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Abstract
Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are the most efficient proof systems in terms
of proof size and verification. Currently, Groth’s scheme from EUROCRYPT 2016, Groth16, is the state-of-the-art and is
widely deployed in practice. Groth16 is originally proven to achieve knowledge soundness, which does not guarantee the
non-malleability of proofs. There has been considerable progress in presenting new zk-SNARKs or modifying Groth16 to
efficiently achieve strong Simulation extractability, which is shown to be a necessary requirement in some applications. In
this paper, we revise the Random oracle based variant of Groth16 proposed by Bowe and Gabizon, BG18, the most efficient
one in terms of prover efficiency and CRS size among the candidates, and present a more efficient variant that saves 2 pairings
in the verification and 1 group element in the proof. This supersedes our preliminary construction, presented in CANS 2020
(Baghery et al. in CANS 20, volume 12579 of LNCS, Springer, Heidelberg. pp 453-461, 2020), which saved 1 pairing in the
verification, and was proven in the generic group model. Our new construction also improves on BG18 in that our proofs are
in the algebraic group model with Random Oracles and reduces security to standard computational assumptions in bilinear
groups (as opposed to using the full power of the generic group model (GGM)). We implement our proposed simulation
extractable zk-SNARK (SE zk-SNARK) along with BG18 in the Arkworks library, and compare the efficiency of our scheme
with some related works. Our empirical experiences confirm that our SE zk-SNARK is more efficient than all previous
simulation extractable (SE) schemes in most dimensions and it has very close efficiency to the original Groth16.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proof systems [11]
are a fundamental family of cryptographic primitives that

A preliminary version of this paper appeared in the Proceedings of
19th International Conference on Cryptology and Network Security,
CANS 2020 [7].
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have appeared recently in a wide range of practical appli-
cations. A NIZK proof system allows a party to prove that
for a public statement �x , she knows a witness �w such that
(�x, �w) ∈ R, for some relation R, without leaking any infor-
mation about �w andwithout interaction with the verifier. Due
to their impressive advantages, NIZK proof systems are used
ubiquitously to build larger cryptographic protocols and sys-
tems.

Zero-knowledge Succinct Arguments of Knowledge (zk-
SNARKs) are among the most interesting NIZK proof
systems in practice, as they allow to generate very short
proofs for NP complete languages, which can be verified
in less than 10 milliseconds [20, 22]. Zk-SNARKs have had
a tremendous impact in practice and they have found numer-
ous applications, including verifiable computation systems
[32], privacy-preserving (PP) cryptocurrencies [8], PP smart
contract systems [28], PP proof-of-stake protocols [24], and
efficient ledger verification protocols [13], are some of the
best known applications that use zk-SNARKs to prove differ-
ent statements very efficientlywhile guaranteeing the privacy
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of the prover. Because of their practical importance, par-
ticularly in large-scale applications like blockchains, even
minimal savings especially in proof size or verification cost
are considered to be relevant.

In 2016, Groth [22] introduced the most efficient zk-
SNARK for Quadratic Arithmetic Programs or QAPs, which
is still the state-of-the-art construction, Groth16. It is con-
structed using bilinear groups and its proof is 3 group
elements (2 fromG1 and 1 fromG2) and the cost of verifica-
tion is dominated by 3 pairing computations. In the original
paper, it is proven to achieve knowledge soundness in the
generic group model (GGM). In 2018, Fuchsbauer, Kiltz,
and Loss [19] defined the algebraic group model (AGM)
and reproved its security in this weaker model. The proof
of Groth16 is malleable, as it is shown in [23]. Generating
non-malleable proofs is a necessary requirement in building
various cryptographic schemes, including universally com-
posable protocols [24, 28], cryptocurrencies (e.g. Zcash) [8],
signature-of-knowledge schemes [23], etc. Practical systems
like Zcash cryptocurrency [8] that uses the original Groth16
[22] make extra efforts to ensure the non-malleability of
transactions and the proof of underlying proof system. Con-
sidering such concerns, in practice, it is important to have a
stronger notion of knowledge soundness, known as (strong)
Simulation Extractability (SE). This notion guarantees that a
valid witness can be extracted from any adversary producing
a proof accepted by the verifier, even after seeing an arbitrary
number of simulated proofs.

There have been considerable efforts to construct new SE
zk-SNARKs or refine Groth’s zk-SNARK to achieve SE and
guarantee the non-malleability of proofs. Firstly, in 2017
Groth and Maller [23] proposed an SE zk-SNARK, which
is very efficient in terms of proof size but very inefficient
in terms of Common Reference String (crs) size and prover
time. They also showed how one can use SE zk-SNARKs
to build Signature of Knowledge (SoK) schemes [16] with
succinct signatures. In 2018 Bowe and Gabizon [14] pro-
posed a less efficient construction in terms of proof size (5
group elements vs 3 in the original version) based onGroth16
whichneeds aRandomOracle (RO) (apart fromGGM)which
returns group elements, but with almost no overhead in the
crs size or additional cost for the prover. In [29], Lipmaa
proposed several constructions, including an efficient QAP-
based SE zk-SNARK in terms of proof size andwith the same
verification complexity as [14, 23], but less efficient in terms
of crs size and prover time compared to [14] and Groth16.
In [2], Atapoor and Baghery used the traditional OR tech-
nique to achieve SE in Groth16. Their variant requires 1
pairing less for verification in comparison with previous SE
constructions, however it comes with an overhead in proof
generation, crs size, and even larger overhead in the proof
size. For a particular instantiation they add ≈ 52.000 con-
strains to the underlying QAP instance, which adds fixed

overhead to the prover and crs size, that can be consider-
able for mid-size circuits. They show that for a circuit with
10 × 106 Multiplication (Mul) gates, their prover is about
10% slower, but it can be slower for circuits with less than
10× 106 gates. In [26], Kim, Lee, and Oh proposed a QAP-
based SE zk-SNARK with the same crs size and prover time
compared to [29], but with slightly shorter proofs and more
efficient verification.

These works also differ significantly in the assumptions
they make for security. The scheme of Groth andMaller [23]
is based on a knowledge assumption and other falsifiable
computational assumptions, and they are all q-type assump-
tionswhereq is the size of the circuit. In thiswork, the authors
avoid the generic group model by making a concrete knowl-
edge assumption that is essential for extracting the witness.
On the other hand, the work of Bowe and Gabizon [14] uses
the full power of the generic group model to prove the secu-
rity. The construction of Bowe and Gabizon uses the generic
group model plus the assumption that a certain hash function
to group elements is a random oracle. All the constructions
of Lipmaa [29] are proven secure in a weaker notion of the
AGM, where the adversary has access to a random oracle
that allows it to sample random elements obliviously in the
group, i.e. without knowing the random oracles.

