
International Journal of Information Security (2024) 23:389–410
https://doi.org/10.1007/s10207-023-00740-9

REGULAR CONTRIBUT ION

Synthesizing differentially private location traces including
co-locations

Jun Narita1 · Takao Murakami2 · Hideitsu Hino2,4 ·Masakatsu Nishigaki1 · Tetsushi Ohki1,3,4

Published online: 29 August 2023
© The Author(s) 2023

Abstract
Privacy-preserving location synthesizers have been widely studied to perform private geo-data analysis. They have also been
used for generating datasets for research or competitions. However, existing location synthesizers do not take into account the
friendship information of users. Because friends tend to visit the same place at the same time in practice, a location synthesizer
should consider such co-locations of friends to generate a more realistic dataset. In this paper, we propose a novel location
synthesizer that generates location traces including co-locations of friends. Our location synthesizer models the information
about the co-locations with two parameters: friendship probability and co-location count matrix. Our synthesizer generates
a synthetic graph based on the friendship probability and then generates synthetic co-locations using the synthetic graph
and the co-location count matrix. The two parameters in our synthesizer provide strong privacy guarantees—the friendship
probability provides node differential privacy (DP) and the co-location count matrix provides user-level DP. We evaluate
our synthesizer using two real datasets. Our experimental results show that our synthesizer preserves co-locations and other
statistical features while providing DP with reasonable privacy budgets, e.g., 0.2-node DP and 2-user-level DP.

Keywords Location synthesizer · Differential privacy · User-level DP · Node DP · Co-location

1 Introduction

Location-based services (LBS), such as point-of-interest
(POI) search and route suggestion, have been increasingly
used in recent years.Consequently, a large amount of location
traces (time-series location trails) are accumulated in an LBS
provider. The LBS provider can provide the location traces

B Tetsushi Ohki
ohki@inf.shizuoka.ac.jp

Jun Narita
narita@sec.inf.shizuoka.ac.jp

Takao Murakami
tmura@ism.ac.jp

Hideitsu Hino
hino@ism.ac.jp

Masakatsu Nishigaki
nisigaki@inf.shizuoka.ac.jp

1 Shizuoka University, Shizuoka, Japan

2 The Institute of Statistical Mathematics, Tachikawa, Japan

3 National Institute of Advanced Industrial Science and
Technology, Tokyo, Japan

4 RIKEN AIP, Tokyo, Japan

to a third party to perform various geo-data analyses such
as finding popular POIs [54], modeling human mobility pat-
terns [24], and semantic annotation of POIs [51]. However,
the disclosure of the traces can lead to a serious privacy issue
because they may include sensitive locations, e.g., homes
and hospitals. In addition, several methods have been devel-
oped to identify the users’ behaviors [27, 53] or to re-identify
traces from pseudonymized traces [12, 30, 31].

Many privacy-preserving location synthesizers have been
proposed to address this privacy issue [3, 4, 13, 16, 28, 29].
These approaches first train a generative model from real
location traces. Then they generate synthetic traces based
on the trained generative model. Ideally, synthetic traces
preserve various statistical features, such as a population
distribution [54] and transition matrix [47], while strongly
protecting user privacy. The preserved statistical features
play a significant role in the geo-data analysis. Moreover,
applications of synthetic traces are not limited to geo-data
analysis. For example, they are useful for research purposes
[20, 33] and competitions [28, 38].

Existing location synthesizers, however, do not consider
friendship information between users. In particular, friends
tend to visit the same place at the same time [50]. This event

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00740-9&domain=pdf
http://orcid.org/0000-0001-6636-9394

390 J. Narita et al.

is called a co-location [35, 36]. Co-locations of friends are
important to make synthetic traces more realistic. For exam-
ple, a recent study [50] shows that there is a correlation
between co-locations and friendships on Twitter. Therefore,
synthetic traces including co-locations of friends can be used
as a dataset to study the effectiveness of friend suggestion
algorithms based on locations.

In this paper, we propose a novel location synthesizer that
synthesizes location traces including co-locations of friends.
To preserve co-location information, our proposed method
trains two parameters: friendship probability and co-location
count matrix. The friendship probability represents a proba-
bility that two users are friends. The co-location count matrix
is composed of a co-location count for each time instant and
each location. Thus, it models a location that is likely to be
visited by friends at a certain time period, e.g., amusement
parks in the daytime and restaurants at night.

Our location synthesizer works as follows. First, we train
the two parameters using a friendship (or social) graph and
location traces, which we call a training graph and train-
ing traces, respectively. We train the friendship probability
from a training graph and the co-location count matrix from
training traces. Then, we generate a synthetic graph using
the friendship probability. We generate co-locations in syn-
thetic traces using the synthetic graph and the co-location
count matrix. Finally, we generate other locations using an
existing location synthesizer providing DP [4, 13, 16] based
on the Markov chain model.

One promising feature of our location synthesizer is that
both the two parameters in our synthesizer provide strong
privacy guarantees: differential privacy (DP) [10], which is
known as a gold standard for data privacy. The friendship
probability provides ε1-(bounded) node DP [21], a strong
type of DP on graphs, for the training graph. The co-location
count matrix provides ε2-user-level DP [9], which is a strong
type of DP on time-series data, for the training traces. The
parameters ε1 and ε2 are non-negative real values and called
the privacy budgets [10]. It is well known that DP strongly
protects user privacy when they are small, e.g., smaller than
1 or 2 [18, 34].

We use the existing synthesizer providing ε3-user-level
DP for the training traces [4, 13, 16] to generate locations
other than co-locations. Then, by the composition theorem
in DP [10], the entire synthetic traces provide ε1-node DP for
the training graph and (ε2+ε3)-user-level DP for the training
traces. As with [4, 13, 16], we use the privacy budget ε3 to
preserve statistical features, such as a population distribution
[54] and transition matrix [47]. We additionally use ε1 and
ε2 to preserve the information about co-locations, which has
not been considered in the existing synthesizers. ε1 and ε2
are additional costs required to incorporate co-locations into
synthetic traces. Table 1 summarizes the existing synthesiz-
ers [4, 13, 16] and our synthesizer.

Through comprehensive experiments, we show that our
synthesizer preserves the information about co-locations and
other statistical features (e.g., population distribution, transi-
tion matrix) with reasonable privacy budgets, e.g., ε1 = 0.2
and ε2 = ε3 = 1.

1.1 Our contributions

In summary, we provide the following contributions:

– We propose a novel location synthesizer that generates
location traces including co-locations of friends. To our
knowledge, we are the first to synthesize traces includ-
ing co-locations. Our synthesizer models the information
about co-locations of friendswith twoparameters: friend-
ship probability and co-location countmatrix. The friend-
ship probability provides node DP, and the co-location
count matrix provides user-level DP.

– We evaluate our synthetic traces using two real datasets:
the Foursquare [50] and Gowalla [25] datasets. Our
experimental results show that our synthetic traces pre-
serve the information about co-locations and other sta-
tistical features (e.g., population distribution, transition
matrix) while satisfying DPwith reasonable privacy bud-
gets, e.g., 0.2-node DP (ε1 = 0.2) for the training graph
and 2-user-level DP (ε2 = ε3 = 1) for the training traces.

This paper is a significant extension of the previously pub-
lished conference paper [32]. The main enhancements are as
follows:

– In [32], we did not discuss the overall privacy guaran-
tee for the entire dataset including the training graph and
training traces. In this paper, we define total DP (Def-
inition 3) to provide the overall privacy guarantee for
the entire dataset and prove that our synthesizer provides
total DP (Sect. 4.5).

– In [32], we generated a synthetic graph based on the
Erdös-Rényi (ER) model [5]. However, it is well known
that the ER model does not reflect an actual graph prop-
erty. Specifically, most actual graphs have a power-law
degree distribution [1],whereas theERmodel does not. In
this paper,we also generate a synthetic graph based on the
Barabási-Albert (BA) model [1], which has a power-law
degree distribution and therefore is much more realistic.
Our BA graph also provides node DP. We show through
experiments that our BA graph has a degree distribution
close to a training graph (Sects. 4 and 5).

– In [32], we evaluated our synthesizer using only one
dataset: the Foursquare dataset. In this paper, we add the
Gowalla dataset tomake the evaluationmore comprehen-
sive (Sect. 5).

123

Synthesizing differentially private location traces including co-locations 391

Table 1 The existing and our location synthesizers

Privacy for a training graph Privacy for training traces Co-locations Other statistical features

Existing synthesizer [4, 13, 16] N/A ε3-user-level DP × �
Our synthesizer ε1-node DP (ε2 + ε3)-user-level DP � �

The existing synthesizers do not use a training graph and therefore do not preserve the information about co-locations of friends. We use additional
privacy budgets ε1 and ε2 to preserve this new information while keeping other statistical features, such as a population distribution and transition
matrix

– In [32], we did not show examples of co-locations pre-
served in our synthesizer. In this paper, we show ten pairs
of locations and time instants where co-location events
are most likely to occur for each dataset. Using these
examples, we show how well our synthesizer preserves
the information about co-locations (Sect. 5).

– In [32], we evaluated the utility of the probability distri-
butions (e.g., population distribution, transition matrix)
by only the mean absolute error (MAE) and the mean
squared error (MSE). In this paper, we also evaluate the
utility of them using the Kullback–Leibler (KL) diver-
gence and the Jensen–Shannon (JS) divergence. These
utility metrics also make our evaluation more compre-
hensive (Sect. 5).

– In [32], we did not provide the details of how to apply
Privelet [49] in our location synthesizer. In this paper,
we provide the details of applying Privelet and provide a
proof that Privelet provides user-level DP (Appendix 1).

1.2 Paper organization

The rest of this paper is organized as follows. In Sect. 2, we
review the previous work closely related to ours. In Sect. 3,
we introduce some preliminaries for our work. In Sect. 4,
we propose our location synthesizer. In Sect. 5, we show
our experimental results. Finally, in Sect. 6, we conclude this
paper with future directions of this work.

2 Related work

2.1 Co-locations

A co-location refers to an event that two users are in the
same place at the same time. In particular, we focus on a co-
location of friends and generate synthetic traces on the basis
of the co-location.

Co-locations have beenwidely studied, especially through
the impact on location privacy and the relationship with
friendships. Olteanu et al. [35, 36] showed that co-location
information improves the accuracy of location inference
attacks. The users’ benefits of sharing co-locations and the
impact of co-locations on location privacy were also studied

in [37]. Yang et al. [50] showed that there is a correlation
between co-location information and friendships on Twitter.
However, to the best of the authors’ knowledge, there are no
existing studies that use co-locations to synthesize location
traces.

2.2 Location synthesizers

The generation of synthetic location traces has long been
recognized as an important research subject; see [3, 29] for
detailed surveys. Bindschaeder and Shokri [3] developed a
synthetic location generation algorithm considering seman-
tic features of locations. For example, most people tend to
stay a night at their homes, which are geographically differ-
ent but semantically the same. Their synthesizer preserves
this kind of information while satisfying their own privacy
notion called plausible deniability. Bindschaeder et al. [4]
also proposed a synthetic data generator for synthesizing var-
ious types of data with DP. This synthesizer can be applied
to various data, including location traces [29]. In the case of
location traces, the synthetic data generator in [4] trains a
transition matrix common to all users as a generative model
(see [29] for details). Some studies [13, 16] proposed more
complicated algorithms for generating synthetic traces with
DP using a transition matrix common to all users. Murakami
et al. [29] proposed amethod to generate synthetic traceswith
high utility based on an observation that there should be a
small number of typical groups of users, e.g., thosewho often
go to malls and those who frequently go to offices. Specif-
ically, they clustered a transition matrix for each user using
tensor factorization. They also applied a modified version
of their algorithm to a location anonymization contest [28].
The synthesizers in [3, 28, 29] do not provide DP, whereas
the synthesizers in [4, 13, 16] provide DP.

