International Journal of Information Security (2023) 22:1893-1919
https://doi.org/10.1007/s10207-023-00725-8

REGULAR CONTRIBUTION l')

Check for
updates

On the detection of lateral movement through supervised machine
learning and an open-source tool to create turnkey datasets from
Sysmon logs

Christos Smiliotopoulos’ - Georgios Kambourakis' - Konstantia Barbatsalou’

Published online: 19 July 2023
© The Author(s) 2023

Abstract

Lateral movement (LM) is a principal, increasingly common, tactic in the arsenal of advanced persistent threat (APT) groups
and other less or more powerful threat actors. It concerns techniques that enable a cyberattacker, after establishing a foothold,
to maintain ongoing access and penetrate further into a network in quest of prized booty. This is done by moving through
the infiltrated network and gaining elevated privileges using an assortment of tools. Concentrating on the MS Windows
platform, this work provides the first to our knowledge holistic methodology supported by an abundance of experimental
results towards the detection of LM via supervised machine learning (ML) techniques. We specifically detail feature selection,
data preprocessing, and feature importance processes, and elaborate on the configuration of the ML models used. A plethora
of ML techniques are assessed, including 10 base estimators, one ensemble meta-estimator, and five deep learning models.
Vis-a-vis the relevant literature, and by considering a highly unbalanced dataset and a multiclass classification problem, we
report superior scores in terms of the F'1 and AUC metrics, 99.41% and 99.84%, respectively. Last but not least, as a side
contribution, we offer a publicly available, open-source tool, which can convert Windows system monitor logs to turnkey
datasets, ready to be fed into ML models.

Keywords Lateral movement - Sysmon - Dataset - Attacks - Network security - Machine learning

1 Introduction

In recent years, numerous individuals, organizations, and
government bodies have suffered from repeated incidents
of lateral movement (LM). Sensitive data have been stolen
or lost, including bank accounts, fighter aircraft blueprints,
or even classified state secrets as part of an international
information leakage cyberattack. Generally, LM refers to the
broader field of the application of malicious techniques that
adversaries exploit to acquire unauthorized access through
a network’s endpoint towards the lateral escalation of their

B Christos Smiliotopoulos
csmiliotopoulos @aegean.gr

Georgios Kambourakis
gkamb@aegean.gr

Konstantia Barbatsalou
tbarbatsalou @ gmail.com

Department of Information and Communication Systems
Engineering, University of the Aegean, 83200 Karlovasi,
Samos, Greece

privileges in search of critical infrastructures to compromise
and the exfiltration of valuable data [1]. Simply put, the
attacker’s goal is to gain an initial foothold in a networking
environment, remain undetected for as long as it is demanded
for learning the targeted facilities’ topology, maintain ongo-
ing access by moving laterally through the compromised
environment, and finally elevate its privileges towards data
extraction or elimination. LM tactics are categorized within
the general area of advanced persistent threats (APTs) [2];
colloquially, it is the act of acquiring as much network access
as possible, mostly to achieve persistence.

LM should be distinguished from the legacy cyberattacks
of the past and considered more as key tactics, unbounded
to specialized tools. A typical LM technique comprises
three major stages, namely the reconnaissance and enu-
meration of the targeted computing facility, the credential
dumping and privilege escalation, and finally the compromis-
ing of the targeted device. Precisely, during reconnaissance
and enumeration, the adversary explores through mapping
the network’s topology, devices, operating systems and
user’s hierarchy. Privilege escalation is then accomplished

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00725-8&domain=pdf

1894

C. Smiliotopoulos et al.

with credential dumping though a large variety of hashing
exploitation techniques and towards the final goal of com-
promising valuable assets. Pivoting is tightly related to the
concept of LM, and in some contexts, these terms are used
interchangeably. Nevertheless, pivoting is more precisely
used to refer to the act of moving from host to host inside
the target network, while LM also entails the act of privilege
escalation on the compromised machines.

Conducting LM is a trademark of contemporary and
sophisticated threat actors, as that is evidenced by MITRE’s
ATT&CK Framework records of common LM techniques
[3]. LM tactics are recognized as “TA0008” in MITRE’s list,
which is constantly updated with the most impactful inci-
dents and APT groups that conducted them. Prominent threat
actors in this context include the APT39 cyber espionage
group [4] that is alleged to be responsible for numerous thefts
of personal information around the world and the APT29
group (aka “Cozy Bear”), which is reported to be behind the
infamous compromise of the SolarWind’s “Orion” network
monitoring software [S5]. The impact of LM events around the
world is so repeatedly ominous that VMware’s 2022 “Global
Incident Response Threat Report” [6], revealed that LM tac-
tics were used in 25% of all the reported attacks. Although a
calibrated to LM detection endpoint detection and response
(EDR) policy may be effective to some extent, mainly due
to the immense volume of network traffic and audit logs,
the solution lies in the introduction of a log-based intrusion
detection system (IDS) that leverages contemporary machine
learning (ML) techniques.

In this context, after pinpointing the shortcomings of the
relevant literature, the current work delivers a multifold novel
contribution regarding the ecosystem of LM IDS by means
of supervised ML techniques. Concentrating on the MS
Windows platform and its system service known as system
monitor (Sysmon), we provide a comprehensive supervised
classification methodology that involves an abundance of tra-
ditional (shallow learning) classifiers, both base estimators
and ensemble meta-estimators, and deep learning (DL) mod-
els. This allows for a comprehensive picture of this potential
and sets the basis for future research in this timely domain.
Especially, regarding the research methodology, we explicate
and contextualize the feature selection, data preprocessing,
and feature importance processes, and delve into the ML
model parameterization, including hyperparameters. On top
of that, we offer an all-encompassing solution to generate
labeled or unlabeled CSV datasets from voluminous Sysmon
logs. Overall, the key contributions of this work vis-4-vis the
relevant literature can be outlined as follows:

— We detail the hurdles involved in the creation of turnkey
unlabeled or labeled datasets in CSV format through
the manipulation of EVTX Sysmon logs, and propose a
software solution able to automatize this task. This con-

@ Springer

tribution is key to the LM ecosystem given that, to the best
of our knowledge, no pertinent datasets exist, obstructing
research on ML-oriented LM detection.

— We provide a detailed overarching methodology behind
human-driven feature selection upon Sysmon log-based
datasets. The classification features outlined can be
used as a solid reasoning to the creation of robust and
potentially high-rated IDS targeting LM. The suggested
methodology is full-fledged, ranging from the labelling
and preprocessing of data to the selection of the most
applicable per ML model hyperparameters.

— Differently from the existing literature, we formulate a
multiclass problem, meticulously assessing the proposed
methodology through a great variety of legacy classifiers
and DL models.

— We provide a scrupulous review of the relevant literature,
also vis-a-vis our work, pinpointing misconceptions and
dubious practices.

The remainder of this paper is structured as follows. The
next section provides an overview of the related work. Sec-
tion 3 focuses on the obstacles related to harnessing Sysmon
logs for ML-powered intrusion detection, and details a solu-
tion to this end. The same section outlines the dataset used
in the context of this work. Our methodology, including fea-
ture selection, data preprocessing, and feature importance, is
given in Sect. 4. The setup and results of the experiments are
presented in Sect. 5, followed by an in-depth discussion in
Sect. 6. The last section concludes and provides pointers to
future work. For easier guidance throughout the manuscript,
a list of abbreviations is included at the end of the article.

2 Related work

The current section provides a brief review of the key
pertinent literature regarding LM. The concentration is on
the methodology of each relevant work concerning the
detection of LM through either supervised or unsupervised
machine learning techniques or graph-based analysis. That
is, although the work at hand deals with the identification of
LM by means of supervised learning, for reasons of com-
pleteness, the current section presents the related literature
for all the three aforementioned categories. It is to be noted
that a more detailed, focused on particular aspects, compar-
ison with the related work is given in Sect. 6.3. For easy
reference, the key characteristics of every work discussed in
this section are summarized in Table 1.

2.1 Supervised learning based schemes

Based on its impact, the work in [7] is considered a state of
the art regarding the subject of anomaly detection through

On the detection of lateral movement through supervised machine learning and an open-source... 1895

security logs. Specifically, the authors propose an anomaly
detection approach that is based on a mixture of 10 log-based
generic features and eight custom-made others, respec-
tively. Both set of features were extracted from the publicly
available Los Alamos National Laboratory (LANL) dataset
collected between 1996 and 2005 [8]. Sampling techniques
were applied on the collected subset to facilitate processing
and computational power issues with such large data vol-
umes. Supervised ML techniques, namely, Random Forest
(RF), LogitBoost (LB) and Logistic Regression (LoR) were
implemented towards the classification of the identified log
events into normal or malicious. The performance of the clas-
sifiers was evaluated against the false positive (FPR) and
false negative (FNR) rates, while the malicious authentica-
tion predictions of the three aforementioned classifiers were
fed to the ensemble Majority Voting uniform weighted algo-
rithm and re-evaluated. The authors give no insight regarding
their understanding and the extended graphical-based exper-
imentation upon the dataset that led to the extraction of the
presented composite features. Additionally, they do not pro-
vide any of the implemented R language scripts, obstructing
reproducibility.

The authors in [9] introduced a hybrid anomaly detec-
tion approach, focusing on the identification of networking
hosts susceptible to LM techniques during the early stages
of their exposure to the threat. The first part of their work
is dedicated to the graphical representation of authentication
logs included in the LANL dataset towards the extraction
of 29 composite features. Above that, six more flow-based
features were extracted from the relevant to the network
flow event-logs. In the second part, the 35 finally extracted
features were evaluated under several supervised classifiers,
namely, Decision Tree (DT), RF, Linear Regression (LiR),
Gaussian Naive Bayes (GNB) and Label Binarizer (LaBi),
as part of the proposed anomaly-based approach. Under and
oversampling techniques were applied on the dataset due to
its highly imbalanced nature, as long as k-fold cross vali-
dation (k=10) during the execution of each ML technique.
Interestingly, the same work [9] was revisited in [10] under
a case study concentrating on RDP-based LM techniques.
Keeping the same principles as in [9], the authors leveraged
Windows host-based RDP event logs (as evidences) through
the combination of two publicly available Windows event-
logs subsets of the LANL dataset, namely, “comprehensive”
and “unified”, respectively. The subject of LM detection via
authentication logs was re-addressed in [11] by the same
authors, although extended in the examination of the effects
on classification efficiency due to perturbations of LM tech-
niques patterns.

Moreover, the work in [12] introduced a Sysmon log-
based anomaly detection system based on shallow and
deep neural networks (DNN) supervised techniques, namely,
LSTM, RNN, and SVM. On top of that, the authors proposed

a generic set of features based on the manipulation of Sys-
mon EventIDs and evaluated their scheme in terms of TP and
TN rates.

Despite the promisingly presented results in [9—12], the
hybrid-combined dataset was not made publicly available.
Moreover, the superiority of the classification results against
the one in [7] was fully documented only in [11] through the
representation of the ROC-curve and the precision, recall,
and F'1-score (F'1) metrics. On the other hand, in [9, 10, 12]
the authors neglected to mention the criteria upon which their
claims over the work in [7] were based.

2.2 Unsupervised learning based schemes

So far, only a few works considered unsupervised ML as
a means for the evaluation of a sparse diversity of col-
lected logs exclusively related to LM. The examined features
were either generically fundamental to the initially analyzed
log-based datasets or manually extracted from the various
interrelated nodes and edges representing the topology of
the network. Precisely, the work in [13] proposed an anomaly
detection method that was based on ensemble unsupervised
ML to identify traces on compromised hosts with LM tech-
niques. The authors used the LANL dataset [8] to create a
graph-based model, which depicts the various communica-
tions between the targeted hosts. The classification features
were extracted and evaluated with an ensemble of unsuper-
vised ML techniques, namely principal component analysis
(PCA), k-means clustering, and median absolute deviation-
based outlier MADO) detection. The method’s accuracy was
evaluated under a trace-related simulation case study.

In the same context, the authors in [14] employed four
unsupervised ML methods, namely Autoencoder (AE), Iso-
lation Forest (IF), lightweight on-line detection of anomalies
(LODA) and local outlier factor (LOF), under an anomaly
detection scheme which targets the identification of insider
attacks. Various preprocessing techniques were applied on
data with temporal payload to fit with deep learning (DL)
algorithms and contribute in revealing patterns of adversar-
ial changes in user’s behavior. Unsupervised ML ensembles
were created to evaluate the anomaly detection performance
under different algorithmic combinations. The results were
compared against several state-of-the-art works using well-
known datasets, including CERT [15], LANL [8] and TWOS
[16]. On the downside, both the works in [13, 14] lack of
experimental feedback from real-world data stemming from
LM enterprise scenarios and events.

An almost similar to the works in [13, 14] hybrid approach
was presented in [17]. The theories of network embed-
ding, for mapping a network’s graphical representation into
nodes and vectors, were mixed with feature aggregation
techniques towards the formation of composite features.
The authors evaluated the finally selected features under a

@ Springer

1896

C. Smiliotopoulos et al.

proposed semi-supervised classification algorithm based on
the Denoising autoencoder unsupervised model. The exper-
iments were conducted on a balanced subset of the LANL
dataset [8] that is called “The Comprehensive, Multi-Source,
Cyber-Security Event” and the final classification results
were evaluated under FPR, TPR, accuracy (ACC) and pre-
cision (PREC) metrics. Although the authors presented an
estimated ACC of 99.9% with 91.3% PREC on a ratio of
10% of labelled data, their outcomes represent only the ideal
situation of a balanced dataset in a lab-oriented pretentious
way, and it is hardly applicable to real-life unbalanced data.

Additionally, the work in [18] considered the detection
of malware LM on data centers though the implementation
of a behavioral unsupervised ML model. Anomaly detection
was conducted on the application layer network traffic of
data centers via the Jaccard Similarity Coefficient and clus-
tering measurement technique (JSCC) on several balanced
datasets. On the other hand, the authors in [19] presented an
unsupervised learning model of LM detection, based on the
role-based approach of clustering the system connections to
remote hosts into distinct roles. We argue that the type of
traffic, and therefore the features obtained in both the envi-
ronments of [18, 19], are significantly different compared to
this study. Namely, the traffic considered by the authors is
inappropriate for detecting LM. Therefore, such works are
considered out of scope of the current study.

