
International Journal of Information Security (2023) 22:347–365
https://doi.org/10.1007/s10207-022-00630-6

REGULAR CONTRIBUT ION

Revisiting QUIC attacks: a comprehensive review on QUIC security and
a hands-on study

Efstratios Chatzoglou1 · Vasileios Kouliaridis1 · Georgios Karopoulos2 · Georgios Kambourakis1

Published online: 2 December 2022
© The Author(s) 2022

Abstract
Built on top of UDP, the recently standardized QUIC protocol primarily aims to gradually replace the TCP plus TLS plus
HTTP/2 model. For instance, HTTP/3 is designed to exploit QUIC’s features, including reduced connection establishment
time, multiplexing without head of line blocking, always-encrypted end-to-end security, and others. This work serves two
key objectives. Initially, it offers the first to our knowledge full-fledged review on QUIC security as seen through the lens of
the relevant literature so far. Second and more importantly, through extensive fuzz testing, we conduct a hands-on security
evaluation against the six most popular QUIC-enabled production-grade servers. This assessment identified several effective
and practical zero-day vulnerabilities, which, if exploited, can quickly overwhelm the server resources. This finding is a clear
indication that the fragmented production-level implementations of this contemporary protocol are not yet mature enough.
Overall, the work at hand provides the first wholemeal appraisal of QUIC security from both a literature review and empirical
standpoint, and it is therefore foreseen to serve as a reference for future research in this timely area.

Keywords QUIC · TLS 1.3 · HTTP/3 · Network security · Vulnerabilities · Fuzz testing

1 Introduction

The primary goal of the QUIC transport layer protocol is to
improve performance, since although the HTTP plus TCP
plus TLS model served the web well for about 15 years, it
became apparent that it could no longer sustain the emerging
bandwidth-demanding and latency-sensitive web applica-
tions. For instance, one of the major issues of HTTP/1.1 is
HTTPHead-of-Line (HoL) blocking,which causes increased

B Georgios Kambourakis
gkamb@aegean.gr

Efstratios Chatzoglou
efchatzoglou@aegean.gr

Vasileios Kouliaridis
bkouliaridis@aegean.gr

Georgios Karopoulos
georgios.karopoulos@ec.europa.eu

1 Department of Information & Communication Systems
Engineering, University of the Aegean, 83200 Karlovasi,
Samos, Greece

2 European Commission, Joint Research Centre, 21027 Ispra,
Italy

response delays when a HTTP request can delay all the sub-
sequent requests within the same TCP connection.

To improve HTTP performance, back in 2009, Google
announced SPDY, which became the basis for the HTTP/2
specification in 2015 [1]. HTTP/2 solved the HTTP HoL
blocking and introduced an assortment of other improve-
ments as well, including header compression, multiplexing,
and server push. However, HoL blocking is still possible
in HTTP/2, but at the TCP level this time, where a lost or
behindhand TCP packet can delay all the subsequent ones.
To respond to this issue, Google introduced the from-the-
ground-up designed QUIC [2] in 2012 (referred to as gQUIC
in the following),which is a fully encrypted,multiplexed, and
low-latency transport protocol over UDP, targeting mainly at
improving the performance of HTTPS traffic. In May 2021,
IETF standardized QUIC in RFC 9000 [3] (referred to as
IETFQUIC or simplyQUIC in the following), and also spec-
ified in RFC 9001 [4] the way TLS 1.3 will act as a security
component of QUIC. Notably, HTTP/3 [5] connections are
realized only over QUIC.

In Oct. 2020, Facebook announced that “more than 75%
of [their] Internet traffic uses QUIC and HTTP/3” [6]. At the
time of writing, several QUIC implementations are already
in use, some using gQUIC [7], while others IETF QUIC.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00630-6&domain=pdf
http://orcid.org/0000-0001-6348-5031

348 E. Chatzoglou et al.

Recent measurements on the top 10 million (10M) websites
showed that gQUIC is still in use by approximately 8% of the
websites [8], whereas HTTP/3 over IETF QUIC is currently
adopted by about 25% of the websites globally [9].

The increasing popularity and adoption of QUIC bymajor
technology companies, Internet content providers, and other
stakeholders, renders it an alluring target for threat actors.
However, by examining the relevant literature, thus far, no
work offers a holistic survey on QUIC security. Additionally,
to our knowledge, the literature lacks of awork concentrating
on the security level provided by mainstream QUIC server
implementations.

