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Abstract

Nowadays, computing on encrypted data seems to be more practical than a few years ago, thanks to the emergence of
new Homomorphic Encryption schemes. In this paper, an algorithm based on Homomorphic Encryption for Arithmetic
of Approximate Numbers (Cheon et al., in: Takagi, Peyrin (eds) Advances in cryptology—ASIACRYPT 2017, Springer,
Cham, pp 409-437, 2017) (HEAAN, or also CKKS) scheme, that is able to perform a secure k-means algorithm which
processes encrypted data, has been studied and presented. The performance of the classifier running on encrypted data has
been evaluated using a standard k-means algorithm that works on plain data as a supervised structure, since the results are
obtained by approximated computations. The main point of this paper is to take existent theoretical techniques (for example
approximations of sgn(x)), to use them and to observe if they are valid in practical applications. The output of the algorithm
is a set of k encrypted masks that can be applied to the original dataset in order to obtain different clusters. The setting is a
standard client—server one. The workload is heavily server-centric, as the client only has to execute a light masking algorithm
at the end of each iteration, which, excluding the decryption, is faster than a plain k-means iteration; the main disadvantage
concerns the accuracy of the results. Experiments show that the algorithm can be executed fairly quickly: the execution time

of the training phase is on the order of seconds, while classification is on the order of tenths of a second.

Keywords Homomorphic Encryption - Secure machine learning - Cryptography - Clustering

1 Introduction

Many applications of data mining techniques are used to
exploit information hidden in data. This happens frequently
with users’ private data, especially today, where computers,
smartphones, IoT devices, etc. accompany users in many
aspects of life. This brings many advantages, although the
main disadvantage of these techniques is that external ser-
vices (such as MLaaS) are able to freely access their private
data, and this is necessary for them in order to perform
computations. Some techniques [24, 26] can be applied in
order to prevent information leak, i.e. data transformation,
even though some correlations and dependencies between
attributes may be somehow accessible after a careful data
analysis.
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The rise of new Homomorphic Encryption (HE) schemes
and standards [6], though, is opening up new possibilities in
the field of information security. By using these schemes,
servers do need to decrypt data in order to provide ser-
vices. In 2009, Gentry [16] presented a Fully Homomorphic
Encryption (FHE) scheme, even though its main issue was
its impracticability. Moving forward, newer schemes and
approaches are trying to address this problem, which pre-
vents these techniques from being used in real applications.
One of the main topics of this paper is the theme of prac-
tical applicability. A lot of work has been carried out, and
since then, different cryptosystems based on the hard Learn-
ing with Errors [30] problem were introduced.

Writing algorithms based on HE schemes is a new and
exciting challenge, since everything must be rewritten in
terms of additions and multiplications: the only operations
allowed. Furthermore, each scheme has its own way of
encoding data. There are many works that show how HE can
be used to build simple but secure machine learning models
[7,12,36], including deep neural networks [1, 22, 29]. In this
work, Homomorphic Encryption for Arithmetic of Approxi-
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mate Numbers [8] (HEAAN, also called CKKS), a levelled!
fully homomorphic scheme, has been used. In particular, the
approach presented in this paper is based on SEAL.jI*, a
Julia package that wraps the original Microsoft SEAL [33],
available for C++ language. The main challenges in writing
algorithms based on CKKS scheme are:

— finding the best way to encode data: it is a matter of fitting
the data to the algorithm and to the schema itself, which
encodes arrays of complex numbers into polynomials.
One aspect to bear in mind is that operations are slot-
wise; therefore, a single operation affects all the values
in the encrypted array;

— sticking to the limit: since CKKS is a so-called levelled
scheme, it is necessary to define in advance how many
operations are to be performed. A HE-based algorithm
always executes the same number of operations regard-
less of the input content. It is a good practice to maximise
the number of available operations. Choosing the right
parameters is, of course, another challenge that is strictly
related to the design of the algorithm;

— finding the right approximation for each function evalua-
tion: since only additions and multiplications are allowed,
the evaluation of a non-polynomial function is impossible
without approximations. Moreover, the number of oper-
ations is limited. This paper is based on some previous
work [9, 10] that presents some efficient and elegant poly-
nomial approximations of the signum function sgn(x) on
different degrees and precisions;

— comparing data: as data are encrypted, it is not possible
to use comparison operators. Considering that clustering
(and classification, in general) is highly dependent on
comparisons, it is essential to find a good way to solve
this problem. The main idea is to evaluate a > b by
calculating sgn(a — b).

The purpose of this study is to present an efficient algorithm
that is able to perform k-means training and classification
based on Euclidean distance on a set of encrypted points.
The training phase takes place through some interactions
between server and client. Basically, the server is able to
execute a single iteration and return the result. Then, the
client processes the result and may request another iteration
by sending a new set of centroids. The data handling phase,
executed by the client, is faster than a standard k-means exe-
cution since, as shown later, each iteration requires a simple
masking operation for each cluster; thus, it has a complexity
of O(k - n) where k is the number of clusters; z is the number
of points (notice that the k procedures can be parallelised).

! Only evaluations of arbitrary circuits of bounded (pre-determined)
depth are supported.

2 https://github.com/JuliaCrypto/SEAL.jl.
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On the other hand, the transformation of an existing model
into an encrypted one and the classification of an encrypted
point are simpler and do not require multiple interactions.
Note that the security of this algorithm is based on the
scheme and, moreover, on how results are used by the secret
key owner. As stated in “Correct use of Microsoft SEAL"3:
decryptions of Microsoft SEAL ciphertexts should be treated
as private information only available to the secret key owner,
as sharing decryptions of ciphertexts may in some cases lead
to leaking the secret key. Sharing the results of this algorithm
can be a reason for serious security problems, as shown in Li
and Micciancio’s attack [18] on CKKS.