2.3 Graph-based schemes

The authors in [20] address the subject of LM detection
through the definition of a graph-based impact metric. First,
the evolution of the various paths, that an adversary could
take among the various network nodes due to the exploitation
of various vulnerabilities, is defined algorithmically via the
introduction of a dynamic graph-based reachability model
(DGBR). This model is then used as the basis for the cal-
culation of a network-level impact score. The latter score is
quantified based on the value and reachability score assigned
to each network node that could be compromised by adver-
saries. Although the proposed model was implemented in
the context of the so-called Windows credentials “Pass-the-
Hash” (PtH) vulnerability, the authors do not consistently
abide by their defined model. Instead, new concepts were
introduced which lack sufficient documentation and connec-
tion with the already presented theory. Besides that, the case
study scenario of PtH that was tested against the LANL
dataset was based on the implementation of the proposed
reachability and impact metric model on C++ source code
that was not included, making replication of the experiments
practically infeasible.

The work in [21] contributed a graph-based detection
system, dubbed Latte, which deals in parallel with the
multi-layered nature of large-scaled data stemming from

@ Springer

LM incidents and the lack of knowledge regarding adver-
saries, respectively. They address the LM problem in two
ways. First, hosts and user accounts were marked as nodes,
while their interconnections were modeled as edges. Once
an infected node is identified, it leads through the proposed
forensic algorithmic analysis to any other compromised ele-
ment(s). Second, a general algorithmic approach of rare paths
anomalies identification leverages a remote file execution
detector to recognize unknown LM attempts. The same work
[21] inspired two more similar approaches. Precisely, the
authors in [22] presented another tool, dubbed Hopper, that
is concentrated on the identification of malicious LM events
through real-life collected logs. The proposed system, tracks
user’s login activities and outlines their correlations among
hosts on a graph-based representation. The process ends with
the detection of anomalies in login patterns, which may imply
the existence of LM. Moreover, the authors in [23] introduced
a custom LM detection algorithm under the title LMTracker.
This scheme originated from the authors’ effort to address
the gaps in the efficiency of the existing endpoint protection
practices to identify LM events. Various elements included in
the captured log-based traffic, namely users, computers, pro-
cesses etc., were extracted and implemented as nodes for the
construction of heterogeneous graphs that present the various
relationships among its elements. In turn, the advanced graph
neural networks theory was used for the production of two
custom algorithms for the representation of the LM-related
paths and the unsupervised anomaly path detection based on a
predefined threshold, respectively. LM Tracker was evaluated
over LANL [8] and CERT 6.2 [15] datasets, and the experi-
mental results were examined under the prism of confusion
matrix rates and the ROC-AUC metric. While highly promis-
ing as an LM anomaly detection tool with approximately
0.95 ROC AUC score, the LMTracker presents noticeable
FP rates.

2.4 Key observations

With reference to Sects. 2.1 to 2.3 and Table 1, almost half of
the presented works (namely 5 out of 12) relied on supervised
shallow classifiers, whereas from the rest two categories three
contributions implemented unsupervised classification tech-
niques and other four were based on graphs. Above that,
a characteristic common to most works is that they neither
construct their own set of data logs and samples, nor provide
adequate reference to regularization techniques and hyper-
parameter optimization steps. Interestingly, all the works but
two have been published from 2018 onward.

Furthermore, the vast majority of the works in Table 1 uti-
lized logs collected as public via the Windows Event Viewer
tool, all of which were related to the legacy LANL dataset
of multi-source cyber-security events. Released as public in
2015, LANL is considered almost outdated due to its non-

On the detection of lateral movement through supervised machine learning and an open-source... 1897

inclusion in samples derived from contemporary malicious
techniques, besides LM traffic. Precisely the small propor-
tion of the included malicious traffic, led most of the authors
to reproduce artificially the aforesaid samples in order to
create as custom an adequate to be manipulated with ML
techniques imbalanced dataset. We argue that similar, to the
aforesaid, processes related to artificial data handling and
manipulation of datasets should be cared with great concern.
In most of the cases, they are not related to real-life traffic
and may mislead the prediction rates of the whole ML-IDS
process, despite the good results that may initially reveal.
Furthermore, even the works in [9-12], that introduced a
different to LANL hybrid-combined dataset neglected to pro-
vide it, obstructing reproducibility. Another important aspect
that needs to be pointed out is that most of the works pre-
sented in Sects. 2.1 to 2.3 neither mention the selected for
the classification process features nor justify their contribu-
tion to the whole ML process. Further, no code regarding the
Python or R implemented scripts is provided, not to mention
the lack of hyperparameters upon which the ML models were
constructed.

All in all, a general conclusion is that the majority of
the studies so far have been conducted on datasets that do
not meet a number of criteria, namely contemporary LM
or general purpose attacks, adequate representation of all the
included classes to help the ML experimental process or even
multiclass labelling of the included samples. Another impor-
tant observation is that all but one [12] of the works relied
on MS Windows event viewer collected logs and none of
them introduced Sysmon related traffic to take advantage of
the enhanced headers as those are precluded by the collected
event-logs. We argue that this phenomenon is mainly due
to the lack of an open-source, publicly available tool able to
readily convert Sysmon’s extracted logs (EVTX format), to a
(un)labeled dataset in CSV format. This shortcoming is also
obvious in other recent works which rely on manual investi-
gation of log files produced by Windows Event Viewer, and
for that reason the preprocessed in comma-separated format
LANL was selected in most of the cases.

As it concerns Sysmon logs manipulation, the work in
[24], was the first to deal with the presentation of a LM-
oriented EDR policy towards the first level identification of
LM incidents thought the analysis of raw log files. The work
ended with the presentation and evaluation of the Python Evtx
Analyzer (PeX) EDR tool, which incorporated the aforemen-
tioned EDR-policy’s criteria. The tool manipulates Sysmon
files in their raw EVTX form, which are then iterated over
the presented EDR policy’s features to reveal the existence
of potential malicious LM activity. The PeX tool is publicly
available on GitHub [25].

As an extension to [24], and for addressing the key gap
of the creation of datasets through EVTX log files, among
others, the current work contributes such a tool, entitled

evtx_To_CSV_Export Tool (ETCExp). The tool, detailed in
Sect. 3, was developed to serve as an easily configurable and
above all OS-independent command line tool that helps inci-
dent response teams and researchers to parse and transform
massive EVTX log files into compatible unlabeled datasets
(CSV files), ready to be used along with ML algorithms. Fur-
ther, ETCExp tool is designed to implement the proposed in
[24] EDR policy for automatically labelling the transformed
Sysmon logs, into a multiclass CSV set of samples. Besides
the labelling process, the ETCExp tool performs on demand,
feature selection, subsets extraction, and basic data prepro-
cessing through One Hot Encoding and MinMax algorithms.
The full presentation of the technical characteristics of the
aforesaid tool is available in Sect. 3.

3 ETCExp: converting Sysmon logs to CSV

MS Windows Sysmon logs consist a powerful source for
LM technique’s indicators that can be used as inputs within
elevated ML-IDS analysis techniques. Nevertheless, the
manipulation of big volume log files as part of an EDR work-
flow in the context of incident response teams is a demanding
procedure. Originally, EDR teams handled the limited num-
ber of log-traffic’s headers derived from MS Windows Event
Viewer logger, but nowadays Sysmon is the prominent, mod-
ern substitute. On the downside, the great variety of generic
and artificially created log headers of Sysmon multiplied the
diversity and difficulty level regarding the analysis of log-
based traffic. As discussed in the previous section, a key gap
in the literature of LM detection is that until now there is no
open-source, lightweight, publicly available tool to manipu-
late Sysmons’ EVTX files and convert them to an equivalent
CSV format, ready to be fed to ML classifiers. To serve this
key need, this section details on the creation of such a tool,
and through it, it provides a proof of concept (PoC) dataset,
which is used in the subsequent sections to form an ML-
focused detection methodology and evaluate LM intrusion
predictions via both shallow and deep ML models.

3.1 Preliminaries

Sysmon is a multipurpose service of the MS Windows OS
environment and a system’s driver too [24, 26]. It is not pre-
installed on any Windows OS version, but after imported
it remains omnipresent with all Windows internal tasks,
including reboots and event logging information (namely
process creations, network connections and modification
actions among many others). Sysmon monitors and gath-
ers detailed event-oriented information that is organized in
27 distinct types of case-sensitive EventIDs, as presented in
[26], including logs from system processes, networking com-

@ Springer

1898

C. Smiliotopoulos et al.

Table 1 Summary of the key aspects of the works included in this section. The works are arranged in chronological ascending order

Related work

Title Year Method Summary
A graph-based impact metric for 2016 DGBR model Introduction of a DGBR model that keeps track of the
mitigating lateral movement cyber various adversarial paths that may be followed during the
attacks [20] exploitation of vulnerabilities with LM techniques.
Through the DGBR model, the authors calculate a
network-level impact score that is implemented along
with several other algorithmic functions, towards the
evaluation of a PtH case study on the LANL dataset
An unsupervised multi-detector 2017 UML (PCA, k-means, Automated unsupervised anomaly detection ensemble
approach for identifying malicious MADO, Ensemble ML) method towards the identification of LM traces on infected
lateral movement [13] hosts. The LANL dataset is used for the log-based
graphical representation and the extraction of features.
The extracted data are evaluated via two independent
anomaly detection methods, which incorporate PCA,
k-means and MADO techniques, respectively. The results
of the two methods are combined and re-evaluated under a
parameter-based ensemble learning method
A novel approach for identifying 2018 Network Embedding, Semi-supervised classification through Denoising
lateral movement attacks based on Denoising Autoencoders autoencoder of features emerged from network
network embedding [17] embedding and feature aggregation techniques
Detecting malicious authentication 2018 SSC (RF, LB, LoR, MV) A log-based anomaly detection approach applied on generic
events trustfully [7] and custom-made/engineered (artificial/synthetic) log
features that are extracted from the LANL dataset. The
application of sampling techniques precedes the samples’
classification with SSC ML techniques in normal or
malicious, while the final results are evaluated under the
FPR and FNR metrics
Latte: large-scale lateral movement 2018 GB model Identification of an infected host as an anchor point to
detection [21] reveal other compromised hosts through forensic
graph-based algorithms. Reveal anomalies on rare paths
through the detection of remote file execution
Host in danger? Detecting network 2019 SSC (DT, RF, LiR, GNB, Hybrid anomaly detection perspective regarding the
intrusions from authentication logs LaBi) identification of LM techniques on hosts during the early
[9] stages of their threat exposure. They extracted 35
composite log-based features from the LANL dataset,
which were classified under SSC ML algorithms
A machine learning approach for 2019 SSC (DT, RF LiR, GNB, Re-examination of the work presented in [9] under the
RDP-based lateral movement LaBi) prism of RDP-based LM
detection [10]
Analyzing system log based on 2020 SSC (SVM)—NN Shallow and DNN ML classification analysis on Sysmon
machine learning model [12] log samples
Uncovering lateral movement using 2021 SSC (DT, RF, LiR,GNB, The same authors of [9] and [10] revisit the subject of LM
authentication logs [11] LaBi) detection through the classification of LM-related
authentication logs with shallow ML techniques
Anomaly detection for insider threats 2021 UML (AE, IF, LODA, Unsupervised ML detection of anomalies on user
using unsupervised ensembles [14] LOF, Unsupervised behavioral habits. Creation of Unsupervised ML
Ensembles) ensembles to evaluate the performance of the anomaly
detection scheme under various algorithmic combinations
Hopper: modeling and detecting 2021 GB model Graph representation of user login activities to detect
lateral movement [22] anomalies referring to LM incidents
LMTracker: lateral movement path 2022 GB model—NN Presentation of the LMTracker custom LM identification

detection based on heterogeneous
graph embedding [23]

algorithm. LMTracker is a mixture of LM paths
representation via heterogeneous graphs construction and
anomaly detection through graph-based neural networks
algorithmic theory

@ Springer

On the detection of lateral movement through supervised machine learning and an open-source... 1899

munication, files creation and deletion, DNS queries, and
more.

Windows Event Logging files, namely EVTX, is a dedi-
cated for log information storing.xml format, that is exclu-
sively used on MS Windows OS. As detailed in [26], although
EVTX files obey the fundamental rules of the extensible
markup language (XML) towards data representation, when
it comes to file manipulation Microsoft differentiates. The
EVTX format replaced its predecessor.evt introducing in
parallel a great variety of new event properties, which can
be used in the description of the stored events. The most
commonly used properties with Sysmon’s EVTX files are
presented in Table 2. Sysmon is by default capable of simulta-
neously organizing and extracting the collected logs, through
the windows event viewer (WEV) application, in a variety of
files of multiple types, including EVTX,.xml, CSV and.txt
formats respectively. Nevertheless, due to the core structure
of the EVTX format files, as detailed below, all these export
formats are cumbersome to manage and abundantly unsuit-
able for ML techniques.

Each EVTX file can contain millions of recorded event-
related logs described through the multiple properties of
Table 2 and set under two distinct XML sub-nodes, namely
< System > and < Event Data >, respectively. Although
the manipulation of such a hierarchically structured.xml
file might seem a straightforward process, the reality is far
beyond functional. Any attempt to extract the log-records
from a EVTX repository in an equivalent CSV format
ended in an incomplete outcome from the desired. Precisely,
although WEV parsed each property of the < System >
node in a separate column, the information included in the
< EventData > sub-node was placed as a whole piece
within the same cell of the CSV file. This particularity made
the data incompatible for further preprocessing and analysis
through ML experiments.

Anexample of this situation is given in Listing 1. Although
all the properties of the < System > sub-node (those within
lines 2 to 15), were extracted as separated column-name in
the CSV file, no property related to the < Event Data > tag
(lines 18 to 22) was imported separately, but in a unified cell.

1 <System>

2 <Provider Name='Microsoft-Windows-Sysmon
" Guid='{5770385f-c22a-43e0-bfdc-06
£5698ffbdo} />

<EventID>5</EventID>

<Version>3</Version>

<Level>4</Level>

<Task>5</Task>

<Opcode>0</Opcode>

<Keywords>0x8000000000000000</Keywords>

<TimeCreated SystemTime='2021-11-30
T03:31:51.792896600Z" />

10 <EventRecordID>14840</EventRecordID>

1 <Correlation/>

o I N

12 <Execution ProcessID='3064' ThreadID='
3724 />
13 <Channel>Microsoft-Windows-Sysmon/

Operational</Channel>

14 <Computer>WIN-J23NIGGP1lQ6.sysmon_set.
local</Computer>

15 <Security UserID='S-1-5-18'/>

16 </System>

17 <EventData>

18 <Data Name=’'RuleName’'>-</Data>

19 <Data Name='UtcTime’>2021-11-30 03:31:51
.790</Data>

20 <Data Name='ProcessGuid’>{27532e6a-9a74
-61a5-1601-000000001500}</Data>

21 <Data Name='ProcessId’>1144</Data>

2 <Data Name='Image’>C:\Windows\System32\

conhost .exe</Data>
23 </EventData><System>

Listing 1 Example of Sysmon <EventID>5<EventID> properties (see
EventID no. 5 in Table 2.)