The work at hand aims at addressing both the aforemen-
tioned literature gaps. Specifically, as a first contribution, we
provide a full-fledged survey on QUIC security by both cov-
ering works on QUIC security evaluation and on specific
attacks spanning five different categories, namely crypto-
graphic, handshake, fuzzing, transport-layer, and privacy. No
less important, ameticulous security assessment is conducted
through fuzz testing against the currently six commonest
production-grade QUIC-enabled servers. The results of this
latter effort are quite interesting, revealing on the one hand
a number of zero-day vulnerabilities, which can be eas-
ily exploited by opponents to implement Denial of Service
(DoS) assaults, and on the other, suggest that QUIC imple-
mentations are not yetmature enough, andmore investigation
is needed to identify latent vulnerabilities.

The remainder of the paper is organized as follows. The
next section provides preliminaries on gQUIC and IETF
QUIC protocols. Section3 details past studies on gQUIC and
QUIC security evaluation, while Sect. 4 elaborates on attacks
targeting gQUIC or QUIC. Section5 offers our methodology
for empirically assessing six popular QUIC-enabled servers
in terms of security, and presents the results. Section6 chews
over some challenges and future directions regarding QUIC
security. The last section concludes.

2 Preliminaries

The differences among HTTP v1.1 (RFC 7230), HTTP/2
(RFC 7540) and HTTP/3 (at the time of writing in draft
version 34) and their positioning in the network protocol
stack is depicted in Fig. 1. The first difference is that QUIC
encompasses the security (TLS) and part of the transport
(TCP) layers found in previous HTTP versions, running on
top of UDP for performance reasons. Moreover, QUIC is sit-
uated on the user level, making updates easier, in contrast to
earlier transport protocols built in the kernel, wheremodifica-
tions could create interoperability and compatibility issues.
A functional difference between the two versions of QUIC is
that gQUIC transports HTTP/2 frames whereas IETF QUIC

Fig. 1 Positioning of HTTP, gQUIC and QUIC

is general purpose, transporting different application proto-
cols such as HTTP/3, DNS, and SIP.

In terms of security, a major change is that QUIC pro-
vides built-in security using TLS, whereas in HTTP/2 the use
of TLS is optional; also, QUIC requires at least TLS v1.3,
whereas HTTP/2 supports TLS v1.2 as well. Regarding the
twoQUICversions, gQUICuses the outdated “QUICcrypto”
[10] for transport security while IETF QUIC uses TLS v1.3.

According to the security analysis of QUIC presented in
RFC 9000 [3], which is based on the threat model defined in
[11], the security of the handshake procedure depends on the
TLS v1.3 handshake, while additionally providing some pro-
tection against handshake Denial of Service (DoS) attacks.
Moreover, QUIC is potentially vulnerable to Zero round Trip
Time resumption (0-RTT) amplification assaults, where the
attacker uses a legitimately acquired address validation token
to send congestion data to a victim that currently has the
attacker’s old IP address, that is, the one used to acquire
the token. QUIC can also be vulnerable to optimistic ACK
attacks, where the opponent sends acknowledgements for
packets that it has not received; this could cause a conges-
tion controller to allow endpoints to transmit in rates that
are higher than the actual network throughput. In addition,
QUIC could also suffer from request forgery attacks, where
the attacker controls the requests that a peer sends to a victim,
exploiting potential peer’s authorizations.

Moreover, QUIC could also be vulnerable to DoS attacks
known as Slowloris [12], where an attacker sends regularly
the minimum amount of data necessary to hold open con-
nections with the attacked system in an attempt to deplete its
resources. Because of the low traffic generated, the latter type
of attack is very stealthy compared to (volumetric) flooding
ones.

Other DoS attack types manipulate the streaming opera-
tion of QUIC mounting: (a) stream fragmentation, where the
attackermight choose not to send all data so that the receiving
end commit resources while waiting for the missing data, or
(b) stream commitment when the attacker opens a very large
number of streams to deplete the other end’s resources, sim-
ilarly to TCP SYN flooding attacks. On the other hand, a
receiving end can attack the sender by not acknowledging
the received traffic, so that the sender stores the relevant data

123

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 349

Table 1 The most common QUIC libraries shorted by popularity (GitHub stars)

