, B.: TBONE: for public release on
2021-04-28 (2021). URL:https://kunnamon.io/tbone/ [retrieved:
11, 2022]

48. Xue, L., Liu, Y., Li, T., Zhao, K., Li, J., Yu, L., Luo, X., Zhou, Y.,
Gu, G.: SAID: State-aware defense against injection attacks on in-
vehicle network. In: 31st USENIX Security Symposium (USENIX
Security 22), pp. 1921–1938. USENIX Association, Boston,
MA (2022). https://www.usenix.org/conference/usenixsecurity22/
presentation/xue-lei

49. Zhang, A., Lipton, Z.C., Li,M., Smola, A.J.: Dive intoDeep Learn-
ing (2020). https://d2l.ai [retrieved: 11, 2022]

50. Zheng, B., Liang, H., Zhu, Q., Yu, H., Lin, C.W.: Next generation
automotive architecture modeling and exploration for autonomous
driving. In: 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pp. 53–58 (2016). https://doi.org/10.1109/
ISVLSI.2016.126

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/ICSRS56243.2022.10067343
https://www.statista.com/statistics/1155517/global-connected-car-fleet-by-market/
https://www.statista.com/statistics/1155517/global-connected-car-fleet-by-market/
https://doi.org/10.1002/widm.1301
https://doi.org/10.1002/widm.1301
https://doi.org/10.23919/CyCon55549.2022.9811048
https://doi.org/10.23919/CyCon55549.2022.9811048
https://fracpete.github.io/python-weka-wrapper3/index.html
https://fracpete.github.io/python-weka-wrapper3/index.html
https://doi.org/10.4018/ijcac.295242
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunicationSoftwareManual_EAZ0025B43.pdf
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunicationSoftwareManual_EAZ0025B43.pdf
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunicationSoftwareManual_EAZ0025B43.pdf
https://www.snapon.com/Files/Diagnostics/UserManuals/GlobalOBDVehicleCommunicationSoftwareManual_EAZ0025B43.pdf
https://www.thrustmaster.com/products/tmx-force-feedback/
https://www.thrustmaster.com/products/tmx-force-feedback/
https://kunnamon.io/tbone/
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-lei
https://www.usenix.org/conference/usenixsecurity22/presentation/xue-lei
https://d2l.ai
https://doi.org/10.1109/ISVLSI.2016.126
https://doi.org/10.1109/ISVLSI.2016.126

	A context-aware on-board intrusion detection system for smart vehicles
	Abstract
	1 Introduction
	1.1 Challenges
	1.2 State of the art
	1.3 Article's structure

	2 Attack model
	3 CAHOOTv2 algorithm
	3.1 Motivation
	3.2 MetaDrive
	3.3 Intruder's behavior
	3.3.1 Description of considered attacks
	3.3.2 Instances extraction paradigm

	3.4 Model generation
	3.5 Hyperparameter tuning paradigm

	4 CAHOOTv2 evaluation
	4.1 Dataset
	4.2 Machine learning algorithms
	4.3 Experiments setup
	4.4 Evaluation of hyperparameters_tuning
	4.5 Evaluation of CAHOOTv2

	5 Conclusions and future work
	References