Recently, Baghery, Kohlweiss, Siim, and Volkhov [6]
explored another direction. Instead of modifying Groth16
to achieve strong SE, they first show that the original con-
struction of Groth16 achieves weak SE with non-black-box
extraction. Weak SE allows proof randomization, therefore
the proof is malleable, while it guarantees that a proof can-
not be changed to prove a new statement. Then, considering
the first result, they proposed two efficient constructions of
Groth16 that achieve weak SE with black-box extraction
which is shown to be necessary for UC-security. Both weak
and strong SE zk-SNARKs can be lifted to achieve black-box
simulation extractabilitywith a simpler compiler [3, 6], rather
than with the COCO framework [27] which is constructed
to lift (knowledge) sound NIZK proofs systems to achieve
black-box SE. However, to realize the standard ideal func-
tionality defined for NIZK arguments, one would need to use
a strong SENIZKwith black-box extraction [21]. Therefore,
constructing a more efficient strong SE zk-SNARK, would
also allow to build more efficient black-box SE zk-SNARK
to be used in UC-secure protocols.
Our Contributions. Our main contribution is to revise the
simulation extractable variants of Groth16, presented in
[14] and [2], to achieve a better efficiency and get the best
of both constructions. Namely, achieving strong simulation
extractability in Groth16 with minimal overhead.

Our focus is mainly on Bowe andGabizon’s variation [14]
which has themost efficient prover and the shortest crs among
other (strong) SE zk-SNARKs [2, 14, 23, 26, 29], while it
uses a ROwhich returns group elements. To achieve (strong)
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Table 1 A comparison of our proposed variations of Groth16 along with the other SE zk-SNARKs for arithmetic circuit satisfiability with n Mul
gates (constraints) and m wires (variables), of which l are public input wires (variables)

SNARK SE Model CRS size Prover Proof Verifier VE

Groth [6, 19, 22] WSE AGM m + 2n − l G1 m + 3n − l E1 2 G1 l E1 1

n G2 n E2 1 G2 3 P

Groth-Maller [23] SSE GGM 2m + 4n G1 2m + 4n − l E1 2 G1 l E1 2

2n G2 2n E2 1 G2 5 P

Bowe-Gabizon [14] SSE GGM m + 2n − l G1 m + 3n − l E1 3 G1 l E1 2

ROM n G2 n E2 2 G2 5 P

Atapoor-Baghery [2] SSE GGM m′ + 2n′ − l G1 m′ + 3n′ − l E1 4 G1 l ′ + 2 E1 2

n′
G2 n′ E2 2 G2 4 P

+ 2 λ

Lipmaa [29] SSE AGM m + 3n − l G1 m + 4n − l E1 3 G1 l + 1 E1 2

tag-based n G2 n E2 1 G2 5 P

KLO [26] SSE HAK m + 3n − l G1 m + 4n − l E1 2 G1 l + 1 E1, 1 E2 1

LCR n G2 n E2 1 G2 3 P

BPR [7], Appendix A SSE GGM m + 2n − l G1 m + 3n − l E1 3 G1 l E1, 1 E2 2

CRH n G2 n E2 2 G2 1 ET , 4 P

Sect. 3 SSE AGM m + 2n − l G1 m + 3n − l E1 2 G1 l E1, 1 E2 1

ROM n G2 n E2 2 G2 3 P

A typical set of values is n = m = 106 and l = 10. In the case of crs size and prover’s computation we omit constants. In [23], n Mul gates and
m wires translate to 2n squaring gates and 2m wires. In [2], SE is achieved with an OR approach which requires to add constraints and variables,
resulting in n′ ≈ n+52.000,m′ ≈ m+52.000, and l ′ = l+4.G1,G2 andGT : group elements, Ei : exponentiation in groupGi , Mi : multiplication
in group Gi , P: pairings
GGM Generic group model, ROM Random oracle model, AGM Algebraic group model, HAK Hash algebraic knowledge assumption, LCR Linear
collision resistance hash functions, CRH Collision resistant hash, VE Number of verification equations, WSE Weak simulation extractable, SSE
Strong simulation extractable

simulation extractability, their prover replaces all the original
computations which depend on some parameter δ given in
the crs by some δ′ and the prover must give [δ′]2 and a proof
of knowledge (PoK) of the DLOG of [δ′]2 w.r.t [δ]2. Using
this technique, they present a variation that has the same
CRS as Groth16, almost the same prover as Groth16, 2 new
elements in the proof (one from G1 and the other from G2),
and an additional verification equation that adds 2 pairing
operations to the verification of Groth16.

In this paper, using the same approach [14] and some sub-
tle modifications, we construct a strong SE zk-SNARK that
results in the most efficient (strong) simulation extractable
variant of Groth16 in terms of crs size, prover complexity,
and verification time.Our SE zk-SNARKuses some sophisti-
cated modification of Boneh-Boyen signatures [12] to prove
knowledge of the DLOG of δ′ which requires 1 less G1 ele-
ment in the proof, and 2 pairings less in the verification in
comparison with the argument of Bowe and Gabizon [14],
but at the cost of one additional exponentiation in the verifica-
tion.Our construction supersedes and improves a preliminary
version of this work presented at CANS 2020 [7], where in
all constructions verification required at least one additional
pairing and proofs were in the GGM.

Our constructionmodifies theproof generationofGroth16
slightly and include the PoK of the DLOG of [δ′]2 w.r.t [δ]2
inside the original proof of Groth16. Using this, we manage
to save 1 element in the proof, and 2 pairings in the verifica-
tion of Bowe and Gabizon’s construction [14], at the cost of a
single exponentiation inG2 in the verification. This construc-
tion shows that using a random oracle, we can achieve strong
SE in Groth16, at the cost of one additional G2 element in
the proof, and one new exponentiation in G2 in the verifica-
tion. In the case of verifying a larger number of proofs where
verifiers of our constructions gain efficiency by using multi-
scalar exponentiations, our construction achieves almost the
same efficiency as Groth16.

Table 1 presents a comparison of our proposed variant
of Groth16 with several other constructions for a particu-
lar instance of arithmetic circuit satisfiability. As it can be
seen, in comparison with Bowe and Gabizon’s construction
[14], our construction retains most of the properties requires
2 less pairing in the verification, at the cost of 1 additional
exponentiation in the verification. We also compare our con-
struction with the results initially obtained and presented in
CANS 2020 [7]. We note that in both our constructions, the
hash function maps into Zp and not to a source group as in
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[14], which is an additional practical advantage. In compari-
son with Atapoor and Baghery’s construction [2], both of our
variants have a negligible overhead in the proof generation
and crs size, and a smaller overhead in proof size. Above all,
our best construction, requires 3 parings in the verification,
instead of 4. 1 We reduce security to a q-DLOG in the AGM
with random oracles, where q is the size of the circuit. In
contrast, our preliminary result [7] was in the GGM but only
required the hash function to be collision resistant.