Thus, many studies have been made on the artificial gen-
eration of location traces. However, to the best of the authors’
knowledge, no generation method using co-locations has
been proposed so far. As explained above, it is shown in
[50] that there is a correlation between co-locations and
friendships, i.e., friends tend to be in the same place at the
same time. Hence, to synthesize more realistic traces, it is
important to take the co-location information into account
for generating location traces.

123

392 J. Narita et al.

Table 2 Basic notations

Symbol Description

U Finite set of users in training data

n Number of users (n = |U |)
X Finite set of locations

T Finite set of time instants

E Finite set of events (E = X × T)

R Finite set of traces (R = U × E∗)
S Finite set of training traces (S ⊆ R)

ui i-th user (ui ∈ U)
xi i-th location (xi ∈ X)

ti i-th time instant (ti ∈ T)

A Training adjacency matrix (A ∈ {0, 1}n×n)

si i-th user’s training trace (si ⊆ S)

Finally, a recent study [48] empirically showed that syn-
thetic data did not provide a better trade-off between privacy
and utility for data analysis than a traditional anonymiza-
tion (generalization and deletion) technique satisfying k-
anonymization. In the case of geo-data analysis, the result
in [48] indicates that location synthesizers might not provide
a better empirical trade-off between privacy and utility than
location obfuscation (e.g., generalization, deletion) methods
providing k-anonymity [2, 6]. However, synthesizers are use-
ful for not only data analysis but also generating a dataset for
research [20, 33] or competitions [28, 38]. These important
applications cannot be realized by generalization and dele-
tion.We aim at generating a synthetic yet realistic dataset that
is useful for research or competitions by preserving various
statistical features including co-locations of friends.

3 Preliminaries

In this section,we introduce some preliminaries for ourwork.
In Sect. 3.1, we define basic notations used in this paper. In
Sect. 3.2, we explain friendship graphs and location traces. In
Sect. 3.3,wedescribe our threatmodel and reviewdifferential
privacy.

3.1 Basic notations

Below, we define the basic notations used in this paper. Let
R,R≥0,N, andZ≥0, be the set of real numbers, non-negative
real numbers, natural numbers, and non-negative integers,
respectively. For a finite set Z , let Z∗ be the set of all finite
sequences of elements of Z . Let P(Z) be the power set of
Z . For a ∈ N, let [a] = {1, 2, . . . , a}. We represent a matrix
as a bold capital letter, such asM. We denote the i-th row of
the matrix M by Mi and the (i, j)-th element of M by Mi j .

Training Graph Training Adjacency MatrixA

Fig. 1 Examples of the training graph and the corresponding adjacency
matrix (n = 6)

We follow the notations in [29] to define users, locations,
and time. Specifically, let U be a finite set of users in training
data. Let n ∈ N be the number of users, i.e., n = |U |. Let
ui ∈ U be the i-th user, i.e., U = {u1, . . . , un}. We consider
discrete locations. For example, we can divide an area of
interest into some regions or extract some POIs. Let X be
a finite set of locations. Let xi be the i-th location. We also
consider a discrete version of time, called time instant. For
example, we can round down minutes to a multiple of 20.
Let T be a finite set of time instants. Let ti ∈ T be the i-th
time instant.

The basic notations used in this paper are shown inTable 2.
Symbols that are not explained in Sect. 3.1 will be explained
in Sect. 3.2.

3.2 Friendship graphs and location traces

Friendship graphs A friendship (or social) graph includes
friendship information between any pair of two users. It is
represented as an undirected graph, where a node represents
a user and an edge represents that two users are friends. The
friendship graph is also represented as an adjacency matrix
of size n × n. In the adjacency matrix, an element between
two friends is set to 1, and an element between two users
who are not friends is set to 0. Diagonal elements are set to 0
because there are no friend relationships between users and
themselves.

Figure 1 shows examples of the friendship graph and the
corresponding adjacencymatrix in training data. In thiswork,
we call them the training graph and the training adjacency
matrix. In this example, user u1 is a friend with u3 and u4.
User u6 is a friend with only u4.

Formally, let A ∈ {0, 1}n×n be a training adjacency
matrix.Ai is the i-th rowofA. InFig. 1,A1 = (0, 0, 1, 1, 0, 0),
. . ., A6 = (0, 0, 0, 1, 0, 0).
Location traces A location trace includes a location in each
time instant. A pair of the location and the time instant is
called an event [29, 45].

123

Synthesizing differentially private location traces including co-locations 393

x2 x4 x5

x3 x4 x1

x4 x3 x1

Training Traces
User Location Trace

x1

x2

x2

Time Instant

: Co-location

x1 x1 x4 x2

x5 x2 x2 x3

x5 x4 x3 x4

Fig. 2 Examples of the training traces (n = 6, |X | = 5, |T | = 4)

Figure 2 shows examples of the location traces in training
data, which we call the training traces. We mark co-location
events with red. In this example, users u1 and u2 have a co-
location event at location x4 and time instant t2. Users u2 and
u3 have a co-location event at x1 and t3.

Let E = X × T be a finite set of events. Let R =
U × E∗ be a finite set of traces. Let S ⊆ R be a finite
set of training traces. Let si ∈ S be the i-th training
trace. In Fig. 2, s1 = (u1, (x2, t1), (x4, t2), (x5, t3), (x1, t4)),
. . ., s6 = (u6, (x5, t1), (x4, t2), (x3, t3), (x4, t4)), and S =
{s1, s2, s3, s4, s5, s6}. Note that although each trace includes
four events in Fig. 2, we do not assume the length of the
training trace is the same among all users. In fact, the length
of the training trace is different in our experiments.

3.3 Threat model and differential privacy

Threat model We use training data that includes a friendship
graph and location traces to generate synthetic traces. We
assume that the number n of users in training data is public.
We also assume that an adversary has any background knowl-
edge other than the training data. The adversary obtains the
synthetic traces and attempts to violate user privacy in the
training data on the basis of the synthetic traces and the back-
ground knowledge. For example, the adversary performs a
membership inference attack [39, 44], which infers whether
a location trace of a specific user is included in the training
data.

To strongly protect user privacy in the training data from
the adversarywith any background knowledge,we use differ-
ential privacy (DP) [8, 10] as a privacy metric. DP provides
user privacy against adversaries with any background knowl-
edge. Below, we explain DP for training graphs and training
traces.
DP for training graphs There are two types of DP on graphs:
edge DP and node (or vertex) DP [21, 46]. Edge DP hides

Adjacency Matrix Adjacency Matrix

neighboring

Fig. 3 Example of neighboring adjacency matrices A and A′ in
(bounded) node DP [21] (n = 6)

the existence of one edge, i.e., friendship. In contrast, node
DP hides the existence of all edges connected to one node.
Therefore, node DP guarantees much stronger privacy than
edge DP and much more difficult to attain [15, 19, 41]. To
strongly protect user privacy in the training graphs, we tackle
this challenge and use node DP as a privacy metric.

The original definition of node DP [15] follows the direc-
tion of unbounded DP [22], where a neighboring graph is
obtained by removing one node. Since we assume that n is
public (as described in Sect. 3.3 “Threat Model”), we use
node DP in [21] that follows the direction of bounded DP
[22], where a neighboring graph is obtained by changing at
most n−1 edges of one node. Bounded nodeDP is alsomuch
stronger than edge DP because it hides all sensitive edges of
a user.

Formally, (bounded) nodeDP in [21] considers two neigh-
boring adjacency matrices A and A′ such that A′ is obtained
by an arbitrary rewiring of edges connected to one node. In
other words, A and A′ differ in at most n − 1 edges of one
user. Fig. 3 shows an example of two neighboring adjacency
matrices A and A′ (n = 6). In this example, A and A′ differ
in n − 1 = 5 edges connected to u3.

Using the notion of neighboring adjacency matrices,
(bounded) node DP is defined as follows.

Definition 1 [ε1-(bounded) node DP [21]] Let ε1 ∈ R≥0. A
randomizedmechanismM1 with domain {0, 1}n×n provides
ε1-node DP if for any two neighboring adjacency matrices
A,A′ ∈ {0, 1}n×n that differ in at most n − 1 edges of one
user and any z ∈ Range(M1),

Pr[M1(A) = z] ≤ eε1 Pr[M1(A′) = z]. (1)

123

394 J. Narita et al.

By (1), if ε1 is close to 0, then A and A′ are almost equally
likely. Thus, an adversary who obtains the output of M1

cannot determine whether it is come from A or A′. If the
privacy budget ε1 is small (e.g., smaller than 1 or 2 [18, 34]),
each user’s privacy is strongly protected.
DP for training traces For time-series data such as training
traces, there are two types of DP: event-level DP and user-
level DP [9]. Event-level DP protects one event in time-series
data. In contrast, user-level DP protects the entire history
(i.e., entire time-series data) of one user. Thus, user-level DP
guarantees much stronger privacy than event-level DP and is
muchmore difficult to attain. To strongly protect user privacy
in training traces, we use user-level DP.

Formally, user-level DP for training traces considers two
neighboring sets S and S ′ of traces such that S ′ is obtained
by changing the entire trace of one user in S. For example,
consider a set S ′ of traces obtained by changing s2 in Fig. 2
to s′

2 as follows: s′
2 = (u2, (x1, t1), (x1, t2), (x1, t3)) (note

that the trace length can also be changed). In this example,
S and S ′ are neighboring sets.

Using neighboring sets of traces, user-level DP is defined
as follows.

Definition 2 [ε2-user-levelDP] Let ε2 ∈ R≥0.A randomized
mechanism M2 with domain P(R) provides ε2-user-level
DP if for any two neighboring sets S,S ′ ⊆ R of traces that
differ in the entire trace of one user and any z ∈ Range(M2),

Pr[M2(S) = z] ≤ eε2 Pr[M2(S ′) = z]. (2)

By (2), if ε2 is close to 0, an adversary who obtains the output
of M2 cannot determine whether it is come from S or S ′.
Thus, the privacy of each user is strongly protected when the
privacy budget ε2 is small.

Note that the neighboring sets S and S ′ have the same
number of users. Thus, user-level DP follows the direction
of bounded DP [22] in the same way as node DP in [21].
Total DP In this work, we use a dataset that includes both the
training graph (adjacency matrix) A and the training traces
S. Assume that we use an algorithm providing ε1-node DP
for A and an algorithm providing ε2-user-level DP for S.
Then, a natural question would be: what is the total privacy
guarantee of these algorithms for a single user? To answer
this question, we define total DP.

The above dataset can be expressed as a tuple (A,S). We
consider two neighboring tuples (A,S) and (A′,S ′) such
that (A′,S ′) is obtained by changing the entire trace and at
most n−1 edges of one user, i.e., an arbitrary rewiring of all
personal data of one user.

Using the neighboring tuples, we define total DP:

Definition 3 [ε-total DP] Let ε ∈ R≥0. A randomizedmech-
anism M with domain {0, 1}n×n × P(R) provides ε-node
DP if for any two neighboring tuples (A,S) and (A′,S ′) that

differ in the entire trace and at most n − 1 edges of one user
and any z ∈ Range(M),

Pr[M(A,S) = z] ≤ eε Pr[M(A′,S ′) = z]. (3)

ε is a total privacy budget over the entire dataset (A,S). We
can answer our question above by using total DP:

Proposition 1 Let ε1, ε2 ∈ R≥0. Assume that random-
ized mechanisms M1 with domain {0, 1}n×n and M2 with
domain P(R) provide ε1-node DP and ε2-user-level DP,
respectively. In addition, assume thatM1 andM2 are inde-
pendently executed. Then, the independent execution ofM1

and M2 provides (ε1 + ε2)-total DP.