Name (18) Language (7) Popularity TLS library (9) Usage

quic-go [13] GO 6.7K crypto/tls (GO based) Algernon, Caddy, NextDNS, etc

quiche [14] Rust 6.1K BoringSSL Cloudflare, curl

nghttp2 [15] C/C++ 4K OpenSSL –

msquic [16] C/C++ 2.8K OpenSSL Windows 10/11, Windows Server 2022

quinn [17] Rust 2.1K OpenSSL –

reactor-netty [18] Java 1.9K OpenSSL VMWare

neqo [19] Rust 1.4K OpenSSL Mozilla

mvfst [20] C++ (folly) 1.1K fizz Facebook, Proxygen

xquic [21] C 1.1K BoringSSL/BabaSSL Alibaba

lsquic [7] C 999 BoringSSL LiteSpeed, OpenLiteSpeed

aioquic [22] Python 924 OpenSSL hypercorn, httpx

ngtcp2 [23] C 769 OpenSSL –

s2n-quic [24] Rust 594 s2n-tls Amazon

quicly [25] C 501 OpenSSL H2O

picoquic [26] C 329 Picotls –

kwik [27] Java 144 luminis.tls –

quiche [28] C++ 179 OpenSSL Google

nginx-quic [29] C – BoringSSL/QuicTLS NGINX

The parenthesis designates the number of unique values in each column

for retransmission. Currently, nomechanisms against version
downgrade attacks exists in QUIC, which means that QUIC
could be vulnerable to this attack unless in future version
such a mechanism is defined. Moreover, privacy attacks are
also possible such as traffic analysis based on the length or
timing of QUIC packets; and while the so-called PADDING
frame is a mechanism to alter the real length of a packet,
active research in the field has shown that defeating traffic
analysis in QUIC is quite challenging.

The interest towards QUIC is demonstrated by the numer-
ous open source implementations of the QUIC protocol. A
summary of the most popular QUIC libraries in GitHub is
presented in Table 1. The libraries shown in the table are open
source, have a popularity of at least 100 stars in GitHub, as of
May 19, 2022, and support both server and client function-
ality. The QUIC libraries presented here are implemented in
diverse languages, making it possible for developers to find
one that matches their experience and existing infrastructure.
Currently, most implementations are based on OpenSSL as
TLS library (BoringSSL andQuicTLS are forks of OpenSSL,
whereas fizz and picotls can use OpenSSL as crypto engine),
offering an increased level of assurance compared to less
reliable solutions such as gQUIC’s native crypto. Another
observation from the table is that many major companies
invest on QUIC by either implementing their own or sup-
porting these libraries; this shows a real interest towards the
adoption of QUIC in the near future. On the other hand, mul-
tiple implementations are more difficult to be examined for

possible security issues. For instance, it is unknown if a vul-
nerability inOpenSSL will affect other TLS libraries such as
BabaSSL. This means that each implementation should be
examined separately for assessing its security level.

3 Past studies on QUIC security evaluation

In [30], the authors performed a formal analysis of the
QACCE security model proposed in [31] with the use of
the ProVerif automated security tool, stating that the secu-
rity proofs of [31] were incorrect. Nevertheless, both works
on the protocol analyzer level should be considered outdated
since the latest version of QUIC has implemented different
protocol changes, such as the IP spoofing protection.

The work in [32] compared the security and availability
properties of TLS 1.3 and QUIC when layered with their
underlying transport protocols. Namely, the authors exam-
ined three schemes in a formalized way: TLS 1.3 over TCP
Fast Open, gQUIC over UDP, and QUIC over UDP that
uses TLS 1.3 key exchange; note that only the two latter
schemes are pertinent to this work. Regarding QUIC over
UDP, the authors pinpoint that the protocol does not offer 0-
RTT key forward secrecy and 0-RTT data anti-replay. They
also refer to the work in [31] which has provided proofs that
gQUIC is secure against IP spoofing based on the Authenti-
cated Encryption with Associated Data (AEAD) security—a
scheme that preserves the integrity of both the cipher text and

123

350 E. Chatzoglou et al.

authenticated data. Therefore, since source address tokens
are validated in both full and resumption sessions, the con-
clusions in [31] can loosely translated in that gQUIC achieves
IP-spoofing prevention.

On the other hand, they concluded that the key exchange
header and payload integrity feature is not satisfied in gQUIC
because the protocol’s first-round key exchange messages,
say, ServerReject as well as any invalid ClientHello are not
fully authenticated. The authors also mention that the work
in [31] detailed an assortment of attacks on gQUIC availabil-
ity through key exchange packet manipulations. Moreover,
they stated that gQUIC is secure regarding the secure chan-
nel header integrity property. This is because the protocol
does not permit “header only packets to be sent in the secure
channel phases, and the entire protocol header is taken as
the associated data authenticated by the underlying encryp-
tion scheme.” A last observation regarding gQUIC was that
it does not meet the reset authentication property because its
reset packet, namely PublicReset, is not authenticated.