As a part of our contribution, we also present an open-
source prototype implementation of our presented construc-
tions and Bowe and Gabizon’s scheme in the Arkworks
library, which currently is one of the most popular ecosys-
tems written in Rust for developing and programming with
zk-SNARKs. Then, we use our implementations along with
the implementations of Groth16 [22] and Groth-Maller [23],
which already exist in Arkworks library, and present a com-
prehensive benchmark for the relevant simulation extractable
zk-SNARKs [14, 22, 23]. Full details of our empirical anal-
ysis are reported in Sect. 4, in Table 2. As we expected, the
implementation results show that, our new construction is
more efficient than the first one, and also it is more efficient
than all previous SE zk-SNARKs in most dimensions and
more importantly it has a very close efficiency profile to the
originalGroth16, particularly when we need to verify a large
number of proofs.

Finally, we highlight that using the technique proposed
in [23], both of or proposed SE zk-SNARKs can be turned
into succinct SoK schemes, which would be more efficient
than previous constructions. In general, due to relying on
non-falsifiable assumptions, succinct SoK schemes have bet-
ter efficiency in comparison with constructions that are built
under standard assumptions [5, 10, 16]. We also note that
to achieve strong (non-black-box) SE, our proposed zk-
SNARKs require minimal changes in comparison with the
original Groth16. Therefore, one can use the same compiler
or ad-hoc approach proposed in [3] and [6], respectively, to
construct a more efficient strong black-box SE zk-SNARK
for UC-protocols [21].

Organization. In Sect. 2, we introduce notation, the rel-
evant security definitions, and recall the Boneh-Boyen sig-
nature scheme. In Sect. 3, we present our new and the most
efficient SE zk-SNARK, that has very close efficiency to
the Groth16. We evaluate the practical efficiency of both
presented constructions in Sect. 4 using a prototype Rust
implementation in Arkworks library. We also compare the
efficiency of our constructions with several relevant SE zk-
SNARKs in the same section. Finally we conclude the paper

1 In the worst case, our changes add only one element to the crs of
Groth16 and since Groth16 is already proven to achieve subversion
ZK (ZK without trusting a third party) [1, 18], our variants also can be
proven to achieve Sub-ZK using the technique proposed in [4, 18].

in Sect. 5. For the sake of completeness, in Appendix A, we
also recall our first SE zk-SNARK [7] that relaxes the RO
in Bowe and Gabizon’s scheme [14] to a collision resistant
hash function, and also saves 1 pairing in the verification.We
implement that scheme as well and include it in our bench-
marks.

Novelty. Compared to the conference version published
in CANS 2020 [7], this version includes a more efficient
construction presented in Sect. 3, a prototype Rust imple-
mentation of our presented constructions along with Bowe
and Gabizon’s scheme [14] in Arkworks library, followed by
a comprehensive efficiency comparison of relevant SE zk-
SNARKs that are reported with details in Sect. 4.

2 Preliminaries

2.1 Notation and bilinear groups

We let BGgen be a probabilistic polynomial time algo-
rithm which on input 1λ, where λ is the security parameter,
returns the description of an asymmetric bilinear group
gk = (p,G1,G2,GT , e,P1,P2), where G1,G2 and GT

are groups of prime order p, the elements P1,P2 are gen-
erators of G1,G2 respectively, e : G1 × G2 → GT is
an efficiently computable, non-degenerate bilinear map, and
there is no efficiently computable isomorphism between G1

and G2.
Elements in Gi , are denoted implicitly as [a]i = aPi ,

where i ∈ {1, 2, T } and PT = e(P1,P2). With this nota-
tion, e([a]1, [b]2) = [a]1[b]2 = [ab]T . We extend this
notation naturally to vectors and matrices. We denote by
negl(λ) an arbitrary negligible function in λ.

2.2 Definitions

For an algorithm A , let Im(A ) be the image of A , i.e. the
set of valid outputs of A . By y ← A (x; r) we denote the
fact that A , given an input x and a randomizer r , outputs y.

We use the definitions of NIZK arguments from [22].
Let R be a relation generator, such that R(1λ) returns a
polynomial-time decidable binary relation R = {(�x, �w)}.
Here, �x is the statement and �w is the witness. Security param-
eter λ can be deduced from the description ofR. The relation
generator also outputs auxiliary information zR that will be
given to the honest parties and the adversary. In our con-
structions, zR will be the description of a bilinear group. As
in [22], zR is the value returned by BGgen(1λ), and is given
as an input to the parties.

Let LR = {�x : ∃ �w, (�x, �w) ∈ R} be an NP-language. A
NIZK argument system � for R consists of tuple of PPT
algorithms (K, P,V, Sim), such that:
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CRS Generator: K is a PPT algorithm that, given (R, zR)

where (R, zR) ∈ Im(R(1λ)), outputs crs := (crsP, crsV)
and stores trapdoors of crs as �ts. We distinguish crsP
(needed by the prover) from crsV (needed by the veri-
fier).

Prover: P is a PPT algorithm that, given (R, zR,

crsP, �x, �w), where (�x, �w) ∈ R, outputs an argument π .
Otherwise, it outputs ⊥.

Verifier: V is a PPT algorithm that, given (R, zR, crsV, �x, π),
returns either 0 (reject) or 1 (accept).

Simulator: Sim is a PPT algorithm that, given (R, zR,

crs, �ts, �x), outputs a simulated argument π .

Besides succinct proofs, i.e. polynomial in λ, an SE
zk-SNARK is required to satisfy completeness, simulation
extractability, and zero-knowledge.

Definition 1 (Perfect Completeness) A non-interactive argu-
ment� is perfectly complete for R, if for all λ, all (R, zR) ∈
Im(R(1λ)), and (�x, �w) ∈ R,

Pr

[
crs ← K(R, zR), π ← P(R, zR, crs, �x, �w) :
V(R, zR, crs, �x, π) = 1

]
= 1.

Intuitively, perfect completeness states that an honest
prover P always convinces an honest verifier V.

Definition 2 (Computationally Knowledge-Soundness [22])
A non-interactive argument � is computationally (adap-
tively) knowledge-sound forR, if for every non-uniformPPT
A , there exists a non-uniform PPT extractor ExtA , s.t. for
all λ, the following probability is negl(λ),

Pr

⎡
⎢⎣

(R, zR) ← R(1λ), (crs ‖ �ts) ← K(R, zR),

(�x, π) ← A (R, zR, crs), �w ← ExtA (transA ) :
(�x, �w) /∈ R ∧ V(R, zR, crs, �x, π) = 1

⎤
⎥⎦ .

Here, transA is a list containing all of A ’s inputs and out-
puts. Intuitively, the definition states that if an adversary can
convince the verifier, she knows the witness. A knowledge-
sound � also is called an argument of knowledge.