3.2 ETCExp tool

To remediate this improper CSV export situation, we imple-
mented a tool coined ETCExp. The essence of ETCExp is
to provide a lightweight, portable, easily configurable and
above all OS-independent command line (of IDE executable)
tool that helps incident response teams and researchers to
parse and make massive EVTX log files compatible to be
implemented into ML algorithms. The tool can process large
EVTX files very quickly; for instance, the conversion of a
1.41 GB (2.7M samples) corpus takes around 30 min. The
tool is publicly available as open-source in [27].

Briefly, ETCExp has dependencies in two main Python
libraries, namely ElementTree and Pandas. It allows the fol-
lowing operations to be performed:

Memory mapping of massive Sysmon EVTX log files

extracted with WEV in.xml form.

— Parsing of each EventID’s properties based on preconfig-
ured filtering parameters, and transformation into CSV
column-headers as a distinct EventID.

— Provision of the existence of duplicate column-headers
and implementation of each property’s value based on an
incremental index number.

— Parallel examination of each EventID’s implementation
process per index for empty cells and placement of the
NaN value.

— Creation of Python Dataframe with the total of the parsed
logs as output.

— Transformation of the Python’s Dataframe into a CSV

file.

From an OS version’s perspective, ETCExp can be exe-
cuted on any mainstream platform, namely Windows 11,

@ Springer

1900

C. Smiliotopoulos et al.

Table 2 Description of Sysmon’s logs EVTX format properties

Property

Description

Property

Description

Computer

Correlation_ID

Date_and_Time

DestinationPortName

EventID

EventRecordID

ExecutionProcessID

Initiated

Level

Log

Operational_Code

ProcessID

The computer’s identification name on
which the LM event occurred or
through which the event was
forwarded

Specifies the activity which is involved
in the recorded event

The date and time the event took place

The port number where the connection
was received

The distinct numerical identifier, of
the general predefined by Microsoft
category, which describes each
event-related log

The dedicated number assigned to
each record at the time of being
logged

The unique identifier that Sysmon
assigns to each process at the
starting point of its execution

Boolean value that indicates the
initiation or not of network
connections

The escalation of the severity of the
event. It includes six different
categories (namely Information,
Warning, Error, Critical, Success
Audit, and Failure Audit)

The log’s name

A numeric value which identifies the
activity which is involved in the
recorded event

Identification number of the process
that triggered the event

ProcessorlD

Processor_Time

Relative_Correlation_ID

SessionID

Source

SourcelsIpv6

SystemTime

Task_Category

ThreadID

User

User_Time

Identification number of the Processor that
processed the event

The elapsed time of the user within which
executed instructions, in CPU time ticks.
CPU time ticks determine how fast an
instruction is executed within the processor

Identifies related activity to processes that
triggered the event

Identification number of the terminal’s
session in which the event happened

The name of the software, system component
or driver that triggered the creation and
storage of the event-related log

The IPv6 of the station from which a
connection was initiated

The dedicated time that the system captured
the generation of the related EventID.
Initially the OS captures the time in UTC
but each SIEM tool, like Sysmon, converts
it to the local time of each user. In the
context of this paper, the time is UTC+2

Denotes sub-categories of the logged event

Identification number of the thread that
triggered the event

The user’s identification name on behalf of
which the LM event occurred or through
which the event was forwarded

The elapsed time of the user within which
executed instructions, in CPU time units

Table 3 Overview of the LMD-2022 dataset [24]

LMD-2022 subsets # Sysmon logs Network traffic/LM techniques

Normal ~ 80K Legitimate network traffic (LNT)

NormalVsMaliciousO1 ~ 290K LNT, EoRS (ms17-010, EternalBlue, Bluekeep, WannaCry)
NormalVsMalicious02 ~ 415K LNT, EoHT (PtH, PtT, GT, ST [via Mimikatz], LaZagne Project)
FullSet ~ 870K LNT, EoRS, EoHT

@ Springer

On the detection of lateral movement through supervised machine learning and an open-source... 1901

macOS Ventana v13.0 and Ubuntu v22.04 LTS. With basic
prerequisite the installation of Python’s dependencies and the
import of the corresponding packages, the core functions of
ETCExp are executed revealing their potentials, as presented
in Algorithm 1.

Precisely, the installation of Python’s dependencies is fol-
lowed by the import of Pandas and xml.etree.ElementTree
packages. The core functionality of ETCExp can be sum-
marized in the notion of parsing each EventID’s properties
through the ElementTree’s conditional statements, as delin-
eated in Algorithm 1, lines 3 to 28. In further detail, Element-
Tree is a core Python library dedicated to the representation
of XML files, as Sysmon’s EVTX format denotes, in a
tree-based hierarchical structure. According to its publicly
available documentation, the library permits two different
levels of parsing interaction: the first on the whole XML
document on an ElementTree level, and the second on the
numerous sub-nodes of an XML file on an Element level
specifically.

Regarding the parsing of the extracted in.xml format
EVTX Sysmon files, which it is initiated after the whole doc-
ument is buffered on system’s memory via the ElementTree’s
toString() function, as presented in Algorithm 1, line 15. The
string variable is reprocessed through the fromString() func-
tion to be finally stored in the root variable and is set as input
for the rest of the parsing process, as presented in line 16 of
Algorithm 1. The collected.xml sub-node entries of the root
object are parsed through a combination of if, elself and forlf
loops, based on predefined < EventI D > filtering tag val-
ues. The output is finally added to a Python’s key-value pairs
dictionary through the addValue() function (line 20 in Algo-
rithm 1). It should be noted that the addValue() function is not
native to ElementTree, but custom-made to fit the needs ETC-
exp. The finally created dict() object is manipulated through
Pandas and extracted in the desired CSV format. For further
details regarding the structure and operation of ETCExp, the
reader is referred to the corresponding GitHub repository in
[27].

3.3 Proof of concept

The soundness of ETCExp was assessed against a real, con-
temporary EVTX corpus, namely LM dataset (LMD) [28].
This will serve a dual goal: first, it allows us to verify the
appropriateness of the tool for further use by the research
community, and second, using the derived dataset, estimate
the LM detection capacity of several ML techniques through
a well-defined methodology. Regarding the second goal, to
our knowledge, and based on the discussion in Sect. 2, the
current work is the first to explore this potential through the
use of logs created by Sysmon.

To the best of our knowledge, the LMD dataset [28] is
currently the only benchmark corpus comprising Sysmon

Algorithm 1 ETCExp’s algorithm

Require: python setup.py install
Require: pip install pandas library
Require: import mmap, xml.etree.ElementTree
Require: input() data, Sysmon files in EVTX format extracted
through WEV as .xml file
Require: dict()
Require: Function def add_value(dict_obj, key, value = None) :
if value # None then
dict_objlkey] < ['0/,/ testValue', value]
3: else if value == None then
dict_objlkey] < ['0/,) NaN']
else if isinstance(dict_objlkey], list) then
6: if value # None then
dict_objlkey] < append(value)

else if value == None then
9: dict_objlkey] < append(NaN)
end if

else if value # None then
12: dict_objlkey] < [dict_objlkey], value]
end if
xtree < ElementTree[parse()](.xml_file)
15: xmlstr <— ElementTree[toString()](xtree)
root < ElementTreel fromString()](xmlstr)
for child € root do
18: for sub_child € child do
if sub_child.tag == tag.value then
add_value(dict()

21: (sub_child.attrib).items()
sub_child.text()
end if
24: end for
end for

DataFrame < pandas(dict_obj)
27: CSVfile < pandas(DataFrame)
return

logs. The 2022 LMD version (LMD-2022) incorporates nor-
mal and malicious traffic logs originated from the execution
of nine state-of-the-art LM techniques, including four vari-
ants of the so-called Exploitation of Remote Services LM
methodology and five equivalents credential exploitation
techniques. The attacks were recorded under the MS Win-
dows Domain testbed presented in [24]. Specifically, the nine
assaults range from the execution of the legacy Exploitation
of Remote Services techniques via the ms17-010, Eternal-
Blue and Bluekeep Windows vulnerabilities, to the more
advanced deployment of the WannaCry malware and more
elevated ones, including “Pass the Hash” (PtH), “Pass the
Ticket” (PtT), “Golden Ticket” (GT), “Silver Ticket” (ST)
and credential exploitation with LaZagne Project tool.

As shown in Table 3, the LMD-2022 corpus com-
prises four subsets that were thoroughly presented in [24],
namely Normal, NormalVsMaliciousOl, NormalVsMali-
cious02, and FullSet. Specifically, the Normal subset incor-
porates logs related to legitimate network traffic that were
collected prior and during the execution of nine executed LM
techniques, namely “exploitation of remote services (EoRS)”
(four variants of EoRS techniques) and “exploitation of hash-

@ Springer

1902

C. Smiliotopoulos et al.

ing techniques (EoHT)” (five variants of EoHT techniques).
The variants of the nine executed LM techniques per subset
are presented in the rightmost column of Table 3. Precisely,
NormalVsMaliciousO1 set of logs encloses the traffic that
was captured before, during and upon termination of the
“Exploitation of Remote Services (ERS)” attacks category,
while NormalVsMalicious02 comprises logs collected dur-
ing the execution of the five aforesaid distinct credentials
exploitation techniques. Both, NormalVsMaliciousOl and
NormalVsMalicious02 are mixed with normal traffic logs
respectively. Finally, FullSet is the fusion of the three afore-
said distinct subsets.

For the needs of this work, the LMD-2022 logset was
enhanced with both normal and malicious traffic collected
from various personal and virtual machine (VM) computing
stations. Precisely, the already existing nine LM techniques
were re-executed multiple times and populated with six more
up-to-date state-of-the-art LM techniques, which correspond
to common vulnerabilities and exposures (CVEs) IDs issued
from 2020 until today. As shown in Table 4, the added
attacks (those having an asterisk affixed) include Log4Shell,
Follina, Windows Spooler Privilege Escalation, SMBGhost,
SMBIleed, and Zerologon, each of them executed multiple
times. The resulted LMD-2023 dataset, which is used in the
context of this work, comprises a full set of 1,752,890 log
samples (EventIDs). LMD-2023 is offered in both CSV and
Sysmon’s generic EVTX (raw.xml data) formats. The CSV
file contains 93 features, and it was produced through the use
of the ETCExp tool described in Sect. 3. The 16 distinct Even-
tIDs (out of the total 27 presented in Sysmon’s manual [26])
identified by the ETCExp when parsing the corresponding
EVTX file are included in Table 5. Note that the rest 11 Sys-
mon EventIDs, such as EventID_6 (Driver loaded), Event_8
(CreateRemoteThread) etc., are not present in LMD-2023
due to the nature of the implemented EoRS and EoHT tech-
niques.

3.4 Dataset labeling

When it comes to supervised ML techniques, these are
defined by the use of labeled data samples during the train-
ing process of each algorithm. This, however, requires the
execution of a labeling process on the dataset. For LMD-
2023, three classes were defined having the labels presented
in Table 6, namely Normal, EORS and EoHT. The latter two
classes represent the 15 LM techniques contained in Table 4.
Particularly, the correspondence between these two classes
and the matching LM method is given in the rightmost col-
umn of the same table.

For categorizing each of the ~1.75M samples of LMD-
2023 into one of the three above-mentioned classes, the
various criteria available in the EDR policy presented in [24]
were imported as labelling filtering rules into an indepen-

@ Springer

dent Python script, that is publicly available as open-source
in [27]. This EDR policy comprises a collection of impactful
LM rules for determining the optimal initialization features
of Sysmon regarding the EoRS and EoHT categories. Pre-
cisely, the rules were derived from extensive experimentation
and thorough empirical observation upon various LM tech-
niques. All the rules were also applicable as custom rules
within a provided Sysmon’s config.xml configuration file.

Furthermore, as a proof of concept for the aforementioned
rule-based policy’s efficiency, we implemented PeX tool,
which is publicly available in [25]. The tool caters for the
analysis of voluminous Sysmon logs through the enumera-
tion and dedicated filtering of Windows Event Logger and
Sysmon EVTX file entries, aiming at revealing the existence
of possible LM traces over small office home office (SOHO)
networks. PeX not only automatically analyzes and identi-
fies any kind of logging activity captured by Sysmon, either
normal or malicious, but also serves as a first step for the inci-
dent response teams towards the identification of LM events.
For more information on the employed rules, the reader is
referred to §6 and Appendices A.1 and A.2 in [24].

The results of the labeling process, following a man-
ual verification process, are given in Table 6; obviously the
dataset is highly unbalanced, especially regarding the EoHT
class.