Regarding QUIC (their examination was based on a draft
version of the RFC) they note that, as with gQUIC, the
protocol does not provide 0-RTT key forward secrecy and 0-
RTT data anti-replay and key exchange header and payload
integrity. Nevertheless, QUIC fulfils the reset authentication
property because of its stateless resetmechanism; the one end
creates a 128-bit reset token using its static key along with
a random 64-bit QUIC Connection ID (CID) as input. This
token is transmitted to the other end via the secure channel.

The authors in [33] provide a formal analysis of the
security of the handshake protocol of QUIC, i.e., the TLS
handshake, using symbolic model checking. The analysis
was performed with the help of two state-of-the-art tools for
symbolic model checking: ProVerif and Verifpal. The anal-
ysis identified a protocol design flaw by revealing that some
security properties are violated; this vulnerability allows an
attacker to complete a handshake as a legitimate client with
the server.

The authors in [34] present a generalized model for
robustness in cryptographic channels that run on top of
non-reliable transport protocols like UDP. Given that cipher-
texts in such channels are not arriving in sequence, the
underlying protocols need to rely on other mechanisms, typ-
ically a sliding-window technique where ciphertexts can be
decrypted correctly provided that they are not received too
far from each other. In this respect, typically, UDP-based pro-
tocols include a packet number in each packet to deal with
packet drops and re-orderings. Note, however, that packet
numbers may raise privacy risks; through traffic analysis,
an eavesdropper can correlate packets and sessions. The
authors focused on two protocols, namely QUIC and Data-
gram Transport Layer Security (DTLS).

ForQUIC, they examine the short packet format employed
for sending application data; recall that QUIC packets com-

prise a header and a payload, and the latter is encrypted
through an AEAD scheme. QUIC uses a dynamic slid-
ing window (set dynamically on the sender side) with an
anti-replay window. Based on their analysis, the authors con-
cluded that QUIC attains robust confidentiality and integrity
by receiving ciphertexts within a dynamic sliding window
and with a window-based replay protection. Specifically,
Sect. 6.6 of RFC 9001 states that “In addition to counting
packets sent, endpoints must count the number of received
packets that fail authentication during the lifetime of a con-
nection”. In case the total number of such packets surpasses
the integrity limit for the selected AEAD, “the endpoint must
immediately close the connection [...]”. For instance, that
limit for the AES_GCM AEAD is 252 invalid packets.

The authors in [35] examined the security of the QUIC
record layer (in draft v30). They modeled QUIC packet
and header encryption—parts of QUIC packet headers are
encrypted to mitigate the privacy risk as explained in the
previous paragraph—and proposed a security definition for
authenticated encryption with “semi-implicit” encryption
nonces. Recall that QUIC generates the nonce by combin-
ing the packet protection Initialization Vector (IV) with the
packet number field, and as detailed in Sect. 5.4 of RFC9001,
the packet number is secured through the header protec-
tion key. The authors demonstrated that QUIC employs “an
instance of a generic construction parameterized by a stan-
dard AEAD-secure scheme and a PRF-secure cipher”. They
formalized and proven the soundness of this construction
in terms of security and elaborated on restrictions of nonce
confidentiality, “due to the malleability of short headers and
the ability to choose the number of the least significant bits
included in the packet counter”. They suggested amendments
that explicate the proof and augment sturdiness in presence
of strong adversaries.

While not introducing any attack, the work in [36] can
be considered directly related to QUIC. This is because
the authors provided an analysis of the TLS 1.3 handshake
(authenticated key exchange) protocol from a cryptographic
viewpoint; their analysis is confined to RFC 8446, not 9001,
which describes the way TLS acts as a security component
of QUIC. Specifically, the authors examined both the full
1-RTT handshake and the pre-shared key-based resumption
handshake 0-RTTmodes as defined in RFC 8446. Their anal-
ysis follows the provable security paradigm, which provides
rigorous, reductionist proofs that a cryptographic scheme
fulfils a security objective. They concluded that “the TLS
1.3 handshake follows sound cryptographic design principles
and establishes session keys with their desired security prop-
erties under standard cryptographic assumptions.”And as the
authors correctly pinpoint, this is also thanks to the proac-
tively transparent standardization process the IETF TLS
working group has followed.

123

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 351

4 Attacks targeting QUIC or gQUIC

This section only includes QUIC-related attacks. TLS-
oriented attacks such as the TLS-Poison [37] and HSTS
bypassing [38] ones are not specific to QUIC but apply to any
TLS version, so they are considered out of scope of this work.
However, attacks against the TLS1.3 handshake are pertinent
given that TLS acts as a security component of QUIC; basi-
cally, the two protocols cooperate. Specifically, QUIC uses
the keys derived from the TLS handshake for providing con-
fidentiality and integrity to the exchanged packets through
its transport layer. Put simply, based on RFC 9001, QUIC
exploits the handshake and alert components of the Content
layer of TLS.The various attacks are split into five categories,
namely cryptographic, handshake, fuzzing, transport-layer,
and privacy. An overview of the proposed attack taxonomy
is presented in Fig. 2. In all the subsections, the discussed
works are given in a chronological order.