Definition 3 (Weak Simulation Extractability [27]) A non-
interactive argument � is (non-black-box) weak simulation-
extractable for R, if for any non-uniform PPT A , there
exists a non-uniform PPT extractor ExtA s.t. for all λ, the
following probability is negl(λ),

Pr

⎡
⎢⎢⎣

(R, zR) ← R(1λ), (crs ‖ �ts) ← K(R, zR),

(�x, π) ← A O( �ts,.)(R, zR, crs), �w ← ExtA (transA ) :
�x /∈ Q ∧ (�x, �w) /∈ R ∧ V(R, zR, crs, �x, π) = 1

⎤
⎥⎥⎦ .

Here, Q is the set of statements queried by adversary to the
simulation oracle O, and transA is a list containing all of
A ’s inputs and outputs. Note that this variant of simulation
extractability allows proof randomization, while it ensures
that a proof cannot be changed to prove a new statement.

Definition 4 (Simulation Extractability [23]) A non-
interactive argument� is (non-black-box strong) simulation-
extractable forR, if for any non-uniformPPTA , there exists
a non-uniform PPT extractor ExtA s.t. for all λ, the following
probability is negl(λ),

Pr

⎡
⎢⎢⎣

(R, zR) ← R(1λ), (crs ‖ �ts) ← K(R, zR),

(�x, π) ← A O( �ts,.)(R, zR, crs), �w ← ExtA (transA ) :
(�x, π) /∈ Q ∧ (�x, �w) /∈ R ∧ V(R, zR, crs, �x, π) = 1

⎤
⎥⎥⎦ .

Here, Q is the set of simulated statement-proof pairs gener-
ated by adversary’s queries to the simulation oracle O, and
transA is a list containing all of A ’s inputs and outputs.

Note that both variants of simulation extractability implies
knowledge soundness (given in Def. 2), as the earlier is a
strong notion of the later which additionally the adversary is
allowed to send query to the proof simulation oracle.

Definition 5 (Zero-Knowledge (ZK) [22]) A non-interactive
argument � is computationally ZK for R, if for all λ, all
(R, zR) ∈ Im(R(1λ)), and for all non-uniform PPT A ,
ε0 ≈c ε1, where

εb = Pr[(crs ‖ �ts) ← K(R, zR) : A Ob(·,·)(R, zR, crs) = 1].

Here, the oracle O0(�x, �w) returns ⊥ (reject) if (�x, �w) /∈
R, and otherwise it returns P(R, zR, crsP, �x, �w). Similarly,
O1(�x, �w) returns⊥ (reject) if (�x, �w) /∈ R, otherwise it returns
Sim(R, zR, crs, �ts, �x). � is perfect ZK for R if one requires
that ε0 = ε1.

Intuitively, a non-interactive argument is ZK if it does not
leak extra information beyond the truth of the statement.

2.3 Boneh-Boyen signatures

We briefly recall one of the constructions of Boneh-Boyen
signatures [12], that is used implicitly in our constructions.
Let G1,G2,GT , e : G1 × G2 → GT be a bilinear group.
Messages are elements of Zp, and signatures are elements of
G1. The secret key is sk ∈ Zp, and the public key (verification
key) is [sk]2 ∈ G2. To sign a message m ∈ Zp, the signer
computes

[σ ]1 =
[

1

sk + m

]
1
.

The verifier accepts the signature if the equation e([σ ]1, [sk]2
+ [m]2) = [1]T holds.
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Boneh-Boyen signatures are existentially unforgeable
under the q-SDH assumption. We use them in our con-
structions as proofs of knowledge of the secret key in the
AGM.

2.4 Algebraic groupmodel

The algebraic group model or AGM for short [19] assumes
that adversaries are algebraic, i.e. they construct their output
group elements as a linear combination of previously seen
group elements. This model is a weakening of the GGM, [31,
33], since algebraic adversaries have direct access to group
elements and can use their representation. In the asymmetric
algebraic group model, it is assumed that, for every element
π in G1,G2 output by the adversary, it also outputs a set
of coefficients in the field that express π as a linear com-
bination of previously received group elements in the same
source group. For elements in GT , the adversary also out-
puts the coefficients that express every element output by
the adversary as a linear combination of elements inGT that
the adversary has received or can compute as the pairing of
elements in G1 and G2 it has received.

Several works (e.g. [17]) have proven security in the
AGM with random oracles. In this case, the adversary has
oracle access to a certain function H : {0, 1}∗ → R,
and the assumption is that for every element π output
by the adversary in G1,G2, also outputs a set of coeffi-
cients in the field that express π as a linear combination
of all previously received group elements, including those
obtained as a response to a hash query if the range R is a
group.

Note that when the range of the hash function R is a group,
the oracle allows the adversary to sample obliviously from
it, i.e. without knowing the discrete logarithm. In our case,
the range of the RO is a field (of size of the order of the ellip-
tic curve) and therefore in our model, the adversary cannot
obliviously sample in the group. As discussed by Lipmaa
[29], we could consider strengthening our model and give
the adversary access to another oracle H2 mapping to group
elements to give this additional power to the adversary. This
model is more realistic since in practice there usually exist
hash to group algorithms that allow to sample in the curve
without knowing the discrete logarithm.

Although the strengthened model is very meaningful and
is a more realistic idealization of elliptic curves, we have
not considered since it complicates the proof significantly
although these additional uniformly and randomly chosen
elements that are chosen independently of the input of the
adversary, intuitively, cannot help the adversary except with
negligible probability.2

2 These new group elements can be seen as additional independent vari-
ables. Using the same trick as [19], the multivariate case can be reduced

Following theworkofFuchsbauer et al. [19],wewill prove
that the security of our scheme reduces to the (q1, q2)-DLOG
Assumption, for a certain (q1, q2) that depends on the size
of supported instances. We note that to improve efficiency,
as [29] we rely on the asymmetric AGM, as opposed to the
proof of Groth16 in [19, 22].

Definition 6 The (q1, q2)-DLOG Assumption holds rela-
tive to BGgen(1λ) if for all PPT adversariesA , the following
probability is negl(λ),

Pr

⎡
⎣gk ← BGgen(1λ), z ← Zp :
z ← A

(
gk,

{
[zi ]1

}q1
i=0

,
{
[zi ]2

}q2
i=0

)
⎤
⎦ .

3 SE variant of Groth16 in the ROM

To achieve (strong) simulation extractability, the prover of
Bowe and Gabizon’s construction [14] replaces all the com-
putations which depend on δ given in the crs by some δ′ of
its choice, that it must give as part of the proof, together with
a proof of knowledge of the DLOG of δ′ w.r.t to δ, which
given some element [Y ]1 = H([A]1 ‖ [B]2 ‖ [C]1 ‖ [δ′]2),
consists of [π ]1 such that e([Y ]1, [δ′]2) = e([π ]1, [δ]2). In
their analysis, H is an RO and their proof requires 2 pairings
for verification.