Proof The randomness inM1 is independent of the random-
ness in M2. Thus, given inputs A ∈ {0, 1}n×n and S ⊆ R,
the outputs of M1 and M2 are independent of each other.
Therefore, for any twoneighboring tuples (A,S) and (A′,S ′)
and for any z1 ∈ Range(M1) and z2 ∈ Range(M2), we have

Pr[(M1(A),M2(S)) = (z1, z2)]
≤ eε1 Pr[(M1(A′),M2(S)) = (z1, z2)] (by (1))

≤ eε1+ε2 Pr[(M1(A′),M2(S ′)) = (z1, z2)] (by (2)),

which proves Proposition 1. �	
Proposition 1 means that if we provide ε1-node DP for the

training graph and ε2-user-level DP for the training traces,
then the total privacy budget ε over the entire dataset (A,S)

is the sum of ε1 and ε2, i.e., ε = ε1 + ε2.
Both node DP in [21] and user-level DP follow the direc-

tion of bounded DP, as explained above. Thus, total DP also
follows the direction of bounded DP.

4 Proposedmethod

We propose a novel location synthesizer that generates syn-
thetic traces including co-locations of friends. In Sect. 4.1,
we describe the overview of our synthesizer. We explain the
details of our synthesizer in the remaining subsections. In
Sects. 4.2 and 4.3, we explain how to train the friendship
probability and the co-location count matrix, respectively.
In Sect. 4.4, we explain how to generate synthetic traces
based on the friendship probability and the co-location count
matrix. In Sect. 4.5, we provide end-to-end privacy analysis
of our synthesizer.

4.1 Overview

Figure 4 shows the overview of our location synthesizer.
The main feature of our synthesizer is that it generates

123

Synthesizing differentially private location traces including co-locations 395

Train a privacy-preserving
location synthesizer Generate synthetic traces

Training graph

Training traces

Friendship probability

Co-location count
matrix

Co-location count
matrix

Friendship probability

Training Dataset

Calculate a synthetic graph
(ER or BA graph)

Parameters in Our Synthesizer

Generate synthetic co-locations

Add -node DP noise
(Laplace)

Add -user-level DP noise
(Laplace or Privelet)

Add -user-level DP noise

Fig. 4 Overviewof our location synthesizer.Wefirst train the friendship
probability p′, the co-location count matrixQ′, and an existing location
synthesizer [4, 13, 16] based on the Markov chain model. Then, we cal-

culate a synthetic graph based on p′. Finally, we generate co-locations
using the synthetic graph and Q′ and other locations using the existing
location synthesizer

synthetic traces including co-locations. The synthetic traces
preserve a friendship probability (i.e., how likely two users
will be friends) and a co-location count matrix (i.e., how
likely a co-location event will happen at a certain location
for each time instant). The two parameters in our synthe-
sizer strongly protect user privacy; the friendship probability
provides node DP and the co-location count matrix provides
user-level DP.

Our location synthesizer uses a location dataset that
includes both location traces and a friendship graph (e.g.,
Foursquare dataset [50] and Gowalla dataset [25]) as train-
ing data. Below, we briefly explain how to train parameters
from the training data and how to generate synthetic traces
from the parameters.
Training parameters Froma training graph,wefirst calculate
a friendship probability p ∈ [0, 1], which represents a prob-
ability that two users are friends. Then we add the Laplace
noise [10] to p to obtain a noisy friendship probability p′
providing node DP.

From training traces, we first calculate a co-location count
matrix Q ∈ Z

|T |×|X |
≥0 , which comprises a co-location count

for each time instant and each location. Specifically, we cal-
culate Q by simply counting co-locations between friends.
Then we add noise to Q to obtain a noisy co-location count
matrix Q′ providing user-level DP.

The simplest approach to providing DP forQ′ is to add the
Laplace noise to each element inQ.We refer to this approach
as the Laplace mechanism.

Another approach is to applyPrivelet (for one-dimensional
nominal data) [49], a DP mechanism based on a wavelet
transform, to each row ofQ. Privelet uses a nominal wavelet
transform to a one-dimensional count vector and adds the
Laplace noise to each wavelet coefficient, i.e., each node
in a tree structure. When a category (or tree structure) of
locations is known, Privelet significantly reduces the amount
of noise for each category. For example, categories (e.g.,
“travel & transport” and “shopping”) and subcategories (e.g.,

“train station”, “airport”, “bookstore”, and “discount store”)
of POIs are available in the Foursquare dataset [7] and the
Gowalla dataset [25]. Thus, we can use Privelet to provide
DP forQ′ with a much smaller amount of noise for each POI
category.

Other methods than the Laplace mechanism and Privelet
include the hierarchicalmethod in [40] and thematrixmecha-
nism in [23, 52]. Specifically, the hierarchical method in [40]
finds the optimal branching factor in a tree that minimizes
the mean square error of a range query. However, this opti-
mizationmethod cannot be applied to our settingwhere a tree
structure of locations (i.e., POI categories and subcategories)
is given in advance. In addition, thematrixmechanism in [23,
52] is inefficient and provides worse utility than the hierar-
chical method, as described in [34]. Therefore, we focus on
the Laplace mechanism and Privelet and evaluate these two
mechanisms in our experiments.
Generating synthetic traces Based on two parameters p′ and
Q′, we generate synthetic traces including co-locations. First,
we calculate a synthetic graph based on the friendship prob-
ability p′. In this paper, we propose to calculate two types
of graphs: a graph based on the Erdös-Rényi model (the ER
graph) [5] and a graph based on the Barabási-Albert model
[1] (the BA graph). Note that both the ER and BA graphs are
generated using only a single friendship probability p′ pro-
viding nodeDP.Thus, by the immunity to the post-processing
[10], both the ER and BA graphs also provide node DP.

The BA graph is more realistic than the ER graph in that
it has a power-law degree distribution. In our experiments,
we show that the BA graph preserves statistical properties of
the training graph, including the average degree (number of
friends) and the degree distribution.

After synthesizing the friendship graph, we generate co-
locations of friends at a specific location and a time instant
based on the synthetic graph and Q′. The generated co-
locations preserve the information about co-locations in the
training data, e.g., friends tend to meet at a restaurant from

123

396 J. Narita et al.

7PM to 8PM. After generating co-locations, we generate
other locations using an existing differentially private loca-
tion synthesizer [4, 13, 16] based on the Markov chain
model, which models human movement patterns as a transi-
tion matrix.

The existing synthesizers in [4, 13, 16] provide user-level
DP for the training traces. Then, by the composition theo-
rem [10], the entire synthetic traces provide node DP for the
training graph and user-level DP for the training traces.
Remark As shown in Fig. 4, we add DP noise to the
friendship probability p and the co-location count matrix
Q independently from one another. However, there might be
a correlation between p and Q, and it might be possible to
add smaller noise by considering the correlation.

For example, assume that a training dataset is collected
from students in a class. In this case, many users (students)
tend to be friends, and co-locations tend to happen in the
school. Suppose we publish Q′ that includes a large count
in the school. Then, it may suffice to add small noise to
p because, given Q′, it is highly unlikely that the friend-
ship probability is small. Thus, the amount of noise might be
reduced by considering the correlation between p and Q.

We argue that this kind of improvement is extremely chal-
lenging in practice because the correlation information itself
needs to satisfyDP, e.g., wemay need other datasets to obtain
differentially private correlation information. Therefore, we
treat p and Q independently and leave the improvement of
our algorithm using the correlation for future work.

4.2 Training the friendship probability p′

Training p′ Below, we explain how to train the noisy friend-
ship probability p′ ∈ [0, 1] in detail.

We first calculate the friendship probability p by simply
calculating the proportion of edges in the training graph, i.e.,
the proportion of 1 s in non-diagonal elements of the training
adjacency matrixA. For example, we can calculate p as p =
14
6×5 = 0.467 in Fig. 1. If n = 1, then we calculate p as
p = 0.1 After calculating p, we calculate p′ by adding the
Laplace noise with mean 0 and scale 2

nε1
. For b ∈ R≥0, let

Lap(b) be the Laplace noise with mean 0 and scale b. Then

we calculate p′ as follows: p′ = p + Lap
(

2
nε1

)
.

DP of p′ Let MLap
1 : {0, 1}n×n → [0, 1] be a ran-

domized mechanism that takes a training adjacency matrix
A ∈ {0, 1}n×n as input and outputs p′ ∈ [0, 1]. MLap

1 has
the following privacy guarantee.

Theorem 1 MLap
1 provides ε1-node DP.

1 Note that the number n of users in training data is much larger than 1
in practice. Here we clarify how to calculate p when n = 1 because it
is used in the proof of node DP (Theorem 1).

Proof Let f : {0, 1}n×n → [0, 1] be a function that takes a
training adjacencymatrixA ∈ {0, 1}n×n as input and outputs
the friendship probability p ∈ [0, 1]. Let � f be the global
sensitivity [10] of f given by

� f = max
A∼A′ | f (A) − f (A′)|, (4)

where A ∼ A′ represents that A and A′ are neighboring
matrices that differ in at most all edges of one user.

Below, we upper bound the global sensitivity � f . Let
d ∈ Z≥0 be the number of 1 s in A. � f takes the maximum
value when n − 1 edges of a user are removed (or added). If
n ≥ 2, we have

| f (A) − f (A′)|
≤ d

n(n−1) − d−2(n−1)
n(n−1) ≤ 2(n−1)

n(n−1) = 2
n . (5)

Note that the denominator of f (A′) is n(n − 1) (rather than
(n − 1)(n − 2)) because we consider a bounded version of
node DP [21] that does not remove a node to obtain a neigh-
boring graph, as described in Sect. 3.3.2

If n = 1, then | f (A) − f (A′)| = |0 − 0| = 0. Thus, for
any n ∈ N, � f in (4) can be upper bounded as � f ≤ 2

n .

Adding the Laplace noise Lap
(

� f
ε1

)
to p provides ε1-DP

[10]. Therefore, the randomized mechanism MLap
1 , which

adds Lap
(

2
nε1

)
to p, provides ε1-node DP. �	

4.3 Training the co-location count matrix Q′

Training Q′ Next, we explain how to train the co-location
count matrix Q′ ∈ Z

|T |×|X |
≥0 in detail.

We first calculate the co-location count matrix Q ∈
Z

|T |×|X |
≥0 , which includes the number of co-locations for each

time instant and each location, from the training traces. Here,
to upper bound the global sensitivity in DP, we introduce an
upper limit c ∈ Z≥0 on the number of co-locations per user.
In other words, if the number of co-locations reaches c, then
the user’s co-locations are not read anymore. This technique
is called trimming in DP [26]. Figure 5 shows an example

2 We also note that even if we use unbounded node DP in [15], The-
orem 1 holds. This can be explained as follows. Let A be a set of all
possible adjacency matrices of any size larger than or equal to 1. Let
f : A → [0, 1] be a function that takes a training adjacency matrix
A ∈ A as input and outputs the friendship probability p ∈ [0, 1]. Then,
if n ≥ 3, we have:

| f (A) − f (A′)| ≤ d
n(n−1) − d−2(n−1)

(n−1)(n−2)

≤ d
n(n−1) − d−2(n−1)

n(n−1) ≤ 2(n−1)
n(n−1) = 2

n . (6)

If n = 2, then | f (A) − f (A′)| ≤ | 22 − 0| = 1. If n = 1, then | f (A) −
f (A′)| = 0. Thus, adding Lap(2

nε1
) to p provides ε1-node DP.

123

Synthesizing differentially private location traces including co-locations 397

Co-locations

Trimming ()

Co-location Count Matrix

x2 x4 x5

x3 x4 x1

x4 x3 x1

Training Traces
User Location Trace

x1

x2

x2

Time Instant

: Co-location

x1 x1 x4 x2

User User Location Time
x4

x1

x2

x2

x2

Co-locations
User User Location Time

x4

x1

x2

x2

Fig. 5 Overview of calculating the co-location count matrix Q

of training Q in the case where c = 3. In this example, the
co-location of users u2 and u4 are not read, because three
co-locations of u2 have already been read.

After calculating Q, we add noise to Q to obtain Q′. To
add noise to Q, we use the Laplace mechanism or apply
Privelet (for one-dimensional nominal data) [49] to each row
of Q. The Laplace mechanism simply adds Lap(c

ε2
) to each

element of Q. Privelet performs the wavelet transform to a
tree structure of locations. Then it adds the Laplace noise to
a wavelet coefficient for each node in the tree.