4 Methodology
4.1 Feature selection

As already pointed out, the current work relies on a set of
classification features with the aim to detect LM events. Fea-
ture selection is a fundamental step when it comes to the
manipulation of voluminous datasets via ML techniques. For
this reason, it was conducted under various criteria related to
common expertise in this field. Above all else, feature selec-
tion should be based on the notion that each feature must
enclose adequate numerical, Boolean, or textual information,
which through the right preprocessing, could contribute with
positive impact to the learning process. The process of reduc-
ing the initially extracted 93 features of LMD-2023 CSV
file with the ETCExp tool into a smaller but of high impor-
tance subset was rather straightforward. Precisely, features
like Name, Guid, Opcode, Keywords, Correlation, Channel,
State, Version, StartFunction and ID were dropped from the
original set of features in [25] due to not bearing any useful
information in assisting the detection of LM techniques. That
is, such features carry the same value (or values) across all
samples, as presented in Table 7:

The values of the remaining 83 features were scrutinized
based on the acquired insights from the studied literature in
Sect. 2. Moreover, based on our expertise in the field of LM

On the detection of lateral movement through supervised machine learning and an open-source... 1903

Table4 LM techniques included in the LMD family of datasets. The star exhibitor denotes attacks included in the LMD-2023 version

LM technique CVE ID(s) LM Class
ms17-010 CVE-2017-0148 EoRS
EternalBlue CVE-2017-0144 EoRS
Bluekeep CVE-2019-0708 EoRS
WannaCry CVE-2017-0143, CVE-2017-0145, CVE-2017-0146 EoRS
Mimikatz (EoHT) CVE-2021-36934 EoHT
LaZagne Project CVE-2021-40444 EoHT
Log4Shell* CVE-2020-1472, CVE-2021-44228 EoRS
Follina* CVE-2022-30190 EoRS
Windows Spooler Privilege Escalation* CVE-2022-29104 EoRS
SMBGhost* CVE-2020-0796 EoRS
SMBIleed* CVE-2020-1206 EoRS
Zerologon™ CVE-2020-1472 EoRS

Table5 Sysmon’s EventIDs

included in the log files of the No. EventD Description
LMP _'2023 Dataset. The star 1 EventID 1 Process creation
exhibitor denotes normal traffic o
exclusively 2 EventID 2 A process changed a file creation time
3 EventID 3 Network connection
4 EventID 4 Sysmon service state changed
5 EventID 5 Process terminated
6 EventID 7 Image loaded
7 EventID 10 ProcessAccess
8 EventID 11 FileCreate
9 EventID 12 RegistryEvent (Object create and delete)
10 EventID 13 RegistryEvent (Value Set)
11 EventID 16 ServiceConfigurationChange
12 EventID 17 PipeEvent (Pipe Created)
13 EventID 18 PipeEvent (Pipe Connected)
14 EventID 22 DNSEvent (DNS query)
15 EventID 23 FileDelete (File Delete archived)*
16 EventID 255 EventID 255: Error*

Table 6 Structure of the LMD-2023 labeled dataset

CN CL # samples % over LMD-2023
Normal 0 1,611,637 ~92%

EoRS 1 110,746 ~6%

EoHT 2 30,507 ~2%

CN, class name; CL, class label

techniques execution, we concluded with a smaller set of
generic features, totally bonded to the characteristics of the
attacks presented in Table 4. Altogether, feature selection was
performed contingently on the following key conditions:

— Each sample must include adequately representative
to each LM technique numerical, Boolean, or textual

information and be as independent as possible of the
testbed settings on which the attacks were executed; this
way an attacker cannot trivially bypass the ML algo-
rithm by modifying the features. On the contrary to
the aforesaid, generally accepted by the bibliography,
notion of features independence to local settings, fea-
tures like EventRecordID, ExecutionProcessID, Proces-
sID and Computer were included in the finally selected
features of Table 8. This choice is substantiated by the
study of the structural characteristics of each LM tech-
nique and more precisely by the fact that the cornerstone
of each attacker’s LM behavior is to gain remote or phys-
ical access within a secure location, remain stealth for as
long as possible and through the simulation of processes
and active applications of the compromised computing

@ Springer

1904

C. Smiliotopoulos et al.

structure incrementally and laterally reach its ultimate
target. Therefore, incorporating features representative to
testbed’s stations processes and users not only is imposed
by the samples structure, but also contributes positively to
ML models learning and predictions, as it will is detailed
in Sect.4.2.

— Regarding the selection of the EventID, Initiated, Sour-
celpv6 and DestinationPortName features presented in
Table 8, we relied either on the relevant literature (how
often the feature becomes exploitable in similar anal-
yses), or on empirical and experimental observations
(which is the actual information a feature carries for the
detection of each of the three classes, namely Normal,
EoRS and EoHT.)

— As it concerns the finally selected SystemTime feature,
although a part of the studied bibliography suggests
not using features of time or flow oriented series, we
argue that within the overall context of the execution of
LM techniques, System’s time in the log-based form of
Sysmon samples offers a self-sufficient source of infor-
mation. The experiments of Sect. 5 evaluate the feature’s
ability to contribute in combination and incrementally to
the rest of the selected features of Table 8, increasing
the relevant prediction scores (especially AUC and F1)
of ML models. Despite the usefulness of time-oriented
features, these samples come in immutable form ‘“2022-
06-25T19:30:32.4333805Z” which does require feature
engineering preprocessing for being transformed to use-
ful numerical equivalent data. That is, we replaced Sys-
temTime attribute with seven equivalent time derivatives
features, related exclusively to each event’s year, month,
week, day, hour, minute and day within the week. For
instance, “2022-06-25T19:30:32.4333805Z” is manip-
ulated with Panda’s fo_datetime() function, dividing it
into two different elements, namely ‘“2022-06-25T” and
“19:30:32.4333805Z”, respectively. Through the same
function, the two special characters “T” and “Z” were
also eliminated. Next, the format of the timestamps was
altered with the astype(“datetime64[s]”), and was finally
collected per gender into separate columns to produce the
seven aforesaid time features given in Table 8.

— Overall, we resulted with nine features. The first eight
are contained in the top part of Table 8. The remain-
ing one, namely SystemTime, yielded seven features,
namely SystemTime_year, SystemTime_month, System-
Time_week, SystemTime_day, SystemTime_hour, Sys-
temTime_minute and SystemTime_day_of _week, con-
tained in the bottom part of the same table.

Based on the above-mentioned set of criteria, and as sum-
marized in Table 8, the final feature subset that is used as the
base for the preprocessing procedure of Sect. 4.2 and as input
in the shallow and Deep NN experiments of Sect. 5 comprises

@ Springer

15 features. As it concerns the numerical representation of
Normal traffic against the equivalent Malicious, the dataset
is imbalanced.

4.2 Data preprocessing

In the context of this work, data preprocessing refers to the
sequence of tasks that follows the transformation of Sys-
mon logs into compatible with ML algorithms CSV formed
files. Specifically, data preprocessing is involved with the
encoding, normalization, and scaling of the raw data so that
it may be easily parsed by the machine. One-hot encoding
(OHE) and min-max scaler (Min-Max) are the commonest
methods for manipulating categorical and alphanumeric data,
respectively. Precisely, OHE algorithm is designed to deal
with categorical data, which are represented as variables that
store labels instead of numerical data. Categorical data may
either be nominal (grouped variables based on acommon spe-
cific characteristic) or ordinal (variables which enclose data
with some sort of natural relationship, through which may
be ordered). Despite the applicability of OHE on ML experi-
ments, there are several shallow classifiers, such as Decision
Tree (DT), which according to the specific characteristics of
each dataset may be trained directly though categories. The
rationale behind the final selection of the OHE preprocess-
ing algorithm for the manipulation of categorical features
hinges on the fact that the majority of the available shallow
classification techniques require all data to be processed to
scientifically acceptable numerical format. OHE deals with
categorical values preprocessing by adding for each unique
categorical value a new binary equivalent. As many are the
distinct categorical values within a feature, OHE will produce
an equivalent number of new binary derived features.

As it concerns the scaling of numerical data, the two most
prevalent methods are Normalization and Standardization.
Regarding the former, each sample is scaled separately within
a range of 0-1 that is related to the floating-point values
which perform better in terms of Precision and Recall met-
rics. Standardization refers to the process of scaling each
sample’s value separately through the use of mean sub-
traction and division with each sample’s standard deviation
(STD). Although Standardization is rather an effective scal-
ing method, within the context of this study, the method of
Normalization was adopted as the most equivalent to fulfill
the preprocessing of the numerical features, as recapitu-
lated in Table 8. Particularly, Normalization techniques fit
adequately to the distribution of numerical features of the
LMD-2023 dataset that is limited within O and 1 values.
For both OHE and Normalization techniques, the sklearn
version 1.0.1 Preprocessing package was utilized, specifi-
cally the OneHotEncoder() and MinMaxScaler() algorithms,
respectively. It is noteworthy that the LMD-2023 dataset was

On the detection of lateral movement through supervised machine learning and an open-source...

1905

Table 7 Excluded features from
LMD, because they carry the
same price along the total of the
samples. The second column
presents the value of each
feature

Table8 The 15 selected
features and the data
preprocessing method applied to
each one

No. Excl. feature Value

1 Name Microsoft-Windows-Sysmon

2 Guid {5770385f-c22a-43e0-bf4c-06£5698ftbd9 }

3 Opcode 0

4 Keywords 0x8000000000000000

5 Correlation 0

6 Channel Microsoft-Windows-Sysmon/Operational

7 State Started or 0

8 Version 13,24 or O

9 StartFunction 0

10 ID GetConfigurationOptions or 0

Sysmon’s feature Preprocessing method
Computer (CompSTA) OHE
DestinationPortName (DstPortName) OHE
EventID OHE
EventRecordID (EventRecID) MinMax
Execution ProcessID (ExecProcessID) MinMax
Initiated (Init) OHE
Processld MinMax
SourcelsIpv6 (Srclpv6) OHE
SystemTime_year (SysTimeYear) OHE
SystemTime_month (SysTimeMonth) OHE
SystemTime_week (SysTimeWeek) OHE
SystemTime_day (SysTimeDay) MinMax
SystemTime_hour (SysTimeHour) MinMax
SystemTime_minute (SysTimeMinute) MinMax
SystemTime_day_of_week (SysTimeDoW) OHE

The abbreviated titles of the presented features in parentheses are provided for presentation and space economy
reasons, for the feature importance stacked diagram in Fig. 1

preprocessed in its original length of 1,752,590 samples,
without applying any sampling techniques.

The resulting CSV file was filtered via the Pandas Python
library for undefinable values that could cause the ML algo-
rithms to produce errors. That is, the undefined per algorithm
values included “NaN”, “Null”, diminutive floating-point
values, any value expressed in the form of scientific notation
(such as 3.456e11) and dash (‘=) values related to the *Des-
tinationPortName’ feature. The corresponding rows of the
aforementioned values, were counted and found to represent
3.5% or 66,150 samples of the dataset and for that reason they
were dropped along with their corresponding rows. Empty
cells were also filled with O via Python’s fillna() function.

The resulted labelled and preprocessed CSV file was
exploited in its original imbalanced form, regarding the
numerical representation of each Label within the dataset.
Interestingly, the EOHT samples were only 30,507 or 1.7%
compared to the rest of LMD, a fact that is expected to stretch
the performance of the majority of the classifiers.

4.3 Feature importance

As already mentioned in Sect. 4.1, the selection of the 15 fea-
tures recapitulated in Table 8 stems from the intense study of
the presented literature in Sect. 2 and our own expertise in this
field. The majority of the eight selected features, including
the seven others exported from the SystemTime equivalent,
were searched and found to include adequate numerical,
Boolean or textual information related to LM. However, for
precautionary reasons and for revealing any potential neg-
ative impact that may be imposed on the experiments with
shallow classifiers in Sect. 5.1, we additionally conducted
two different feature importance techniques.

Specifically, when it comes to ML experiments, the final
metrics of the performed experiments are highly prone to
noise originating from non-equivalent to the examined prob-
lem’s features. If this parameter is ignored, then the results
from the majority ML repetitive applications will be biased,
possibly leading to wrong results. Feature importance tech-

@ Springer

1906

C. Smiliotopoulos et al.

niques present in a straightforward manner the “importance”
score, demonstrating how each feature contribute vis-a-vis
the total of the dataset.

In this work, two independent importance analysis tech-
niques were conducted on the already preprocessed with
OHE and MinMax algorithms LMD-2023 CSV file: (a)
examination of the model’s coefficients, and (b) examina-
tion of the LMD’s Principal Component Analysis (PCA).
The analysis used the 100% of the stratified data from each
feature set. Precisely, each from the LogisticRegression(),
and PCA() sklearn’s algorithms were trained with the 70%
of the stratified sample and tested with the rest 25% subset
of the stratified data.

Regarding the examination of the model’s coefficients, the
method was applied on the dataset via the LogisticRegres-
sion() algorithm, leading to an equation in which coefficients
(importances) are assigned to each input value. Put simply,
large (negative or positive) coefficient numbers, impose some
influence on the prediction. Contrariwise, if the coefficient
is zero, it does not have any impact on the prediction. After
the model’s fitting, the coefficients are stored in the coef_
variable.

As depicted in Fig.1, the analysis of the LMD-2023
preprocessed features revealed that 49 of the total 91
features offer the most information. Specifically, Proces-
sld was assigned the best coefficient that almost reached
1. Six more, namely SysTimeMonth_6, CompSTAI, Sys-
TimeWeek_25, SysTimeYear_2022, DstPortName_netbios-
dgm and init_True revealed an importance within the range
of 0.6 to 0.8. The rest of the 42 positive coefficients range
from almost O to 0.5.

In turn, as also illustrated in Fig. 1, PCA was implemented
to reveal corresponding results to feature importance analy-
sis via Coefficients and LoR algorithm. PCA is placed in
the unsupervised learning techniques specifically designed
to deal with high-dimensional datasets. Typically, this tech-
nique is used for the reduction of data dimensionality, prior
to the creation of an ML model. This is done due to its robust-
ness in overfitting and data loss, and for those reasons it is
ideal for estimating the most significant features of a dataset.

Overall, with reference to Fig. 1, it is very promising that
the initial decision upon the selected set of features in Table 8
were supported by feature importance analysis to enclose
adequate amount of information.

5 Experiments

The current section details the conducted experiments and
discusses the derived results. As stated in Sect. 4.2, only
the most significant preprocessing alterations were done on
the features of Table 8, in an effort to achieve the best
possible generalization. The most discussed in bibliography

@ Springer

ML techniques were implemented, avoiding introducing any
hyperparameters optimization and dimensionality reduction
techniques. Moreover, no custom (time or any other vec-
tor related) feature was considered. With reference to the
methodology, the following points worth to be mentioned:

— All the ML algorithms presented in Table 9, along with
their initialization hyperparameters of Table 10, were
chosen based on reproducibility criteria and upon the
notion to be freely available for implementation in pop-
ular ML libraries.

— All the algorithms included in each experimental set were
utilized without any alteration regarding the settings of
Table 10). This was done for maintaining a standard base
of hyperparameters and for reasons of generalization.

— With reference to Table 6, due to the highly imbal-
anced nature of LMD-2023, the focus is on two metrics,
namely Area Under the Curve (AUC) and F1. AUC is
the ML measure of separability along the various labels
of a multiclass ML model, and its value is extracted
from the receiver operating characteristic (ROC) curve.
It is a probability plot that represents the graphical
representation of the true-positive Rates (TPR) against
the false-positive Rates (FPR), under various predefined
thresholds. On the other hand, AUC demonstrates the
representative value of the aggregated performance of
binary classification algorithms. The more the AUC value
is closer to 1 the best is the ML model to distinguish
Normal vs Malicious classes. Due to the fact that the
three defined classes of Table 6 consist a multiclass ML
problem, one-vs-all LabelBinarizer - LaBi schema had
to be implemented for extending the binary classifica-
tion schema to the multiclass case. LaBi is included in
the preprocessing package of the Sklearn Python library,
and utilizes as input the test (or & 25% of the evaluated
samples) part of the LMD dataset along with the equiva-
lent predicted fractions of each ML algorithm. Regarding
the F1 score, it is the ML metric that is proposed for
imbalanced datasets in the place of Accuracy. F'1 is cal-
culated as the harmonic-mean of the two aforementioned
values, based on the formula F1 = 2 * ((Precision *
Recall)/(Precision + Recall)).

— Because of the imbalanced numerical characteristics
of the LMD dataset the stratified k-fold Cross Valida-
tion, with a k = 10; this prevents overfitting. Each fold
had 1,314,668 and 438,223 samples (100% of the total
LMD-2023 dataset) for the training and testing sets,
respectively.

