International Journal of Information Security (2024) 23:981-997
https://doi.org/10.1007/510207-023-00774-z

REGULAR CONTRIBUTION

®

Check for
updates

Fairness as a Service (Faa$): verifiable and privacy-preserving fairness

auditing of machine learning systems

Ehsan Toreini' - Maryam Mehrnezhad? - Aad van Moorsel®

Published online: 7 November 2023
© The Author(s) 2023

Abstract

Providing trust in machine learning (ML) systems and their fairness is a socio-technical challenge, and while the use of
ML continues to rise, there is lack of adequate processes and governance practices to assure their fairness. In this paper, we
propose FaaS, a novel privacy-preserving, end-to-end verifiable solution, that audits the algorithmic fairness of ML systems.
FaaS offers several features, which are absent from previous designs. The FAAS protocol is model-agnostic and independent
of specific fairness metrics and can be utilised as a service by multiple stakeholders. FAAS uses zero knowledge proofs to
assure the well-formedness of the cryptograms and provenance in the steps of the protocol. We implement a proof of concept
of the Faa$ architecture and protocol using off-the-shelf hardware, software, and datasets and run experiments to demonstrate
its practical feasibility and to analyse its performance and scalability. Our experiments confirm that our proposed protocol is
scalable to large-scale auditing scenarios (e.g. over 1000 participants) and secure against various attack vectors.

Keywords Machine learning - Fairness - Trust - Zero knowledge proofs - Auditing

1 Introduction

Many of our ordinary and daily decisions are now made or
assisted by machines. While the accuracy and efficiency of
such systems matured, the social implications and aspects of
these decisions are still unattested. Until recently, the issues
of trust and trustworthiness were systematically ignored by
system designers and downgraded to the lack of accuracy [3].
However, it has become clear in recent years that the trust of
end users requires more presenting them with a highly accu-
rate algorithm [2]. There is no shortage of examples that have
diminished trust in algorithms because of unfair discrimina-
tion of certain groups [7, 41]. This includes human resource
decision-making tools used by large companies, which turn
out to discriminate against women [40]. There also are semi-

B< Ehsan Toreini
e.toreini @surrey.ac.uk

Maryam Mehrnezhad
maryam.mehrnezhad @rhul.ac.uk

Aad van Moorsel
a.vanmoorsel @bham.ac.uk
1" University of Surrey, Guildford, UK
Royal Holloway University of London, Egham, UK

University of Birmingham, Birmingham, UK

nal examples studied widely within the academic community,
such as the unfair decisions related to recidivism in different
ethnic groups [28]. In the UK, the algorithm to determine
the A-levels substitute scores under COVID-19 was widely
found to be unfair across demographics [31]. Rise of large
linguistic models (LLM) such as Chat-GPT 3.0 and GPT 4.0,
or generative adversarial networks (GAN) resurfaced the
necessity of auditing and regulating ML models in the public
domain.

Demonstrating the fairness of algorithms is critical to the
continued proliferation and acceptance (and trustworthiness)
of algorithmic decision-making in general [32] and Al-based
systems in particular [48]. Data scientists have attempted to
formalise the notion of fairness and provided various met-
rics for measuring the level of discrimination in the outcome
of ML systems. Many different metrics have been proposed
including individual fairness and group fairness. Evidently,
various expressions for fairness cannot be satisfied together
[48]. Regardless of the fairness metric itself, to trust the ML
systems one needs to place trust in the entity in charge of the
computations of such a fairness metric, and, ideally, one is
able to verify these computations and possibly appeal against
the outcome. In other words, it is crucial to be able to audit the
correctness of the fairness-enforcing components in an ML
architecture. In current approaches, the ML owner (e.g. an Al

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00774-z&domain=pdf

982

E. Toreini et al.

company) lists some specific notion(s) of fairness and claims
their product complies with such notion(s), e.g. [12, 22, 27].
However, there is no easy way to audit such claims by any
independent third-party, such as experts, social activists and
end users. There has been research on auditability and trans-
parency of ML models, e.g. [37], however, with no specific
focus on fairness.

Interestingly, concerns about bias often intertwine with
concerns about privacy of personal information. In general,
a fair ML solution balances the output of the algorithm
based on one or a combination of protected attributes such
as gender, ethnicity, sexual orientation, economic status,
etc. (attributes that are collectively referred to as sensitive
attributes” in the literature [35]). Thus, the notion of fairness
is inherently related to privacy-sensitive attributes, which
should be protected and anonymised, along the lines imposed
by GDPR [10]. In case there is a mechanism for auditing and
verifying a model, the data owners want to be assured that
none of the original data (typically sensitive and personal) is
leaked. Similarly, the system that runs the algorithms (ML
system) may have a valid interest in maintaining the secrecy
of the model. These concerns should be considered in the
design of a fairness auditing solution, following the privacy-
by-design principles in the final product [16].

Based on the current research in the literature, our research
questions are:

— RQI: How can we audit a model for fairness with-
out revealing the model’s internal configurations and
datasets? (black-box auditing).

— RQ2: How can we compute the fairness without having
access to sensitive information of the users (secure and
privacy-preserving computation)?

— RQ3: How can anyone verify that the computation of
the fairness is done correctly without trusting the audi-
tor (universal verifiablility)?

To answer the above questions, this paper provides a cryp-
tographic solution to offer accountability to the computations
of fair performances. We propose Fairness as a Service
(FaaS), as an independent fairness auditing service which
performs verifiable and privacy-preserving black-box audit-
ing of the models. FaaS facilitates end-to-end verifiability for
computation of fairness to stakeholders via enabling every-
one to audit the fairness of the ML algorithms by providing
cryptographic proofs on each step of the computation with-
out relying on any trusted third party. Our proposed auditing
process follows a decentralised framework formed by a num-
ber of individuals (and independent) auditors, which we call
auditors in the rest of the paper (Fig. 1). They individually
audit the ML system and then send the encrypted response
of the ML system (based on their data) to a designated ser-
vice for computation (RQ1). Next, the computation server

@ Springer

aggregates the cipher responses from all auditors (with no
knowledge of the sensitive data from auditors) and com-
putes the fairness performance of the ML system (RQ?2).
Moreover, the computation process is publicly verifiable as
the encrypted information submitted by auditors together
with the calculated fairness are posted publicly on a publicly
accessible data structure. Any party can redo the computation
of the fairness metric and verify the result is correct (RQ3).

Contributions: In our approach, we do not interfere and
restrict the training of the model or rely on expensive
high-end TEEs. Our design choices will make FaaS more
cost-effective, while maintaining the same level of secu-
rity guarantees such as privacy-preserving, verifiability and
resilience against malicious actors. Also, the universal veri-
fiability in FaaS (as other similar research does not provide)
will enable everyone to actively engage in the process and
prevent malicious activities. Summarising, our contributions
are:

e We propose FaaS, a novel privacy-preserving, end-to-
end verifiable architecture, in order to collectively audit
the algorithmic fairness of ML systems. FaaS is model-
agnostic (independent of the ML model) and takes a
holistic approach towards auditing for group fairness
metric.

e We design the FaaS protocol to ensure a privacy-
preserving and universally verifiable solution. We use
zero knowledge proofs (ZKPs) to assure the well-
formedness of the cryptograms and the steps of the
protocol.

e We implement a proof-of-concept of the FaaS architec-
ture and protocol using off-the-shelf hardware, software,
and datasets and run experiments to demonstrate the
practical feasibility of FaaS. We perform experiments to
analyse the performance and scalability of the system.

FaaS proposes a fundamentally different approach for
secure black-box fairness auditing. The majority of the pre-
vious work is focused on a collaborative approach where
the model is cryptographically entangled to a fairness def-
inition during the training process [23, 26] or based on a
designated hardware module for a secure computation envi-
ronment (Trusted Execution Environments (TEE), e.g. intel
SGX) with cryptographic commitments to secure execution
of the audit [39].

Abbreviations: The list of the important abbreviations
and what they stand for are presented for the reference
throughout the manuscript. These terms are explained in text
at length, when necessary. Al: Artificial Intelligence, ML:
Machine Learning, ZKP: Zero Knowledge Proof, PA: Pro-
tected Attributes, DP: Demographic Parity, EOd: Equalised
Odds, EOp: Equality of Opportunity, FCS: Fairness Compu-
tation Service.

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

983

2 Background and related work

One of the benefits of auditing ML-based products relates
to trust. Trust and trustworthiness (in socio-technical terms)
are complicated matters. Toreini et. al [48] proposed a frame-
work for trustworthiness technologies in Al solutions based
on existing social frameworks on trust (i.e. demonstration
of Ability, Benevolence and Integrity, aka ABI and ABI+
frameworks) and technological trustworthiness [46]. They
comprehensively reviewed the policy documents on regu-
lating AI and the existing technical literature and derived
any ML-based solution that needs to demonstrate fairness,
explainability, auditability, and safety and security to estab-
lish social trust. Also, there are other proposals in the
literature aiming to promote trustworthy machine learning
notions [8]

The existing research in fair ML normally assumes the
computation of the fairness metric to be done locally by the
ML system, with full access to the data, including the private
attributes [11, 12, 22]. However, there is a lack of verifia-
bility and independence in these approaches, which will not
necessarily lead to trustworthiness. To increase trust in the
ML products, the providers might make the trained model
self-explaining (a.k.a. transparent or explainable). There is
also the transparent-by-design approach [5, 19, 50]. While
this approach has its benefits, it is both model-specific and
scenario-specific
[37]; thus, it cannot be generalised. There is also no trusted
authority to verify such claims and explanations. Moreover,
in reality, the trained model, datasets and feature extrac-
tion mechanisms are company assets. Once exposed, it can
make them vulnerable to the competitors. Another approach
to provide accountability to the fairness implementation
comes through the black-box auditing, also known as ad hoc
[19, 30, 38]. In this way, the model is trained and audited
for different purposes [1]. This solution is similar to tax
auditing and financial ledgers where accountants verify and
ensure these calculations are legitimate. However, unlike the
well-established body of certifications and qualifications for
accountants in tax auditing and financial ledgers, there does
not exist any processes and resources for fairness computa-
tion in Al and ML.