1.1 Related works

Secure clustering algorithms have been studied in different
works and applications. There are many approaches to clus-
tering based on secure multi-party computation (MPC) [4,
21, 39], although MPC requires the participation of data
owners for the initial secret sharing. The approach used
in this paper is based on Homomorphic Encryption, which
allows to make use of encrypted data, without decrypting
it. In particular, the algorithm is built on a client—server
model. Since the introduction of Ring-LWE (RLWE) [23],
most of the HE-based programs seem to be based either on
the Brakerski—Gentry—Vaikuntanathan (BGV) scheme [3],
on the Brakerski—-Fan—Vercauteren (BFV) scheme [2] on
the Cheon—-Kim—Kim-Song (CKKS) scheme or on the lat-
est Fully Homomorphic Encryption over the Torus (TFHE)
scheme [13]. Currently, one of the most suitable schemes for
machine learning applications is CKKS that is able to encrypt
array of complex values, and it performs computations using
the Single Instruction stream, Multiple Data stream (SIMD)
mechanism, making it really suitable for Machine Learning
applications. Nevertheless, there are not many proposals of
k-means based on CKKS.

There are k-means works based on HE that are constructed
over the Pailler’s cryptosystem [28], such as [5, 27].

There were proposals for really fast systems based on Liu’s
cryptosystem [19], such as [20], until this cryptosystem was
proved to be insecure [35].

There are few proposals for what concerns actual client—
server systems built over RLWE-based schemes; [32] is
based on BFV scheme and is able to run each iteration in
less than 10min for 10-dimensional datasets of 100 points.
To reduce the burden of the client, the comparison operations
(which are initially performed by the client) are completed
by an additional entity, a trusted server.

A proposal based on TFHE is given in [17], and it does not
require for the client to perform any computation during the
whole training process because of its fast bootstrapping that

3 https://github.com/microsoft/SEAL/blob/main/SECURITY.md.
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allows for the number of operations to be almost unlimited.
Even though this is the preferred behaviour, this approach is
still far from practical since it takes days to run the algorithm.

Perhaps the closest work is givenin [11], where it is shown
that running a mean-shift clustering algorithm is becoming
practical, using CKKS scheme.

Lastly, a general overview is provided in [37], even though
every k-means work is based on different architectures and
schemes (MPC, trusted servers, updatable distance matrix,
and so on).

This work is based on the Ring-LWE problem, uses the
CKKS scheme with Euclidean distance calculation, and pro-
poses a traditional client—server model , where the server is
assumed to be honest but curious and the client workload
is considered to be really light. To the best of our knowl-
edge, there is not any k-means implementation based on
this setting, as all the other works use trusted servers or ask
the client to perform some computations, especially when
assigning each point to a cluster. Implementations based on
other schemes, presented before, are limited in terms of exe-
cution times. This works focuses on executing the algorithm
really fast. This costs in terms of precision, in fact the results
are not 100% accurate with respect to a plain k-means exe-
cution. A quick comparison is carried out in Table 1.

Our contribution is to present an initial implementation
of k-means and a different approach to homomorphic com-
puting, proposing a method that, using existing theoretical
results (especially [9]), is able to run each iteration very fast
by renouncing precision in computations , and also to exclude
other (even trusted) servers from the dialogue.

1.2 Work organisation

The paper is organised as follows: in Sect. 2, the design of the
main algorithm is explained and justified. Section 3 presents
the analysis of several scenarios; in particular, errors and
computational times relative to some experiments conducted
on various UCI Machine Learning [14] datasets are shown
and discussed. Finally, in Sect. 4, all the obtained results are
considered and conclusions are drawn.

2 Algorithm design

Within the context of this research, thoroughly understand-
ing the inner workings of CKKS is not essential (although
it might be useful to better understand some implementa-
tion choices). Let N be the polynomial modulus degree in
which data is encoded and encrypted. For a fixed value of
scale A (which affects precision in calculations), this value
determines two important things:
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Fig.1 Reshaping D into an array of size n - m

— the depth of the circuit: it determines the upper bound of
the number of multiplications that can be performed on
a single ciphertext;

— the size of the array to be encoded and encrypted: CKKS
takes as input an array z € CV/2,

Let D be a numerical dataset composed of m columns and
n rows. The number of dimensions m must not be greater
than the number of available slots per ciphertext (m < N/2).
As a pre-processing step, all columns of the dataset D must
be transformed into [0, «/m/m]. This is done to “set up”
the points; it is shown later, after Fig. 7, why this is neces-
sary. Given a dataset D, finding an optimal way to shape it
before encoding and encrypting it into a polynomial is the
first objective. At the moment, it is still unknown how many
multiplications are necessary for the execution of the algo-
rithm, suppose 2. This means that for a fixed level of precision
(suppose 40 bits, as is done in Microsoft SEAL examples),
by setting, for instance, N = 213 the slots available for any
ciphertext will be 213! = 4096. By encrypting each row of
D into a ciphertext, if m is less than 4096 (most likely true),
SEAL will automatically add a padding of zeros, resulting
in not-optimised calculations. The approach proposed in this
section maximises the use of available slots by reshaping D
into a single array of length n - m and, then, by encoding
and encrypting the array into [nm/s]| ciphertexts, where s
is equal to the number of available slots in each ciphertext;
therefore, s = N/2 (Fig. 1). This is done in order to take
advantage of the SIMD property of CKKS in order to speed
up calculations.

Definition 1 Given the number of slots available in a cipher-
text s = N/2 and the number of total values in a dataset
n - m (assuming that s > m), the efficiency £ for any encod-
ing process is defined as the ratio of the number of slots used
to the total number of slots.

e s+ %] 4+ nm mod s
B s [%] B

ey
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Table 1 Comparing different

; Reference Scheme Encoding Client workload Runtime
k-means algorithms based on
HE. D stands fgr days, H for [34] BEV Integer Heavy u
hours, M for minutes, S for
seconds [32] BGV Integer Trustable server M
[17] TFHE Binary No workload D
[5] Pailler Integer Heavy H
Our proposal CKKS Real Light S
Cihn Cip Ciz Cin Cip Ciz Cij Point 1 Point 2
Do,1 | Doz Dom-1| D11 | D12 Di,m-1
1 3 5 1 3 5 1
Cio | Cix Cim-1| Cio | Cin Cim-1
S

Fig. 2 Encoding the i-th centroid C; into a an array of length
s —s modm

The best and worst cases are defined as follows.