— For avoiding overfitting, various hands-on regulariza-
tion hyperparameters attempts were also conducted,
including fol, early_stopping, max_depth, reg_alpha,
reg_lambda, ccp_alpha, etc.

On the detection of lateral movement through supervised machine learning and an open-source... 1907
16 mmm Coef
mmm PCA
14
12
g
o
O
" 10
Q
o
c
©
£
8-08
go
g
2
©
& 0.6
0.4
0.2
0.0 ©
® & o ‘1° <« & o F o ¢°\’ & é"‘ o W S P O P “’4* 7 o o & ,«” & ‘&"“ < o o o oe"“ 22 & &P
« 0«* e @“*o S s i i&# 7 o o (,w R @w# Lty &\vﬂ;ﬂ. 2&:{5\@"‘;’& .fﬁ“& «,*‘ &'@,&’ o «»«‘ \«,#“ 9;@‘.&*’
o

2%
o ,,p ,« & P o o 9(‘
&”0 v}‘*"& "‘w@

Features

Fig.1 Feature importance through LMD-2023 sample’s coefficients and PCA for the total of feature sets. All the insignificant features <0.05 were
removed. The names of the analyzed features are abbreviated as given in Table 8

Table 9 Shallow and DNN algorithms employed for evaluation pur-
poses

Algorithm Category Genre

LoR SC Probabilistic

SGDC SC ST-based

KNN SC Deterministic

NB SC Probabilistic

LSvC SC Linear-based
LGBM SC Tree-based

DT SC Tree-based

RF SC Tree-based

ET SC Tree-based

CB SC Tree-based
Bagging SC Tree-based

MLP DNN Multilayer FF ANN
CNN DNN ANN

LSTM DNN RNN

RNN DNN Multilayer FF ANN
Autoencoders DNN ANN

— The key aim is to evaluate whether the cherry-picked 15
features of Table 8 can yield acceptable detection rates
in the context of an IDS. Therefore, no hyperparameter
tuning methods, such as Python’s Optuna or Grid search
were followed.

5.1 Shallow classifiers

Shallow classification on the labeled LMD-2023 dataset was
conducted against a range of base estimators and ensemble
meta-estimators, i.e., the topmost 11 classifiers of Table 9.
The decision to use such a broad repertoire of algorithms was
done for comparison reasons and because, with reference to
Sect. 5.1.1, each technique enclosed special functional char-
acteristics with potentials on the creation of a log-based IDS.
The models were built on an MS Windows 10 Home Edi-
tion (v. 21H2, OS Build: 19044.2486) machine, with Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz CPU, 64.0
GB RAM and NVIDIA GeForce GTX 1660 Ti GPU. The
experiments were run solely on the base-machine’s CPU and
RAM, without GPU acceleration. All the relevant scripts
were developed on Python 3.9.2 via Sklearn 1.0.1, Pandas
1.4.4, Numpy 1.21.2, Seaborn 0.11.2 and matplotlib 3.4.3
libraries and packages. LightGBM and CatBoost algorithms
were implemented via the homonym packages.

5.1.1 Configuration of hyperparameters

The analysis centers on five distinct experimental classi-
fication categories, namely Probabilistic, Stochastic-based,
Deterministic, Linear and Tree-based algorithms, as pre-
sented in Table 9. During the preparation and parameterizing
of each algorithm, our goal is not to achieve optimal results,

@ Springer

1908

C. Smiliotopoulos et al.

but to propose a generalized methodology for supervised
learning in LM intrusion detection.

Probabilistic algorithms are dependent on the mathemati-
cal concept of probability to train their models and calibrate
their demonstrated predictive analysis metrics. In the context
of this work, the expanded version of the optimizer Stochas-
tic Average Gradient (sag), namely Saga, was utilized as the
solver in assisting the Logistic Regression classification pro-
cedure. Saga solver is an elevated extension of sag, suitable
for fast training upon large multiclass datasets. For that rea-
son, and for handling the multinomial loss, the multi_class
variable was set from auto to multinomial. The max_iter
variable, was set to 1K maximum iterations until the solver
reaches its ultimate convergence. Moreover, the algorithm’s
stopping criteria were optimized for terminating the learning
process when the tol variable of tolerance is not improved
by at least le—3 within two consecutive iterations of the
dataset’s training. Additionally, the Saga solver supports all
three available regularization penalties, namely L/, L2 and
elasticnet. For the needs of the present work, the elastic-
net was chosen because it adds the effects of L/ and L2
penalty hyperparameters into a finally aggregated value. Both
penalty values are among the most effective hyperparameters
for mitigating overfitting effects in several ML algorithms,
especially the ones included in sklearn Python library. L1
is called lasso regression, and it adds the absolute value of
each coefficients magnitude. L2 is called ridge regression,
and it adds the coefficients squared magnitude. Both param-
eters use as their core values coefficients, therefore they are
applied in feature selection too as it is described in Sect. 4.3.

NB is another parameterization independent probabilistic
algorithm based on the Bayes theorem of calculating con-
ditional probabilities through mathematical formulas. As a
result, NB incorporates the “naive” assumption that each
pair from the selected features is independent of any condi-
tion regarding its corresponding value in the class variable.
Consequently, and according to the assumptions each time
the algorithm makes upon each distribution, it comes in four
different variant classifiers, namely Gaussian (GNB), Multi-
nomial (MNB), Complement (CNB) and Bernoulli (BNB).
In this work, we focused on the CNB, which is the extended
version of the standard MNB that is exclusively calibrated
for imbalanced datasets, like the utilized LMD-2023.

On the other hand, Stochastic-based models are highly
characterized by their tendency to reveal randomness and
uncertainty on outcomes related to varying inputs. Precisely,
the SGDClassifier expands on known linear classification
ML models, namely SVM, LSVC, etc. through the training
of each model via Stochastic Gradient Descent. Regulariza-
tion of the loss of trained models is accomplished through the
implementation of the same sklearn penalty values, namely
L1, L2 and elasticnet. In our study, due to the highly imbal-
anced nature of LMD-2023, the m_huber loss function was

@ Springer

set to handle the tolerance of the outliers in each algorithm’s
execution. To avoid overfitting, the learning_rate was set to
optimal and the early_stopping parameter was enabled. With
respect to regularization values, max_iter, tol and penalty
were set to 5e—3, le—8 and elasticnet respectively, while the
alpha variable was assigned with the 1e—3 value to make the
regularization effects stricter.

The deterministic KNN algorithm was configured (by
default) with the auto for choosing the best algorithm
while computing the distance between each neighbor, the
minkowski criterion as the metric for calculating each dis-
tance, and the uniform method of weighting each distance
equally during predictions. To improve the algorithm’s fit-
ting on the training and testing samples, the leaf size and
n_neighbors values were set to 50 and 10, respectively.

As it concerns the LinearSVC model, the most critical
to the training process and handling of loss hyperparame-
ters, namely penalty and loss, were set (by default) to /2 and
squared_hinge respectively. The only regularization amend-
ments were made to the max_iter and C hyperparameters, as
they were set to 30K and 1.5 each. Similarly to the two prob-
abilistic models (Log.Reg. - CNB) and the SGDClassifier,
the One-vs-Rest (OVR) heuristic binary classification over
multi-class problems ML schema was also implemented in
LSVC.

Six variants of the Tree-based category are included in
Table 10, of whom the four belong to the sklearn classi-
fication library, namely DT, RF, ET and Bagging ensemble
meta-estimator, while LGBM and CB are introduced as inde-
pendent libraries. All the algorithms presented under this
category are non-parametric, relying on function approxi-
mation to train as close to the tested samples as possible
and cover the maximum range of different data shapes. The
base algorithm of the aforesaid category is DT. It requires
little data preprocessing effort (such as removing null and
NaN values) and can be used for both numerical, categor-
ical, or mixed multiclass datasets. Despite its simplicity, in
the case of large datasets with multiple features, DT may be
expanded over complex trees, leading to overfitting. To avoid
such problems, we set the minimum number of the training
inputs per leaf to 8 for ignoring any leaf that has fewer sam-
ples. Another critical parameter for countering tree models
overfitting is max_depth that was set to 20 to calibrate the
length of the longest path from the root of the tree to the
last leaf. Accordingly, max_leaf nodes was set to 100 and
the entropy criterion was selected to test the quality of splits
along leaf nodes. Moreover, the “Minimal Cost-Complexity”
pruning ccp_alpha parameter was set to le—3 for remov-
ing the leaf-nodes that use features with low importance. In
this way, the complexity of the model is minimized and its
predictive power is elevated against overfitting. Finally, the
max_features parameter, which is responsible for the identi-

On the detection of lateral movement through supervised machine learning and an open-source... 1909

fication of the optimal number of features during the split of
the samples into branches and leaves, was set to square-root.

Regarding RF and ET, the same values per parameter as
with DT were set for testing the algorithm’s ability to gener-
alize on the dataset. Nevertheless, as observed from Table 10,
the classifier demanded more estimators, max_depth and
max_leaf _nodes to generalize well, namely 1000, 300, and
650, respectively. The ccp_alpha pruning parameter was also
set to an increased value, le—2.

LightGBM was configured with the default value regard-
ing the boosting parameter type, namely Gradient Boosting
Decision Tree or boosting_type = “gdbt”. LightGBM intro-
duces a leaf-wise approach regarding the expansion of the
trees, which contradicts the traditional Gradient Boosting
methods of adapting depth-wise tree growth, such as the
XGBoosting algorithm. The aforesaid approach permits
LGBM to converge faster upon expanded datasets (>1.5M
samples), however with high probability of overfitting; there-
fore, the use of custom regularization hyperparameters was
a necessity. First off, the maximum depth of the trees
max_depth was set to 20, as in DT and RF. The methodol-
ogy of adapting a specific depth, in conjunction with a proper
initialization of the regularization hyperparameters across all
leafs, will lead to the creation of a model which generalizes
well across multiple sets of data. Therefore, the number of
leaves was set to 20. For LGBM, it is recommended that
the maximum number of bins (max_bin) should be kept
to the smallest possible for achieving balance between the
algorithm’s speed and accuracy. Thus, the max_bin param-
eter was set to 20. The same policy was kept with the
min_child_samples, min_data_in_bin, and min_data_in_bin
hyperparameters that were kept small in accordance to the
max_bin value. The remaining LGBM’s hyperparameters
comprise the n_jobs, the n_estimators, the reg_alpha and
the reg_lambda. The first is related to the number of threads
that will be used in parallel during the training of the model
which is recommended to match the number of the physi-
cal processor’s cores; eight for this work. The value of 100
estimators was assigned to our model, which represents the
maximum number of trees during the boosted leaf-wise train-
ing of the algorithm. The reg_alpha and reg_lambda values
corresponding to L1 and L2 hyperparameters, respectively.
Both were set to le—2. Finally, the learning rate was set to 0.1
to boost the algorithm’s learning process to ignore unwanted
noise.

CB is another tree-based algorithm which supports mul-
ticlass classification and is fully compatible with sklearn’s
tools. CB is specially designed to deal with overfitting via
two different detectors, namely IncToDec and Iter, that check
the training parameters and if the pre-set thresholds of loss
are exceeded the training process is stopped. For the needs
of this work, through various repeated try and learn attempts
the number of iterations was decreased to 70 to minimize the

average time of the model’s training. Also, as recommended,
when the max_iter value is decreased the learning_rate
should be increased, and for that reason it was set to 0.3.
During the training of the algorithm, the CrossEntropy or
negative log likelihood loss function was applied due to
the multiclass nature of the LMD-2023 dataset to mitigate
prediction errors. Moreover, L2 (reg_lambda) regularization
parameter was set to le—7 to mitigate the cost of the loss
function during the training of the model.

Lastly, Bagging is an ensemble meta-estimator that fits
classifiers as base algorithms on random samples of the orig-
inal dataset. Then, through averaging or voting, it assembles
their distinct predictions into a final result. Its main advan-
tage is that it reduces the variance of the model through
the examination of multiple models. In this work, Bag-
ging was applied initially with four different base estimators
exclusively, namely DT, RF, ET and CB. Accordingly, the
estimators parameter, which is related to the number of
implemented algorithms or how many times a distinct esti-
mator is going to be executed, was set to 12. To ensure the
uniqueness of the sample in each run of the base estimators,
the random_state value was set to 22. Moreover, the number
of the samples to draw from the LMD-2023 dataset to train
each base estimator was set to 80%, leaving the rest 20% of
the data for testing each fit. Finally, the four aforementioned
base estimators were implemented to be run consecutively
within a final execution of the Bagging aggregated average
model.

5.1.2 Results

Table 11 groups the shallow classification results per clas-
sifier, where the average score per metric was calculated
over the 10 stratified cross evaluation folds. Specifically,
the table contains the most relevant per classifier evalua-
tion scores, namely, AUC, Precision, Recall, F'1, Accuracy
and Total Execution Time (T.E.Time) in days/h/min/s format.
Recall that due to the imbalanced nature of the LMD dataset,
the Accuracy metric is presented only for consistency and
completeness purposes, therefore it is highlighted in italics.
Instead, our focus is on the AUC and F'1 metrics, where the
highest and lowest average scores are presented in boldital-
ics and bold, respectively. The same colors are used for the
fastest and slowest time, respectively. Figure 2 provides extra
insight regarding the above-mentioned analysis and results,
through the exported average versions of confusion matrices
per ML model.