The concept of a service that calculates fairness has been
proposed before, e.g. in [49]. The authors introduced an
architecture to delegate the computation of fairness to a
trusted third party that acts as a guarantor of its algorithmic
fairness. In this model, the fairness service is trusted both
by the ML system and the other stakeholders (e.g. users and
activists). In particular, the ML system must trust the ser-
vice to maintain the privacy of data and secrecy of its model,
whilst revealing to the trusted third party the algorithm out-
come, sensitive input data and even inner parameters of the
model. This is a big assumption to trust that the third party

would not misuse the information, and hence, the leakage of
data and model information is not a threat.

To address these limitations, Kilbertdus et al. [26] pro-
posed a system known as blind justice’, which utilises
multi-party computation protocols to enforce fairness into
the ML model. Their proposal considers three groups of par-
ticipants: User (data owner), Model (ML model owner) and
the Regulator (that enforces a fairness metric). These three
groups collaborate with each in order to train a fair ML model
using a federated learning approach [51]. The outcome is
a fair model that is trained with the participation of these
three groups in a privacy-preserving way. They only pro-
vide a limited degree of verifiability in which the trained
model is cryptographically certified after training, and each
of the participants can make sure if the algorithm has not
been modified. It should be noted that since they operate
in the training stage of the ML pipeline, their approach is
highly dependent on the implementation details of the ML
model itself. Jagielski et al. [24] proposed a differential pri-
vacy approach in order to train a fair model. Similarly, Hu
et al. [23] used a distributed approach to fair learning with
only demographic information. Segal et al. [43] used similar
cryptographic primitives but took a more holistic approach
towards the computation and verification of fairness. They
proposed a data-centric approach in which the verifier chal-
lenges a trained model via an encrypted and digitally certified
dataset using Merkle tree and other cryptographic primitives.
Furthermore, the regulator will certify the model is fair based
on the data received from the clients and a set of dataset pro-
vided to the model. Their approach does not provide universal
verifiability as the regulator is the only party involved in the
computation of fairness. More recently, Park et al. [39] pro-
posed a trusted execution environment (TEE) for the secure
computation of fairness. Their proposal requires special hard-
ware components, which are cryptographically secure and
provide enough guarantees and verification for the correct
execution of the code. Finally, Shamsabadi et al. [45] pro-
posed a fully-verifiable protocol to audit decision trees for
the integration of fairness in the learning process and beyond.
They provided protocols to audit the models using their ZKP
schemes.

The previous research generally has integrated fairness
into their ML algorithms; therefore, such algorithms should
be redesigned to use another fairness metric set. As it can
be seen in Table 1, FaaS is the only work, which is inde-
pendent of the ML model and fairness metric with universal
verifiability and hence can be used as a service.

3 Preliminaries

In this section, we present the definitions required for our
protocol and the FaaS Architecture.

@ Springer

984

E. Toreini et al.

Table 1 Features of FaaS and comparison with other privacy-oriented fair ML proposals (support: full: v/, partial: €, none: X), the columns indicate

the necessary qualities highlighted in this paper

‘Work
Work

Universal
verifiability

Independent of
Fairness metric

Independent of
ML model

Model
confidentiality

Off-the-
shelf hardware

User
privacy

Veal and Binns [49]
Kilbertus et al. [26]
Jagielski et al. [24]
Hu et al. [23]

Segal et al. [43]

Park et al. [39]
Shamsabadi et al. [45]
FaaS (this paper)

X NN X X X% X%

X
+
X
X
+
+
4
4

X

WX NN X X %

N N N N
NN NN
N YNNI NRN

3.1 Fairness metrics

Designing a fair algorithm requires being able to measure
and assess the fairness. Researchers have worked on formal-
ising fairness for a long time. Narayanan [36] lists at least 21
different fairness definitions in the literature, and this num-
ber is growing, e.g. [11, 12]. Fairness is typically expressed
as discrimination in relation to data features. These features
for which discrimination may happen are known as Pro-
tected Attributes (PAs) or sensitive attributes. These usually
include, but are not limited to, ethnicity, gender, age, schol-
arity, nationality, religion and socio-economic elements.

The goal of training a model is usually tuned to reach the
lowest possible error on unseen data. In the context of training
a fair ML model, we extend this goal to maximise an specific
notion of fairness while achieving the lowest possible error
rate. In general, we assume that the fair model for binary
classification problem is defined as:

Let @ be the possible input, £2 be a finite set of groups
that are essential in the definitions of fairness (PAs) and 7" be
a finite set of labels. We define @ x £2 x 7" in the probability
space A with unknown distribution of A. A fair model is
defined as My (x) for classification where input x € @ with
the ground truth denoted as Y € 7. Ideally, the output M 7 (x)
will be ¥ € T where for each datapoint x, M 7 (x) achieves:

minH?—Y ,Vx € @andmaxHF(lA/,Y) ,VY,I? eT

where F (Y, Y) is a fairness notion.

For the following definitions, let o and A be an unknown
datapoint where (o, A) € (@, £2). In this context, A denotes
the PA and in what follows A = 1 expresses membership and
A = 0 expresses no membership of a protected group. Model
M is called fair on (§£2, A) where for A € 2 and A € {0, 1},
when it is trained to outcome an output Y on all unknown

inputs Vo € @ as Pr [max ‘Mf(g) — Mys(0)
A=0 A=1

€ is an threshold, usually set during the training process to

optimise learning and fairness simultaneously [22].

] < €, where

@ Springer

For the baseline introduction, three fairness notions
F(Y,Y) are defined as below:

(1) Demographic Parity (DP) A classifier satisfies DP when
Pr (?:1 \A:())
outcomes are equal across groups: Fpp = ———%
Pr (Y:l \A:l)

(2) Equalised Odds (EOd) A classifier satisfies EO if equality
of outcomes happens across both groups and true labels:

Pr(7=11A=0,y=y)

Froq = where y € {0, 1}.

Pr(?=1|A=1,Y=y)
(3) Equality of Opportunity (EOp) is similar to EO, but only

requires equal outcomes across subgroups for true posi-
Pr (f’:l\A:O,Y:l)

tives: Fpop = Pr(?:l\A:l,Y:l)

Note that while we consider the above metrics for our pro-
tocol and proof-of-concept implementation in next sections,
our core architecture is independent of metrics, and the met-
ric set can be extended to other metrics defined beyond the
notions described above.

3.2 Cryptographic primitives

FaaS protocol utilises variety of cryptographic primitives and
concepts to achieve the objectives and research questions. In
this section, we define the necessary primitives we deployed
to implement FaaS protocol in more detail: zero knowledge
proof and secure computation.

Zero knowledge proof (ZKP) schemes are predominantly
used to provide correctness of the protocol operations and
fairness calculations without compromising the privacy of
the protocols actors and confidentiality of assets (such as
dataset detail and more).

In the first stage, each individual auditor needs to demon-
strate his knowledge of the exponent(s) without revealing it.
We have used Schnorr’s well-established signature [42]. Let
Hbe apublicly agreed, secure hash function. In order to prove

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

985

the knowledge of the exponent (i.e. a secret ¢; for i-th indi-
vidual auditor) for g7, one sends (g*, r = k — ¢; - h) where
k € Zgand h = H(g, g*, g%, 1). This signature can be ver-
ified by anyone through checking whether g* and g" - gSi*"
are equal.

For the auditing stage, we use the widely used 1-out-

of-n interactive ZKP technique (famously known as CDS
(Cramer, Damgard and Schoenmakers)) [13, 14], where
n = 8 in our protocol (it could be extended to larger values
for n, depending on the format of the auditing questions).
For that, we should convert the terms of our protocol into
the form of ElGamal encryptions. This can be done, in a
universally verifiable fashion, by treating some elements of
auditing computations as public key. We describe our pro-
tocols as interactive protocols with (semi) honest verifiers.
One can obtain non-interactive arguments of knowledge in
the Random Oracle model from them via Fiat—Shamir heuris-
tic. Thus, by application of Fiat—Shamir heuristics [18], this
ZKP can be converted into non-interactive, which makes the
verification of proofs simpler [21].
Secure computationWe let the protocol actors perform cryp-
tographic operations without revealing their input, sensitive
data and their tailored ML outcome. Secure computation can
be imagined as a set of primitives that facilitates computa-
tion without the need for a trusted authority. This way, the
untrusted authority receives the ciphered input from the par-
ticipants (in encrypted form, i.e. cryptogram) and perform
computations on them, producing an output without the need
to decrypt them individually. Guarantees in these protocols
can be given if at least one of the participants is acting hon-
estly [43].

Secure computation schemes are mostly in two categories:
Homomorphic Encryption (HE) and Secure Multi-Party
Computation (MPC). In this research, we opt-in to use HE
methods as we assumed there will be no collaboration among
the protocol actors (and between individual auditors), and the
aggregation of their generated cryptograms would result in
the computation of fairness metrics. The MPC methods usu-
ally are used in the use cases where there is a need for active
engagement of actors in the mitigation of bias, e.g. where
the model is in the earlier stages of ML pipeline, e.g. before
deployment [26] or where the model engages in the auditing
with prior knowledge [43]. In our approach, we deliberately
discard the participation of ML system in the computation or
audit process and assume that the ML system is semi-honest
not aware of the auditing.