— best case: nm = Omod s. Since nm = Omods —
s|lnm = = eZ = |"*] = [%*], meaning that
E=1;

— worstcase: nm = 1 mod s. In this case, the last ciphertext
will only contain a single value and s — 1 zeros. The
worst possible efficiency value is given by the fact that
the difference [**] — | %" ] is the highest possible.

If s 1 m, the coordinates of points will occupy s — (s mod m)
slots in each ciphertext (the remaining s mod m slots will
contain zeroes). This may be seen as a waste of space, but by
“splitting” a point into two different ciphertexts it would be
impossible to execute Algorithm 1 that is shown later.

After encoding D, the set of centroids C (that are chosen
by the client, in case of first iteration they will probably be
chosen randomly) must be encoded cleverly. A way of encod-
ing that optimises time and computational complexity is the
following: given the i-th centroid C;, repeat its coordinates
in an array of length s — (s mod m). It is possible to define
each position j of the final ciphertext ¢; as follows:

ciljl1 = Cilj mod m] (2)
For instance, given a centroid C; = {1, 3,5} with m =
|C;i| = 3, a representation of the pre-processed centroid is

given in Fig. 2.

As for the ciphertext that contains the dataset, if s 1 m, the
last s mod m slots will contain zeroes.
In the next subsections, the reasons why points and centroids
have been encoded this way will become clearer. Foremost,
it is worth taking a look at the main steps of the k-means
algorithm:

@ Springer
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Fig.3 Aligning C; below the encoded dataset

1. calculate the distances between each point p in D and
each centroid ¢;, withi € {1,2, ..., k};

2. assign each point p to the nearest centroid by finding the
minimum distance;

3. compute new centroids using the newly formed clusters.

Each of these three phases has been analysed, and it will be
shown how each step has been rewritten.

2.1 Distance calculation

The idea is to create an array of size k (k is equal to the
number of clusters) whose i-th element contains a ciphertext
representing the distance between each point of D and the
i-th centroid. Now it is shown how to calculate an entry of
this array, assuming that D is encoded in a single ciphertext
for simplicity, although the procedure is extensible to any
dimension of D (by repeating the process [nm /s] times: one
for each ciphertext).

Remark 1 Operations between ciphertexts are slot-wise. For
example, given ¢; = [1,2] and ¢ = [3, 4], it holds that
c1+cy=1[4,6],and ¢y - c» = [3, 8].

By aligning each centroid C; below the ciphertext that con-
tains D (encoded as in Fig. 1), a situation like the one
presented in Fig. 3 is obtained.

It is possible to subtract these two ciphertexts and square
the result, obtaining the values presented in Fig. 4 (notice that
one multiplication, that is squaring, has been performed).

Next, it is possible to take advantage of a very useful oper-
ation available in CKKS, i.e. rotation. It gives the possibility
of rotating (or shifting to the left) all the values contained in
a ciphertext by x positions. It is possible to rotate rot times
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Point 1 — C;

(Do = Ci0)* | (Do, — Ci1)? (Do,m-1 = Ci,m-1)*

N

Fig.4 Squared distance between each coordinate of points from dataset
D and C;

(Eq. 3) a ciphertext like the one presented in Fig. 4 to obtain
the sum of the m distances between coordinates for each point
(Algorithm 1).

rot = [log,(m)] + (m — pllogmly (3)

Algorithm 1 Sum of the first m slots

Input: Ciphertext ¢, number of dimensions m
Output: Ciphertext ¢ containing the sum of the first m slots

I:i <1

2:j <1

3: result < ¢

4: while i < [log,(m)] do
5 r < rotate(c, 1) > Rotates values to the left
6:  result+=r

7 i< 2

8: end while

9: while 2/ + j < m do

10:  r < rotate(c, 2! + j)

11:  result+=r

12 j<—j+1

13: end while

14: return result

The best case is when m is a power of 2 (the second term
of Eq. 3 becomes 0), whereas the worst is when m is a power
of 2 minus 1. A visual simulation of the algorithm is given
in Fig. 5.

After the execution, positions x : x = 0modm will
contain the sum of the m squared differences between the
coordinates of the x-th point and the i-th centroid, that is,
the squared Euclidean distance! For instance, position 0 will
contain:

(ao1 — ci,)* + (@02 — ¢i2)* + ... + (@om — Cim)?

while position m will contain:

(@11 —ci,)* + (@2 —ci2)? + oo+ (@im — cim)?

And so forth. By repeating this procedure for each centroid

Cj, the final output will be an “array” that can ideally be
represented as shown in Fig. 6 (each row is split into columns

A B C D + B C D ?

First iteration, i = 1

A+B|B+C|C+D ? + |C+D ? ? ?

Second iteration, i = 2

A+B+C+D ? ? ?

Final result

Fig.5 Simulation of Algorithm 1 onm =4

pP1 - )23 -

ci: | dist(p1, Cy) - dist(p2, C1) -

¢ | dist(p1, C2) - dist(p2, C2) -

ck: | dist(pr, C) - dist(p2, Ck) -

Fig.6 A distances matrix

representing the slots of the i-th ciphertext). Empty columns
(-) represent sets of different slots in positions p : p #*
0 mod m that contain partial computations, which are useless
in this context.

Remark 2 As someone said, bits are not coloured; the results
of Algorithm 1 are only found in positions j - m (where
j €{0,1,...,n — 1}). Other positions will contain partial
calculations that should not be taken into account.

The next step would be to find the square root of these val-
ues in order to obtain the final Euclidean distance. However,
this is not the case. In fact, the information required is not
the actual values of the Euclidean distances, but the order
relationships between them. In other words, the aim is not
about knowing the values of d; and d», but to know whether
d1 > dz.