As observed from Table 11, the best mean results were
achieved with the ET algorithm, achieving a mean AUC
of 99.84%. Bagging (with DT algorithm as Base Estima-
tor) and RF classification models succeeded the second and
third-best average AUC-score, with 99.80% and 99.68%
percentage each. As it concerns the rest of tree-based clas-

@ Springer

1910

C. Smiliotopoulos et al.

Table 10 Hyperparameter values per classification algorithm

Hyperparameters Probabilistic STH-based Deter. L-based Tree-based
Log.Reg SGDC KNN LSvC LGBM DT RF ET CB BNG

solver saga - - - - - - - - _
max_iter 1000 S5e—3 - 30000 - - - - 70 -
tol le—3 le—8 - - - - - - — _
C - - - 1.5 - - - — _ _
loss — m_huber - - - - - - C.E. -
early_stopping - True - - - - - _ _ _
learning_rate - Optimal - - 0.1 - - - 0.3 -
algorithm - - auto - - - - — _ _
leaf_size - - 50 - - - — — _ _
n_neighbors — - 10 — — _ _ _ _ _
weights - - uni - - - - - - _
max_bin — - — — 20 _ _ _ _ _
max_depth - - - - 20 20 20 300 - -
min_child_samples — — — — 30 _ _ _ _ _
min_data_in_bin - - - - 10 - — — _ _
min_split_gain - - - - 0.1 - - - — _
multi_class multinomial - - - - - — — _ _
n_estimators — — — — 100 — 300 1000 — 12
penalty elasticnet elasticnet - - — - — — _ _
random_state - - - = 30 - _ _ _ 22
num_leaves - = - - 20 - — — _ _
reg_alpha - - - - le=2 - - - - -
reg_lambda - - - - le—2 - - - le—7 -
n_jobs - - - - 8 -1 -1 -1 - -
ccp_alpha - - - - - le—3 le—3 le—2 - -
max_leaf nodes - - - - - 100 100 650 - -
max_samples - - - - — — _ _ _ 0.8
min_samples_leaf - - - - - 8 8 8 - _
min_samples_split - - - - - - 20 10 - -
criterion - - mski - - entropy gini gini - -

A hyphen denotes that the current value either is inapplicable to the current algorithm, or if it is applicable, it implements the default value.
STH-based, stochastic-based; L-Based, Linear-based SVC; Deter., Deterministic; C.E., C.Entropy; uni, uniform; mski, minkowski

sifiers, LightGBM and DT succeeded also an average AUC
score above 99% (precisely 99.61% and 99.53% each), while
CatBoost did not manage in all rounds of the 10-folds to
overcome 98.09%. As shown in the same table, Bagging was
executed with three more base estimators, namely RF, ET,
and CB, giving a bagging tree-based average AUC score
of 99.22%. On the other hand, Stochastic-based classifica-
tion models, namely Logistic Regression, SGDC, KNN, and
NB, did not manage to exceed 95% as it concerns the two
former algorithms (93.51% and 93.27%, respectively) and
98.5% regarding the two latter (98.33% and 98.35% each).
The worst performance was presented with LinearSVC algo-
rithm, yielding an average AUC of 92.89%.

Regarding the F'1 score, ET had, as it was expected from
its presented in Sect. 5.1.1 core structure, the best rate with

@ Springer

99.41%, while SGDClassifier had the worst, i.e., 91.21%.
Naive Bayes was the fastest algorithm, with ~ 30 min of
training time, while KNN revealed the maximum delay dur-
ing the training of its model with & 26 hr.

5.2 Deep learning

For DNN analysis, five different networks were created,
namely MLP, CNN, LSTM, RNN and Autoencoders. MLP
models, are feed-forward artificial NN that generate multi-
ple interconnected dense layers for directing multiple input
nodes through binary or multiclass graph-based classification
into the corresponding output layers. Through the creation of
perceptron models, researchers can handle complex classifi-
cation experiments relying on the weighting of coefficients

On the detection of lateral movement through supervised machine learning and an open-source...

1911

Table 11 Results of shallow

analysis Model AUC Prec Recall F1 Acc T.E.Time
Logistic regression 93.51 98.66 98.72 98.68 98.72 00:00:45:50
SGDClassifier 93.27 92.49 90.03 91.21 98.47 00:00:26:59
KNN 98.33 96.77 97.57 97.16 99.47 01:01:02:00
Naive Bayes 98.35 98.21 95.85 96.63 95.85 00:00:30:29
LinearSVC 92.89 95.16 89.45 92.01 98.67 00:01:20:13
LightGBM 99.61 99.38 99.36 99.37 99.90 00:00:32:19
DT 99.53 98.70 99.33 99.01 99.82 00:00:37:09
RF 99.68 98.61 99.56 99.08 99.83 00:01:45:05
ET 99.84 99.05 99.79 99.41 99.89 00:07:30:12
CatBoost 98.09 98.32 97.17 97.73 99.59 00:00:25:48
Bagging (Base Estimator: DT) 99.80 99.04 99.73 99.38 99.88 00:01:23:33
Bagging (Base Estimator: RF) 99.37 98.50 99.10 98.78 99.77 00:00:30:05
Bagging (Base Estimator: ET) 99.72 98.88 99.61 99.24 99.86 00:01:56:30
Bagging (Base Estimator: CB) 97.99 98.28 97.04 97.64 99.57 00:05:43:30
Bagging (Tree-Based Avg.) 99.22 98.67 98.87 98.76 99.24 00:03:38:25

T.E.time, Total execution time

to evaluate numerous inputs. MLP models are widespread
due to their versatile nature to handle non-linear and highly
imbalanced datasets and be trained in parallel real-time mode
keeping high F'1 score percentages, even via small samples.

On the other hand, CNN is a DNN algorithmic model
that takes advantage of the implementation of various con-
volutional and pooling layers. Convolutional layers are
responsible for the apportionment of large scaled imbalanced
sets of data into various areas of nodes, whereas the pooling
creates a “pool” with the highest values in each area. Despite
their best applicability in unsupervised learning experiments,
they are equally effective algorithms for supervised learning
as well, taking into account the existence of large scaled
datasets with millions of records.

As it concerns LSTM networks, they are an elevated form
of the so-called Recurrent Neural Networks (RNN). They
are designed to train their models and learn from long-term
dependent features through the gated recurrent units (GRUs)
method. GRUs allows the manipulation of two gates, one
“forget gate” that intentionally omits information from pre-
vious timesteps and the “update gate”, which is responsible
to calibrate the amount of information that will be fed into
the next timestep. Among the principal advantages of LSTM
is its efficiency to classify long sequences that emerge from
the existence of numerous features and extended sets of data.

Simple RNN models were initially associated with the
predictive classification of data samples that present sequen-
tial behavior, such as voice, language, or image datasets.
Despite their initial dedicated implementations, they have
found applicability in the IDS domain with highly promis-
ing results, as presented in [29-31]. Finally, autoencoders
is another popular type of feed-forward artificial NN. Their

functionality hinges on the design that the input is com-
pressed and downgraded into a low-dimensional coded
format and then is reconstructed from this representation.
Similar to the majority of the aforementioned DNN algo-
rithms, autoencoders have been initially applied over picture
and human figures recognition. However, as evidenced in
[32-37], such models can provide high prediction rates in
IDS concepts too.

The above-mentioned models were built on the same desk-
top machine as described in Sect. 5.1. Nevertheless, to speed
up the training process, all the experiments were run on
the base-machine’s GPU and RAM, via NVIDIA’s cuDNN
8.1.0.77 library for GPU-acceleration and parallel program-
ming. Despite the use of the CUDA GPU implementation
library, the relevant to the experiments scripting employed
Python 3.10.9 via Sklearn 1.2.1, Pandas 1.5.2, Numpy,
1.24.2, Seaborn 0.12.2, matplotlib 3.4.3, jupyter_server
8.0.3, Keras 2.10.0 and Tensorflow 2.10.1 libraries and pack-
ages.

5.2.1 Configuration of hyperparameters

Table 12 delineates the hyperparameters used for the cre-
ation of each of the DNN models. For allowing the maximum
level of coefficients balancing during the training phase of
CNN, LSTM, and Autoencoders, the robustness of stochas-
tic gradient descent was calibrated via the selection of the
mini-batch SGD optimizer and through a momentum of 0.9
and a learning rate of 2e—2. Regarding the MLP and RNN
models, another variant of the classic SGDC algorithm was
implemented, namely Adam optimizer. Although the orig-
inal SGDC optimizer maintains a constant alpha learning

@ Springer

1912

C. Smiliotopoulos et al.

rate for all weight updates during training, Adam maintains
a per-parameter learning rate, which makes it very efficient
when the datasets have very large diversions in gradients.
Considering the fact that a balance between the number of
the executed per NN epochs and the number of samples that
will be passed through to the network at one time, namely
the batch size, is crucial for achieving the best generaliza-
tion during the training phase of the examined samples, an
extended trial and error approach was adopted. This approach
concluded in the use of a batch size of 50 and 32 for MLP
(40 epochs), CNN (20 epochs) and LSTM (12 epochs) mod-
els, respectively. Lastly, both RNN and Autoencoders models
were initialized via the use of a batch size of 50.

The popular relu activator was exploited in MLP, CNN,
and Autoencoders, whereas the tahn activator was imple-
mented as compatible with the LSTM and RNN networks.
Both relu and tahn activators were used only for the input
and the various hidden layers of each network. For the out-
put layer, which is responsible for the classification of each
sample, the Softmax output activator was implemented as
proposed in the majority of the studied bibliography. In
order to make the training of DNN networks faster and more
stable through normalization of the layers’ inputs by re-
centering and re-scaling, an extra batch normalization layer
was implemented as hidden in each algorithm. As an extra
regularization effect, the Dropout technique was used to pre-
vent overfitting. The Dropout parameter was set to 0.8 and
9.0 as presented in Table 12.

As it concerns the input layer of each NN presented in
Table 12, it was the same for all models, namely 90 columns.
It should be pinpointed that the extended number of columns
was the cause of the OHE preprocessing of the LMD-2023
dataset, as explained in Sect. 4.2. The output layer was set to
outline the three classes of the dataset’s labelling, as given
in Table 6. The provided by Keras embedding layer was also
implemented right after the input layer of the CNN and LSTM
models.

The CNN model was used with six hidden ConvID layers,
and one Flatten after the last ConviD. Padding was set to
“same” in all six ConvID layers. On the other hand, LSTM
was implemented as a combination of five hidden layers and
one GlobalAveragePoolinglD after the last hidden. Above
that, a BatchNormalisation layer was implemented after each
of the five hidden layers.

5.2.2 Results

Table 13 recapitulates the DNN classification results of the
LMD-2023 dataset. As with the swallow classification results
in Table 11, the numbers represent the average score per
metric, as that were calculated over the 10 stratified cross
validation folds, taking into account the total of the executed
epochs per algorithm. Again, due to the highly imbalanced

@ Springer

nature of the LMD dataset, the Accuracy score is highlighted
in italics and is presented only for reasons of consistency
and completeness. The results concentrate on the AUC and
F1 scores, from which the best and worst average scores
are presented in bolditalics and bold, respectively. Addition-
ally, Sect. 6 contains the results of each confusion matrix, as
depicted in Figs. 2 and 3, respectively.

With reference to Table 13, the best average AUC score
was achieved by the LSTN algorithm, with an average value
of 95.82%, which is also justified by the best average F'l
score, regarding the same model and with an average value of
95.55%. On the downside, this DNN model was the slowest
in terms of training time, i.e., & 16 hr. The CNN model
presented the worst performance in terms of AUC score, with
95.12%, whereas MLP had the worst F'1 score with a value
of 93.57%. Lastly, the MLP model was the fastest, during
the training time, requiring &~ 11 h. Regarding the number
of optimal epochs per cross-validated fold were very high,
as its rate varied from an average of 52 for MLP model,
to 32 and 30 for CNN and LSTM networks, respectively.
Altogether, with reference to Table 13, it is interesting to
see that the two new DNN models present a similar score
to CNN (94.87% and 94.55% vs. 94.43%, respectively) and
they are quite close (—0.68% and —1%) to the best DNN
performer, namely LSTM. However, both these algorithms
presented a significant latency in terms of their total training
and prediction time, with an average of & 15 h of execution.

6 Discussion

Following the first stage observations on the results given
in Tables 11 and 13, the current section encloses a deeper
analysis of the overall findings, also vis-a-vis the related work
of Sect. 2.

6.1 Shallow classification

As presented in Table 11, ET achieved the best AUC and F'1
scores; 99.84% and 99.41%, respectively. On the other hand,
LinearSVC presented the worst AUC score, i.e., 92.89%,
while SGDClassifier had the worst F'1 score with 91.21%.
Overall, the disparities observed for the metrics of the same
type for both type of analysis are highly diverged regard-
ing the best and the worst shallow classification average.
For instance, 6% to 7% difference between the best and
the worst average AUC: 99.84% (ET) and 92.89% (Lin-
earSVC), whereas 0.5% to 0.8% for DNN analysis best and
worst collected rates, namely 95.82% (LSTM) and 95.12%
(CNN). The same divergence is also observed regarding the
F1score: between 99.41% (ET) and 91.21% for shallow, and
95.55% and 93.57% for DNN. Tree-based algorithms per-
formed better in shallow classification analysis, compared to

On the detection of lateral movement through supervised machine learning and an open-source... 1913

Table 12 Parameter values per

DNN algorithm Hyperparameters MLP CNN LSTM RNN Autoencoders
Activator relu relu tanh tanh relu
Input_dim 90 90 90 90 90
Output activator softmax softmax softmax softmax softmax
Initializer he_normal — — — —

Optimizer adam sgd sgd adam sgd
Momentum 0.8 0.9 0.9 0.9 0.9
Dropout 0.15 0.2 0.3 0.15 0.2
Learning rate le—2 2e—2 2e—2 le—2 le—2
Loss CCE CCE CCE SCC SCC
Reg.I2 le—2 le—2 2e—2 le—2 le—2
Batch Norm Yes Yes Yes Yes Yes
Embedding layer No Yes Yes No No
Flatten layer No Yes Yes No No
Standardization No Yes Yes No No
Hidden layers 4 6 5 4 5
Nodes (Per layer) 30/20/10/5 50/30/20/15/10/5 50/30/20/10/5 30/20/10/5 50/30/20/10/5
Epochs 40 20 12 40 35
Batch size 50 32 30 50 50

The Dropout parameter’s value of 0.15 was applied in the final hidden layer for the total of the depicted
DNN algorithms. The hidden layers values are calculated without including the input and output layer.
CCE, Categorical CrossEntropy loss function; SCC, SparseCategoricalCrossentropy loss function; Input_dim,
number of the features used as input. A hyphen defines a non-applicable option for this DNN model

Table 13 Results of DNN

classifiers analysis Model AUC Prec. Recall F1 Acc Epochs T.E.Time
MLP 95.57 95.05 92.22 93.57 98.87 40 00:10:52:46
CNN 95.12 95.44 92.68 94.43 98.66 20 00:13:28:20
LSTM 95.82 95.11 94.36 95.55 98.93 12 00:15:44:18
RNN 95.26 95.64 93.12 94.87 98.83 40 00:14:56:13
Autoencoders 95.10 95.17 92.14 94.55 98.24 35 00:15:32:28

T.E.Time, Total execution time

the results of the other four categories of Table 10 with L-
based algorithm to be the worst performer. Precisely, all the
six Tree-based algorithms in total yielded an at least 4% bet-
ter F'1 score vis-a-vis the other four categories of classifiers.