In Fig. 1, we describe a SE variant of Groth16 that uses
a new technique to shorten the proof and verifies it with a
single verification equation which requires 3 pairings, just as
Groth16. The security analysis is done in the AGMassuming
the underlyinghash function is a randomoracle. TheSEproof
is built using a sequence of games.As part of the reductionwe
need to rewrite in the AGM part of the same proof as Bowe
and Gabizon’s construction [14], that is also in the random
oracle but in the generic group model.

A part from the efficiency gain, from a security point of
view one additional advantage of our construction is that the
ROmaps to elements in Zp and it does not need the property
that H can sample elements ofG obliviously (i.e. soundness
does not use that the DLOG of image elements is hard).

The idea of Bowe and Gabizon of using a POK of the
DLOG of δ′ was also used in our preliminary results pre-
sented in [7], included in Appendix A. The construction we
present below improves on both previous works by choosing
δ′ as before but then replacing it by δ′+δm to create andverify
the proof at once, where, m := H(�x ‖ [A]1 ‖ [B]2 ‖ [

δ′]
2).

The intuition is that the adversary needs to know the division
in the exponent ofC by δ′+δm. However, this is a degree one

to the univariate one by writing each new variable as a degree one poly-
nomial of the same variable. These additional variables ultimately do
not change the total degree of the polynomial that the adversary con-
structs as his output, which is what determines the loss in the reduction.
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polynomial in δ, and this is hard to do unless δ′ = ζ δ. The
verification of this variant requires one additional exponen-
tiation in G2. In the description of the new construction, we
highlight the changes to Groth16with gray background. We
emphasize that the original scheme corresponds to m = 0
and ζ = 1.

Theorem 1 (Completeness, ZK, strong SE) The variant
of Groth16 described in Fig. 1, is a non-interactive zero-
knowledge argument that guarantees 1) perfect complete-
ness, 2) perfect zero-knowledge and 3) strong simulation-
extractability in the asymmetric Generic Group Model and
the RO Model.

Proof To see why perfect completeness holds, the easiest is
to rewrite this scheme in such away so that the terms A, B,C
correspond exactly to Groth16, except that the original term
δ is replaced by δ′ + δm. The prover creates A, B with the
randomizer raδ′, rbδ′, ra, rb ← Zp. Then, it receives m and
reinterprets A, B as being created for the randomized δ′ +
δm and some random values sa, sb. This means the prover
finds the value sa such that raδ′ = sa(δ′ + δm). Solving the

equation, we get sa = ζ

ζ + m
ra (similarly, sb = ζ

ζ + m
rb).

Then it computes C as in the original Groth16 paper but for
sa, sb and δ′ + δm, instead of δ. Rewriting, we obtain:

[A]1 ←
m∑
j=0

a j
[
u j (x)

]
1 + [α]1 + sa

[
δ′ + δm

]
1 ,

[B]2 ←
m∑
j=0

a j
[
v j (x)

]
2 + [β]2 + sb

[
δ′ + δm

]
2 ,

[C]1 ← sb [A]1 + sa [B]1

+
m∑

j=l+1

a j
[
(u j (x)β + v j (x)α + w j (x))/(δ

′ + δm)
]
1

+ [
h(x)t(x)/(δ′ + δm)

]
1 − sasb

[
δ′ + δm

]
1 .

Completeness easily follows from these formulae (in fact, it
is identical to the completeness of Groth16 replacing δ by
δ′ + δm). Similarly, perfect zero-knowledge can be argued
in a standard way.

Simulation extractability is proven by reduction in the
AGM to the knowledge soundness of Groth16.

Since the adversary is algebraic, for each output ele-
ments it is possible to extract a list of coefficients that
express it as a linear combination of previously seen ele-
ments. The view of an adversaryA that has made a sequence
of queries �x1, . . . , �xv to Sim( �ts, ·), and received answers
{π j = ([A j ,C j ]1, [Bj , δ j ]2)}vj=1 is the set Q′, the union

of elements in the crs together with those from the replies of
Sim( �ts, ·); namely,

Q′ :=

⎛
⎜⎜⎜⎜⎜⎝

[
α, β, δ, {xi }n−1

i=0 , {u j (x)β + v j (x)α + w j (x)}lj=0,{
u j (x)β + v j (x)α + w j (x)

δ

}m

j=l+1
, {xi t(x)/δ}n−2

i=0

]
1
,

[β, δ, {xi }n−1
i=0 ]2

⎞
⎟⎟⎟⎟⎟⎠

∪
( {[

A j ,C j := A j B j−ic j−αβ

δ j+m j δ
,
]
1
, [Bj , δ j ]2,m j

}v

j=1

)

where ic j = ∑l
i=0 a

j
i (ui (x)β + vi (x)α + wi (x)), �x j =

(a j
1 , . . . , a

j
l ), and m j ∈ Zp the message that simulator

receives from the RO for each A j , Bj , δ j . Let Q′
1 be the

elements of Q′ in group G1 and Q′
2 the elements in group

G2.
Now, assume that the adversaryA has produced elements

π = ([A,C]1, [B, δ′]2) that pass the verification equation.
This implies that C = (AB − αβ − ∑l

j=0 a j (u j (x)β +
v j (x)α + w j (x)))/(δ′ + mδ), where m = H(�x ‖ [A]1 ‖
[B]2 ‖ [δ′]2). The coefficients extracted for output element
[Y ]i for i ∈ {1, 2} corresponding to element q ∈ Q′

i will
be denoted by kY ,q , so that for each element Y we have that
Y = ∑

q∈Q′
i
kY ,qq.

The reduction proceeds in a series of games,G0, . . . ,G4.

G0: This is the original simulation extractability sound-
ness game. The adversary wins if the proof π =
([A,C]1 ,

[
B, δ′]

2) for some statement (a1, . . . , al) is
accepted and it is not the result of some previous query
for the same statement.

G1: This game is the same as the previous one except that
it aborts if π is accepted but kδ′,δ = −m.

G2: This game is the same as the previous one except that
it aborts if π is accepted but for some j = 1, . . . , v,
δ′ = kδ′,δ j δ j + kδ′,δδ and m = m jkδ′,δ j − kδ′,δ .

G3: This game is the same as the previous one except that
it aborts if if π is accepted but δ′ �= kδ′,δδ.

G4: This game is the same as the previous one, except that
an abort occurs if π is accepted but to compute π the
adversary uses any of the answers of the simulation
oracle.

From G3 on, it is clear that the reduction can extract ζ =
DLOGδ δ′ from the adversary, from which it can transform
the adversary’s output to a proof for Groth16 as [A]1, [B]2,
[C(ζ +m)]1. Additionally, since inG4 the adversary does not
use any of the answers to the simulation oracle, soundness in
that game is implied by the knowledge soundness ofGroth16.

We now proceed to bound the difference in the advan-
tage in these games of any algebraic adversary A . Clearly,
|Pr[G0(A ) = 1] − Pr [G1(A ) = 1]| = |Pr[G1(A ) =
1] − Pr [G2(A ) = 1]| = 1/p since the output of the ran-
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dom oracle is a uniform value chosen independently of the
constants extracted, and the adversary can only be lucky in
guessing this value with probability 1/p.