3.3 FaaS architecture

The overview of our FaaS Architecture is demonstrated in
Fig. 1. FaaS has a black-box approach in auditing, mean-
ing that it calculates fairness without leaking any personal
data or model information (RQ1). The key elements of the

FaaS
| Faimess
(Metric Set)

Auditor 1

v

i FCS [~Publish-» |Faimess
Auditor 2

Test/Train [—>eMSVe_{ ML Model : I

Dataset Data I i
a . Fai Verify the
— i airness results

ML System

Metric

Result

Auditor n _.i

Universal Verifier

Fig.1 FaaS architecture

sensitive data, required for the calculation of the fairness
metrics, are encrypted (RQ2). The resulting cryptogram has
a number of cryptographic properties to assure that the data
cannot be changed and leaks no information. There are var-
ious ZKPs associated with the possible outcomes received
from the auditors to guarantee that the data are valid (RQ3).
In addition, the communication between the FaaS service
and auditors is done through a secured channel in order to
allow the two parties to identify each other and build a trust
relation, although the exchange of encrypted data between
protocol roles does not rely on a secure channel. Via the
independent individual auditing, the model will be audited
anonymously by a group of volunteers. The auditors will pub-
lish the individual cryptograms of the ML model results with
proofs (without the need to reveal their sensitive attributes
and the model outcome; achieving confidentiality and verifi-
ability), and the individual audits will be published publicly.
Anyone will be able to verify the published data to ensure
the computations are correct.

3.4 Protocol actors

Our architecture includes four roles: (i) ML System: a sys-
tem that owns the data and the ML algorithm, (ii) Individual
Auditor: an individual that challenges the performance of the
ML system (iii) Fairness Computation Service (FCS): a ser-
vice that collects the cryptogram of the ML performance for
each of the fairness auditors and computes the fair perfor-
mance of the ML system, and (iv) Universal Verifier: anyone
who has the technical expertise and motivation to verify the
auditing process. These roles, their descriptions, output, trust
assumptions are presented in Table 2.

Our architecture provides a privacy-preserving fairness
auditing, which is independent of the ML systems and flexi-
ble with respect to the chosen fairness metrics. To establish
this, we take the fairness measurement component out of the
ML system and present it as a service, referred to as FCS.
This architecture is presented as a service to all stakeholders,
and parties can use it either with the aim to be audited or to
challenge the fairness of ML system.

@ Springer

986 E. Toreini et al.
Table 2 FaasS roles and their features (FB: Fairness Board)
Protocol roles Key feature Output Trust assumption FB access
ML system Owner of model and dataset ~ Trained and output accurate Honest performance reporting Read

decision and commitment to (cross-validated with individual

abiding with one or more fairness auditors), Incapable of

metric(s) recognising individual auditors

from regular user

FCS Compute the fairness metric ~ Computation of Fairness, Secure storage secure key, Read/write

appending the cryptograms to the selection of individual auditors
fairness board,maintenance of
the fairness board

Individual auditor Auditing of ML

each auditor

Universal verifier Auditing of FCS

Cryptogram of model output for

(Re)computation of fairness and No assumption

Honest in reporting the ML output,Read
secure storage of generated keys

Read

verification of ZKPs published in

Fairness Board

All the data required for fairness computations, along with
the ZKPs are stored in a publicly accessible, append-only
data structure named Fairness Board, hosted in FaaS server
and with write-permission only restricted to FCS. Also, the
FCS verifies the authenticity, correctness and integrity of data
before publishing it. All steps in our protocols are stored
in fairness board, Also, this data structure is accessible to
everyone for universal, end-to-end verifiability.

3.5 Security and privacy assumptions

The design and implementation of the security of parties
implementing the respective protocol roles (ML system, Indi-
vidual Auditor, Fairness Computing Service, and Universal
Verifier) (Figs. 1, 2) are independent of each other. The inter-
communications that happen between the roles assume no
trust between parties; thus, all their claims must be accom-
panied with validation proofs (for which we will use ZKP).
The summary of our security and privacy assumptions for
the protocol roles is shown in Table 2. In the context of this
paper, we define privacy as described in [15].

FCS is hosted by an organisation, which is responsible
to host the fairness auditing process. This organisation is
also responsible for authenticating the auditors and verify-
ing their identity to ensure each auditor only audits once.
We assume the FCS is vulnerable to different attack arrays
and not collusion-free. Thus, the data stored on the FCS
must be encrypted, tamper-proof and verifiable at all stages.
To provide such features, various cryptographic schemes
are implemented by industrial standards (e.g. secure stor-
age, tamper-resistant module for secure management of
private keys, the sand-boxed cryptographic operations and
deployment of secure execution environments such as secure
enclave) [4]. The stored data on the FCS is end-to-end ver-
ifiable through ZKP protocols. Also, the publicly available

@ Springer

data on FCS are fully encrypted and will not reveal any detail
about the identity, demographic group and choices of the
auditors. Moreover, the communication channel between the
ML system, auditor and FCS is secure and encrypted. Finally,
we assume that the cryptographic primitives and protocol
have carefully been implemented (formally verified imple-
mentation).

In the design of the protocol, we opt to use an agnos-
tic approach; the choice of the model in the ML system
will not impact the operation of the protocol. The internal
security of the ML system is beyond FaaS. The ML system
needs to consider extra measures to protect its data and algo-
rithms. We assume that the ML system does present the data
and predictions honestly. This is a reasonable assumption
since the incentives to perform ethically are in contrast to
being dishonest when participating in fairness auditing pro-
cess. However, the ML system will be independently audited;
thus, the dishonest behaviour will be detected over time once
the decentralised auditing results differ with the initial result
beyond a pre-defined range tolerance. We assume that the
ML system will not be able to differentiate auditors from
ordinary users and hence cannot provide a tailored response
to poison the process.

3.6 Limitations

The FaaS protocol has limitations in the current form. We
acknowledge these limitations, and we will address them in
future versions of the protocols. First, there is a lack of cer-
tification from the ML system, meaning that we assumed
the ML model is trained fairly and the current protocol is
designed to confirm the fairness of a fair model. The proto-
col does not provide guarantees and certifications for the ML
model’s fairness before its deployment though.

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

987

ML System Individual Auditor FCs

I commitment L
1 | - Commitment f
|

!
generate two generate two
private/public private/public
keys keys(6,, B1)

T
Auditor public keys

I
' FaaS public keys

generate 6, and B, &

generat‘e ZKPs % ‘ generat‘e ZKPs lﬁ

L Auditor ZKPs

l
I
| FaaS ZKPs
|

I
|
: = AcreTie |
- : 1 Il - Auditing f

'

generate

private/public

keys (x1,X5)

generate

reconstructed
public keys (y1,y,)

Challenge !
e

I
Response :
|
generate
permutation
encoding

generate
cryptoy,crypto,

I
generate ZKPs B

| crypto,,crypto, an‘d ZKPs

I
| |
1 Il - Fairness f
I

}lcryptul,crypto2 and ZKPs
[N
AN

verify the ZKPs

0
Sums crypto; and
crypto, for all users

. AN
computes fairness

generate ZKPs B

1 computation results and ZKPs
r

AN
Announce results

I
results and ZKPs'!

'
'
|
|
'
'
|
|
|
'
'
|
|
'
|
|
|
'
'
|
|
|
'
|
|
|
|
|
'
L

I I

' '

' '

| |

| |
| |

' '

' '

| |

| |
| |

' '

' '

| |

| |
| |

' '
'

| |

| |
|

' '

' '

| |

| |
| |

' '

' '

| |

| |
| |

' '

' '

| |

| |
| |

' '

' '

| | |

|

| | |

' ' '

| | |

| | |
| | |

' ' '

' ' |

| | |

| | |
| | |

' ' '

' ' '

| | |

| | |
| | |

' ' '

' ' '

| | |

| | |
| | |

' ' '

| ' '

| | |
| | |

' | |

' ' d

| | '

| | |
| | |

' ' |

' ' '

| L |

| 1 |
| |

' |

' '

I

I
Verify results and ZKPs B 1
I
I}

I} I
ML System Indlwdu%Audltor FCs

Fig.2 FaaS protocol overview

The second problem is that the current permutation
demography is limited to binary decision (e.g. True/false) and
binary-sensitive attribute (e.g. Male/Female). The protocol
is designed in a way that it can be extended to more com-
plicated demographics; however, the computational com-
plexities increase exponentially (as will be discussed later)
consequently.

Third, is the limitations in the fairness notions. In the cur-
rent definition, the fairness notions are limited to a category of
definitions known as group fairness. In this category, the fair-
ness definitions assume the datapoints in groups and enforced
a balance outcome of ML model across them [17, 22]. For
instance, the balance is maintained by enforcing equal true
positive in groups of privileged and unprivileged users (e.g.
gender) in hiring process.

The last limitation is the search space for the computation
of fairness. With increase in the number of datapoints and
individual auditors, the search space increases. We will pro-
pose some strategies to mitigate these issues in the design of
our protocol.

4 Protocol description

In this section, we describe the details of our FaaS protocol.
The detailed protocol sequence diagram is provided 2. The
main security protocol sequence is between two actors, the
individual auditor and FCS. Any universal verifier or ML sys-
tem can turn to the FCS (which presents the fairness board),
if they want to challenge the computations. The ML system
is responsible for the implementation and execution of the
ML algorithm. It has data as input and performs some pre-
diction (depending on the use-case and purpose). We assume
the ML system has already submitted their fairness metric.
The Fairness Auditor challenges the ML system individually
and generates the auditing cryptogram based on the received
response and transmits the encrypted form of the response
to the FCS with the relevant ZKPs. Then, the FCS evalu-
ates the ML system’s fair performance by first verifying the
cryptograms and ZKPs and then computing a fairness met-
ric. It also publishes the calculations on the Fairness Board.
The FCS only has the right to append data (and the sufficient
proofs) to the fairness board. In addition, the FaaS server ver-
ifies the authenticity, correctness and integrity of data before
publishing it.