Formoredetails of the algorithmofPrivelet, seeAppendix1.
DP of Q′ Let MLap

2 : P(R) → Z
|T |×|X |
≥0 be the Laplace

mechanism, which takes training traces S ⊆ R as input and
outputs Q′ ∈ Z

|T |×|X |
≥0 by adding Lap(c

ε2
) to each element

of Q. MLap
2 has the following privacy guarantee.

Theorem 2 MLap
2 provides ε2-user-level DP.

Proof By the trimming, we read at most c co-locations per
user from S. Thus, changing the entire trace of one user in S
will change each element of Q by at most c. Therefore, the
global sensitivity of the co-location count in each element of
Q is at most c. SinceMLap

2 adds Lap(c
ε2

) to each element of
Q, it provides ε2-user-level DP. �	
Let MPrivelet

2 : P(R) → Z
|T |×|X |
≥0 be Privelet. As with the

Laplace mechanism,MPrivelet
2 adds the Laplace noise based

on the global sensitivity. Thus, MPrivelet
2 has the following

privacy guarantee:

Theorem 3 MPrivelet
2 provides ε2-user-level DP.

See Appendix 1 for the proof.

4.4 Generating synthetic traces

Figure 6 shows the generation of synthetic traces using our
location synthesizer. After training the friendship probabil-

User Synthetic trace

Time

…

…

…

…

…

Friendship
probability

Co-location count
matrix

Synthetic graph Co-location probability
matrix

(1)

x3 x4

x3 x4

x1

x1

x4

Privacy-preserving
location synthesizer

(2)

(3)

(3)

(4)

(4)

x1

x2

x3

x5

(1) Synthesize a friendship graph.
(3) Synthesize co-locations.

(2) Normalize counts to probabilities.
(4) Synthesize the other locations.

User Synthetic trace

Time

…

…

…

…

…

x3 x4

x3 x4

x1

x1

x4x4

x5

x2

x3

x2

Fig. 6 Overview of generating synthetic traces in our proposed method

x1

x2

x3

x4

x5

x3

User
x1

User Synthetic trace
x3 x4x2 x2

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x4

Train a location
synthesizerTraining traces

Training Dataset

: Co-location

Transition Matrix
(user-level DP)
x1 x2 x3 x4 x5

x1

x2
x3

x4
x5

Viterbi path (most likely
sequence of locations)

Synthetic trace
x3 x4

: Co-location

Fig. 7 Example of complementing locations using the synthesizer in
[4]. We train a transition matrix providing user-level DP from train-
ing traces. Then we complement locations using the Viterbi algorithm,
which finds the most likely sequence of locations, i.e., Viterbi path

ity p′ and the co-location count matrix Q′, our synthesizer
generates a synthetic trace for each of n users as follows.

1. Generate a synthetic graph G ′ (the ER or BA graph) with
n nodes from p′.Weexplain how togenerate theERgraph
and the BA graph in detail at the end of Sect. 4.4.

2. Calculate amatrix called a co-location probability matrix
R′ ∈ [0, 1]|T |×|X | fromQ′. Specifically, we calculateR′
by normalizing each row ofQ′ so that the sum of the rows
is 1. Here, we add the absolute value of the minimum
value in Q′ to all elements so that each element in Q′
(hence R′) does not have a negative value.

123

398 J. Narita et al.

Input: Friendship probability p′ ∈ [0, 1], co-location count
matrix Q′ ∈ Z

|T |×|X |
≥0 , transition probability matrix

Z ∈ [0, 1]|X |×|X | providing ε3-user-level DP, #users
n ∈ N, #co-locations θ ∈ N

Output: Synthetic traces Ssyn ⊆ U × X × T .
/* (1) Synthesize a friendship graph */

1 G ′ ←GenerateGraph(n, p′);
/* (2) Normalize counts to probabilities */

2 Q′
min ← min{Q′

i j |i ∈ [|T |], j ∈ [|X |]};
3 foreach i ∈ [|T |] do
4 foreach j ∈ [|X |] do
5 R′

i j ← (Q′
i j + Q′

min)/
∑|X |

k=1(Q
′
ik + Q′

min);

6 end
7 end
/* (3) Synthesize co-locations */

8 Ssyn ← ∅;
9 foreach τ ∈ [θ] do

10 Randomly select a user-pair (ui , u j) from G ′;
11 Randomly select a time instant tl from T ;
12 if ∃xk ∈ X , (ui , xk , tl) ∈ Ssyn then
13 Ssyn ← Ssyn ∪ {(u j , xk , tl)};
14 end
15 else if ∃xk ∈ X , (u j , xk , tl) ∈ Ssyn then
16 Ssyn ← Ssyn ∪ {(ui , xk , tl)};
17 end
18 else
19 Randomly generate a co-location xk from R′

l ;
20 Ssyn ← Ssyn ∪ {(ui , xk , tl), (u j , xk , tl)};
21 end
22 end

/* (4) Synthesize the other locations */
23 Ssyn ← ViterbiAlgorithm(Ssyn,Z);
24 return Ssyn

Algorithm 1: Generating synthetic traces in our pro-
posed method. Here, we represent synthetic traces Ssyn

as a set of triplets (ui , xk, tl) of user ui , location xk , and
time instant tl for ease of presentation.

3. Synthesize θ ∈ N co-locations of friends from G ′ and
R′. Specifically, we iterate the following three steps until
we obtain θ co-locations: (i) randomly select a pair of
friends from G ′; (ii) randomly select a time instant from
T ; (iii) randomly generate a co-location at the selected
time instant using the corresponding row of R′. In step
(iii), if one of the two users has already had a co-location
at the selected time instant, we use it as a co-location for
consistency with the previously generated co-location.

4. Synthesize the other locations inn synthetic traces using a
transition matrix of the existing DP location synthesizer
[4, 13, 16] based on the Markov chain model. Specifi-
cally, we complement the remaining locations using the
Viterbi algorithm [42].
Fig. 7 shows an example of complementing the remain-
ing locations using the synthesizer in [4]. In the case of
location traces, the synthesizer in [4] trains a transition
probability matrixZ ∈ [0, 1]|X |×|X | common to all users
from training traces and adds the Laplace noise to each

element to provide ε3-user-level DP (see [29] for details).
Based on the trained matrix, we complement the remain-
ing locations using theViterbi algorithm [42],whichfinds
the most likely sequence of locations, i.e., Viterbi path.
In our experiments, we use the synthesizer in [4] to com-
plement the remaining locations.

The number θ of co-locations is a parameter in our location
synthesizer. In our experiments, we set θ to various values.
It is also possible to calculate the frequency of co-locations
with DP noise from training traces and set θ on based on the
noisy co-location frequency.

Algorithm 1 shows the proposed algorithm when we use
the synthesizer in [4] to complement locations other than
co-locations. Line 1, lines 2 to 7, lines 8 to 22, and line 23 cor-
respond to steps (1), (2), (3), and (4), respectively, in Fig. 6.
In Appendix 1, we explain the ViterbiAlgorithm func-
tion (line 23) in detail. The GenerateGraph function (line
1) takes the number n of users and the noisy friendship prob-
ability p′ as input and outputs a synthetic graph G ′. The
ER model (with parameters n and p′) and the BA model
(with parameters n and p′(n−1)

2) satisfy this requirement3, as
explained below.
Generating the ER graph The Erdös-Rényi (ER) model [5]
has two parameters n ∈ N and q ∈ [0, 1] and is denoted
by G(n, q). The ER model G(n, q) is a simple graph genera-
tion model that randomly and independently generates each
edge between n nodes with probability q. Since the friend-
ship probability p′ represents the probability that two users
are friends, we set q = p′. In other words, we generate a syn-
thetic graph G ′ based on G(n, p′). Note that G ′ is generated
using only a single friendship probability p′.

Recall that we calculate p′ by p′ = p + Lap(2
nε1

). Since

the expectation of Lap(2
nε1

) is 0, p′ is an unbiased estimate
of p. Thus, the expected number of edges in G ′ is equal to
the number of edges in the training graph. In other words, our
ER graph preserves the average degree (number of friends)
of the training graph.

However, the ERmodel does not have a power-law degree
distribution [1]. Therefore, our ER graph does not reflect an
actual graph property well.
Generating the BA graph The Barabási-Albert (BA) model
[1] is a graph generation model that has a power-law degree
distribution. It has two parameter n ∈ N and λ ∈ Z≥0 is
denoted byB(n, λ). The BAmodelB(n, λ) generates a graph
with n nodes by sequentially attaching newnodes so that each
new node is connected to λ existing nodes. An edge is con-
nected to an existing node with the probability proportional
to its degree.

3 We can easily generate a synthetic graph G ′ based on the ER or BA
model by using NetworkX [14], a Python library for graph analysis.

123

Synthesizing differentially private location traces including co-locations 399

The BA graph with parameter λ has about nλ edges.
In contrast, the training graph has pn(n−1)

2 edges. These

numbers coincide when λ = p(n−1)
2 . Therefore, we set

λ = p′(n−1)
2 (we round decimals) and synthesizeG ′ based on

the BAmodelB(n,
p′(n−1)

2). Again, note thatG ′ is generated
using only a single friendship probability p′.

Since p′ is an unbiased estimate of p, our BA graph pre-
serves the average degree of the training graph. In addition,
our BA graph has a power-law degree distribution. In our
experiments,we showhowwell ourBAgraphpreserves these
statistical properties of the training graph.
DP of the ER and BA graphs Let MER

1 (resp. MBA
1):

{0, 1}n×n → {0, 1}n×n be a randomized mechanism that
takes a training adjacency matrix A as input and outputs an
adjacency matrix of the ER (resp. BA) graph G ′. Then, we
have the following privacy guarantees.

Theorem 4 Both MER
1 and MBA

1 provide ε1-node DP.

Proof By Theorem 1, the randomized mechanismMLap
1 that

takesA as input and outputs p′ provides ε1-node DP. In addi-
tion, both the ER and BA graphs are generated using only
a single friendship probability p′, as explained above. Thus,
by the immunity to the post-processing [10], bothMER

1 and
MBA

1 provide ε1-node DP. �	
Scalability As shown in Fig. 6, our proposed method con-
sists of the following steps: (1) synthesize a friendship graph,
(2) normalize counts to probabilities, (3) synthesize co-
locations, and (4) synthesize the other locations. The time
complexity of steps (1), (2), (3), (4) is O(n2), O(|X |2),
O(θ(|G ′| + |T | + |X |)), and O(n|T ||X |2), respectively,
where G ′ is a synthetic graph. In addition, the time com-
plexity of calculating p′ and Q′ from the training dataset
is O(|G|) and O(n|T | + |X |2), respectively, where G is a
training graph. Note that most training graphs are sparse, and
|G|, |G ′| � n2 in that case. Thus, the time complexity of our
proposed method can be expressed as O(n2+θ(|G ′|+|T |+
|X |) + n|T ||X |2) in total. The factor of n|T ||X |2 is caused
by the Viterbi algorithm in step (4). Although the Viterbi
algorithm is known as an efficient algorithm, the run time
might still be large when n and |X | are extremely large. We
can improve the run time by, e.g., parallel implementation
[11].

4.5 End-to-end privacy analysis

Below, we provide end-to-end privacy analysis of our loca-
tion synthesizer. Let S∗ ⊆ R be our synthetic traces. Let
M∗ : {0, 1}n×n × P(R) → P(R) be our location synthe-
sizer that takes the dataset (A,S) as input and outputs S∗.
In addition, let M3 be a training algorithm that takes S as
input and outputs a generative model (transition matrix) of

the existing synthesizer providing ε3-user-level DP [4, 13,
16].

Our synthesizerM∗ usesMER
1 orMBA

1 to generate a syn-

thetic graph G ′ from A. Then, M∗ uses MLap
2 or MPrivelet

2
to output a co-location count matrix Q′ from S. Finally,
M∗ generates synthetic traces using G ′,Q′, and a transition
matrix output by M3.