With reference to the confusion matrices of Fig. 2, Light-
GBM presented superior results. That is, the algorithm
successfully identified 402,533 logs (or else 90.57% TP
rate) related to normal traffic, plus another &~ 41, 664 logs,
revealing 9.37% of TN results. Overall, it achieved a score
of 99.94% regarding the identification of Normal network
traffic, as the sum of TP and TN rates. On the downside,
LightGBM misidentified 140 logs as normal and another
146 as malicious, revealing a minor tendency of 0.25% and
0.23% on FP and FN events, respectively regarding Nor-
mal samples labelled as “0”. The EoRS (labeled as “17)
class suggested Bagging (Tree-Based Avg.) as the best per-
former; ~ 31 (0.006%) samples were misclassified. As it

concerns the EoHT (labeled as “2”), the best rate regard-
ing this label exclusively was achieved with the LightGBM
algorithm; &~ 418 (0.09%) events were misidentified. In gen-
eral, 11 out of the 15 executed shallow classifiers of Table 11
managed to predict a minimum of ~ 98%, of both TP and
TN values, with respect to the EORS and EoHT classes,
respectively. On the flip side, SGDClassifier, LinearSVC,
and Naive Bayes, misclassified 6,926 (or 18.55%), 6,014 (or
16.22%) and 18,829 (or 45.52%) samples from the EoRS
and EoHT classes, respectively. This behavior leaves promis-
ing perspectives for future work to consider the capabilities
and the general behavior of the three aforementioned ML
models. More specifically, via the combination of artificially
created custom features the foregoing disparities are aggre-
gated between the best and worst cross validation metrics
case, around a generally accepted mean value.

@ Springer

1914

C. Smiliotopoulos et al.

Table 14 Comparison with related work (all metrics are in %)

Model Features Cls AUC Prec Recall F1 Acc Epochs Bal. k-fold T.E. Time
Lateral movement previous works

MV (RF, LB, LoR) [7] 4 2 - - - 0.66 99.62 N/A X v -

GRU DNN [12] 8 2 - 93.23 - - 96.68 60 X v -

Ensemble ML [13] 8 2 - 88.70 - - - N/A X v -

SS DL [17] 8 2 - 91.3 - - 99.9 N/A v X -

UML with JD [18] 15 2 - 6 - - - N/A X X -

K-Means UML [19] 27 2 81 - - - - N/A v X -

RF [11] 29/17* 2 - 83.73 81.23 0.82 - N/A X v 00:00:02:06
LaBi [10] 32 2 - 99.87 99.47 0.97 99.99 N/A X v 00:00:11:28
RF [9] 35 2 - 80.31 80.29 0.8 - N/A v v 00:00:03:11
This work. In each case, the best performers based on F1 score for LMD dataset

ET 15 3 99.84 99.05 99.79 99.41 99.89 N/A v X 00:07:30:12
LSTM 15 3 95.82 95.11 94.36 95.55 98.93 30 v X 00:15:44:18

An “*” denotes the parameter through which the best result was achieved. The best/worse performers shown in bolditalics/bold for this work are
with reference to the F'1 metric. Dash, not provided; N/A, not applicable; Bal., balanced test set; Cls, number of classes considered

Table 15 Presentation of the prediction rates of DNN algorithms per class

Model/Class Prec Recall F1 Acc.

Class 0 1 2 0 1 2 0 1 2 0 1 2
MLP 99.20 99.99 85.95 99.58 99.04 78.02 99.39 99.51 81.79 98.72 98.89 98.97
CNN 99.26 99.99 87.42 99.62 99.05 79.86 99.44 99.52 83.04 99.01 98.25 98.99
LSTM 99.29 99.99 83.88 99.43 99.06 82.83 99.36 99.52 83.76 98.43 98.96 98.80

The Accuracy scores regarding all three classes, but more precisely the EOHT class labeled as “2”, is highlighted with italics and is ignored due to

the imbalanced nature of the dataset

6.2 DNN

Asregards DNN analysis, with reference to Table 13, the best
performer was LSTM. As already mentioned in Sect. 5.2.2,
this model achieved an average score of 95.82% and 95.55%
regarding AUC and F1 score, respectively. Although it was
the slowest, it required the minimum number of epochs
before the early stopping parameter terminates the training
process due to lack of evolution. LSTM misidentified 4,312
(or 0.97%) samples of the Normal class (labeled as “0”),
while the MLP and CNN missed &~ 5,000 (1.12%) regarding
the samples of the same class. The MLP presented the worst
prediction percentage for the Normal class, i.e., more than
4,900 or 1.1% misplaced samples. Regarding the EoHT class,
LSTM presented almost the same results as with the Normal
class, as 4,305 (0.96%) of the samples were misidentified.
MLP and CNN misplaced an average of ~ 4,800 (1.08%)
samples while, RNN and Autoencoders misplaced an average
of =~ 4,500 or 0.97% samples. Specifically, with reference
to Fig. 3, all five algorithms thrived in the EoRS class, mis-
placing only about 236 or 0.04% of the samples.

@ Springer

6.3 Comparison with related work

This section complements Sect. 2 by providing a deeper
comparison with the related work. Table 14 gathers the com-
mon characteristics, including the methodology, number of
classes, features and metrics of major past works, consider-
ing supervised and unsupervised ML analysis of LM events.
Moreover, the table includes only the best performers per ML
analysis, as givenin Sects. 5.1 and 5.2. The contributions [20—
23] of Sect. 2.3 referring to graph-based ML, along with the
work in [14] respecting to unsupervised ML techniques, were
omitted for reasons of inconsistency regarding the presenta-
tion of the conducted experiments and the collected results
from them. Precisely, the former works approach the subject
of LM techniques thought the graph-based perspective, and
although they demonstrate promising results they are incom-
patible with our study. Regarding the work in [14], it was
purposefully omitted because it focuses on insider threat ML
analysis, rather than log-based intrusion detection.

Taking into account that almost half of the depicted in
Table 14 works do not include a completed column of met-
rics, the rows of the table are sorted based on the number of
features, presented in the second rightmost column. Further,

On the detection of lateral movement through supervised machine learning and an open-source... 1915

Predict%-:d label Predict1ed label Predict?d label Predict?d label

0 2 0 2 0 2 0 2
5y 401454 3 1624 £y 400356 2 2606 5y 401589 16 1337 £y 384659 3 18161

© © © ©
Qa Qo Q Q
o~ 193 27446 74 o 150 27375 124 o~ 40 27606 3 213 27397 279
= E = £
~ 3774 0 9915 ~ 3920 0 9950 ~ 943 3 12946 ~ 4 0 9711
(a) Logistic Regression (b) SGDClassifier (c) KNN (d) Naive Bayes

Predict?d label Predict1ed label Predict?d label Predict1ed label

0 2 0 2 0 2 0 2
5y 401501 2 1414 By 402329 8 577 5y 402533 22 124 By 402533 1" 535

2 2 2 2
S_ 218 27349 92 2. 3 27758 4 S_ 10 27788 75 S_ 2 27520 0
= = = £
~ 4196 0 9711 ~ 143 2 13631 ~ 130 89 13712 ~ 249 0 13615
(e) LinearSVC (f) RF (g) LightGBM (h) DT

Predict(?d label Predictt1ed label Predict$d label

0 2 0 2 0 2
5] 402225 5 1057 5y 401443 2 1511 =] 402307 5 406

2 2 2
o~ 163 27212 132 2~ 135 27369 128 - 2 27683 2
£ = £
~ 4425 0 9264 ~ 2865 0 11030 ~ 87 1 13972
(i) ET (j) CatBoost

(k) Bagging (Tree-Based Avg.)

Fig. 2 Confusion matrices for the shallow classification experiments of Sect.5.1 on the LMD-2023 dataset. Average results over all folds for
shallow model analysis

Fig.3 Confusion matrices for
the DNN classification

Predicted label Predicted label
0 1 2 0 1 2 0 2
experiments of Sect.5.2 on the 5] 401689 3 1071 Sy 401443 2 1511 5] 401557 3 1805
LMD-2023 dataset. Average

Predictf]ed label

©] ©
o Q Qo &3
results over all folds for shallow S 27539 69 T 135 27369 128 S_ 101 27162 97
model analysis 2 2 e
~ 3687 0 10253 ~ 2865 0 11030 ~ 2403 0 11355
(a) MLP (b) CNN (c) LSTM

Predictged label Predictfd label

0 2 0 2
5] 401548 4 1265 5y 401322 8 1509

2 2
2 2 27255 84 T_ 178 27329 91
= =
~ 3101 0 10842 ~ 2857 0 10986
(d) RNN (e) Autoencoders

given that all the included works consider binary classifica-
tion models, while the current takes into account three classes
as they have been defined in Sect. 3.4 it might seem rea-

sonable for the experiments of Sect. 5 to be repeated under
the concept of two classes, namely Normal and Malicious.
However, as it was proven experimentally both during the

@ Springer

1916

C. Smiliotopoulos et al.

labelling of the dataset and the designing of shallow and
DNN experiments, in Sects. 3.4 and 5, respectively, the mul-
ticlass classification analysis takes more time to run than a
binary classification task. For that reason, the relationship
between the number of classes and the runtime is consid-
ered roughly linear and the ML problem with more classes
added is NP-hard to be solved, requiring most of the CPU’s
computing power resources.

As observed from Table 14, most contributions omit to
report key evaluation metrics as part of the documentation of
their methodology; this is evident especially for the AUC,
Recall, and F'1 scores. Moreover, six out of nine works
included k-fold cross validation (all with 10 folds) as a
precaution step for avoiding overfitting. Additionally, the
majority of the contributions employ an imbalanced dataset,
whereas each one of the works [9, 17, 19] incorporate bal-
anced traffic. Nevertheless, it is generally accepted that the
imbalanced nature of real-life log-based traffic is the basic
principle that governs real-world scenarios. Put simply, it is
almost unlikely to be numerical equal malicious with normal
logs, and in many cases, attack logs may surpass Normal
ones. Think for instance the exploitation of remote services,
where numerous attempts are executed towards the acquisi-
tion of remote access to the targeted host.

Furthermore, all works except [12] do not make any ref-
erence to the features that were employed as inputs to their
examined ML model, the following st was left from previ-
ous revision and included in the submitted manuscript even
though the majority of the studies rely on features that were
artificially extracted as custom and not generic ones, not to
mention that none of them or the rest of the related works
presented in Table 1 deal with Sysmon oriented logs. This
lack of information, regarding one of the keystone aspects of
ML analysis, deprive knowledge from future researchers in
the subject of LM analysis to draw important conclusion of
how overfitting issues could be prevented through feature’s
manipulation and preprocessing.

It should be pinpointed that none of the works in Table 14
includes regularization of ML mode’s hyperparameter when
those are implemented in their methodology. Precisely, when
it comes to hyperparameter tuning it refers to the identifica-
tion of the optimal setting of each algorithm and is completed
in advance the initiation of the ML process and the construc-
tion of the model. It is a trial and correct procedure that has
been proved through practice as the first step towards cali-
brating the speed and quality of the learning process and the
overall performance of the model being trained. Above that,
hyperparameter tuning is equally critical when it comes to
the construction of DNN layered models, when the number
of layers and their included parameter settings affect expo-
nentially the learning process and the overall prediction of
the network. Equally important, finding the optimal balance
of hyperparameter can eliminate overfitting, due to too low or

@ Springer

very high learning that cause overfitting via under-sampling
or collisions, respectively.

From Table 14, it is derived that the authors of the related
works heavily rely on the Precision metric for assessing
their ML models. Besides that, only four papers introduce
Accuracy as their assessing metric, among which only one
considers a balanced dataset. Nevertheless, although the
avoidance of Accuracy towards the evaluation of imbalanced
datasets is sound in favor of Precision, this metric should also
be weighted in conjunction with Recall results and under the
metrics of AUC and F1. For instance, although the contri-
butions in [7, 10] report a high accuracy rate of 99.62% and
99.99%, respectively, they demonstrate a low averaged pre-
diction rate of 0.66 and 0.97, respectively, regarding the F'1
score. Based on our results, ET yielded a prediction rate of
99.41% for F 1, while the LSTM model had a prediction score
of 95.55%. Both models were selected as the best in terms of
F'1 score and AUC combination, as depicted for shallow and
DNN analysis in Sect. 5.1.2 and Table 13, respectively. Once
again, it is important to clarify that due to the imbalanced
nature of the LMD-2023 dataset, the F'1 and AUC metrics
should be the primary focus in any related to this subject ML
analysis.

Overall, compared to the limited so far work in the field of
ML analysis on LM events, and taking into account that, to the
best of our knowledge, for the first time a contribution har-
nesses Sysmon logs through supervised shallow and DNN
elevated classification techniques, the results given by the
current study are superior and more than promising. Recall
from Sect. 3.1 that Sysmon logs supersede that of the legacy
MS Windows Event Viewer, being much richer and appro-
priate for conducting dataset creation and feature selection
towards the experimentation over ML techniques.

6.4 Takeaways and future directions

Based on both theory and extracted empirical observations
from the conducted experiments, this work provides a unique,
to our knowledge so far, methodology (alongside an open-
source, publicly available tool called ETCExp) that exploits
Sysmon logs towards the detection of LM. As already pointed
out in Sect. 3.2, the creation of ETCExp was motivated
by the lack of the literature to offer an open-source tool
that covers the needs of EVTX-to-CSV transformation and
extraction. ETCExp not only extracts the manipulated EVTX
files into CSV equivalent, but on demand conducts the
dataset’s labelling procedure, as detailed in Sect. 3.4. This is
done based on the re-configurable policy against LM events
given in [24]. According to the related work in Sect. 2, no
study except [12] incorporated logs extracted from Sysmon
captured traffic under the concept of supervised classifica-
tion. Nevertheless, opposite to the study at hand, in [12] the

On the detection of lateral movement through supervised machine learning and an open-source... 1917

Sysmon logs analysis was conducted under a binary classi-
fication scheme and not under a multiclass labelled dataset.

Moreover, the current work provides a stable methodol-
ogy for feature selection and data-preprocessing targeting
Sysmon’s log-based datasets. Although this study considers
a rather small but impactful set of 15 features, depending on
the complexity of the LM incident under investigation, the
number of the features may be altered to a larger or smaller
set. A promising path left as a goal for future work will be
the implementation of custom features, such as a counter for
the number of specified to targeted LM techniques Sysmon
headers.

Another promising future path would be the implemen-
tation of unsupervised ML techniques in combination with
regression methods towards the successful identification
of the unlabeled LMD (or any other similar) dataset ver-
sion. We argue that the combination of the three pillars
of the unsupervised ML, namely Clustering, Association
and Dimensionality reduction, will reveal useful relation-
ship patterns on the collected LM-related samples. Upon
that, each sample’s dimensional interdependence may be
reduced towards the extraction of artificial custom features.
Moreover, the examination of Regression ML models via
Supervised-ML (SML) or Unsupervised-ML (UML) may
assist in the implementation of new numerical features, sim-
ilar to the six features preprocessed with MinMax scaling in
Table 8. This may lead to the creation of other, more gener-
alized ML models.