Our protocol sequence (Fig. 2) has three main stages:
(i) Commitment, (ii) Auditing and (iii) Fairness Evalua-
tions. We assume the protocol functions in multiplicative
cyclic group setting (i.e. Digital Signature Algorithm (DSA)-
like group [25]), but it can also function in additive cyclic
groups (i.e. Elliptic Curve Digital Signature Algorithm
(ECDSA)-like groups [25]). The auditors and FCS publicly
agree on (p, q, g) before the start of the protocol. Let p and
g be two large primes where g|(p — 1). In a multiplicative
cyclic group (Z;), G, is a subgroup of prime order g and
g is its generator. For simplicity, we assume the decision
Diffie-Hellman (DDH) problem is out of scope [47]. The
protection the private key pair depends on the security archi-
tecture of the system and protocol entities. We assume the
private key is securely stored in standard practice (e.g. using

@ Springer

988

E. Toreini et al.

Table 3 Possible permutations of 3-bit representation of an entry in the original data

Membership of sensitive group Actual label Predicted label Encoded permutation Permutation #
No 0 0 000 #1
No 0 1 001 #2
No 1 0 010 #3
No 1 1 011 #4
Yes 0 0 100 #5
Yes 0 1 101 #6
Yes 1 0 110 #7
Yes 1 1 111 #8

the secure memory module on board or trusted platforms
especially dedicated to secure encryption/decryption).

4.1 Phase I: commitment

In this phase, the auditors and FCS commit to each other
and generate the foundations of the computations of fairness.
First, the auditor and FCS agree on a set of values, which
will be used as a token for the generation of auditing and
fairness computation results. If the values that agreed in this
stage get maliciously modified by anyone, it will make the
whole computation of fairness invalidated. All the computa-
tions and commitment tokens will be provided with relevant
ZKPs to guarantee the well-formedness and verifiability of
the process. In this stage, the FCS will commit to each audi-
tor separately, and the cryptograms generated at the end of
this stage will be publicly stored in the fairness board for
universal verifiability. Each auditor and FCS will store the
private values at this stage securely and use the commitment
for the purpose of generating relevant cryptograms required
for computation of fairness by FCS in next stages.

Step 1: after initial agreements, the FCS randomly gen-
erates two private keys as (ki,k2) € Z, and computes
the corresponding public keys for each of them as (u; =
g", o = g*2). The FCS publishes the public keys and the
corresponding ZKPs on the fairness board for public veri-
fiability (as PWlk; : w1] and PWlky : wo]). The ZKPs
convince the auditors that the FCS owns the private keys
for w1 and wp. Step 2: once FCS publishes @) and o
and ZKPs, each auditor (A;, where i € 1,2,...,n, nis
the number of chosen auditors for the computation of the
fairness) reads pu; and w, and verifies the correctness and
well-formedness of the ZKPs. Then, each auditor A; gen-
erates two random private keypair ((a;, b;)) using DSA or
ECDSA and then computes their public keys as «j; = g%
and Bi; = g%. Like the FCS, each auditor publishes the
public keys and the ZKPs PW{a; : «1;] and PW[b; : Bi;]
to convince FCS and public verifiers that they know a; and
b;. Step 3: after all n members of the auditor community

@ Springer

generates and publish their public keys («j; and By;), the
FCS will verify the well-formedness and correctness of the
ZKPs recorded on the fairness board and start the last stage
of the commitment phase. Step 4: finally the FCS generates
another set of commitments («»;, B»;) for all the auditor A;,
where i € 1,...,n. FCS computes the commitments as:

1 1
i = (W) " B = (W)“Z
Then, the FCS will provide two sets of proofs to guar-
antee two conditions on the mathematical relationship
between «y;, oy, B1; and By; as PWlay;, aoi, i1, n2] and
PWI[Bii, Bai, i1, m2]. The first ZKP will assure the o1; X
an; = g and the second will assure B1; x Bz; = 1 for all the
as and Bs computed for all auditors A; wherei € 1,...,n
and » is the number of chosen auditors. At the end of this
stage, the FCS and all auditors commit to each other and they
have agreed on set of preparations for the auditing process to
begin. Any malicious modifications to any parameters agreed
on this stage cannot be undetected.

4.2 Phase lI: auditing

In phase I, the auditors and FCS will commit to each other
through a series of cryptographic schemes. In phase II,
every auditor independently challenges the ML system and
records the ML system’s response; then, they will generate
an encrypted form of their audit (referred to as audit cryp-
togram in the rest of this paper) and transmit it to FCS. When
all other auditors finished the commitment phase (phase I),
the auditor will be shown the auditing questionnaire.

Due to the nature of our protocol, this communication
between ML system and the auditor should not be dis-
tinguishable from ordinary user’s query from the ML’s
perspective. Once all the questions are answered, the audi-
tor cryptogram is generated with the ZKPs and transmitted
to the FCS. The auditor will receive the confirmation of
the receipt of the auditing cryptogram and can verify it
later in the fairness board. Once the auditor A; receives
the response from the ML system, it will start the genera-
tion of the audit cryptogram and the relevant ZKPs. This

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

989

process will have the following steps: Step (1): each audi-
tor A; will generate two random private keys as (sy;, $2;)
and computes their corresponding public keys as (g°17, g%%).
Then, A; publishes the public keys and ZKPs for the private
keys (as PW[sy; : g¥1'] and PW(sp; : g°%]) in the fairness
board. Step (2): Once all public keys are generated and pub-
lished on the fairness board for all » auditors, each auditor
A; will compute two numbers g" and g’%, computed using
j=it18 j=it187
reconstructed public keys as it is computed using a combina-
tion of public keys of all other auditors, except for the current
one (i.e. A;). These two elements g"! and g"% terms as public
keys for the non-interactive CDS ZKP.

Step (3): At this step, the auditor will answer the question-
naire question based on their offline interaction with the ML
system. Their response to the questionnaire will be used to
generate the permutation, which is the combination of three
parameters (which will only be known to the auditor and
no one else): membership of a underprivileged demographic
group, the response that they should have received from the
ML system, the response that they have received from the
ML system. This is a set of three binary parameters which
forms into 8§ possible permutations (as shown in Table 3). The
auditors determine the form of decision that they should have
received based on the subject of the problem they are audit-
ing. For our use-case scenario, this can be done by sending
list of eligibility criteria that are used to make a decision for
mortgage to the auditors by the FaaS organisation. However,
the auditors response to the three parameters are local and
private, and only the auditor will have access to them. How-
ever, the auditor will generate the cryptogram of the audit
permutation in the form of a pseudo-random sequence to the
FCS for computation of the fairness of ML system. We will
call this cryptogram the audit cryptogram.

Audit cryptograms: Each permutation is encoded into a
C; = gP" which are computed based on the multi-option
voting schemes introduced in [9] and applied in [20, 21]. p;
is computed based on the number n of auditors and m as
the smallest integer such that 2" > n. For each of the eight
permutations (as shown in Table 3), the p; is computed as in
Eq. 1.

We refer to these as

20 for permutation #1

2™ for permutation #2
pr=| 2 Torpermu ()

2™ for permutation #3
The auditor A; will generate C; as the corresponding option
for their audit permutation. Then, A; will generate a random

number in as y; and compute the corresponding public keys
as I; = gV%. Then, it will compute the audit cryptograms

using the following equation: cryptoy; = g1 x (a1;)¢ x
(B1)Yi, cryptogi = g™ x (i) x (B2i)i

Zero knowledge proofs: In addition to auditing cryp-
tograms, the ML system also generates 1-out-of-8 ZKP
for the audit permutation as P W;[cryptoy;, cryptos;
St1i,$2i, 8", ", Bii, Bai, @1i, a2;]. This proof ensures the
values presented as C; in the auditing cryptogram indeed
belong to gP where p; € {2°,2™ ... 27"} The audit
cryptogram contains a ZKP to guarantee it is one of the
valid values for evaluating the fairness metric in next
stages. In other words, the ZKP proves that the following
statement X stands, where ¥ = ((g"*1 (a1;)(B1;)") A
(@5 @) (B)") V(@ ()™ (B (g7
(@22 (B)?)V v ("1 @)™ (Br)) A (gl
(02" (B2)"))

The auditor digitally signs the auditing cryptogram as
(cryptoy;, cryptoy;, I;) along with ZKPs for PW(sy; : g%]
and PW(sy; : g*%]and X'. Then, they will send it to the FCS
for the computation of the fairness. The auditor also will
publish these information on the fairness board for public
verifiability. Finally, the audit cryptogram and relevant ZKPs
will be digitally signed by the auditor and transmitted to FCS
for the final stage. At the end of this stage, the FCS will have
all the required information to compute the fairness metric.

4.3 Phase lll: fairness evaluation

This phase starts when all the auditor successfully sent their
permutation cryptogram and ZKPs to the FCS. The output of
this process is the privacy-preserving and verifiable compu-
tation of fairness, which is a collective outcome of the audits
done by the auditors. The FCS will announce the compu-
tations of the fairness metric so everyone else (i.e. the ML
system, auditors, universal verifiers or members of the pub-
lic) are able to re-do the computations and confirm whether
the computations have been done in honesty. Also, the infor-
mation for the computation of the fairness metric is publicly
available in the fairness board with relevant ZKPs so any
universal verifier can repeat the same steps for computation
of the fairness and fully verify its correctness. In our pro-
posed architecture, the FCS is not considered as trusted third
party (TTP), and all the interactions are presented with suf-
ficient verifiable proofs. All the required steps in this phase
are executed in the FCS execution platform. The steps for
this phase are as follows:

Step (1): the FCS receives the audit cryptograms from all
auditors and verifies the ZKPs.