Then, we have the following privacy guarantees:

Theorem 5 The composition (MLap
2 ,M3)or (MPrivelet

2 ,M3)

provides (ε2 + ε3)-user-level DP.

Proof By Theorems 2 and 3, both MLap
2 and MPrivelet

2 pro-
vide ε2-user-level DP. In addition,M3 provides ε3-user-level
DP. Thus, by the composition theorem [10], (MLap

2 ,M3) or
(MPrivelet

2 ,M3) provides (ε2 + ε3)-user-level DP. �	

Theorem 6 Our location synthesizerM∗ provides (ε1+ε2+
ε3)-total DP.

Proof As explained above, our synthesizer M∗ generates
synthetic traces using the outputs of the three mechanisms:
(i)MER

1 orMBA
1 , (ii)MLap

2 orMPrivelet
2 , and (iii)M3. The

first mechanism (i) provides ε1-node DP (Theorem 4). The
composition of the second and third mechanisms (ii) and
(iii) provides (ε2 + ε3)-user-level DP (Theorem 5). Then, by
Proposition 1, the composition of the three mechanisms (i),
(ii), and (iii) provides (ε1 + ε2 + ε3)-total DP.

Our synthesizer M∗ generates synthetic traces based on
the post-processing on the outputs of (i), (ii), and (iii). Thus,
by the immunity to the post-processing [10], M∗ also pro-
vides (ε1 + ε2 + ε3)-total DP. �	

Theorem 6 guarantees the overall privacy of our location
synthesizer. Note that the existing synthesizer [4, 13, 16]
provides ε3-user-level DP hence ε3-total DP. As shown in
Table 1, our synthesizer uses additional privacy budgets ε1
and ε2 to incorporate new information (i.e., co-locations) into
synthetic traces. In Sect. 5, we show that ε1 and ε2 are small,
e.g., ε1 = 0.2 and ε2 = 1.

5 Experimental evaluation

We evaluated our location synthesizer to show its effec-
tiveness. In Sect. 5.1, we explain datasets used in our
experiments. In Sect. 5.2, we describe utility metrics. In
Sect. 5.3, we explain location synthesizers evaluated in our
experiments. In Sect. 5.4, we report experimental results for
parameters in our location synthesizer. In Sect. 5.5, we report
results of comparison experiments. In Sect. 5.6, we summa-
rize the experimental results.

123

400 J. Narita et al.

Table 3 POI categories and sub-categories (Foursquare)

POI category POI sub-category

Travel & Transport train station, airport, platform

subway, airport terminal

Shop & service Electronics store, hobby shop

record shop, mall

Arts & entertainment Arcade

Professional & Other places tech startup, convention center

Table 4 POI categories and sub-categories (Gowalla)

POI category POI sub-category

Community Apartment, condo, modern, corporate office

Skyscraper

Outdoors Historic landmark, tower

Shopping Bookstore, discount store, drugstore & pharmacy

other-shopping, technology

Travel Airport, subway, train station

5.1 Datasets

In our experiments, we used the Foursquare dataset [50]
and the Gowalla dataset [25] (denoted by Foursquare and
Gowalla, respectively). Both datasets include the users’
friendshipdata (i.e., traininggraph) onSNSandcategories/sub-
categories of POIs [7]. For our experiments, we used the
Tokyo check-in data in each dataset. The Foursquare dataset
contained 916,136 check-ins, 8357 users, and 83,647 POIs
in Tokyo. The Gowalla dataset contained 184,354 check-ins,
2434 users, and 17,866 POIs in Tokyo. We set the length
of a time instant to one hour and extracted two temporally-
continuous location events from the dataset (|T | = 24).

In both datasets, check-ins are concentrated in some POIs.
Thus, the matrix Q becomes extremely sparse when using
all POIs. Hence, we used check-in data for 100 POIs whose
check-in counts are the largest. In this case, |X | = 100 and
the number n of userswas n = 8357 in the Foursquare dataset
and n = 1463 in the Gowalla dataset.

The categories and sub-categories of POIs in each dataset
are shown in Table 3. The number m of categories was 4
in both datasets. The total number of co-location events in
the traces is 2012 (resp. 51) in Foursquare (resp. Gowalla).
Gowallahasmuch fewer co-location events than Foursquare.

5.2 Utility metrics

Co-locations First, we evaluated the utility of our two param-
eters – the friendship probability p′ and the co-location count
matrix Q′ – to quantitatively show how our location synthe-
sizer preserves the information about co-locations. For p′,

we evaluated the absolute error |p− p′| between p and p′ as
a utility metric. We denote the absolute error of p′ by AEp.

ForQ′, co-location counts for each POI category and each
time instant (e.g., “travel & transport” from 7AM to 9AM)
are particularly important. Thus, we evaluated the utility for
each POI category and each time instant. Specifically, let
Q∗ ∈ Z

|T |×|X |
≥0 be a co-location count matrix before adding

noise when we do not perform trimming. Q∗ is identical to
Q when c = ∞. We calculated a per-category co-location
count matrix Q

∗ ∈ Z
|T |×m
≥0 (|T | = 24, m = 4), which is

composed of counts for each time instant and each POI cate-
gory, by summing up counts inQ∗ for each POI category.Q∗

is obtained by counting co-locations for each POI category
and each time instant in the training traces. Similarly, we cal-
culated a per-category co-location countmatrixQ

′ ∈ Z
|T |×m
≥0

by summing up counts in Q′ for each POI category.
Then we evaluated the mean absolute error (MAE) and

the mean square error (MSE) betweenQ
∗
andQ

′
. The MAE

is given by 1
|T |m

∑|T |
i=1

∑m
j=1 |Q∗

i j −Q
′
i j |. The MSE is given

by 1
|T |m

∑|T |
i=1

∑m
j=1(Q

∗
i j − Q

′
i j)

2. Note that the difference

between Q
∗
and Q

′
can be caused by two factors: trimming

andDP noise.We denote theMAE andMSE ofQ
′
byMAEQ

and MSEQ, respectively.
Note that our location synthesizer normalizes counts in

Q′ to probabilities and synthesizes co-locations based on the
co-location probability matrix R′. Therefore, we also nor-
malized counts in Q

∗
and Q

′
to probabilities and evaluated

the difference between them. Specifically, letR
∗
(resp.R

′
) ∈

[0, 1]|T |×m be a per-category co-location probability matrix

such that R
∗
i j = Q

∗
i j∑|T |

i=1
∑m

j=1 Q
∗
i j

(
resp.R

′
i j = Q

′
i j∑|T |

i=1
∑m

j=1 Q
′
i j

)
.

In bothR
∗
andR

′
, the sum of all elements is 1. We evaluated

the MAE and MSE between R
∗
and R

′
.

Because both R
∗
and R

′
are probability distributions, we

also evaluated the JS divergence betweenR
∗
andR

′
. The KL

divergence and the JS divergence are popular measures of the
distance between two probability distributions. We did not
evaluate the KL divergence between R

∗
and R

′
, because the

number of co-locations was too small and the KL divergence
could be infinity in this case.

Formally, for d ∈ N, let �d be the d-probability simplex.
Let z, z′ ∈ �d be the two probability distributions. Then,
the KL divergence is given by DKL(z||z′) = ∑d

i=1 zi log
zi
z′i
,

where zi and z′
i are the i-th elements of z and z′, respectively.

The JS divergence is given by DJS(z||z′) = 1
2DKL(z||m) +

1
2DKL(z′||m), where m = 1

2 (z + z′). We denote the MAE,

MSE, and JS ofR
′
by MAER, MSER, and JSR, respectively.

Furthermore, we selected top-10 co-location events (i.e.,
ten pairs of time instants and POI categories) whose counts
in the training traces are the largest, i.e., top-10 elements in
Q

∗
. Then, we visualized the values (counts or probabilities)

123

Synthesizing differentially private location traces including co-locations 401

of the top-10 events in Q
∗
, Q

′
, R

∗
, and R

′
. Formally, let

� ⊂ [|T |] × [m] (|�| = 10, |T | = 24, m = 4) be the set of
the top-10 events. We visualized the values ofQ

∗
i j ,Q

′
i j , R

∗
i j ,

and R
′
i j for (i, j) ∈ �.

Our location synthesizer normalizes Q′ to R′ and ran-
domly generates co-locations in synthetic traces based on p′
and R′. Therefore, if the absolute error of p′ is small, our
synthetic traces preserve the information about how likely
two users will be friends. If the MAE, MSE, and JS of R

′

are small, our synthetic traces preserve the information about
how likely a co-location of friends will happen at a certain
POI category for each time instant, e.g., “travel & transport”
from 7 to 9AM.

It is shown in [50] that there is a correlation between co-
locations and friendships on Twitter. Thus, if theMAE,MSE,
and JS of R

′
are small, then a location-based friend sugges-

tion algorithm developed based on the synthetic location data
would also be useful for real location data.
Other statistical features Next, we evaluated how our
synthetic traces preserve other statistical features about train-
ing traces. Specifically, we calculated two basic statistical
features: population distribution and transition probability
matrix. The population distribution (|X |-dimensional prob-
ability vector) is a key feature to find popular POIs [54]. The
transition probability matrix (|X | × |X | matrix) is a key fea-
ture to model user movement patterns [47]. We calculated
these statistical features from the training traces and the syn-
thetic traces.

Formally, let r (resp. r′) ∈ �|X | be a population distribu-
tion calculated from the training trace (resp. synthetic traces).

For example, r =
(

5
24 ,

1
4 ,

1
6 ,

1
4 ,

1
8

)
in Fig. 2. In the transi-

tion probability matrix, each row of the matrix represents a
probability distribution. LetM (resp.M′) ∈ [0, 1]|X |×|X | be
the transition probability matrix calculated from the training
traces (resp. synthetic traces). For i ∈ |X |, letMi (resp.M′

i)∈ �|X | be the i-th row of M (resp. M′). For example,
M1 = (14 ,

1
2 , 0,

1
4 , 0) in Fig. 2.

For each statistical feature, we evaluated the distance
between the synthetic traces and the training traces. We
adopted the MAE, MSE, KL divergence, and JS diver-
gence as distance measures. Here, we evaluated the KL
divergence because the number of locations is large (unlike
co-locations).

For the transition probability matrix, each row represents
a probability distribution. Thus, we evaluated the weighted
average of the KL/JS divergence, where we used a stationary
distribution calculated from the matrix as a weight vec-
tor. We denote the MAE/MSE/KL/JS of r′ (resp. M′) by
MAEr/MSEr/KLr/JSr (resp. MAEM/MSEM/KLM/JSM).

Downstream tasks, such as finding popular POIs [54] and
predicting the next POI [47], are based on the population
distribution and the transition matrix. For example, popular

Table 5 Utility metrics in our experiments

Utility metrics Notations

Absolute error of the friend-
ship probability p′

AEp

MAE/MSE of the per-
category co-location count
matrix Q

′

MAEQ/MSEQ

MAE/MSE/JS of the per-
category co-location proba-
bility matrix R

′

MAER/MSER/JSR

MAE/MSE/KL/JS of the
population distribution r′

MAEr/MSEr/KLr/JSr

MAE/MSE/KL/JS of the
transition probability matrix
M′

MAEM/MSEM/KLM/JSM

POIs can be obtained by selecting locations whose values in
the population distribution are the largest. Given a specific
POI, the next POI can be predicted by selecting a POI whose
probability in the transition matrix is the largest. Thus, if the
distance measures (MAE, MSE, KL, and JS) of the popu-
lation distribution (resp. transition matrix) are small, then
the synthetic data would be useful for finding popular POIs
(resp. predicting the next POI).

Table 5 summarizes the utility metrics and their notations
in our experiments.

5.3 Location synthesizers

In our experiments, we evaluated three location synthesizers
for comparison. The first synthesizer is to independently and
randomly generates a location at each time instant from a
uniform distribution. We call this simple method Uniform.