As it concerns LMD-2023 DNN analysis, it was observed
that the number of the collected samples related to the EOHT
class were not quite enough to train the DNN models to pro-
duce superior predicting ratings. Regarding the EoHT class,
as it is presented in Table 15, although the MLP model it was
trained for 50 epochs it did not manage to exceed the aver-
age score of &~ 82%, as it concerns the three major metrics,
namely Precision, Recall and F1. The analysis revealed the
same approximate results on behalf of CNN and LSTM net-
works, a fact that makes clear the incapability of the model
to generalize well on such a rather small subset of samples
(= 30.5K samples in a total of &~ 1.7M). Naturally, future
work may expand the LMD dataset to include more samples
for certain attack classes in an effort to further improve the
prediction score of DNN models.

7 Conclusions

The present study aspires to set the groundwork for a compre-
hensive IDS approach regarding the detection of LM through
ML techniques; the focus is on the MS Windows platform
and the Sysmon system service. In comparison to the rel-
evant literature, which is rather scarce, we offer a solid,
all-encompassing process for selecting the most appropri-

ate classification features and data preprocessing methods
towards the elimination of overfitting and the implementation
of accurate and well-generalized ML models. It is demon-
strated that datasets created from the extraction of Sysmon
logs into the CSV format can be particularly effective, even
in multiclass classification, if just trained with a bare min-
imum of high importance features. Notably, the detection
score in terms of the F'1 metric is above 99% for almost
half of the shallow estimators we tested and above 94.4% for
all but one of the utilized DNN models. Just as importantly,
we pinpoint shortcomings or misconceptions observed in the
related work, suggesting the right direction.

Following the discussion in Sect. 6.4, future work can
assess the ability of selecting the same features under the
concept of unsupervised ML techniques. We argue that
the implementation of the three state-of-the-art directions
of UML, namely Clustering, Association and Dimension-
ality reduction, will reveal useful relationship patterns on
the collected LM-related samples. Besides, the combination
with regression methods exploiting unlabeled datasets, will
also offer greater insight into the LM ecosystem. Finally, a
straightforward direction from future work is the enrichment
of LMD family of datasets with more LM techniques that
will trigger the generation of a richer set of EventIDs.

Funding Open access funding provided by HEAL-Link Greece. This
study received no funding.

Data availability All data and code generated or used to support the
findings of this study are included within the article.

Declarations

Conflict of interest The authors declare that they have no conflicts of
interest regarding the publication of this study.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Makrakis, G.M., et al.: Industrial and critical infrastruc-
ture security: technical analysis of real-life security incidents.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1918

C. Smiliotopoulos et al.

10.

11.

12.

13.

14.

15.

IEEE Access 9, 165295-165325 (2021). https://doi.org/10.1109/
ACCESS.2021.3133348

Gonzilez-Manzano, L., et al.: A technical characterization of APTs
by leveraging public resources. Int. J. Inf. Secur. (2023). https://
doi.org/10.1007/s10207-023-00706-x

MITRE: Lateral movement—the adversary is trying to move
through your environment (2019)

Sarah Hawley - Ben Read - Cristiana Brafman_Kittner - Nalani
Fraser - Andrew Thompson - Yuri Rozhansky - Sanaz Yashar.
APT39—An Iranian Cyber Espionage Group Focused on Personal
Information (2021)

Corfield, G.: SolarWinds hack was done by Kremlin’s APT29 crew,
say UK and US (2021)

Gillis, T., et al.: Lateral movement in the real world—a quantita-
tive analysis (2022). https://blogs.vmware.com/security/2022/06/
lateral-movement-in-the-real-worlda-quantitative-analysis.html.

Visited on 2022

Kaiafas, G., et al.: Detecting malicious authentication events trust-
fully. In: NOMS 2018—2018 IEEE/IFIP Network Operations and
Management Symposium, pp. 1-6 (2018). https://doi.org/10.1109/
NOMS.2018.8406295

Kent, A.D.: Cybersecurity data sources for dynamic network
research. In: Dynamic Networks in Cybersecurity. Imperial Col-
lege Press (2015)

Bian, H. et al.: Host in danger? Detecting network intrusions from
authentication logs. In: 2019 15th International Conference on Net-
work and Service Management (CNSM), pp. 1-9 (2019). https://
doi.org/10.23919/CNSM46954.2019.9012700

Bai, T., et al.: A machine learning approach for RDP-based lateral
movement detection. In: 2019 IEEE 44th Conference on Local
Computer Networks (LCN), pp. 242-245 (2019). https://doi.org/
10.1109/LCN44214.2019.8990853

Bian, H., et al.: Uncovering lateral movement using authentication
logs. IEEE Trans. Netw. Serv. Manag. 18(1), 1049-1063 (2021).
https://doi.org/10.1109/TNSM.2021.3054356

Chen, C.-M.,, Syu, G.-H., Cai, Z.-X.: Analyzing system log based
on machine learning model. Int. J. Netw. Secur. 22(6), 925-933
(2020)

Bohara, A., et al.: An unsupervised multi-detector approach for
identifying malicious lateral movement. In: 2017 IEEE 36th Sym-
posium on Reliable Distributed Systems (SRDS), pp. 224-233
(2017). https://doi.org/10.1109/SRDS.2017.31

Le, D.C., Zincir-Heywood, N.: Anomaly detection for insider
threats using unsupervised ensembles. IEEE Trans. Netw. Serv.
Manag. 18(2), 1152-1164 (2021). https://doi.org/10.1109/TNSM.
2021.3071928

Center, C., Trzeciak, R.: The CERT insider threat database. In:
Carnegie Mellon University’s Software Engineering Institute Blog
(2011)

Harilal, A., et al.: TWOS: a dataset of malicious insider threat
behavior based on a Gamified competition. In: Proceedings of
the 2017 International Workshop on Managing Insider Security
Threats. MIST *17. Association for Computing Machinery, Dallas,
Texas, USA, pp. 45-56 (2017). ISBN: 9781450351775. https://doi.
org/10.1145/3139923.3139929

Chen, M, et al.: A novel approach for identifying lateral move-
ment attacks based on network embedding. In: 2018 IEEE inter-
national conference on parallel & distributed processing with
applications, ubiquitous computing & communications, big data
& cloud computing, social computing & networking, sustain-
able computing & communications (ISPA/IUCC/BDCloud/Social-
Com/SustainCom), pp. 708715 (2018). https://doi.org/10.1109/
BDCloud.2018.00107

. Bhasin, H.P.S., etal.: Data center application security: lateral move-

ment detection of malware using behavioral models. SMU Data Sci.
Rev. 1(2), 10 (2018)

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Powell, B.A.: Role-based lateral movement detection with unsu-
pervised learning. Intell. Syst. Appl. 16, 200106 (2022)

Purvine, E., Johnson, J.R., Lo, C.: A graph-based impact metric
for mitigating lateral movement cyber attacks. In: Proceedings
of the 2016 ACM Workshop on Automated Decision Making
for Active Cyber Defense. SafeConfig *16. Association for Com-
puting Machinery, Vienna, Austria, pp. 45-52 (2016). ISBN:
9781450345668. https://doi.org/10.1145/2994475.2994476

Liu, Q., et al.: Latte: large-scale lateral movement detection.
In: MILCOM 2018—2018 IEEE Military Communications Con-
ference (MILCOM), pp. 1-6 (2018). https://doi.org/10.1109/
MILCOM.2018.8599748

Ho, G., et al.: Hopper: modeling and detecting lateral move-
ment. In: 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, pp. 3093-3110 (2021). ISBN: 978- 1-
939133-24-3

Fang, Y., et al.: LMTracker: lateral movement path detection based
on heterogeneous graph embedding. Neurocomputing 474, 37—
47 (2022). https://doi.org/10.1016/j.neucom.2021.12.026. (ISSN:
0925-2312)

Smiliotopoulos, C., Barmpatsalou, K.: Revisiting the detection of
lateral movement through Sysmon. Appl. Sci. (2022). https://doi.
org/10.3390/app12157746. (ISSN: 2076-3417)

Smiliotopoulos, C., Barbatsalou, K., Kambourakis, G.:
Python_Evtx_Analyzer (PeX - vl) (2022). https://github.
com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git. Visited
on 2022

Russinovich, M., Garnier, T.: Sysmon v13. 22. In: Retrieved 28
June 2021 (2021)

Smiliotopoulos, C., Kambourakis, G.: evtx_To_CSV_Export Tool
(ETCExp) (2023). https://github.com/ChristosSmiliotopoulos/
evtx_To_CSV_ExportTool. Visited on 2023

Smiliotopoulos, C., Kambourakis, G.: “LMD” Sysmon Dataset
Collections (2023). https://github.com/ChristosSmiliotopoulos/
Lateral-Movement-Dataset--LMD_Collections. Visited on 2023
Kasongo, S.M.: A deep learning technique for intrusion detec-
tion system using a recurrent neural networks based framework.
Comput. Commun. 199, 113-125 (2023). https://doi.org/10.1016/
j.comcom.2022.12.010. (ISSN: 0140-3664)

Laghrissi, F., et al.: Intrusion detection systems using long short-
term memory (LSTM). J. Big Data 8(1), 65 (2021). https://doi.org/
10.1186/s40537-021-00448-4

Tang, T.A., etal.: Deep recurrent neural network for intrusion detec-
tion in SDN-based networks. In: 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), pp. 202-206
(2018). https://doi.org/10.1109/NETSOFT.2018.8460090

Song, Y., Hyun, S., Cheong, Y.-G.: Analysis of autoencoders for
network intrusion detection. Sensors (2021). https://doi.org/10.
3390/s21134294. (ISSN: 1424-8220)

Singh, A., Jang-Jaccard, J.: Autoencoder-based unsupervised intru-
sion detection using multi-scale convolutional recurrent networks.
In: CoRR abs/2204.03779 (2022). https://doi.org/10.48550/arXiv.
2204.03779. arXiv: 2204.03779

Kamalov, F., et al.: Autoencoder-based intrusion detection system.
In: 2021 International Conference on Engineering and Emerging
Technologies (ICEET), pp. 1-5 (2021). https://doi.org/10.1109/
ICEET53442.2021.9659562

Narayana Rao, K., Venkata Rao, K., Prasad Reddy, P.V.G.D.:
A hybrid intrusion detection system based on sparse autoen-
coder and deep neural network. Comput. Commun. 180, 77—
88 (2021). https://doi.org/10.1016/j.comcom.2021.08.026. (ISSN:
0140-3664)

Chatzoglou, E., et al.: Pick quality over quantity: expert feature
selection and data preprocessing for 802.11 intrusion detection
systems. IEEE Access 10, 64761-64784 (2022). https://doi.org/
10.1109/ACCESS.2022.3183597

https://doi.org/10.1109/ACCESS.2021.3133348
https://doi.org/10.1109/ACCESS.2021.3133348
https://doi.org/10.1007/s10207-023-00706-x
https://doi.org/10.1007/s10207-023-00706-x
https://blogs.vmware.com/security/2022/06/lateral-movement-in-the-real-worlda-quantitative-analysis.html
https://blogs.vmware.com/security/2022/06/lateral-movement-in-the-real-worlda-quantitative-analysis.html
https://doi.org/10.1109/NOMS.2018.8406295
https://doi.org/10.1109/NOMS.2018.8406295
https://doi.org/10.23919/CNSM46954.2019.9012700
https://doi.org/10.23919/CNSM46954.2019.9012700
https://doi.org/10.1109/LCN44214.2019.8990853
https://doi.org/10.1109/LCN44214.2019.8990853
https://doi.org/10.1109/TNSM.2021.3054356
https://doi.org/10.1109/SRDS.2017.31
https://doi.org/10.1109/TNSM.2021.3071928
https://doi.org/10.1109/TNSM.2021.3071928
https://doi.org/10.1145/3139923.3139929
https://doi.org/10.1145/3139923.3139929
https://doi.org/10.1109/BDCloud.2018.00107
https://doi.org/10.1109/BDCloud.2018.00107
https://doi.org/10.1145/2994475.2994476
https://doi.org/10.1109/MILCOM.2018.8599748
https://doi.org/10.1109/MILCOM.2018.8599748
https://doi.org/10.1016/j.neucom.2021.12.026
https://doi.org/10.3390/app12157746
https://doi.org/10.3390/app12157746
https://github.com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git
https://github.com/ChristosSmiliotopoulos/Python_Evtx_Analyzer.git
https://github.com/ChristosSmiliotopoulos/evtx_To_CSV_ExportTool
https://github.com/ChristosSmiliotopoulos/evtx_To_CSV_ExportTool
https://github.com/ChristosSmiliotopoulos/Lateral-Movement-Dataset--LMD_Collections
https://github.com/ChristosSmiliotopoulos/Lateral-Movement-Dataset--LMD_Collections
https://doi.org/10.1016/j.comcom.2022.12.010
https://doi.org/10.1016/j.comcom.2022.12.010
https://doi.org/10.1186/s40537-021-00448-4
https://doi.org/10.1186/s40537-021-00448-4
https://doi.org/10.1109/NETSOFT.2018.8460090
https://doi.org/10.3390/s21134294
https://doi.org/10.3390/s21134294
https://doi.org/10.48550/arXiv.2204.03779
https://doi.org/10.48550/arXiv.2204.03779
http://arxiv.org/abs/2204.03779
https://doi.org/10.1109/ICEET53442.2021.9659562
https://doi.org/10.1109/ICEET53442.2021.9659562
https://doi.org/10.1016/j.comcom.2021.08.026
https://doi.org/10.1109/ACCESS.2022.3183597
https://doi.org/10.1109/ACCESS.2022.3183597

On the detection of lateral movement through supervised machine learning and an open-source...

1919

37. Chatzoglou, E., et al.: Best of BothWorlds: detecting application
layer attacks through 802.11 and non-802.11 features. Sensors
(2022). https://doi.org/10.3390/s22155633

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.3390/s22155633

	On the detection of lateral movement through supervised machine learning and an open-source tool to create turnkey datasets from Sysmon logs
	Abstract
	1 Introduction
	2 Related work
	2.1 Supervised learning based schemes
	2.2 Unsupervised learning based schemes
	2.3 Graph-based schemes
	2.4 Key observations

	3 ETCExp: converting Sysmon logs to CSV
	3.1 Preliminaries
	3.2 ETCExp tool
	3.3 Proof of concept
	3.4 Dataset labeling

	4 Methodology
	4.1 Feature selection
	4.2 Data preprocessing
	4.3 Feature importance

	5 Experiments
	5.1 Shallow classifiers
	5.1.1 Configuration of hyperparameters
	5.1.2 Results

	5.2 Deep learning
	5.2.1 Configuration of hyperparameters
	5.2.2 Results

	6 Discussion
	6.1 Shallow classification
	6.2 DNN
	6.3 Comparison with related work
	6.4 Takeaways and future directions

	7 Conclusions
	References