Step (2): In order to obtain the overall permutation
numbers of the auditing cryptograms, the FCS sums the
permutation cryptograms received from all n auditors (as
(cryptoii, cryptos;), where i € [0, n]) in the following

@ Springer

990 E. Toreini et al.
Table 4 The required Fairness component Corresponding permutation # Computation
permutations to compute the
fairness metrics of an ML 5
system, in the above formulas, Pr(lf | A=0) #2, #4 (#2 +#4)/n
n: total no. of auditors Pr(Y |A=1) #6, #8 (#6 + #8)/n
Pr(¥ |A=0,y=0) #2 #2/n
Pri¥ |A=1,y=0) #6 #6/n
Pr(¥Y |A=0,y=1) #4 #4/n
Pr(¥ |A=1,y=1) #8 #8)/n

manner:

n
fairness; = H(cryptOji),j €l,2
i=1

n
=[]s7 (@ (B)".jel.2 2)

i=1

n
_ gZizlrji'sji.l—[(aji)ci(ﬂji)yi’j el,?2

i=1

Then, it starts the process of computing the fairness met-
ric. At this stage, the key point is the consideration of the
effect (r1;, rp;) and (sy;, s2;) have on each other; known as
Cancellation Formula” ([6, 20, 21]). Based on this formula,
we have) 7, rj;.sji = 0, where j € 1, 2. Considering the
Cancellation Formula, we can conclude multiplication of all
cryptograms into

fairness; = [[}_(cryptoj) = [/ (e;) (B,
where j € 1,2. The FCS will then compute fairness =
(fairness)(k').(fairnessz)(kZ) and will publish this com-
putation on the fairness board along with the ZKP for the
computation of fairness as PW|[fairness :
fairnessy, ju1, na]. All other verifiers will be able to verify
the correctness and well-formedness of computation.

Given fairness = (fairness))®) .(fairnessy)*? | the
overall fairness will be:

fairnessy,

fairness = [T (81" (@2 (820"

i=1

= [J(@)* (@) . ((B1)" . (B2)*)"

i=1

From the preceding, we already know that «j; X ap; = g
and B1; x B2 = 1 for all the o’s and B’s computed for all
auditors A; wherei € 1, ..., n and n is the number of chosen
auditors. Hence, the final value for fairness = [/_, gC =
gs , where S = ZET C;. Finally, a brute-force search is
performed to get the sum of all individual audit permutations.

The result is the total sum of permutations (p#1 to p#8) as
Y iCi=a20+b2m 422 +d.23M e 24 4 £25M 4

@ Springer

g.26’" +h.27" wherea, b, c,d, e, f, g, h are the number of
occurrence for each permutation, respectively (Table 3).

The total number of occurrence for the permutations (fa
irness = [[/_, % = g%, where S = Y '=!! C;) determined
by implementing a proper search algorithm. The search space
for such combination depends on the number of auditors
participating in the process (n: number of auditors for 8
permutations; (”'é’f?l) [21]). In cases where the number
of auditors is large (e.g. more than 100 auditors), the FaaS
organisation can divide the auditors in smaller groups (e.g.
20 auditors in each group) and perform the FaaS protocol
phases for each of them independently (in parallel). Then,
the overall numbers for each permutation can be summed
together to make a large-scale auditing of the ML system
feasible. On the other hand, the universal verifier can follow
the same steps to verify the fairness metric computations
using the fairness auditing table that is publicly accessible
via the fairness board. However, they do not require to per-
form the brute-force search. Instead, they will simply verify if
the announced results (as S) equal the []7_, g% by re-doing
the multiplication of the audit cryptograms.

Atthe end of this stage, the FCS uses the acquired numbers
to compute the fairness metric and releases the information
publicly. The number of each permutation impacts the overall
performance of the ML algorithm for each of the groups with
protected attributes. Table 4 demonstrates the permutations
and how it relates to the fairness metric of the ML system.
The results will be published on the fairness board.

5 Implementation and evaluation

We implemented and evaluated our FaaS protocol. Our sys-
tem has three parts: (i) the core (back-end) handling the
computations and cryptographic operations, (ii) the auditing
service authenticates the auditors and ML, receiving the com-
mitment and cryptograms from the auditors and ML system,
storing it on the fairness board and sending them to the back-
end, (iii) the audit apps (client Python app) that the auditors
and ML system use to generate the auditing cryptograms and
ZKPs (two separate systems for each audit protocol).

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

991

Table 5 Performance results for a single auditing interaction (s), for laptop and cluster configuration, Bold (per step and totals) indicates the setting

in which the Auditor runs on the laptop and the FCS on the server cluster

Laptop mean

Server cluster

STD Stage total Mean STD Stage total
Stage 1
FCS generates random keypair (ky, k2) 0.254 0.018 3.848 (6.393) 0.074 0.005 0.784 (1.852)
FCS generates ZKP for 1 0.122 0.007 0.038 0.003
FCS generates ZKP for u» 0.121 0.007 0.037 0.003
Auditor verifies ZKP for 111 0.385 0.031 0.111 0.005
Auditor verifies ZKP for po 0.383 0.029 0.111 0.007
Auditor generates keypair (a,b) 0.254 0.018 0.074 0.005
Auditor generates ZKP for o 0.127 0.011 0.037 0.002
Auditor generates ZKP for 0.127 0.011 0.037 0.002
FCS verifies ZKP for o 0.383 0.029 0.111 0.005
FCS verifies ZKP for g 1.3E—06 3.0E—-06 2.9E-07 1.8E—07
FCS generates o 0.255 0.026 0.074 0.003
FCS generates f 0.256 0.029 0.074 0.004
FCS generates ZKP for o 0.513 0.043 0.148 0.008
FCS generates ZKP for 8, 0.512 0.043 0.148 0.007
Auditor verifies ZKP for ao 1414 0.091 0.407 0.022
Auditor generates ZKP for > 1.285 0.091 0.369 0.017
Stage Il
Auditor generates x1, x2 0.257 0.022 15.163 0.074 0.003 4.356
Auditor generates ZKP for x; 0.129 0.014 0.037 0.002
Auditor generates ZKP for x» 0.129 0.013 0.037 0.002
Auditor reconstructs public keys (y1, y2) 0.046 0.017 0.013 0.004
Auditor generates audit cryptogram 0.662 0.047 0.190 0.008
Auditor generates ZKP for I" 0.129 0.010 0.037 0.002
Auditor generates 1-out-of-8 ZKP 13.811 0.662 3.967 0.098
Stage 111
FCS verifies ZKP for x; 0.385 0.028 0.383 (16.847) 0.111 0.005 4.743 (4.855)
FCS verifies ZKP for x» 0.385 0.029 0.111 0.005
FCS verifies ZKP for I 0.387 0.032 0.111 0.005
FCS verifies 1-out-of-8 ZKP 14.467 0.762 4176 0.107
FCS computes the overall fairness 0.316 0.105 0.085 0.006
FCS generates ZKP for computations 0.522 0.029 0.149 0.003
Auditor verifies ZKP for fairness 0.383 0.029 0.111 0.006

5.1 Proof-of-concept implementation

The back-end is implemented in Python v3.7.1. The ellip-
tic curve operations use the Python package tinyec and the
conversion of Python classes to a JSON compatible format
uses JSONpickle. Our experiments platform includes: (1) a
MacBook pro laptop (CPU 2.7 GHz Quad-Core Intel Core i7
with 16 GB Memory running MacOS Ventura v.13.0.1), (2)
a high-performance infrastructure: 56-core Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40GHz with x86-64 architecture, with
256Gb RAM running CentOS Linux 7 (Core) for FCS and
ML system—in a separate computational pipeline.

For this evaluation, we use a publicly available dataset
from Medical Expenditure Panel Survey (MEPS) [29] that
contains 15,830 data points about the healthcare utilisation
of individuals. We developed a model (logistic regression)
that determines whether a specific patient requires health
services, such as additional care. This ML system assigns a
score to each patient. If the score is above a preset threshold,
then the patient requires extra health services. In the MEPS
dataset, the protected attribute is race. A fair system pro-
vides such services fairly independent of the patient’s race.
Here, the privileged race group in this dataset is white eth-
nicity. We have used 50% of the dataset for training, 30%

@ Springer

992

E. Toreini et al.

for validation and the remaining 20% for testing. We set the
number of cryptogram table samples to equal the size of test
set (N = 3166). In this example, we include three attributes
in the cryptogram to represent the binary values of A, Y and Y
(Sect. 3.1), thus leading to 8 permutations for each data sam-
ple. As the design of FaaS is model-agnostic, one can replace
our suggested system with other usecase domains as long as
it remains in the 8 permutation response. (The extension of
permutations will be discussed later.) The implementation
details are available for researchers upon request.

5.2 Performance

We simulated 1000 auditors in our experimental settings. We
report the average and standard deviations for the computa-
tions required for each auditor in Table 5. Comparing the
cluster environment with the laptop, the laptop consistently
takes about 3.5 times longer than the cluster to complete each
step. For each calculation step, the standard deviation is low
enough so that the width of a 99% confidence interval is less
than 1% of the mean (i.e. we conclude that 99% of measure-
ments will fall within this small interval around the mean).
The exceptions to this are as follows. The very small values
in phase I for FCS verify ZKP for g exhibit larger standard
deviation, but this may be caused by the small values and
does anyway not impact overall results. More interesting is
the step Auditor reconstructs public keys (r1, r2) in phase II,
which has a confidence interval width of about 4% around the
mean, both in the laptop and cluster experiments. Standard
deviation of that particular computation is still reasonable on
both platforms, albeit significantly larger than all other steps.
In the laptop environment, the phase III step FCS computer
the overall fairness has similarly high standard deviation, but
not in the cluster environment. Altogether, on both platforms,
1000 samples are easily sufficient to obtain reliable results
for the time taken at each computational step.