Next we prove the following lemma:

Lemma 1 For all PPT algebraic adversaries A there exists
an adversary B against the (v + 2, 1)-DLOG Assumption
such that

Pr [G2(A ) = 1] ≤ Pr [G3(A ) = 1] + AdvB (λ) + negl(λ)

Proof Both games are identical except if adversary A out-
puts δ′ �= kδ′,δδ.We show that in this case there exists another
adversary B that breaks the (v + 2, 1)-DLOG Assumption.

Given somegroupkeygk′ = (p,G1,G2,GT , e,P ′
1,P2)

← BGgen(1λ), adversary B receives
{
ziP ′

1

}v+2
i=0 ,{

ziP2
}1
i=0. It then chooses m1, . . . ,mv random values in

Zp. It will store these values and give them as a reply to the
hash queries related to the simulation queries ofA . Next, for
j = 1, . . . , v, it defines

δ j = d j z + f j , f j , d j ← Zp and δ = dz + f , f , d ← Zp .

It programs the public parameters to compute δ and δ j +m jδ

roots for any j , that is, it defines the newgroupkey included in
the public parameters to be gk = (p,G1,G2,GT , e,P1 =
δ
∏v

j=1(δ j +m jδ)P
′
1,P2). This can be computed from the

input of B since

δ

v∏
j=1

(δ j + m j δ) = (dz + f )
v∏
j=1

×((d j + m jd)z + ( f j + m j f ))

is a polynomial of degree (v + 1) in the indeterminate z.
Then, adversary B samples x, α, β ← Zp and com-

putes the common reference string honestly based on the
new group key gk and sends all this information toA . Note
that this requires to compute some expressions involving
x, α, β divided by δ butB can do that by computing δ−1P1,
which is

∏v
j=1(δ j +m jδ)P

′
1 = ∏v

j=1(d j z + f j +m j )P1.
The terms in G1 have maximal degree v + 2 so they can be
computed by B. Whenever B receives a simulation query
�x j , it sets [A j ]1 = [α]1 + ra j [δ j + m jδ]1 and [Bj ]2 =
[β]2 + rb j [δ j + m jδ]2, declares H(�x ‖ [A]1 ‖ [B]2 ‖ [δ j ])
and computes

[C j ]1 =
[
A j B j − ic j − αβ

δ j + m jδ

]
1
.

For this, it will use the fact that it can compute (δ j +
m jδ)

−1P1 as (dz + f )
∏v

i=1,i �= j (di z + fi + mi )P
′
1.

If adversary A breaks simulation extractability for some
�x = (a1, . . . , a j ), it has produced elements (A, B,C, δ′) that
pass the verification equation so:

C = AB − ic − αβ

δ′ + mδ
. (1)

We now study the denominator and numerator of this expres-
sion.

For a second consider �� = (δ, δ1, . . . , δv) as formal vari-
ables and define the polynomial

Pδ′( ��) = kδ′,1 + kδ′,ββ + kδ′,δδ +
n−1∑
i=0

kδ′,xi x
i

+
v∑
j=1

(kδ′,Bj B j + kδ′,δ j δ j ).

The polynomial PB( ��) is defined analogously for the coef-
ficients kB,q , with q ∈ Q′

2. On the other hand, we also define
RA( ��), RC ( ��) in a similar way, except that the result is not
a polynomial but a sum of some rational functions since the
view ofA inG1 includes terms that have δ, δ j +m jδ in the
denominator.

If adversaryA successfully distinguishes between the two
games, kδ′,δ �= −m, so Pδ′( ��)+mδ is a polynomial of degree
one in δ. Further, there is no j such that Pδ′( ��) + mδ =
χ(δ j + m jδ) for some χ ∈ Zp, since this would imply δ′ =
kδ′,δ j δ j + kδ′,δδ and m = m jkδ′,δ j − kδ′,δ , which is also an
abort condition. IfA is successful in distinguishing between
the two games, Pδ′( ��) �= kδ′,δδ, and we are left with two
possibilities:

(a) RC ( ��) = RA( ��)PB( ��) − ic − αβ

Pδ′( ��) + mδ
.

But this equation cannot hold, since as we argued,
Pδ′( ��) + mδ is not a polynomial that is a multiple of
δ, or δ j + m jδ, the only terms that appear as denomina-
tors in any term in RC ( ��).

(b) otherwise,

RC ( ��)(Pδ′( ��) + mδ) − RA( ��)PB( ��) + ic + αβ �= 0.

Define

T ( ��) = δ

v∏
j=1

(δ j + m jδ)
(
RC ( ��)(Pδ′( ��) + mδ)

−RA( ��)PB( ��) + ic + αβ
)
.

Note that this is a polynomial in ��, since δ
∏v

j=1(δ j +
m jδ) cancels out any of the denominators that appear
in the terms in RA(�δ). Replacing δ = dZ + f and
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δ j = d j Z+ f j in T weget a polynomial that depends on a

single variable T ′(Z). Since C = AB−ic−αβ
δ′+mδ

, T ′(z) = 0.
On the other hand, T ′(Z) �= 0 except with probabil-
ity 1/p. This is justified as follows: if T ′(Z) was 0 all
its coefficients must be 0. In particular, take the leading
terms in Z of T ′(Z): this is an expression involving only
d, d j , which are information theoretically hidden from
A . If we think of this polynomial as a multivariate one
of total degree v + 3 in variables d, d j , the probabil-
ity thatA chooses the coefficients kA,q , kB,q , kδ′,q , kC,q

such that when evaluated in d, d j this polynomial is 0
can be bounded by (v + 3)/p. Therefore, B can solve
the DLOG challenge by factoring T ′ and trying all the
possible roots.

Lemma 2 For all PPT algebraic adversaries A there exists
an adversary B against the (v + 2, 1)-DLOG Assumption
such that

Pr [G3(A ) = 1] ≤ Pr [G4(A ) = 1] + AdvB(λ) + negl(λ)

Proof Both games are identical except if adversary A out-
puts a accepting proof that is built using the output of
some simulation query. We show that in this case there
exists another adversaryB that breaks the (v + 2, 1)-DLOG
Assumption.

Given somegroupkeygk′ = (p,G1,G2,GT , e,P ′
1,P2)

← BGgen(1λ), adversary B receives
{
ziP ′

1

}v+1
i=0 ,{

ziP2
}1
i=0. It then chooses m1, . . . ,mv random values in

Zp. It will store these values and give them as a reply to the
hash queries related to the simulation queries ofA . Next, for
j = 1, . . . , v, it defines

α = dαz + fα, fα, dα ← Zp β = dβ z + fβ, fβ, dβ ← Zp,

and, as in the previous lemma:

δ j = d j z + f j , f j , d j ← Zp and δ = dz + f , f , d ← Zp .