Proposition 1 Given a, b € Z, assuming thata > b > 0, it
holds that:

a>b<«— Ja>b )

Proof Leta, b be two of the just calculated distances (that are
positive, since are sum of squares) and assume that a > b.
Therefore, a —b > 0, meaning that (\/a +/b) (y/a—/b) >
0. Now, it is possible to divide both sides by (y/a + Vb) and
obtain /a — +/b > 0, or, equivalently /a > v/b. O

@ Springer
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Proposition 1 justifies the choice of using squared distances
during the comparison phase, as they provide the same results
as comparing their square roots (with lighter computations).

At this point, the objective is to find the minimum distance
in each column of the distance matrix; it is necessary to assign
each point to a cluster.

2.2 Finding the minimum

The aim is to find the minimum value in each column p; (Fig.
6), and it must be done without using comparison operators.
As mentioned in Introduction, the key is to use sgn(x) func-
tion. The idea is to rely on a function like the one presented
in Eq. 5 which, indeed, may be seen as (sgn(b — a) + 1)/2.

lifa<b
Jifa=b )
Oifa >b

fla,b) =

Subsequently, it would be possible to use that function on
each couple (dist(p;, c;j), dist(p;, ¢;)) in order to generate
k masks that could be used to obtain the clusters. For instance,
by masking D with the first mask, the resulting subset of D
will only contain points that are closer to the first centroid
than the others. Equation 5 returns 1 with these input points,
because the distance to the first centroid is the smallest, 0 with
the other points: it effectively behaves like a mask. It is clear,
however, that this function is not polynomial; thus, it is not
possible to reproduce it flawlessly through HE computations.

It is possible, nevertheless, to use approximations. This
topic is well discussed in [9, 10]; hence, in order to build an
approximate version of Eq. 5, Cheon et al. work has been
used.

In the case of k = 2, in order to assign a point to a cluster,
calculating a ciphertext that has been called, for the sake of
clarity, C1 vs Cy, is enough. This ciphertext is nothing more
than the application of a function, like the one presented in
Eq. 5 (but approximated), on a and b, where a is the first row
of the distances matrix (Fig. 6) and b is the second one. In
other words, for each point, the procedure is to check whether
the distance to the first centroid is smaller than the distance
to the second one.

Notice that, since operations are slot-wise, by compar-
ing two ciphertexts, all the distances stored into the first
ciphertext, with the ones stored into the second ciphertext,
are compared. The slots in position j-m,with j € 1,2, ...,k
(Remark 2), in the resulting ciphertext will contain & 1 if the
Jj-th point is assigned to the first cluster, ~ 0 if it is assigned
to the second one.

Definition 2 Given two ciphertexts ¢; and ¢ containing
two sequences of distances in positions j - m (where j =
{0,1,...,n — 1}, with n being the number of rows of the

@ Springer
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(b) gn(x)

1
(@) fn(x)

Fig. 7 Families of polynomial approximations of sign function,
recalled from [9]

original dataset), a comparison function is defined as:

sgn’(c1 — ) + 1
Fomplet,ca) = g‘% ©)

where the sgn’(x) function is a polynomial approximation
of sgn(x). The result of this operation is approximately a
binary mask. As usual, the actual results are found in posi-
tions j - m.

Example 1 Given c; = [4, 1, 8] and ¢; = [2, 10, 2]:
fcomp(cl’ ) ~[0,1,0]

The next objective is to define sgn’(x): this is a polynomial
approximation of the function sgn(x). I will recall two fam-
ilies of functions from [9] (Fig. 7).

These approximations are the reason why, at the beginning
of Sect. 2, all the values in each column of D have been
transformed into [0, \/m /m]. By doing that, the maximum
squared Euclidean distance d between two points is always
in [0, 1].* This happens because the diagonal (that is, the
maximum Euclidean distance between two points in space)
of a m-dimensional hypercube is equal to £./m. Since in this
case the distances are squared, the maximum possible value
of distance between two points is equal to (£/m)?. In order
for sgn’(x) to work, without loss of generality, for any couple
of points, it must hold that Eq. 7 is less than or equal than 1
(and greater than or equal to 0, but it is trivial).

(1 —x2)?+ 01—y + @ — 22 + .. 7

In particular, it reaches its maximum value when calcu-
lating the distance between two diagonally opposite points.
Considering the i-th column of the dataset, max; is defined
as the maximum value in that column, while min; as the
minimum. The range max; — min; = ¢{; is the i-th side
of the hypercube. By transforming all the values in each

4 As a consequence, the maximum difference between two distances
will always be in [—1, 1].



Fast but approximate homomorphic k-means based on masking technique

1611

Transformation in \

o, ¥ \

5[5

Fig.8 Column transformation makes the magnitude of the diagonal of
a hypercube equal to the unit; this happens because /m/m - /m = 1.
Notice that in this case m = 3

dimension from [min;, max;] to [0, \/m /m], the maximum
possible value of Eq. 7 becomes:

o Lo o

m m
m 2

S50 ()= N
iz m m

The transformation is really easy, just normalise in [0, 1],
then multiply by /m/m. For each x in the i-th column, x
becomes:

L X —min; ﬂ ©)

max; —min; m

Equation 9 is very important, because it highlights how max;,
min; and m define the transformation. The larger m, the
smaller the new points. The bigger the difference between
max; and min; (i.e. the range ¢;), the smaller the new points.
The smaller the new points, the less accurate the calculations
(because the accuracy of sgn(x) approximations is lower with
tiny values, it is simple to notice it in Fig. 7). In other words,
the accuracy of the algorithm depends on the range of each
column of D (first term) and on the number of dimensions
(second term). By enlarging the range of sgn’(x) from [—1, 1]
to some wider interval, it would be possible to have more
accurate calculations, as the values in the dataset could be
transformed into larger intervals.

Now, the idea is to use two distances d1, d> as input for a
comparison function (Definition 2). A function such as those
presented in Fig. 7 (which has previously been referred to
as sgn’(x)) is called on the difference d; — d»: if this value
is negative, sgn’(x) returns ~ —1, which means that Eq. 6
returns ~ 0. On the other hand, if that difference is positive,
the result of Eq. 6 is ~ 1.