Table 5 shows the performance times. For stage I to com-
plete takes 3.8 s on the laptop and 0.8 s on the cluster. Stage
2 concerns only the auditor, which takes 15.1 s on the laptop.
The final stage is mostly carried out by the FCS, taking 4.7 s
of computation time on the cluster, while the Auditor involve-
ment on the laptop is limited to 0.38 s. In stage I, the most
intensive operations belong to generation and verification of
ZKPs. On the laptop, ZKP for 11 and p, takes 120 ms with
STD of 7 ms for generation and 385 ms with roughly 30 ms
STD for verification of ZKPs, generation of ZKP for oy and
B1 took 120 ms with 10 ms STD, their verification also took
380 ms for o and 0.13 ms for 8. The same actions took 75
ms with 3 ms STD and 1.4s with 90 ms STD for generation
and verification of ZKP for o and f,, respectively.

In phase 11, each auditor generates the audit cryptogram
and the relevant ZKPs. The generation of private/public key-
pair (s1, s2) takes 25 ms with 2 ms STD. Once all auditors

@ Springer

finished generation of the key pairs and published the public
keys to the FB, each auditor will record the public keys and
computes the reconstructed public keys (as rq,) in 4 ms
with 1 ms STD. The generation of I" and y takes 12 ms with
1 ms STD on average. As expected, the most intensive step in
this phase is the generation of ZKPs. The most complicated
ZKP in FaaS protocol is the generation of 1-out-of-8 ZKP,
which elapsed 13.8s with 6 ms STD on average for each
individual audit. The generation of other ZKPs took roughly
12 ms with 1 ms STD. Similar to phase I, the expected exe-
cution duration on cluster experimental set-up is roughly 4
times less than laptop setup. Note that generation of ZKP for
1-out-of-8 is an independent operation which can be executed
in parallel for each auditor.

The verification of ZKPs in Phase III is a computationally
expensive operation. The verification of ZKP for the owner-
ship of the private keys took around 111 ms on average with
standard deviation of 5 ms on laptop setting. The verification
of 1-out-of-8 ZKP for each audit cryptogram roughly took 4 s
on average with 100 ms standard deviation in the same exe-
cution setting. The generation and verification of the fairness
computation ZKP also took 128 ms with 2 ms STD and 111
ms with 6 ms STD, respectively, in laptop. Same as before,
the relevant duration on cluster configurations tool roughly
4 times faster than the laptop setting.

5.3 Scalability

For scalability experiments, we started with small-scale
group (as of 5 simulated auditor) and we incrementally added
5 simulated auditor until we reached 100 individuals. Figure 3
shows the linear relation between the number of auditors and
the elapsed time for phases I and III (3 attributes, 8 per-
mutations). Stage II’s performance is not dependent on the
number of individuals as each auditor is supposed to per-
form the auditing separately. The scalability of the protocol
depends on the computational power for collective work done
by FCS in stages I and I1I, as it is responsible for performing
the overall verification and generation received from each
auditor. Based on our linear extrapolation analysis, the total
elapsed time for finishing the tasks related to FCS for 1000
auditors will be 10 min for stage I and roughly 1.5h in stage
IIT on cluster setting, with most of the time elapsed on the
verification of the ZKPs. As seen in Table 3, the majority
of the computation at this stage is due to the verification of
the ZKPs, while the actual computation of the Fairness is
negligible in comparison with these figures.

In our experiments, we evaluated FaaS with 3 binary
attributes, resulting in 3-bit encoding and 8 permutations.
However, depending on the fairness metrics, the number of
the required attributes would change. For instance, if we use
the demographic disparity metric (Eq. 3.1), we only require
access to the binary encoding of sensitivity group member-

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

993

Individual Auditors Scalability Analysis

e Average Elapsed Time for Phase |
Average Elapsed Time for Phase Il
-~ Predicted Execution Time for Phase |
Predicted Execution Time for Phase IIl

Total Elapsed Time (seconds)

& / ________________

Qo

N N N 9
A ® &

Number of Individual Auditors

N
L
,\9

Total Elapsed Time

ZKP Scalability for each Individual Auditor

Average Elapsed Time ZKP Generation i
Average Elapsed Time ZKP Verification
Predicted ZKP Generation

Predicted ZKP Verification /

200 25, 20, 25 S0, 5. 0. %5, S
0 909 “%0y *Sop <00y “S0p "00p “S0p 0y *Sop “%0,

7®
out

7®

®
A6 I
o 400%

?
\ 45
100

3
TYANTY A
of Yo\)\"" 1'0“‘—

S ©® 250 ¥
ie o

7®
- e

-2
of o0

oo
4

% of>

n1€ 0 2€
o 3 0\‘"0‘A

Fig.3 Average elapsed time (in s) for (left) varying number of individual auditors, (right) varying number of permutations

ship and predicted label (Y). Therefore, the encoding will
be 2-bit encoding, resulting into 4 permutations. For more
complicated cases such as the non-binary labels for the ML
system outcome or the existence of more than one sensitive
group for auditors, we might need to perform encoding with
3 or more bits.

We conducted another experiment to evaluate the impact
of the number of attributes on the performance of our pro-
tocol. Here, we varied the number of attributes (bits), from
1 to 7 resulting in 2 to 128 permutations (i.e. ask auditors
7 binary questions). We recorded the performance of FaaS
protocol 10 times for each permutation number. Figure 3
presents the average elapsed time for the generation of the
cryptogram, fairness auditing and computation of fairness
for a single auditor. As the increase in the permutation num-
ber is exponential, we performed an exponential regression
model for our recorded performance and predicted FaaS per-
formance in case one increases the number of permutations.
The relevant elapsed time for generation (Phase II in laptop
configurations) and verification (Phase III in cluster config-
uration) is also shown. In our experiment, the generation of
a l-out-of-128 ZKP took 269s for each auditor (with 27s
STD), in contrast for around 69s for the verification of the
same ZKP (with 0.45s STD). Consequently, the verification
of all 1-out-of 128 ZKP took roughly 20h for n = 1000
auditors. Note that generation of ZKP for 1-out-of-128 is
an independent operation which can be executed in parallel
for each auditor; therefore, the overall elapsed time for such
operation is not included here.

Figure 3 demonstrates the predicted number of options
to 10 bits, resulting into 1024 predictions. In other words,
the scalability of the protocol is determined particularly by
Phase III, exhibiting an exponential growth. In our exponen-
tial regression analysis, the exponential growth for 10 bit

permutation (as 1-out-of-1024 ZKP, which equals to asking
auditors 10 binary questions) is predicted to execute in 2144 s
for generation (in laptop configuration) and 596 s for verifica-
tion (in cluster configurations), resulting into overall elapsed
time of verification of ZKP for n = 1000 auditors to roughly
7.5 days.

6 Security and privacy analysis

First, we present set of the theoretical assumptions fun-
damental for our security analysis and proofs. Then, we
discuss how FaaS protects anonymity, secrecy and integrity
in computation of various fairness metrics. The FaaS proto-
col provides a publicly available FB as to facilitate universal
verifiability. That is, all cryptograms are made available to
the public and in particular to the individual auditors, who
are able to verify that their audit request is represented in
the fairness calculation. Of course, the FB is also available
to any malicious party to perform different attacks, passive
or active. Moreover, the attacker might target the individual
auditor, FCS servers and the communication between them to
manipulate the auditing process. We base our security anal-
ysis on the assumptions described in Sect. 3.5.

6.1 Assumptions and lemmas

In this section, we have set of fundamental assumptions prior
to the security analysis. These assumptions will be used for
the proofs presented later in security analysis. The theoretical
assumptions are as follows [6, 20, 21]:

Assumption 1 Decisional Diffie-Hellman (DDH) Assump-
tion. Given g, g, g”inG for uniformly chosen a, b € Z, it

@ Springer

994

E. Toreini et al.

is computationally hard to distinguish g*” from a random
number in G.

Assumption 2 Given g, g%, gb in G for uniformly chosen
a,b € Z, it is computationally hard to distinguish g?® from

gab'ga.

Assumption 3 Given g, g%, g in G for uniformly chosen
a,b € ZandtinZg,itis computationally hard to distinguish
g from g% .g'.

The assumptions 2 and 3 are extensions of the DDH
assumption as follows:

Lemma 1 Assumption 2 implies Assumption 1.

Proof Under the assumption set by the DDH,

(g, 8% g%, g ~ (g, 8% g°, R) where R is a random num-
ber in G. Thus, (g, g% g%, R) A (g,8% g” R x g% ~
(g, 8% g%, g’ x g%). Here, we extended the conclusions of
Assumption 1 to 2. O

Lemma 2 Assumption 3 implies Assumption 1.

Proof Under the assumption set by the DDH,

(g, 8% g, g ~ (g, 8% g”, R) where R is a random num-
ber in G. Thus, (g, g%, g*, R) ~ (g.8% 8" R x g ~
(g,8% g”, g* x g%). Here, we extended the conclusions of
Assumptions 1 to 3. O

In the rest of the proofs, we will refer to s1; or sp; as
conclusive x; and r;1 or rp; as y; for simplicity.

6.2 Audit secrecy

The data an individual Auditor submits to the FCS will be
published on the FB, to allow people to verify all auditor
cryptograms are taken into consideration, and the fairness
calculation has been correct. This allows for malicious
attempts to gain private information or to modify contents. In
passive attacks an attacker may carry out any analysis of the
data available from the FB to deduce useful information. In
active attacks, attackers try to modify data, e.g. by exploiting
a software bug in the FCS or poisoning the communication
channel. We will show that neither passive nor active attacks
can be successful in our scheme.