It programs the public parameters to compute δ and δ j +m jδ

roots for any j , that is, it defines the newgroupkey included in
the public parameters to be gk = (p,G1,G2,GT , e,P1 =
δ
∏v

j=1(δ j +m jδ)P
′
1,P2). This can be computed from the

input of B since

δ

v∏
j=1

(δ j + m j δ) = (dz + f )
v∏
j=1

((d j + m jd)z + ( f j + m j f ))

is a polynomial of degree (v + 1) in the indeterminate z.
Then, adversary B samples x ← Zp and computes the

common reference string honestly based on the new group
key gk and sends all this information to A . This can be

computed from B’s input since these requires to compute
polynomials of degree at most 2 in z in each source group.

Whenever B receives a simulation query �x j , it samples
ζ j , f A, j , dA, j , fB, j , dB, j ← Zp, and sets

A j = dA, j z + f A, j B j = dB, j z + fB, j δ j = ζ jδ,

declares m j = H(�x j ‖ [A j ]1 ‖ [Bj ]2 ‖ [δ j ]) and computes

[C j ]1 =
[
A j B j − ic j − αβ

δ j + m jδ

]
1
.

For this, it uses the fact that it can compute δ j + m jδ j roots
in G1. If adversary A distinguishes between both games, it
outputs some �x = (a1, . . . , a j ), and (A, B,C, δ′) that pass
the verification equation and, further, it is possible to extract
some ζ such that δ′ +mδ = (ζ +m)δ, therefore it holds that:

Cδ(ζ + m) − AB + ic + αβ = 0. (2)

For a second, consider

�Y := (α, β, δ, δ1, . . . , δv, A1, . . . , Av, B1, . . . , Bv)

as formal variables. Define the polynomial

PB( �Y ) = kB,1 + kB,ββ + kB,δδ +
n−1∑
i=0

kB,xi x
i

+
v∑
j=1

(kB,Bj B j + kB,δ j .δ j ).

Define RA( �Y ), RC ( �Y ) in a similar way, with the coeffi-
cients kA,q , kC,q , q ∈ Q′

1 extracted from the adversary,
except that the result is not a polynomial but a sum of
some rational functions since the view of A in G1 includes
terms that have δ or δ j + m jδ in the denominator. Note
that PA( �Y ) := δ

∏v
j=1(δ j + m jδ)RA( �Y ), PC ( �Y ) :=

δ
∏v

j=1(δ j + m jδ)RA( �Y ) are polynomials in �Y of degree
v+2 since all possible denominators are cancelled out. Mul-
tiplying on both sides of equation (2) by δ

∏v
j=1(δ j +m jδ),

and replacing each group element by the corresponding poly-
nomial, we get the following polynomial:

T ( �Y ) = PC ( �Y )(ζ + m)δ − PA( �Y )PB( �Y )

+δ

v∏
j=1

(δ j + m jδ)ic( �Y ) + δ

v∏
j=1

(δ j + m jδ)αβ.

(3)

If adversaryA distinguishes between the two games, there is
at least one coefficient of PC ( �Y ) or PA( �Y ) accompanying A j

or C j which is not zero, or at least one coefficient of PB( �Y )
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accompanying δ j or Bj which is not zero. We show that this
implies in all cases that T ( �Y ) �= 0.

We start by arguing that kA,α = 1 and kB,β = 1, since
otherwise the term αβ in equation (3) cannot be cancelled
out. In other words, RA( �Y ) = α + . . . and PB( �Y ) = β + . . .,
so PA( �Y ) = δ

∏v
j=1(δ j + m jδ)α + . . .. We next argue all

cases of interest separately:

(a) If the coefficient kB,δ j �= 0 for some j , then in

PA( �Y )PB( �Y ) the coefficient of αδ
∏v

j=1(δ j + m jδ)δ j
is kB,δ j but it is 0 for the rest of the terms (PC can have

no δ j terms because the group is asymmetric, ic( �Y ) does
not have δ j terms by definition and the last term has no
monomials without β). Therefore, the coefficient of this
polynomial is not zero and T ′( �Y ) �= 0.

(b) Similarly, if the coefficient kB,Bj �= 0 for some j , then in

PA( �Y )PB( �Y ) the coefficient of αδ
∏v

j=1(δ j + m jδ)Bj

is kB,Bj , while in the other terms it is 0, in which case

T ′( �Y ) �= 0.
(c) If the coefficient kA,A j �= 0 for some j , then in

PA( �Y )PB( �Y ) the coefficient of monomial A jβ is kA,A j ,
while in the other terms it is 0 (because in PC there can
be no β term and ic( �Y ) does not have A j terms by defi-
nition). Therefore, T ′( �Y ) �= 0.

(d) If the coefficient kA,C j �= 0 for some j , the analysis is

the same as in (b). Therefore, T ′( �Y ) �= 0.
(e) If the coefficient kC,A j �= 0, the only termwith A j would

be PC ( �Y )(ζ j+m)δ sincewe ruled out case (c). Therefore,
T ′( �Y ) �= 0.

(f) If the coefficient kC,C j �= 0, the only termwithC j would

be PC ( �Y )(ζ j+m)δ sincewe ruled out case (d). Therefore,
T ′( �Y ) �= 0.

Finally, we show that if T ( �Y ) �= 0, there exists an
adversary against the (v+2, 1)-DLOGAssumption. Indeed,
suppose that T ( �Y ) �= 0. Define the univariate polyno-
mial T ′(Z) as the result of substituting each variable in
�Y by an expression in the same indeterminate Z , as α =
dαZ + fα, β = dβ Z + fβ, δ j = d j Z + f j , δ = dZ + f .
If T ′(Z) �= 0 is not zero and we know from expression (2)
that T ′(z) = 0, adversaryB can find z by factoring T ′, solv-
ing the DLOG challenge. On the other hand, to argue that
T ′(Z) �= 0 except with probability (v + 3)/p, we resort to
the same argument as in the last step of Lemma 1.

This concludes the reduction to the knowledge soundness
of Groth16, that was reduced in the symmetric AGM to the
(2n − 1)-DLOG Assumption.

4 Empirical analysis

We evaluate the efficiency of our presented simulation
extractable variants of Groth’s zk-SNARK using a proto-
type implementation in Arkworks3 which is an ecosystem
written in Rust for developing and programming with zk-
SNARKs. A prototype implementation of both Groth16 [22]
and Groth and Maller’s zk-SNARK [23] are already pre-
sented in Arkworks library, and in order to obtain a fair
comparison and a comprehensive outcome, we also present
an efficient implementation ofBowe andGabizon’s construc-
tion [14] and our initial construction [7] in the same library.4

Our empirical analysis are done with the elliptic curves
BLS12-381, MNT4-298, MNT6-298, MNT4-753 and MNT6-
753 that BLS12-381 is estimated to achieve between 117 and
120 bits security [30], and the other four curves are esti-
mated to achieve respectively 277, 287, 2113, 2137 security
[9]. All experiments are done on a desktop machine with
Ubuntu 20.4.2 LTS, an Intel Core i9-9900 processor at base
frequency 3.1 GHz, and 128GB of memory. Proof genera-
tions are done in the multi-thread mode, with 16 threads,
while proof verifications are done in a single-thread mode.