In the case of k = 2, assigning a point to a cluster is
relatively easy, as it is sufficient to calculate C; vs C», but
what happens with k£ > 2? For a point p to be assigned to
the i-th cluster, the distance between p and C; should be the

C; vs Cy Civs Cy Cvs Cr
C, vs C Cyr vs Cy C, vs Cy
Cr vs Cy Cr vs Cy Cy vs Cx
Fig.9 A comparison matrix
1 Cyvs Cy Cyvs Cy
1- (Cl Vs Cz) 1 CQ Vs Ck
1—(C1 VSCk) 1-(C2VSCk) 1

Fig. 10 Optimised comparison matrix

smallest of all distances. It is possible to solve this problem
by using a comparison matrix (Fig. 9).
Each cell in this matrix is defined as follows:

; sen’(c; —c;) + 1
distmatyy = Ci vs C; = fuamplep, c) = 20D EL

(10)

where each ciphertext ¢; represents the i-th row of the dis-
tance matrix (Fig. 6). Using the comparison matrix, it is
possible to obtain the mask associated with each cluster. By
multiplying all the ciphertexts in the first row, for instance, it
is possible to get the first mask. The (j - m)-th slot of a mask
(with j € {0, 1,2, ..., (n — 1)) will contain:

— =~ 1:1if p;j is closer to the relative centroid than all the
other centroids.

— & (:if there is at least one other centroid whose distance
from p; is smaller.

Proposition2 C; vs C; and C; vs C;, for any i # j, are
strongly correlated; in fact, it holds that:
CivsCj=1—(CjvsCy) (11)
Using Proposition 2, the number of comparisons to be cal-
culated in the comparison matrix is reducible from k(k — 1)
to k(k — 1)/2. This is half the number of off-diagonal coeffi-
cients in a k x k matrix. Some optimisations can be applied
to the matrix using these considerations: rewriting the lower
triangular part as a function of the upper one and writing ones
on the main diagonal (comparing the same centroid does not
make sense).

By checking Table 1, it is easy to deduce that the only part
that needs to be calculated is the upper triangular part.
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Proposition 3 Time and space complexity for the comparison
phase is equal to O (@)

Considering that triangular part, since the result of each cell
does not depend on any other one, it is possible to exploit
multithreading. Every C; vs C; has been saved into a Thread-
SafeDict® in order to parallelise computations and reduce
time. This procedure, however, has a flaw: the number of
necessary multiplications increases with k. This is an open
issue; for the moment, it is possible to reduce this relation-
ship from linear to logarithmic by evaluating x” as a tree.
Normally x" needs n — 1 multiplications to be evaluated, but
notice that:

x":(x%'x%)z(x%-x%)'(x%-x%)z... (12)

In general, the number of multiplications can be decreased
from n — 1 to [log(n)7. This reasoning is well represented in
Fig. 11.

Of course, the total number of products to be executed
is the same, but the final mask will be the result of a total
of [log(n)] operations. As a consequence, large values of
k will inevitably reduce the accuracy of comparisons, since
it is necessary to reduce the degree of sgn’(c;, ¢j) because
the evaluation of a deeper tree requires more multiplications
(remember that the number of multiplications is fixed). An
alternative method could be to add up all the masks and then
to ask the user to find the largest values for each slot. This
method would solve the problem of the increasing number
of multiplications and allow sgn’(x) to be a better approx-
imation. One of the points of this research, though, is to
entrust most of the computations to the server, and this solu-
tion would violate this rule; therefore, it will be ignored.

The output of this second phase is a set of masks that the
client can apply to D in order to obtain different clusters.

> https://github.com/wherreral 0/ThreadSafeDictsjl.
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2.3 New centroids calculation

It is easy for the client to calculate new centroids, for each
received mask msk;:

1. compute msk; - D to obtain the i-th cluster (remembering
to consider only positions p : p = 0 mod m, as discussed
before);

2. add up all the points in it and divide by the number of
points, that is, the number of ones in msk; in positions
p : p =0mod m, in order to get the new centroids.

It has been studied later, in the next section, whether for the
client is more convenient to execute a plain k-means iteration
from scratch or to run this algorithm.

3 Experimentation

In Sect. 2, several ideas behind the homomorphic k-means
have been defined. Algorithm 2 presents a simple overview
of the execution flow.

Algorithm 2 Homomorphic k-means server iteration

Input: Dataset D, set of k centroids
Output: Set of k masks

: Calculate distances matrix

: Calculate comparison matrix

: Evaluate k products trees

: return masks

AW N —

Algorithm 3 Homomorphic k-means client iteration

Input: Set of k£ masks
Output: Set of k centroids

: Decrypt k masks

. for each mask € masks do
Cmask < mask -D

Cmask <— Cmask /#points
: end for

: return masks

The next subsections define three different scenarios: a
fully homomorphic training, a conversion of an existing
plain model to an encrypted one, and the classification of
an encrypted point.

3.1 Homomorphic training

Training a model is done by running ni ter times Algorithm
2 over the server, and Algorithm 3 on the client. In particular,
traffic between server and client can be represented as shown
in Fig. 12.
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(D, {c1,c2,...,ck})
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Algorithm 2
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Fig.12 Traffic between server and client during homomorphic training
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Fig. 13 Centroids error interpretation; in this case, the error (or the
radius of red circles) is equal to 0.05 (5%). The green points are plain
centroids € C, whereas the encrypted ones lie inside the red areas

Notice that the dataset is sent only once, at the begin-

ning of the dialogue (the server can store it). Subsequent
iterations will only require a set of centroids that will most
likely result in really light communications. Notice that since
masks are almost binary (they are nothing but ciphertexts,
that decrypted and decoded are arrays of complex numbers),
their values heavily depend on the precision of sgn’(x); there-
fore, there will be differences between centroids calculated
via homomorphic computations and the ones returned from
a plain iteration.
These differences change according to different factors
(dimensionality, number of clusters, precision of sgn’(x)),
as it has been explained after introducing Eq. 9. Figure 13
presents a visual interpretation of errors made by a homo-
morphic k-means algorithm in respect to a standard one.