Proposition 1 (Data Leakage in passive attacks) The attacker
has access to the published cryptograms in the FB. Based on
this information, under the DDH assumptions, attackers can-
not distinguish any chosen audit cryptogram g" -5 x (a;)€i x
(B1)", wherel € 1,2, from random.

Proof Attackers will know the following information from
the FB: g’ oy;, B1i(I € 1,2), a ZKP that proves the

@ Springer

individual auditor system knows s;;(I € 1,2) and a ZKP
that proves C; = gP where p; € 20 om ... 2Tm and
m € N and 2" > n. Under the DDH assumptions, the
attacker will not be able to distinguish g% "% ([€ 1, 2) from
random (Assumption 2). Moreover, it will not be able to
distinguish the combination g% "% gPi(l € 1,2) (Assump-
tion 3). These steps can be extended to the audit cryptogram
recorded in the FB (as g x (a;;)C x (Bi)"i, pi €
{20,2m,~-~ ,27"”}, where m € Nand 2™ > n,l € 1,2).
Also, The first ZKP only reveals one bit of information:
whether the individual auditor knows the discrete logarithm
xj;of g% (l € 1,2). The second ZKP only reveals whether the
message is well-formed (in other words, if it is actually the
ElGamal encryption of the statement p; € 20, om ... pTm
where m € N and 2™ > n). Of course, this proof assumes
the ZKP is constructed correctly [13]. The theoretical proofs
for the security and correctness of the Schnorr’s signature
and Cramer et al.‘s one-out-of-n ZKP are in [13, 42,47] O

Proposition 2 (Stealthy modifications in active attacks) The
attacker with capability of malicious modification of the audit
cryptogram cannot modify the cryptograms in the FB without
being detected.

Proof As before, the attackers will know the following infor-
mation from the FB: g"% «y;, B1i(I € 1,2), a ZKP that
proves the individual auditor system knows s;(I € 1,2)
and a ZKP that proves p; € 20 om ... 27M where m €
N and 2™ > n. Based on the proofs presented in Propo-
sition 1 and Assumptions 1, 2 and 3, attackers cannot
distinguish any chosen audit cryptogram g’ x (ay;)C x
(B1i)", where [€ 1,2, from random. Thus, they will not be
able to deduce useful data from merely eavesdropping the
communication. However, they have the option to modify
the data to deceive the FCS and manipulate the fairness com-
putation. As the transmitted data are digitally signed by the
individual auditor, any malicious modifications on the chan-
nel will result in rejection of the digital signature at the FCS
side. Also, such modifications will cause into the rejection of
ZKPs. As a whole, such modifications cannot be undetected
and the attacker cannot deceive the computation of fairness
into another one. O

Proposition 3 (Anonymity and privacy of the individual
auditors) The attacker cannot distinguish any specific indi-
vidual auditor based on the FB data.

Proof The above propositions (Proposition 1 and 2) prove
the secrecy of the audit cryptogram, resulting into privacy
preservation of the individual auditor as the cryptograms will
not reveal the sensitive information of any specific individual
auditor (according to Assumption 3). Such secrecy will also
provide anonymity as the data recorded on FB will not pro-
vide detail of the individual auditor. Therefore, the attacker

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

995

is not able to link the data on FB to any specific individual
auditor. The FB will contain audit cryptograms and ZKPs
for the auditing of ML system; thus, it will not reveal any-
thing other than the overall number of occurrence of each
of the permutations as whole. The computation of the fair-
ness metric is merely possible by overall summation of all
the cryptograms. Hence, it preserves the anonymity of the
individual auditor. O

6.3 Dispute freeness

Our proposed protocol satisfies dispute freeness in two ways.
First, by using an authenticated channel between individ-
ual verifiers and the FCS, we ensure each individual auditor
only audits the ML performance once. Secondly, the exten-
sive implementation of ZKPs at various stages guarantees the
well-formedness and correctness of the computations and the
audit cryptogram, This, along with the universal verifiability
of the announced computations ensures that the computations
are not disputable.

6.4 Malicious actors

The collusion attack refers to a set of plans to plot against
the correct execution of the auditing process. A hypothetical
collusion can be done through attacks such as poisoning the
audit cryptogram or trying to organise a large-scale coor-
dination attempt by convincing the individual auditors to
reveal specific parts of their audit cryptogram. In this attack,
the attacker will not be able to tamper with the audit cryp-
togram (as shown in Propositions 3 and 1 and 2), instead it
should directly influence the generation of the audit cryp-
tograms. In the most serious case, it can convince them to
reveal their private keys. In this situation, the attacker will be
at the position to generate fake audit cryptograms.

Proposition 4 (Collusion attack) Under the DDH assump-
tions, attackers with partial knowledge of the sy; and s»; (as
defined in Sect. 4.1) cannot distinguish r1; and ro; (as defined
in Eq. 4.2) from random.

Proof As the attacker has partial knowledge, in the worst-
case scenario, it knows all s;;, (j # k,[€ 1,2) except for
one pair sjx, [€ 1,2). In this case, sk, [€ 1, 2 is uniformly
distributed over Z, and is unknown to the attacker. Since
rii, 1 € 1,2 is derived form all 5, (p # i,1 € 1,2), then
for the attacker, r;;, [€ 1, 2 will be computed from r;;, (j #
i,k)and! € 1,2 plus or minus a random value (s, € 1,2)
that is uniformly distributed over Z,. Based on the Assump-
tion 1, itis not possible for an attacker with partial knowledge
of 75,1 € 1, 2 to distinguish 7;;, [€ 1,2 from random. O

In large-scale auditing scenarios (e.g. with more than 100
individual auditors), colluding a few number (e.g. 10) of

auditors will not have significant impact on the overall com-
putation of fairness. Shansabadi et al. [44] empirically proved
the detection of unfair behaviour of ML models is feasible in
decentralised architectures, even in presence of malicious
actors as auditors. Thus, the attacker should infer all the
reconstructed public keys using the private keys it already
collected from colluded individual auditors. If the attacker
succeeds in doing so, then it will be in the position to generate
parts of the audit cryptogram (cryptoy; = g1 x (a1;)Ci x
(B1i)7 and cryptoy; = g™+ x (a2) ¢ x (B2i) i where C; =
gPiand p; € 20 2m ... 27m where m € Nand 2" > n).
Considering the DDH assumptions (Assumption 1), it will
be impossible for attacker to calculate the reconstructed
public key (r;, where [€ 1, 2) without having access to
all private keys. Thus, for the successful collusion of the
auditing process, the attacker should bribe all the individ-
ual auditors. The public verifiability of FaaS protocol in
the computations (which is available through fairness board)
contains guarantees through ZKPs to ensure the FCS can-
not misbehave in computation of the fairness. Moreover, any
modification on the data in fairness board will be detected as
it contains the ZKPs for ownership of private keys and the
multiplication of the received audit cryptograms (as proved
in Proposition 2). As a result of the Proposition 4, it will not
be possible for the attacker to conduct a large-scale collusion
attack by bribing a few individual auditors.

In summary, FaaS provides security, privacy and anonymity
for the individual auditors by providing random-looking
cryptograms recorded on the FB. An attacker will not be
able to distinguish meaningful information from the FB and
modify the recorded data on it without being detected. The
universal verifiability through end-to-end adoption of ZKPs
and cryptographic schemes provides dispute-free environ-
ment in which every one has the opportunity to re-compute
the fairness metrics and ensure accountability of the FaaS
system. Finally, the attacker will not be able to implement a
large-scale collusion attack (and consequently, generate fake
audit cryptograms to poison the process) since it needs to
have access to all the private/public key combinations of the
individual auditors.

7 Conclusion and future work

In this paper, we proposed FaaS as an end-to-end verifiable
privacy-preserving protocol to audit fairness for ML systems.
We implemented our protocol using off-the-shelf tools and
achieved promising results. There are areas that can consider
as future work. Our FasS protocol only verifies the computa-
tions of the fairness metrics. It does not support the initial
training of the ML system for a fair outcome and hence
assumes that the ML system is honest. In order to be able
to offer FaaS without such an assumption, we plan to design

@ Springer

996

E. Toreini et al.

and implement a pre-deployment round of fair commitments
from the ML model. In this paper, we only focus on the tech-
nical aspects of our protocol by proposing, implementing and
evaluating it. In the future, we would like to conduct user
studies around this topic and the user perception of the pro-
posed protocol. Finally, the implementation of a real-world
trustworthy fairness board is challenging. People might not
trust a website owned by a particular entity, and protecting
such a website against potential attacks is essential. To tackle
this, blockchain-based architectures can be utilised [33, 34]
to implement a secure tamper-proof fairness board. This is
beyond the scope of this paper, and we leave it as future work.

Acknowledgements The authors in this project have been funded
by UK EPSRC grant “FinTrust: Trust Engineering for the Financial
Industry” under grant number EP/R033595/1, and UK EPSRC grant
“AGENCY: Assuring Citizen Agency in a World with Complex Online
Harms” under grant EP/W032481/1 and PETRAS National Centre of
Excellence for IoT Systems Cybersecurity, which has been funded by
the UK EPSRC under grant number EP/S035362/1.