Following the benchmark strategy in Arkworks library,
we report Per-Constraint Proving Time (PCPT) and verifi-
cation time for both the proposed constructions in Sects. 3
and Appendix A and compare their efficiency with (weak
or strong) SE zk-SNARKs of Groth16 [22], Groth-Maller
(GM17) [23] and Bowe-Gabizon (BG18) [14]. Motivated by
blockchain and large-scale applications like Zcash [8], we
also compare (deterministic) verifying time of all construc-
tions for the case that one needs to verify a large number
of proofs for a particular language simultaneously. In the
verification step of our constructions, one needs to compute
exponentiation in G2 and GT , which can be optimized by
Multi-Scalar Multiplication (MSM) techniques.

Table 2 presents an empirical analysis of our constructions
and compares them with several relevant SE zk-SNARKs
for an R1CS instance with 400.000 constraints and 10 input
variables. The reported times are the average values on 100
iterations for proof generation and 10.000 iterations for veri-
fication. As it can be seen, similar to BG18 construction [14],
provers of our constructions are almost as efficient as Groth’s
protocol, while due to a different NP characterization, the
GM17 scheme is considerably less efficient in comparison
with other schemes. For instance, to generate a proof for an
arithmetic circuit with 400.000 constraints, with BLS12-381
curve, Groth16, BG18, and both of our constructions require
≈ 2.01 seconds, while GM17 needs ≈ 4.41 seconds.

3 Available on https://github.com/arkworks-rs.
4 Source codes of our implementations are publicly available on:
https://github.com/Baghery/ABPR22.
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Among the compared strong SE constructions, GM17 has
the shortest proof size, namely 2 elements from G1 and 1
element from G2, and our construction in Sect. 3 has the
second shortest proof size, namely 2 elements from G1 and
2 elements from G2.

In the last two columns of Tab. 2, we report the verification
timeof all constructions for the case thatweneed to verify 102

or 103 proofs of the same language. Once verifying a large
number of proofs, our constructions use the MSM technique
to compute the needed exponentiations in all proofs at the
same time, which allows us to save on total verification time.
As it can be seen, our construction presented in Sect. 3 has
the most efficient verification among the strong SE construc-
tions, and above all in the case of verifying a large number of
proofs, the total verification time in both of our constructions
improve significantly using the MSM technique. In particu-
lar, the verification of our second construction has very close
efficiency to the originalGroth16. For instance, in the case of
BLS12-381, once we verify 100 proofs, the total verification
time for Groth16 is ≈ 0.190 seconds, and for our second
construction is ≈ 0.194. As it can be seen the gap is small
and actually the larger the number of proofs we verify, the
smaller this gap gets.

5 Conclusion

Over the last few years, various SE zk-SNARKs have been
proposed that achieve (strong) simulation extractability [2,
14, 23, 29], which is a security property stronger than knowl-
edge soundness and prevents attacks from the adversaries
who have seen simulated proofs. Simulation extractability
implies non-malleability of proofs [23] and its variant with
black-box extraction is shown to be sufficient for achiev-
ing UC-security in NIZK arguments [21]. SE zk-SNARKs
allow us to build succinct signature-of-knowledge schemes
[16, 23], and they can also be used to build chameleon hash
functions [25].

In this paper, we revised the SE variation of Groth16
proposed in [14] and presented a new variation. Our initial
construction from CANS 2020 ( [7], Appendix A) requires 4
pairings in verification, instead of 5 in [14], and also avoids
random oracles in exchange for using a collision resistant
hash function. It has a more efficient prover, crs size, and
proof size in comparison with [2], that has also 4 pairings in
the verification. Our new variant used some subtle modifica-
tions to shorten the proof size and improved the verification
of Bowe and Gabizon’s construction significantly [14]. In
this variant, we showed that using a random oracle, we can
achieve strong SE in Groth16, at the cost of one additional
G2 element in the proof, and one new exponentiation in G2

in the verification, where the later introduces negligible over-
head to the verification ofGroth16 in the cases that one needs

to verify a large number of proofs for the same circuit (e.g.
Zcash [8]).

We evaluated the empirical performance of our construc-
tions in Arkworks library. Our evaluations showed that our
constructions are among the most efficient SE zk-SNARKs.
Particularly, in large-scale applications, the CRS, the prover,
and the verifier of our new SE zk-SNARK are almost as
efficient as the original Groth16. Just, in our case the proof
consists of 4 group elements, instead of 3 in the original con-
struction of Groth16. This seems to be a minimal cost to
achieve strong SE in Groth16.
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Appendix A: A simulation extractable zk-
SNARKwithout RO

In this section, we recall the construction of our first (strong)
SE variant ofGroth16 based on Bowe andGabizon’s scheme
[14] which is presented in [7].

Scheme Definition. In Fig. 2, we recall the construction
of our first variation of Groth16 [7], that similarly works
with quadratic arithmetic programs. In this construction, the
Proof of Knowledge (PoK) of the DLOG of [δ′]2 w.r.t. [δ]2

123

https://github.com/Baghery/ABPR22
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


444 O. Amine et al.

Fig. 2 Our initial strong SE variant of Groth16 for R along with a modification of the Boneh-Boyen signature. In the protocol, H is a family of
collision resistant hash functions that map to Z

∗
p [7]

is changed to another PoK in the GGM that relies on the
collision resistance property of the hash function. In Fig. 2,
the elements [αβ, t(x), γ t(x)]T are redundant and can in
fact be computed from the rest of the elements in the crs.
Alternatively, one can describe Groth16 as corresponding
to ζ = 1, γ = 0 and where the proof consists only of
[A,C]1 , [B]2.DifferenceswithGroth16 are highlighted.We
briefly give an intuition behind the construction in the fol-
lowing.
Avoiding Random Oracle. In [7], it is proven that the
variation of Groth16 described in Fig. 2, guarantees (1)
perfect completeness, (2) perfect zero-knowledge and (3)
simulation-extractability in the asymmetric GGM. The proof
of construction uses the collision resistance property of the
hash function and theGGM.Roughly speaking, the new vari-
able γ gives some additional guarantees because to compute

t(x) (γ+m)
(δ′+δm)

from Dj such that m j �= m, it is necessary to

know both 1
(δ′+δm)

and γ
(δ′+δm)

, but this is only possible when
δ′ + δm = kδ. Then, either one has the knowledge of the
DLOG of δ′ respect to δ (k − m), which is straightforward,
or either one has re-used δ′

j andm j from some j th query. The
last case is discarded when one reaches that same message
had to be re-used,m = m j , which breaks collision resistance
of the hash.
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