The second synthesizer is the synthetic data generator pro-
posed in [4]. This synthesizer can be applied to any data,
including location traces [29]. Following [29], we applied
this synthesizer to location traces as follows. First, we trained
a transition probability matrix (|X | × |X | matrix) common
to all users from training traces and added the Laplace noise
Lap(c

ε3
) to each element. Adding the Laplace noise provides

ε3-user-level DP. Then, we randomly generated the first loca-
tion based on the stationary distribution and then generated
the remaining locations using the transition matrix. Because
this method is designed on the basis of the transition proba-
bility matrix, we call it TPM.

The third synthesizer is our proposed synthesizer. We call
it Proposal. In Proposal, we trained p′ from a training graph
by adding the Laplace noise, and Q′ from training traces
using the Laplace mechanism or Privelet. Then we generated
θ co-locations using p′ and Q′. Finally, we generated the
remaining locations using TPM, which provides ε3-user-level
DP as explained above.

123

402 J. Narita et al.

Fig. 8 Absolute error of p′ versus ε1 in Foursquare

Fig. 9 Absolute error of p′ versus ε1 in Gowalla

Note that besides TPM [4], there are other existing location
synthesizers such as [13, 16]. We evaluated TPM for two
reasons. First, TPM is easy to implement. Second, all of the
existing synthesizers [4, 13, 16] do not introduce the concept
of “friends” and therefore lack the utility of co-locations. In
other words, they have the same values for the utility of co-
locations. In our experiments, we quantitatively show that
TPM lacks the utility of co-locations, which means that the
synthesizers in [13, 16] also lack the utility of co-locations.
We leave synthesizing locations other than co-locations in
Proposal using the synthesizers in [13, 16] for future work.

In each of Uniform, TPM, and Proposal, the length of
a time instant was set to be one hour, and a trace with the
length of one day was generated for each of n users. For
each synthesizer, synthetic traces were generated five times,
and the utility metrics were averaged over the five runs to
stabilize the performance.

5.4 Experimental results for parameters in our
location synthesizer

First, we evaluated how well parameters of our synthesizer
(Proposal) preserve the information about co-locations.
Friendship probability p′ In Figs. 8 and 9, we show the
absolute error of p′ when we changed the privacy budget ε1
from 0.01 to 5 in Foursquare and Gowalla.

It is seen from Fig. 8 that the absolute error rapidly
decreases as ε1 increases from 0.01 to 0.5. Note that the
absolute error depends only on the Laplace noise, as p′ =
p+Lap(2

nε1
). This explains the reason that the absolute error

decreases as the value of ε increases. It is also seen from
Fig. 8 that the absolute error is extremely small and almost
equals to 0 after ε1 = 0.2. This result demonstrates that we
can accurately estimate the friendship probability p′ with a

Fig. 10 MAE of Q
′
versus c (ε2 = 1) in Foursquare

Fig. 11 MSE of Q
′
versus c (ε2 = 1) in Foursquare

Fig. 12 MAE of Q
′
versus ε2 (c = 5) in Foursquare

Fig. 13 MSE of Q
′
versus ε2 (c = 5) in Foursquare

small privacy budget ε1 = 0.2 in node DP for friendship
data. We observe from Fig. 9 that the result of Gowalla is
similar to that of FourSquare.
Per-category co-location count matrix Q

′
The MAE and

the MSE of Q
′
in Foursquare are shown in Figs. 10 and

11. Here, we set the privacy budget ε2 in user-level DP for
training traces to ε2 = 1, and we set the upper limit c on the
number of co-locations per user in trimming to c = 1, 5, 10,
15, or 20.

It is seen from Figs. 10 and 11 that Privelet has much
smaller MAE and MSE than the Laplace mechanism. This
means that Privelet significantly reduces the amount of noise
for each POI category and each time instant, e.g., subway in
the morning. It is also seen that when c = 5 and 10, Privelet
has the smallest MAE and MSE, respectively. These results

123

Synthesizing differentially private location traces including co-locations 403

Fig. 14 MAE of Q
′
versus c (ε2 = 1) in Gowalla

Fig. 15 MSE of Q
′
versus c (ε2 = 1) in Gowalla

show that there is a trade-off between the effects of trimming
and the Laplace noise; i.e., the effect of trimming is large
when c is small, whereas the amount of the Laplace noise is
large when c is large.

In Figs. 12 and 13, we also show the relationship between
ε2 and theMAE/MSE in Foursquarewhen we set c to c = 5.
It is seen from these figures that the MAE and the MSE
rapidly decrease as ε2 increases from 0.1 to 1 and they remain
almost unchanged after ε2 = 1.

It is seen fromFig. 13 that when ε2 is 2.5 ormore, theMSE
of Privelet is larger than that of Laplace. One reason for this
is that Privelet adds noise to each node of a tree structure and
the number of nodes in Privelet is larger than that of elements
in Q.

The MAE and the MSE of Q
′
in Gowalla are shown in

Figs. 14, 15, 16, and 17. We set the privacy budget ε2 and the
upper limit c to the same value as Foursquare.

It is seen fromFigs. 14 and 15 that Privelet has the smallest
MAEandMSEwhen c = 1, unlike the results in Foursquare.
This is because the number of co-locations in Gowalla was
much smaller than that of Foursquare and was not affected
by trimming even when c = 1.

It is also seen from Figs. 16 and 17 that the MAE and the
MSE decrease significantly when we increase ε2 from 0.1 to
1. In addition, when ε2 is larger than 1, the MAE of Privelet
is almost unchanged. Therefore, we can obtain an accurate
co-location count matrix with a reasonable factor of ε2 = 1.
Top-10 co-location events Table 6 shows the top-10 co-
location events whose counts in the training traces are the
largest, i.e., top-10 elements inQ

∗
. For example, co-location

events are likely to occur in “travel & transport” in the morn-
ing in Foursquare and “travel” in the morning or at night
in Gowalla. Figs. 18 and 19 show the counts and probabil-
ities (i.e., values of Q

∗
i j , Q

′
i j , R

∗
i j , and R

′
i j) of the top-10

Fig. 16 MAE of Q
′
versus ε2 (c = 5) in Gowalla

Fig. 17 MSE of Q
′
versus ε2 (c = 5) in Gowalla

co-location events. It is seen from these figures that count
values in the Laplace mechanism are much larger than those
in the training datasets. This is because we normalize each
row of Q′ so that all elements are non-negative and the sum
of the rows is 1. In other words, the normalization introduces
a large positive bias. Privelet provides much smaller errors in
counts, especially in Gowalla. This explains the reason that
the MAE/MSE of Privelet is much smaller than that of the
Laplace mechanism in Figs. 14, 15, 16, and 17.

Fig. 18b shows that Privelet preserves the probability
information well in Foursquare. However, Fig. 19b shows
that this is not the casewithGowalla. This is becauseGowalla
has a very small number of co-location events (only 51 events,
as described in Sect. 5.1). In this case, almost all elements (83
out of 96 elements) ofQ

∗
are 0, and Privelet also assigns 0 to

almost all elements in Q
′
. In other words, Gowalla is much

more challenging than Foursquare. Based onFigs. 18 and 19,
we use Privelet in Foursquare and the Laplace mechanism
in Gowalla in the following comparison experiments.

We emphasize that the existing synthesizers do not intro-
duce a concept of “friends” in their model and therefore do
not preserve any information about co-locations (as shown in
Table 1). Our synthesizer adds the new information by train-
ing a friendship probability and co-location count matrix.
Additional privacy budgets ε1 and ε2 are reasonably small,
e.g., ε1 = 0.2 and ε2 = 1.

5.5 Results of comparison experiments

Three location synthesizersNext, we compare Proposalwith
two baselines: TPM and Uniform. We evaluated the util-
ity of co-locations, population distributions, and transition
matrices for each synthesizer. For the utility of co-locations,
we evaluated the MAE, MSE, and JS divergence of R

′
,

123

404 J. Narita et al.

Table 6 Top-10 co-location
events (time instants and POI
categories) in the training
datasets

Rank Foursquare Gowalla

1 (9:00–9:59, travel & transport) (23:00–23:59, travel)

2 (10:00–10:59, travel & transport) (0:00–0:59, community)

3 (8:00–8:59, travel & transport) (9:00–9:59, travel)

4 (7:00–7:59, travel & transport) (0:00–0:59, travel)

5 (11:00–11:59, travel & transport) (10:00–10:59, travel)

6 (12:00–12:59, travel & transport) (11:00–11:59, travel)

7 (6:00–6:59, travel & transport) (12:00–12:59, travel)

8 (5:00–5:59, travel & transport) (2:00–2:59, travel)

9 (13:00–13:59, travel & transport) (3:00–3:59, travel)

10 (4:00–4:59, travel & transport) (4:00–4:59, shopping)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

Co
un

t

Rank

Training
Laplace
Privelet

(a) Count

(b) Probability

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili
ty

Rank

Training
Laplace
Privelet

Fig. 18 Counts and probabilities of top-10 co-location events in
Foursquare (ε2 = 1, c = 5). For counts, we show the values in Q

∗

(Training) and Q
′
(Laplace/Privelet). For probabilities, we show the

values in R
∗
(Training) and R

′
(Laplace/Privelet))

as described in Sect. 5.2. In TPM and Uniform, we used a
uniform distribution as R

′
because they had no concept of

“friends.” For the utility of population distributions and tran-
sitionmatrices,we evaluated theMAE,MSE,KLdivergence,
and JS divergence. We used the ER or BA model for Pro-
posal. We set ε1 = ε2 = ε3 = 1 and c = 5. Although we
set all the three privacy budgets to 1 for simplicity, we can
also assign a smaller value to ε1 without affecting the utility,
e.g., ε1 = 0.2, as shown in Figs. 8 and 9. For the number θ

of generated co-location events in Proposal, we set θ = 100.
We also report the relationship between θ and the utility in
Appendix 1.

Figs. 20 and 21 show the results. Figures 20a and Fig. 21a
show that Proposal significantly outperforms TPM and
Uniform in terms of the utility of co-locations, which demon-
strates the effectiveness of Proposal. In addition, Fig. 20b, c
and Fig. 21b, c show that Proposal significantly outperforms

0

100

200

300

1 2 3 4 5 6 7 8 9 10
Co

un
t

Rank

Training
Laplace
Privelet

(a) Count

(b) Probability

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili
ty

Rank

Training
Laplace
Privelet

Fig. 19 Counts and probabilities of top-10 co-location events in
Gowalla (ε2 = 1, c = 5). For counts, we show the values inQ

∗
(Train-

ing) andQ
′
(Laplace/Privelet). For probabilities, we show the values in

R
∗
(Training) and R

′
(Laplace/Privelet))

Uniform and has almost the same utility as TPM in terms of
the utility of the population distribution and the transition
matrix.

One exception is that both Proposal and TPM have larger
MSE than Uniform in Gowalla (see Fig. 21b, c). One reason
for this is that the check-in data in Gowalla includes many
outliers who have unique transition patterns. Because the
MSE squares the error, it is significantly affected by such
outliers.

However, we emphasize that Proposal has smaller MAE,
KL divergence, and JS divergence than Uniform, as shown
in Fig. 21b, c. This result indicates that Proposal preserves
the transition matrix well.
ERandBAgraphmodels Finally,we compared theERmodel
with the BAmodel in Proposal.We first evaluated an average
degree (i.e., the average number of friends) in the training
graph, the ER graph, and the BA graph. Table 7 shows the

123

Synthesizing differentially private location traces including co-locations 405

Fig. 20 Comparison results in Foursquare (ε1 = ε2 = ε3 = 1,
c = 5, θ = 100). a MAE/MSE/JS of R

′
, b MAE/MSE/KL/JS of r′,

c MAE/MSE/KL/JS of M′. Smaller is better in all utility metrics. Pro-
posal uses Privelet

Table 7 Average degree

Training graph ER graph BA graph

Average degree 4.69 3.83 3.99

results. It is seen from this table that both the ER and BA
graphs preserve the average degree well.