Data availability Materials described in the manuscript, including all
relevant raw data, will be freely available for any researcher wishing to
use them for non-commercial purposes, without breaching participant
confidentiality.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Ethical approval This research has been conducted with no human
involvement for data collection. The project obtained the ethical
approval from the authors’ institution.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Adler, P, Falk, C., Friedler, S.A., Nix, T., Rybeck, G., Scheidegger,
C., Smith, B., Venkatasubramanian, S.: Auditing black-box models
for indirect influence. Knowl. Inf. Syst. 54(1), 95-122 (2018)

2. Aitken, M., Ng, M., Toreini, E., van Moorsel, A., Coopamootoo,
K.P, Elliott, K.: Keeping it human: a focus group study of public
attitudes towards ai in banking. In: Computer Security: ESORICS
2020 International Workshops, DETIPS, DeSECSys, MPS, and

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

SPOSE, Guildford, UK, September 1718, 2020, Revised Selected
Papers 25, pp. 21-38. Springer (2020)

. Aitken, M., Toreini, E., Carmichael, P., Coopamootoo, K., Elliott,

K., van Moorsel, A.: Establishing a social licence for financial
technology: reflections on the role of the private sector in pursu-
ing ethical data practices. Big Data Soc. 7(1), 2053951720908892
(2020)

. Anderson, R.: Security Engineering: A Guide to Building Depend-

able Distributed Systems. Wiley (2020)

. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.:

Learning certifiably optimal rule lists for categorical data. arXiv
preprint arXiv:1704.01701 (2017)

. Azad, M.A., Bag, S., Parkinson, S., Hao, F.: Trustvote: privacy-

preserving node ranking in vehicular networks. IEEE Internet
Things J. 6(4), 5878-5891 (2018)

. Azimi, V., Zaydman, M.A.: Optimizing equity: working towards

fair machine learning algorithms in laboratory medicine. J. Appl.
Lab. Med. 8(1), 113-128 (2023)

. Bacciarelli, A.: The toronto declaration: Protecting the right to

equality and non-discrimination in machine learning systems
(2023)

. Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.:

Practical multi-candidate election system. In: Proceedings of the
Twentieth Annual ACM Symposium on Principles of Distributed
Computing, pp. 274-283 (2001)

Brasher, E.A.: Addressing the failure of anonymization: guid-
ance from the european union’s general data protection regulation.
Colum. Bus. L. Rev. p. 209 (2018)

Chouldechova, A.: Fair prediction with disparate impact: a study of
bias in recidivism prediction instruments. Big data 5(2), 153-163
(2017)

Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algo-
rithmic decision making and the cost of fairness. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 797-806. ACM (2017)

Cramer, R., Damgérd, 1., Schoenmakers, B.: Proofs of partial
knowledge and simplified design of witness hiding protocols.
In: Annual International Cryptology Conference, pp. 174-187.
Springer (1994)

Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and
optimally efficient multi-authority election scheme. Eur. Trans.
Telecommun. 8(5), 481-490 (1997)

De Cristofaro, E.: An overview of privacy in machine learning.
arXiv preprint arXiv:2005.08679 (2020)

De Cristofaro, E.: A critical overview of privacy in machine learn-
ing. IEEE Secur. Privacy 19(4), 19-27 (2021)

Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkata-
subramanian, S.: Certifying and removing disparate impact. In:
Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 259-268. ACM
(2015)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions
to identification and signature problems. In: Conference on the
Theory and Application of Cryptographic Techniques, pp. 186—
194. Springer (1986)

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F.,
Pedreschi, D.: A survey of methods for explaining black box mod-
els. ACM Comput. Surv. 51(5), 1-42 (2018)

Hao, F,, Kreeger, M.N., Randell, B., Clarke, D., Shahandashti, S.F.,
Lee, P.H.J.: Every vote counts: Ensuring integrity in large-scale
electronic voting. In: 2014 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (EVT/WOTE 14) (2014)
Hao, F.,, Ryan, P.Y., Zielifiski, P.: Anonymous voting by two-round
public discussion. IET Inf. Secur. 4(2), 62-67 (2010)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1704.01701
http://arxiv.org/abs/2005.08679

Fairness as a Service (FaaS): verifiable and privacy-preserving fairness...

997

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in
supervised learning. In: Advances in Neural Information Process-
ing Systems, pp. 3315-3323 (2016)

Hu, H., Liu, Y., Wang, Z., Lan, C.: A distributed fair machine
learning framework with private demographic data protection. In:
2019 IEEE International Conference on Data Mining ICDM), pp.
1102-1107. IEEE (2019)

Jagielski, M., Kearns, M., Mao, J., Oprea, A., Roth, A., Sharifi-
Malvajerdi, S., Ullman, J.: Differentially private fair learning. In:
International Conference on Machine Learning, pp. 3000-3008
(2019)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC
Press (2014)

Kilbertus, N., Gascon, A., Kusner, M., Veale, M., Gummadi,
K.P., Weller, A.: Blind justice: Fairness with encrypted sensitive
attributes. In: 35th International Conference on Machine Learning,
pp- 2630-2639 (2018)

Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fair-
ness. Adv. Neural Inf. Process. Syst. 30 (2017)

Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed
the COMPAS recidivism algorithm. ProPublica 5 9(1) (2016)
Liu,J., Yu, F, Song, L.: A systematic investigation on the research
publications that have used the medical expenditure panel survey
(MEPS) data through a bibliometrics approach. Library Hi Tech
(2020)

Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model
predictions. Adv. Neural Inf. Process. Syst. 30 (2017)

Mahdawi, A.: It’s not just a-levels—algorithms have a nightmarish
new power over our lives. The Guardian (2020)

Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model
of organizational trust. Acad. Manag. Rev. 20(3), 709-734 (1995)
McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for
boardroom voting with maximum voter privacy. In: International
Conference on Financial Cryptography and Data Security, pp. 357—
375. Springer (2017)

McCorry, P., Toreini, E., Mehrnezhad, M.: Removing trusted tal-
lying authorities. School of Computing Science Technical Report
Series (2016)

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.:
A survey on bias and fairness in machine learning. ACM Comput.
Surv. 54(6), 1-35 (2021)

Narayanan, A.: Translation tutorial: 21 fairness definitions and their
politics. In: Proceedings Conference on Fairness Accountability,
and Transparency, New York, USA (2018)

Panigutti, C., Perotti, A., Panisson, A., Bajardi, P., Pedreschi, D.:
Fairlens: auditing black-box clinical decision support systems. Inf.
Process. Manag. 58(5), 102657 (2021)

Panigutti, C., Perotti, A., Pedreschi, D.: Doctor xai: an ontology-
based approach to black-box sequential data classification expla-
nations. In: Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, pp. 629-639 (2020)

Park, S., Kim, S., Lim, Y.s.: Fairness audit of machine learning
models with confidential computing. In: Proceedings of the ACM
Web Conference 2022, pp. 3488-3499 (2022)

Reuters: Amazon ditched Al recruiting tool that favored men for
technical jobs. The Guardian (2018)

Richards, L.E., Raff, E., Matuszek, C.: Measuring equal-
ity in machine learning security defenses. arXiv preprint
arXiv:2302.08973 (2023)

Schnorr, C.P.: Efficient signature generation by smart cards. J.
Cryptol. 4(3), 161-174 (1991)

43.

44.

45.

46.

47.

48.

49.

50.

51.

Segal, S., Adi, Y., Pinkas, B., Baum, C., Ganesh, C., Keshet, J.:
Fairness in the eyes of the data: Certifying machine-learning mod-
els. In: Proceedings of the 2021 AAAI/ACM Conference on Al,
Ethics, and Society, pp. 926-935 (2021)

Shahin Shamsabadi, A., Yaghini, M., Dullerud, N., Wyllie, S.,
Aivodji, U., Alaagib, A., Gambs, S., Papernot, N.: Washing the
unwashable : On the (im)possibility of fairwashing detection. In:
Koyejo, S., Mohamed,, S., Agarwal, A., Belgrave, D., Cho, K.,
Oh, A. (eds.) Advances in Neural Information Processing Systems,
vol. 35, pp. 14170-14182. Curran Associates, Inc (2022)
Shamsabadi, A.S., Wyllie, S.C., Franzese, N., Dullerud, N., Gambs,
S., Papernot, N., Wang, X., Weller, A.: Confidential-PROFITT:
confidential PROof of fair training of trees. In: The Eleventh Inter-
national Conference on Learning Representations (2023). https://
openreview.net/forum?id=ilfDQVyuFD

Siau, K., Wang, W.: Building trust in artificial intelligence, machine
learning, and robotics. Cutter Bus. Technol. J. 31(2), 47-53 (2018)
Stinson, D.R., Paterson, M.: Cryptography: Theory and Practice.
CRC Press (2018)

Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya,
C.G., van Moorsel, A.: The relationship between trust in Al and
trustworthy machine learning technologies. In: Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency,
pp- 272-283 (2020)

Veale, M., Binns, R.: Fairer machine learning in the real world: mit-
igating discrimination without collecting sensitive data. Big Data
Soc. 4(2), 2053951717743530 (2017)

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., Mac-
Neille, P.: A Bayesian framework for learning rule sets for
interpretable classification. J. Mach. Learn. Res. 18(1), 2357-2393
(2017)

Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning:
concept and applications. ACM Trans. Intell. Syst. Technol. 10(2),
1-19 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/2302.08973
https://openreview.net/forum?id=iIfDQVyuFD
https://openreview.net/forum?id=iIfDQVyuFD

	Fairness as a Service (FaaS): verifiable and privacy-preserving fairness auditing of machine learning systems
	Abstract
	1 Introduction
	2 Background and related work
	3 Preliminaries
	3.1 Fairness metrics
	3.2 Cryptographic primitives
	3.3 FaaS architecture
	3.4 Protocol actors
	3.5 Security and privacy assumptions
	3.6 Limitations

	4 Protocol description
	4.1 Phase I: commitment
	4.2 Phase II: auditing
	4.3 Phase III: fairness evaluation

	5 Implementation and evaluation
	5.1 Proof-of-concept implementation
	5.2 Performance
	5.3 Scalability

	6 Security and privacy analysis
	6.1 Assumptions and lemmas
	6.2 Audit secrecy
	6.3 Dispute freeness
	6.4 Malicious actors

	7 Conclusion and future work
	Acknowledgements
	References