Two versions of homomorphic k-means have been imple-
mented: a high speed version and a high-precision one. The
next objective is to determine whether these two versions are
able to emulate efficiently a plain k-means algorithm. The

Table 2 Parameter sets for both versions

High speed High precision
N 214 215
Scale (A) 227 240
Intermediate primes bits 27 40
Circuit depth 10 19
sgn(x) degree 12 (Fig. 14a) 20 (Fig. 14b)
[1— fol sgn’(x) dx| ~ 0.1161 ~ 0.0374

main difference between the two versions is the value of N,
that is, the polynomial modulus degree in which data are
encoded. This, in turn, determines the precision of sgn’(x),
because larger values of N allow the use of higher degree
approximations, whereas smaller values do not. To find the
optimal composition of the functions f;,(x) and g, (x) (from
[9]) that better approximate sgn(x) for a fixed number of mul-
tiplications x, different compositions have been tested, and
from those that had a maximum degree of 2x (with x that
depends on the algorithm version, high precision is capable
of evaluating functions of a higher degree than the high-speed
version) it has been chosen the one that minimised:

— the value of |1 — fol sgn’(x) dx|;
— thevalues of 1 —sgn’(x) indifferentx € {0.001, 0.01, 0.1}.

For both versions, the number of security bits is always 128,
as specified by HE standards [6]. More details are given in
Table 2. The two functions sgn’(x) used are presented in
Fig. 14.

An example of how Euclidean distances between plain and
encrypted centroids change, during each iteration, in both
versions of homomorphic k-means, on Iris dataset [15] (k =
4,n = 150, and m = 4), along eight iterations, is presented
in Fig. 15.

Each line represents the Euclidean distance between
plain and encrypted centroids in two different scenarios:
Fig. 15a shows the behaviour of the high-precision algorithm,
whereas Fig. 15b shows the behaviour of the high-speed
one. The maximum possible distance between two points,
and therefore the biggest error, is always 1 (because of
the transformation explained in Fig. 8). The bigger error
in this experiment is 0.078 =~ 7.8%, while the least is
0.0002 =~ 0.02%.

It is easy to notice that the distances in high-speed variant
are larger, and it is not surprising. These plots are useful
to examine how, during each iteration, distances become
closer, but they reach a point from which the algorithm does
not improve, but it somehow stabilises. Table 3 presents the
results relative to ten different combinations of initial cen-
troids.
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Fig. 14 Optimal sgn(x) approximations for both versions, built using
the definitions of f,(x) and g, (x), from [9]
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Fig. 15 Euclidean distance between centroids calculated on plain Iris
dataset and on encrypted Iris dataset during eight iterations

Table 3 Distances between encrypted centroids and plain ones on Iris
dataset

Mean Mean (%)  Median Variance (o2)
High speed 0.0721 7.21% 0.0711 0.0141
High precision ~ 0.0295  2.95% 0.0284 0.0046

The data are for the last of ten iterations and on ten executions with
different random centroids

@ Springer

Table4 Single homomorphic k-means training iteration computational
time on Iris dataset, calculated by BenchmarkTools.jl 1.3.1

Minimum Median Average Maximum
High speed 1.712s 1.730s 1.7465s 1.791s
High precision 5.987s 6.511s 6.718s 8.113s

As for the high-precision algorithm, the mean percentage
distance (or error) value is about 3%, which means that, on
average, the resulting centroids after 10 iterations of k-means
are alittle biased. Now, the interpretation of these values most
of the time depends on the context, but it is a good starting
point. The high-speed version performs worse, as expected;
its errors are too large (more than double) compared to the
other version.

Of course, on the other hand, the high-speed algorithm has
lighter computational time and space. The following values
in Table 4 have been calculated on a standard desktop PC
(AMD Ryzen 3600 with 32 GB of RAM) using SEAL.jl
0.4.0 on Julia 1.5.

The high-precision version is almost four times slower, but
its errors are usually more than twice as small. Unfortunately,
it is not possible to run the high-speed version several times
to get better results, because it gets stuck in situations where
comparing two distances is difficult. For instance, if the value
of a distance x is smaller than, suppose 0.001, low-degree
functions sgn’(x) are not able to achieve a decent result; ergo,
the computed value remains close to the middle (0.5), which
means that the point will somehow be half-assigned to both
clusters. This situation happens less in the high-precision
version (less, but it may still happen).

Table 5 is calculated by comparing the standard k-means
and the homomorphic high-precision k-means on some UCI
Machine Learning repository [14] datasets. Surprisingly, the
errors seem to be smaller when £ is relatively big. This may
happen as a side effect during the evaluation of the compari-
son matrix. The larger this matrix, the greater the possibilities
of obtaining better results since the masks are produced by
more comparisons; in other words, it may happen that the
comparisons compensate for each other. On the other hand,
with a smaller &, a single comparison seems to lead to more
errors.

With regard to execution times with different values of k,
the high-speed version is characterised, not surprisingly, by
decidedly lower values, as confirmed in Fig. 16, that presents
computational times on different values of k on Iris dataset.

These two plots make sense as the comparison matrix is
characterised by a complexity of O( @) (Proposition 3).