Next, we evaluated a degree distribution for each graph.
Figures 22, 23, and 24 show the results. It is seen from these
figures that the training graph has a power-law degree dis-
tribution. The ER graph does not preserve this property. In
contrast, the BA graph has a power-law degree distribution
and is very similar to the training graph. Therefore, the BA
graph reproduces the friendship property of the original data
more accurately than the ER graph.

5.6 Summary

In summary, through comprehensive evaluation using two
real datasets and various utility metrics, we showed the fol-
lowing results.

– Proposal preserves the information about co-locations
of friends, whereas existing location synthesizers such

Fig. 21 Comparison results in Gowalla (ε1 = ε2 = ε3 = 1, c = 5,
θ = 100). a MAE/MSE/JS of R

′
, b MAE/MSE/KL/JS of r′, c

MAE/MSE/KL/JS of M′. Smaller is better in all utility metrics. Pro-
posal uses the Laplace mechanism

Fig. 22 Degree distribution of the training graph

Fig. 23 Degree distribution of the ER graph (ε1 = 1)

123

406 J. Narita et al.

Fig. 24 Degree distribution of the BA graph (ε1 = 1)

as TPM do not. In particular, Proposalwith the BA graph
has a power-law degree distribution and preserves the
friendship property of the training graph.

– Proposal also preserves other statistical features such as
the population distribution and the transition matrix.

– Proposal synthesize such realistic traces while provid-
ing strong privacy, e.g., 0.2-node DP (ε1 = 0.2) for the
training graph and 2-user-level DP (ε2 = ε3 = 1) for the
training traces.

We need additional privacy budgets ε1 and ε2 to preserve
the information about co-locations, which has not been con-
sidered in the existing synthesizers (as shown in Table 1).
The additional privacy budgets are reasonably small, e.g.,
ε1 = 0.2 and ε2 = 1. Thus, we conclude that a synthetic
trace generation that preserves co-locations of friends is now
possible under strong privacy notations such as node DP and
user-level DP.

6 Conclusion

We proposed a location synthesizer for generating synthetic
traces that include co-locations of friends. Our location syn-
thesizer generates such traces, while providing node DP
for a training graph and user-level DP for training traces.
Through comprehensive experiments using two real datasets,
we showed that our synthesizer generates synthetic traces that
preserve information about co-locations, such as the friend-
ship probability, the co-location count matrix, and the degree
distribution. Our synthetic traces also preserve other statisti-
cal features, such as the population distribution and transition
matrix. The proposed synthesizer generates such traceswhile
providing node DP and user-level DP with reasonable pri-
vacy budgets, e.g., 0.2-node DP (ε1 = 0.2) for the training
graph and 2-user-level DP (ε2 = ε3 = 1) for the training
traces. For example, our synthetic traces are useful for study-
ing the effectiveness of friend suggestion on SNS based on
co-locations [50].

In this work, we regarded the number θ of generated co-
locations as a tuning parameter. For future work, we would

like to automatically determine an appropriate value of θ

while providing DP for the training traces. Another inter-
esting future work would be to incorporate the real-valued
friendship level (rather than 0/1 considered in this work)
between users into our algorithm. We would also like to use
graph generation models with parameters other than a single
friendship probability (e.g., exponential randomgraphmodel
[43], stochastic block model [17]) under DP.

Acknowledgements This study was supported in part by JSPS KAK-
ENHI JP22H00521,JP21H03442, and JST Moonshot R&D Grant
Number JPMJMS2215.

Availability of data and material We can provide all data, figures, and
Python scripts to reproduce the graphs and tables in this paper upon
reasonable request.

Declarations

Conflict of interest Masakatsu Nishigaki is a member of the journal
EB. Apart from this, we are not aware of any conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

ADetails of Privelet

Applying Privelet to each row of Q. Below, we explain how
we apply Privelet (for one-dimensional nominal data) [49]
to each row of the co-location count matrix Q in detail. Let
Qi ∈ Z

|X |
≥0 be the i-th row of Q (1 ≤ i ≤ |T |). We call Qi

the i-th co-location count vector.
First, we construct a tree structure of locations, e.g., a tree

composed of categories/subcategories of POIs [7, 25] (see
the left-hand side of Fig. 3 in [49] for an example of the
tree). Each leaf node has a value in Qi . Then, we perform a
nominal wavelet transform to the tree structure (see Section
5.1 in [49] for the details of the nominal wavelet transform
and the right-hand side of Fig. 3 in [49] for an example of
the wavelet coefficient). We add Lap(c

Wγ ε2
) to each wavelet

coefficient γ , where Wγ is a weight value assigned to the

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Synthesizing differentially private location traces including co-locations 407

Fig. 25 MAE of the population distribution r′ (Proposal: BA graph,
ε1 = ε2 = ε3 = 1, c = 5) in Foursquare

coefficient γ . Specifically, if the coefficient γ is for the root
node, thenWγ = 1; otherwise,Wγ = f

2 f −2 , where f is the
fan-out (number of child nodes) of γ ’s parent. We calculate
values in leaf nodes from the noisy tree to obtain a noisy co-
location count vector Q′

i ∈ R
|X |. Finally, we concatenate

Q′
1, . . . ,Q′|T | to obtain a noisy co-location count matrix

Q′ ∈ R
|T |×|X |.

Proof of Theorem 3. Below, we provide a proof of Theo-
rem 3.

Proof Let S(1),S(2) ⊆ R be traces that differ in the
entire trace of one user. Let Q(1),Q(2) ∈ Z

|T |×|X |
≥0 be the

co-location count matrices calculated from S(1) and S(2),
respectively. Let di = ||Q(1)

i − Q(2)
i ||1, i.e., the l1 distance

between the i-th rows of Q(1) and Q(2).
Let MPrivelet

i be Privelet applied to the i-th row of the
co-location count matrix. MPrivelet

i adds Lap(c
Wγ ε2

) to each

wavelet coefficient γ . If di = 1, then MPrivelet
i provides the

following inequality for any z ∈ Range(MPrivelet
i):

Pr[MPrivelet
i (Q(1)

i) = z] ≤ eε2/c Pr[MPrivelet
i (Q(2)

i) = z]

(see [49] for the proof). By group privacy [10], for a general
case where di ≥ 1,MPrivelet

i provides the following inequal-
ity for any z ∈ Range(MPrivelet

i):

Pr[MPrivelet
i (Q(1)

i) = z] ≤ edi ε2/c Pr[MPrivelet
i (Q(2)

i) = z].

Concatenating Q1, . . . ,Q|T |, we have

Pr[MPrivelet(S(1)) = z] ≤ e(
∑|T |

i=1 di)ε2/c Pr[MPrivelet(S(2)) = z]
≤ eε2 Pr[MPrivelet(S(2)) = z]

The last inequality holds because we have
∑|T |

i=1 di ≤ c by
trimming. Since the last inequality holds for any neighboring
sets S(1) and S(2), MPrivelet provides ε2-user-level DP. �	

Fig. 26 MSE of the population distribution r′ (Proposal: BA graph,
ε1 = ε2 = ε3 = 1, c = 5) in Foursquare

Fig. 27 MAE of the transition matrix M′ (Proposal: BA graph, ε1 =
ε2 = ε3 = 1, c = 5) in Foursquare

Fig. 28 MSE of the transition matrix M′ (Proposal: BA graph, ε1 =
ε2 = ε3 = 1, c = 5) in Foursquare

B Effect of the number � of generated co-
location events

We evaluated the relationship between the number θ of gen-
erated co-location events and the utility of the population
distribution and the transitionmatrix.Here,we used theMAE
and MSE as utility metrics, used the BA model in Proposal,
and used Foursquare as a dataset. We also confirmed that
similar results were obtained when the KL divergence, JS
divergence, the ER model, or Gowalla was used.

Figs. 25, 26, 27, and 28 show the results. These figures
show that when the number θ of co-location events increases
from 1000, theMAE and theMSE in Proposal increase. This
comes from the fact that there are too many co-locations in
the synthetic traces. In this case, the population distribution
and the transition matrix are not preserved well even when
we complement the remaining locations using the Viterbi
algorithm. Thus, we should determine an appropriate value
of θ in advance, either manually or automatically. One way
to automatically set θ is to calculate the frequency of co-
locations from training traces with DP and then set θ based
on the private co-location frequency.We leave exploring such
automatic setting of θ as future work.

123

408 J. Narita et al.

Input: Synthetic traces Ssyn ⊆ U ×X × T , transition probability
matrix Z ∈ [0, 1]|X |×|X | providing ε3-user-level DP.

Output: Synthetic traces Ssyn ⊆ U × X × T .
/* Stationary distribution v ∈ [0, 1]|X | */

1 v ← ComputeEigenVector(I − Z�);
/* Output probabilities ω ∈ [0, 1]|U |×|T |×|X | */

2 ω = 1;
3 foreach (ui , xk , tl) ∈ Ssyn do
4 foreach k′ ∈ [|X |] \ {k} do
5 ωilk′ = 0;
6 end
7 end
/* Generate locations other co-locations */

8 foreach i ∈ [|U |] do
/* Time t1 */

9 foreach k ∈ [|X |] do
10 δi1k ← vkωi1k ;
11 end

/* Time t2. · · · , t|T | */
12 foreach l ∈ {2, 3, · · · , |T |} do
13 foreach k ∈ [|X |] do
14 δilk ← maxk′∈[|X |][δi(l−1)k′Zk′k]ωilk ;
15 ψilk ← argmaxk′∈[|X |][δi(l−1)k′Zk′k];
16 end
17 end

/* Backtrack from time t|T | */
18 q|T | ← argmaxk∈[|X |] δi |T |k ;
19 foreach l ∈ {|T | − 1, |T | − 2, · · · , 1} do
20 ql ← ψi(l+1)ql+1 ;
21 end

/* Add the most likely sequence of
locations xq1 , · · · , xq|T | to Ssyn */

22 foreach l ∈ [|T |] do
23 Ssyn ← Ssyn ∪ {(ui , xql , tl)};
24 end
25 end
26 return Ssyn

Algorithm 2: Generating locations other than co-
locations using the Viterbi algorithm.

C Details of the Viterbi algorithm

Algorithm 2 shows the ViterbiAlgorithm function in
Algorithm 1. Note that in both Algorithms 1 and 2, we repre-
sent synthetic tracesSsyn as a set of triplets (ui , xk, tl) of user
ui , location xk , and time instant tl for ease of presentation.
Algorithm 2 takes Ssyn (which includes only co-locations)
and a transition probability matrixZ ∈ [0, 1]|X |×|X | as input
and outputsSsyn (which also includes locations other than co-
locations). It complements locations other than co-locations
by using the Viterbi algorithm [42], which finds the most
likely sequence of locations (i.e., Viterbi path), as shown in
Fig. 7.

Specifically, we first calculate a stationary distribution
v ∈ [0, 1]|X | from the transition matrix Z by calculat-
ing the eigenvector of I − Z�, where I is the identity
matrix (line 1). Then, we use the co-locations as observa-
tions and calculate traces that maximize the likelihood. Let

ω ∈ [0, 1]|U |×|T |×|X | be a tensor whose (i, l, k)-th element
ωilk represents the probability of outputting the observation
(ui , xk, tl); i.e., if Ssyn include (ui , xk, tl), then ωilk = 1 and
ωilk′ = 0 for k′ �= k (lines 2–7). For each user ui ∈ U , let
δilk ∈ [0, 1] be the joint probability of the observations until
time tl and themost likely trace until time tl that includes loca-
tion xk at time tl .We calculate δi1k at time t1 as δi1k = vkωi1k ,
where vk is the k-th element of v, and recursively calculate
δilk from time t2 to t|T | as follows:

δilk = max
k′∈[|X |]

[δi(l−1)k′Zk′k]ωilk . (7)

Let ψilk ∈ [|X |] be the argument that maximizes (7). We
calculate δilk and ψilk for each time tl and location xk (lines
9–17). Then, the joint probability of the observations and the
most likely trace is

max
k∈[|X |]

δi |T |k

and the most likely trace is obtained by backtracking from
time t|T | to 1 (lines 18–21). Finally, we add the most likely
sequence of locations to Ssyn and output Ssyn (lines 22–25).