3.2 Bandwidth requirements

An aspect not to be underestimated is bandwidth. Outsourc-
ing of computations is useful, especially on devices with
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Table 5 High-precision homomorphic k-means performance on various UCI Machine Learning dataset

Dataset name k n m Mean error (& std. dev.) Mean iteration time (£ std. dev.)
Iris 4 150 4 0.0293 4+ 0.0028 6.724s £+ 0.321s

Wine 3 178 12 0.0631 + 0.0031 8.024s £ 0.502s

Breast Cancer (Diagnostic) 2 569 30 0.0685 + 0.0041 7.441s £ 0.571s

Absenteeism at work [25] 2 740 20 0.0910 £ 0.0011 9.451s 4 0.460s

Seeds 3 210 6 0.0566 + 0.0023 6.944s £+ 0.290s

Transfusion [38] 3 748 4 0.0633 £+ 0.0021 7.345s +0.367s

Banknote Authentication 2 1372 4 0.0633 4+ 0.0021 6.784s £ 0.288s

Tripadvisor Review [31] 5 979 10 0.0392 +0.0148 21.621s £ 0.572s

T T T T T T
a0l |~ High precision N
—o— High speed
3
=
o
2 20| |
1%
() I | | | [
2 3 4 5 6 7
k

Fig. 16 Computational times for a single iteration of high-precision
and high-speed algorithms on Iris dataset

Table6 EncryptionParameters size when serialised

Compression mode Size

None 537 bytes
ZLIB 115 bytes
Zstandard 130 bytes

limited resources; therefore, it is important to compare the
amount of data sent and received between this algorithm and
an unsafe request made by sending plain data (or encrypted
using a block cipher, which does not necessarily increase
file size, like AES) and to calculate the overhead created
by CKKS. First of all, server and client must agree on keys
and parameters. Microsoft SEAL supports the serialisation
of the EncryptionParameters object using different
compression modes. It contains the scheme type, the poly-
nomial modulus degree, and the coefficients modulus.

ZLIB seems to be the lightest by a little, but Zstandard
is preferred due to its speed. Next, the ciphertexts must be
sent. Like shown at the beginning of Sect. 2, ciphertexts are
composed by slots, which are filled by maximising the value
of £ (Definition 1). An experiment is carried out using Iris
dataset; its results are visible in Table 7.

Relinearisation keys are created during the keys exchange
phase. Ciphertexts can be created in a seeded state in secret-

Table 7 Bandwidth when serialised, (pk) means that the ciphertext is
created in public key mode, (sk) in secret key

N Relin keys Ciphertext size (pk) Ciphertext size (sk)
215 57.44 MB 5.57 MB 2.78 MB
214 10.40 MB 1.65 MB 0.83 MB

key mode, resulting in a good reduction in the data size. In
this client—server scenario, though, ciphertexts are build in
public-key mode. In practise, after a relatively long time in
setting up the keys (that is performed only once), a high-
precision ciphertext (based on N = 2!, that contains 2'#
values) takes about 5.57 MB. A plain vector<double>
object would take almost 8 bytes-2!# = 0.13 MB, a overhead
that makes data 40x times larger. Assuming that server and
client have already exchanged keys, sending few amounts of
MB each iteration seems practical, even though it depends
on a lot of factors.

3.3 Client workload

After showing the results and the workload on the server, it is
important to show the client load. As stated in the Introduc-
tion, one of the objectives of the study is to verify whether
all the theoretical studies are in some way feasible in prac-
tice, thus in an acceptable time frame, and furthermore, if it
could be more convenient for the client to ask a server for a
computation than to perform a plain iteration by itself. The
algorithm executed by the client is shown in Algorithm 3.
The first step is to compare execution times for the server-
side algorithm and the client-side one, on the same dataset
(which is Iris). In particular, the server takes 6.724s4+0.321s,
while the client takes 0.101s =+ 0.002s. A very meaningful
representation of the computation division is given in Fig. 17.

Next, client executions are split in two: decryption and
data handling (Table 8).

It is easy to notice that the decryption times are more
or less always the same; this is because they are decrypted
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Table 8 Run times of client execution

Dataset name k n m Decryption ~ Handling
Tris 4 150 4 0.104s 0.0002s
Absenteeismatwork 2 740 20  0.101s 0.0008s
Wine 3 178 12 0.101s 0.0002s
Tripadvisor review 5 979 10 0.113s 0.0015s
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Fig. 18 Runtime of data handling client-side on various datasets com-
pared with runtime of a plain k-means iteration

using a multi-threaded iteration; thus, this time can be seen as
constant. Of course, this depends on the number of cores, but
in general the complexity of this phase is O( ’g), where c is the
number of cores of the machine. It is different when observing
the runtime for the handling data task since is strongly related
to the number of points of the dataset. In Fig. 18, the handling
runtime is compared with a plain k-means iteration time, on
the same machine.

This difference grows when using larger datasets, since k-
means complexity is higher than the HE data handling one.
The bottleneck in this case is given by the decryption phase
that takes ~ 0.1 seconds.
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3.4 Encrypting an existent model

It is very easy and straightforward to convert an existing and
trained plain model into an encrypted one, starting from the
idea that a trained model is nothing more than a set § =
(D, C, k).

In particular, the only differences between a new model
and a trained one are the positions of the k centroids. It is
sufficient to encode all elements as presented at the beginning
of Sect. 2, and it is done. Of course, by adding more points
to the dataset D, it would be possible to re-train the model.

3.5 Classification

This part is built on previous reasoning. Basically, this phase
needs two elements: a set of centroids C and a point p to be
classified. The idea is to calculate a 1 x k distance matrix,
and return it to the client. They will be the ones to find the
minimum distance in the array and classify the point since:

— they have to perform an operation that has a linear com-
plexity O(k);

— calculating this result server-side would require a com-
parison matrix, defined by a quadratic complexity, quite
a long computational time (a few seconds on high-
precision version), and a greater possibility of errors,
whereas on the client is immediate since its aim is to
literally find the minimum element in an array that is
most likely tiny, since it has a size of k.

Here, the workflow is not split as during the training itera-
tions, since the client has to perform the comparison phase.

Although the idea behind the algorithm is that the server
must execute most of the work, this different approach can
be accepted only for the classification phase, as it is not a
difficult computation (it is rather almost negligible, find the
minimum in an array of length k) and doing it server-side
would waste too much time and resources (just think about
the number of unnecessary slots since the number of columns
in a dataset is almost always << 21°).

Notice that executing the comparison phase client side
during the training phase would not be this trivial, as the
client would have the task of finding the minimum in more,
and definitely longer arrays. The classification phase can be
summarised as presented in Algorithm 4.

The performance of the model built using encrypted data
has been evaluated using the results of a plain k-means classi-
fication as an external (or supervised) structure; therefore, the
encrypted classifications will be evaluated using an accuracy
metric which is defined as the ratio of the number of correctly
classified points (with respect to the plain algorithm) to the
number of total points considered. In particular, all the points
in the dataset have been individually chosen and classified,
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Algorithm 4 Homomorphic k-means classification

Input: Point p, set of k centroids
Output: Index of the assigned cluster
1: procedure DISTANCES CALCULATION(p, C)
2:  calculate distances matrix
3: return distmat
: end procedure

> Server-side

~

: procedure EVALUATE DISTANCES(distmat) > Client-side
return index of minimum in distmat

: end procedure

Table 9 High-precision encrypted classification performance

m k Acc Execution time
Iris 4 4 1.000 1.305s £ 0.165s
Wine 12 3 0.994 2.805s £ 0.216s
Breast cancer (diagnostic) 30 2 0.996 3.414s £ 0.194s
Absenteeism at work 20 2 0.998 2.512s £ 0.201s
Seeds 6 3 1.000 1.795s £0.131s
Transfusion 3 0.998 2.011s £ 0.099s
Banknote authentication 4 2 0.987 2.088s £+ 0.141s
Tripadvisor review 10 5 0.997 2.124s £0.177s

Table 10 High-speed encrypted classification performance

m k Acc Execution time
Iris 4 4 0.993 0.451s £ 0.015s
Wine 12 3 0.994 1.141s £ 0.156s
Breast cancer (diagnostic) 30 2 0.987 1.794s £+ 0.208s
Absenteeism at work 20 2 0.994 1.312s £ 0.145s
Seeds 6 3 0.990 0.541s £ 0.084s
Transfusion 3 0.989 0.371s £ 0.031s
Banknote authentication 4 2 0.984 0.241s £ 0.040s
Tripadvisor review 10 5 0.994 1.350s £ 0.121s

using a new set of k random centroids each time (for a total
of ten times, in order to have robust results). The results are
presented in Table 9 for the high-precision version, in Table
10 for the high-speed one (Acc. stands for accuracy).

One last experiment is done by classifying using another
set of parameters for CKKS: N = 23, A = 250, Only one
multiplication is available; nevertheless, only one is needed
(squaring).

This new version (that has been called extreme high-speed
version) handles superbly the classification phase, classify-
ing correctly (namely, just like the plain k-means algorithm)
almost all the points with minimal execution times (Table
11), thanks to the high value of the scale.

Considering these results, it would be a good idea to exe-
cute the high-precision version for the training phase and the
extreme high speed one for the classification phase. In this

Table 11 Extreme high-speed encrypted classification performance

m k Acc Execution time
Iris 4 4 1.000 0.006s £ 0.003s
Wine 12 3 1.000 0.012s £ 0.004s
Breast cancer (diagnostic) 30 2 1.000 0.045s £ 0.014s
Absenteeism at work 20 2 1.000 0.023s £ 0.009s
Seeds 6 3 1.000 0.009s £ 0.003s
Transfusion 3 0.998 0.005s £ 0.010s
Banknote authentication 4 2 0.999 0.006s £ 0.003s
Tripadvisor review 10 5 1.000 0.021s £ 0.006s

case, the client should encrypt the final set of centroids gen-
erated from the training phase with the new set of parameters
(N =23 and A = 29), in order to set it up for the extreme
high-speed classification.

4 Conclusion

The main question, when it comes to this kind of problem, is
the following: What are the advantages in building this whole
system instead of running a plain k-means locally? Until now,
building a homomorphic system that can perform as good as
a local computation is still not possible; the main point of
this study though, is to show that, at the moment, is somehow
possible to build a system that can work in practice. Although
itis still quicker for the client to execute the algorithm locally
(because of the decryption phase, as shown in 3.3), this work
improves the practicability of previous privacy-preserving
k-means algorithms, achieving execution times in the order
of seconds.. This comes at some cost; in fact precision of
calculations is sacrificed.

In this paper, a new approach to algorithms based on
homomorphic computing, using a method called masking
technique, has been proposed. This approach tries to bring
almost all computations server-side, so that the client only
has to perform a simple masking phase (with a linear com-
plexity), in order to obtain the results. As confirmed by
experiments, this phase is faster to execute with respect to
alocal k-means iteration. Nevertheless, the decryption phase
takes a lot of time; this aspect, though, has not been analysed
in depth since these procedures depend on the scheme and its
implementations. What is intended to be demonstrated here
is that, ignoring the decryption phase, for a client is more
convenient to ask for a outsourced k-means iteration to a
hypothetical server instead of computing it by itself. Lastly,
one of the most important and studied aspects has been the
practicability of the algorithm (being able to be executed in a
short time). It has been demonstrated that the execution can
be performed in the order of seconds.
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There are several options for future developments. Starting
from the mathematical definition of the sgn(x) approxima-
tions, by expanding their range, it would be possible to
process columns that are not transformed in [0, /m /m], but
in wider intervals. This would make the distances between
points larger, resulting in sgn’(x) giving results closer to 1
(or to —1), hence more precise calculations, meaning more
accurate comparisons using the same circuit. Another start-
ing point for future work might be the issue of the calculation
of the final masks; it has been shown at the end of Sect. 2
how k defines the number of multiplications necessary for
the calculation of the final masks. A large k requires more
multiplications than a smaller one, meaning that the com-
parison function will have a lower degree, hence a lower
precision. By finding another way of evaluating the compar-
ison matrix, it would be possible to keep the degree of sgn’(x)
fixed, meaning that the precision of the algorithm would not
depend on k. Another task that may be improved is the algo-
rithm that calculates the sum of the first m slots (Algorithm
1), especially in the cases where m = 2" — 1, perhaps by
parallelising calculations.
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