References

1. Barabási, A.: Network Science. Cambridge University Press, Cam-
bridge (2016)

2. Bettini, C., Jajodia, S., Samarati, P., Wang, S.X.: Privacy in
Location-Based Applications: Research Issues and Emerging
Trends. Springer, Berlin (2009)

3. Bindschaedler, V., Shokri, R.: Synthesizing plausible privacy-
preserving location traces. In: IEEE S&P’16, pp. 546–563. IEEE
(2016)

4. Bindschaedler, V., Shokri, R., Gunter, C.: Plausible deniability for
privacy-preserving data synthesis. VLDB Endow. 10(5) (2017)

5. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University
Press, Cambridge (2001)

6. Chow, C.Y., Mokbel, M.F.: Trajectory privacy in location-based
services and data publication. ACM SIGKDD Explor. Newsl.
13(1), 19–29 (2011)

7. DEVELOPERS, F.: Venue categories | build with foursquare.
https://developer.foursquare.com/docs/build-with-foursquare/
categories/ (2020). Accessed 25 Oct 2020

8. Dwork,C.,McSherry, F.,Nissim,K., et al.: Calibrating noise to sen-
sitivity in private data analysis. In: TCC’06, pp. 265–284. Springer
(2006)

9. Dwork, C., Naor, M., Pitassi, T., et al.: Differential privacy under
continual observation. In: STOC’10, pp. 715–724 (2010)

10. Dwork, C., Roth, A.: The Algorithmic Foundations of Differential
Privacy. Now Publishers (2014)

11. Fettweis, G., Meyr, H.: Parallel Viterbi algorithm implementation:
Breaking the ACS-bottleneck. IEEE Trans. Commun. 37(8), 785–
790 (1989)

12. Gambs, S., Killijian, M.O., Núñez del Prado Cortez, M.: De-
anonymization attack on geolocated data. J. Comput. Syst. Sci.
80(8), 1597–1614 (2014)

13. Gursoy,M.E., Liu, L., Truex, S., Yu, L.,Wei,W.: Utility-aware syn-
thesis of differentially private and attack-resilient location traces.

123

https://developer.foursquare.com/docs/build-with-foursquare/categories/
https://developer.foursquare.com/docs/build-with-foursquare/categories/

Synthesizing differentially private location traces including co-locations 409

In: Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter andCommunications Security (CCS’18), pp. 196–211 (2018)

14. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network struc-
ture, dynamics, and function using networkx. In: Proceedings of
the 7th Python in ScienceConference (SciPy’08), pp. 11–15 (2008)

15. Hay, M., Li, C., Miklau, G., Jensen, D.: Accurate estimation of the
degree distribution of private networks. In: Proceedings of the 2009
Ninth IEEE International Conference on Data Mining (ICDM’09),
pp. 169–178 (2009)

16. He, X., Cormode, G., Machanavajjhala, A., et al.: DPT: differ-
entially private trajectory synthesis using hierarchical reference
systems. PVLDB 8(11), 1154–1165 (2015)

17. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmod-
els: first steps. Soc. Netw. 5(2), 109–137 (1983)

18. Hoshino, N.: A firm foundation for statistical disclosure control.
Jpn. J. Stat. Data Sci. 3, 721–746 (2020)

19. Imola, J., Murakami, T., Chaudhuri, K.: Locally differentially
private analysis of graph statistics. In: Proceedings of the 30th
USENIX Security Symposium (USENIX Security’21), pp. 983–
1000 (2021)

20. Iwata, T., Shimizu, H.: Neural collective graphical models for esti-
mating spatio-temporal population flow from aggregated data. In:
AAAI’19, vol. 33, pp. 3935–3942 (2019)

21. Kearns,M.,Roth,A.,Wu,Z.S.,Yaroslavtsev,G.: Private algorithms
for the protected in social network search. Proc. Natl. Acad. Sci.
113(4), 913–918 (2016)

22. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In:
Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data (SIGMOD’11), pp. 193–204 (2011)

23. Li, C., Miklau, G.: An adaptive mechanism for accurate query
answeringunder differential privacy. PVLDB5(6), 514–525 (2012)

24. Lichman, M., Smyth, P.: Modeling human location data with mix-
tures of kernel densities. In: KDD’14, pp. 35–44 (2014)

25. Liu, Y., Wei, W., Sun, A., Miao, C.: Exploiting geographical
neighborhood characteristics for location recommendation. In:
Proceedings of the 23rd ACM International Conference on Infor-
mation and Knowledge Management (CIKM’14), pp. 739–748
(2014)

26. Liu, Z., Wang, Y., Smola, A.: Fast differentially private matrix
factorization. In: RecSys’15, pp. 171–178 (2015)

27. Matsuo, Y., Okazaki, N., Izumi, K., Nakamura, Y., Nishimura, T.,
Hasida, K., Nakashima, H.: Inferring long-term user properties
based on users’ location history. In: IJCAI 2007, Proceedings of
the 20th International Joint Conference on Artificial Intelligence,
Hyderabad, India, January 6-12, 2007, pp. 2159–2165 (2007).
http://ijcai.org/Proceedings/07/Papers/348.pdf

28. Murakami, T., Arai, H., Hamada, K., Hatano, T., Iguchi, M.,
Kikuchi, H., Kuromasa, A., Nakagawa, H., Nakamura, Y.,
Nishiyama, K., Nojima, R., Oguri, H., Watanabe, C., Yamada,
A., Yamaguchi, T., Yamaoka, Y.: Designing a location trace
anonymization contest. In: Proceedings of Privacy Enhancing
Technologies, pp. 225–243 (2023)

29. Murakami, T., Hamada, K., Kawamoto, Y., et al.: Privacy-
preserving multiple tensor factorization for synthesizing large-
scale location traces. PoPETs 2021(2), 5–26 (2021)

30. Murakami, T., Kanemura, A., Hino, H.: Group sparsity tensor
factorization for de-anonymization of mobility traces. In: 2015
IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, August 20-
22, 2015, vol. 1, pp. 621–629 (2015). https://doi.org/10.1109/
Trustcom.2015.427

31. Murakami, T., Kanemura, A., Hino, H.: Group sparsity tensor fac-
torization for re-identification of openmobility traces. IEEE Trans.
Inf. Forensics Secur. 12(3), 689–704 (2017). https://doi.org/10.
1109/TIFS.2016.2631952

32. Narita, J., Suganuma, Y., Nishigaki, M., Murakami, T., Ohki,
T.: Synthesizing privacy-preserving location traces including co-

locations. In: Proceedings of the 16thDPMInternationalWorkshop
on Data Privacy Management (DPM’21), pp. 20–36 (2021)

33. Nightley, for Spatial Information Science at the University of
Tokyo (CSIS), C.: SNS-based people flow data. http://nightley.jp/
archives/1954 (2014). Accessed 25 Feb 2021

34. Ninghui, L., Min, L., Dong, S.: Differential Privacy: From Theory
to Practice. Morgan & Claypool Publishers, San Rafael (2016)

35. Olteanu, A., Huguenin, K., Shokri, R., et al.: Quantifying the effect
of co-location information on location privacy. In: PETS’14, pp.
184–203. Springer (2014)

36. Olteanu, A., Huguenin, K., Shokri, R., et al.: Quantifying inter-
dependent privacy risks with location data. IEEE Trans. Mob.
Comput. 16(3), 829–842 (2016)

37. Olteanu, A., Humbert, M., Huguenin, K., et al.: The (co-)location
sharing game. PoPETs 2019(2), 5–25 (2019)

38. PWS Cup 2019. https://www.iwsec.org/pws/2019/cup19_e.html
(2019)

39. Pyrgelis, A., Troncoso, C., Cristofaro, E.D.: Knock knock, who’s
there?Membership inference on aggregate location data. In: NDSS
(2018)

40. Qardaji, W., Yang, W., Li, N.: Understanding hierarchical methods
for differentially private histograms. PVLDB 6(14), 1954–1965
(2013)

41. Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., Ren, K.: Generating
synthetic decentralized social graphs with local differential pri-
vacy. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS’17), pp. 425–438
(2017)

42. Rabiner, L.R.: A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE 77(2), 257–286
(1989)

43. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to
exponential random graph (p∗) models for social networks. Soc.
Netw. 29(2), 173–191 (2007)

44. Shokri, R., Stronati, M., Song, C., et al.: Membership inference
attacks against machine learning models. In: S&P’17, pp. 3–18
(2017)

45. Shokri, R., Theodorakopoulos, G., Le, B., et al.: Quantifying loca-
tion privacy. In: IEEE S&P’11, pp. 247–262. IEEE (2011)

46. Sofya, R., Adam, S.: Differentially Private Analysis of Graphs, pp.
543–547. Springer, Berlin (2016)

47. Song, L., Kotz, D., Jain, R., et al.: Evaluating next-cell predictors
with extensive Wi-Fi mobility data. IEEE Trans. Mobile Comput.
5(12), 1633–1649 (2006)

48. Stadler, T., Oprisanu, B., Troncoso, C.: Synthetic data—
anonymisation groundhog day. CoRR 2011.07018 (2022). https://
arxiv.org/abs/2011.07018

49. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet
transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200–1214
(2010)

50. Yang, D., Qu, B., Yang, J., et al.: Revisiting user mobility and
social relationships in lbsns: a hypergraph embedding approach.
In: WWW’19, pp. 2147–2157 (2019)

51. Ye,M., Shou, D., Lee,W.C., Yin, P., Janowicz, K.: On the semantic
annotation of places in location-based social networks. In: Pro-
ceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’11), pp. 520–528
(2011)

52. Yuan, G., Zhang, Z., Winslett, M., Xiao, X., Yang, Y., Hao, Z.:
Low-rank mechanism: optimizing batch queries under differential
privacy. PVLDB 5(11), 1352–1363 (2012)

53. Zheng, V.W., Zheng, Y., Yang, Q.: Joint learning user’s activities
and profiles from GPS data. In: Zhou, X., Xie, X. (eds.) Proceed-
ings of the 2009 International Workshop on Location Based Social
Networks, LBSN 2009, November 3, 2009, Seattle, Washington,

123

http://ijcai.org/Proceedings/07/Papers/348.pdf
https://doi.org/10.1109/Trustcom.2015.427
https://doi.org/10.1109/Trustcom.2015.427
https://doi.org/10.1109/TIFS.2016.2631952
https://doi.org/10.1109/TIFS.2016.2631952
http://nightley.jp/archives/1954
http://nightley.jp/archives/1954
https://www.iwsec.org/pws/2019/cup19_e.html
https://arxiv.org/abs/2011.07018
https://arxiv.org/abs/2011.07018

410 J. Narita et al.

USA, Proceedings, pp. 17–20. ACM (2009). https://doi.org/10.
1145/1629890.1629894

54. Zheng, Y., Zhang, L., Xie, X., et al.: Mining interesting locations
and travel sequences fromGPS trajectories. In:WWW’09, pp. 791–
800 (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1145/1629890.1629894
https://doi.org/10.1145/1629890.1629894

	Synthesizing differentially private location traces including co-locations
	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Paper organization

	2 Related work
	2.1 Co-locations
	2.2 Location synthesizers

	3 Preliminaries
	3.1 Basic notations
	3.2 Friendship graphs and location traces
	3.3 Threat model and differential privacy

	4 Proposed method
	4.1 Overview
	4.2 Training the friendship probability p'
	4.3 Training the co-location count matrix Q'
	4.4 Generating synthetic traces
	4.5 End-to-end privacy analysis

	5 Experimental evaluation
	5.1 Datasets
	5.2 Utility metrics
	5.3 Location synthesizers
	5.4 Experimental results for parameters in our location synthesizer
	5.5 Results of comparison experiments
	5.6 Summary

	6 Conclusion
	Acknowledgements
	A Details of Privelet
	B Effect of the number θ of generated co-location events
	C Details of the Viterbi algorithm
	References