4.1 Cryptographic attacks

In Crypto 1998, Bleichenbacher presented a seminal attack
on RSA-based PKCS#1 v1.5 encryption [39]. Essentially, he
assumed the existence of an “oracle” that allowed an attacker
to distinguish “valid” from “invalid” PKCS#1 v1.5 padded
ciphertexts. Such an oracle may in practice be given by a
TLS server, which respondswith appropriate errormessages,
or allows otherwise to tell whether a given ciphertext has a
“valid” padding or not; for instance, this can be done by
observing the timing behavior of the server when processing
the ciphertext. Bleichenbacher showed that such an oracle is
sufficient to decrypt PKCS#1 v1.5 ciphertexts.

In 2015, the authors in [40] elaborated on encrypted key
transport with RSA-PKCS#1 v1.5 key exchange method as
used by TLS, and demonstrated that it was still effective.
Specifically, they presented two attacks against TLS v1.3
and gQUIC, respectively. The first, requires a very quick
“Bleichenbacher-oracle” to generate the TLSCertificateVer-
ify message before the client releases the connection, which
in turn reduces the real impact of the attack. The second,

Fig. 2 A taxonomy of attacks on QUIC (white: attacks in the literature, light blue: attacks we performed during our evaluation)

123

352 E. Chatzoglou et al.

was more practical in terms of time as it can be effective
in situations where forging a signature with the aid of a
“Bleichenbacher-oracle” may require a great deal of time.
This is because the aggressor can pre-compute the signa-
ture well in advance as the client initiates a connection. They
considered two scenarios eitherwith “perfect” or “imperfect”
oracles.

At the time this attack was proposed, having an “imper-
fect” oracle was considered to be impractical for a real-world
scenario. Moreover, having a “perfect” oracle weakness to a
server, it should be considered highly unrealistic. Given that
an Ubuntu 14.04 with 2.2 GHz dual core CPU was used
to execute the queries, modern hardware is sure to perform
much faster. On the other hand, the browser’s connection
timeout timer may have been reduced due to the higher
network speeds. For example, Firefox has now a default
connection timeout (network.http.connection-timeout) of 90
sec (at that time was 600 s), while Chrome has still the
same default value of 30 s. Additionally, as NIST suggests,
starting from 2020, the RSA key length should be at least
2048 bits [41], i.e., increasing by far the complexity and the
resources at the attacker’s side; in the context of [40], a 2048
bits key needed 2,120 queries towards the server, requiring
66 s in total. RFC 8446, appendix § E.8 titled “Attacks on
Static RSA” highlights this issue: TLS 1.3 does not use RSA
key transport, therefore it is only indirectly susceptible to
Bleichenbacher-type attacks. That is, “if TLS 1.3 servers also
support staticRSA in the context of previous versions ofTLS,
then it may be possible to impersonate the server for TLS 1.3
connections”. This situation can be avoided by simply dis-
abling support for static RSA across all versions of TLS.

The work in [42] introduced an attack dubbed DROWN
(Decrypting RSA using Obsolete and Weakened eNcryp-
tion). Precisely, DROWN was presented as a novel attack
that allowed a perpetrator to break a passively collected
RSA key for any TLS server if this RSA key was also used
for SSLv2; therefore DROWN is characterized as cross-
protocol; the assault uses a server supporting SSLv2 as an
oracle to decrypt TLS sessions. In its generic version, which
comprises a more powerful variation of the Bleichenbacher
RSA padding-oracle assault, the attacker has to passively
observe around 1K TLS sessions with RSA key exchange,
make 40K TLS v2 connections, and perform 250 symmetric
encryption operations.

Moreover, they pinpointed that gQUIC is vulnerable to a
Man-in-the-middle (MitM) variant of the so-called DROWN
attack, enabling the opponent to impersonate a server for as
long as they wish. According to the authors, this requires
217 SSLv2 connections and 258 offline work. As a basic
requirement, the attack can be performed against servers
which expose their RSA public keys through SSLv2. The
assault capitalizes on the “server config” message received
by a gQUIC client when attempting a connection to the

server. This message includes the server’s Diffie-Hellman
public value, it has an expiration date, and it is signed by the
server’s private key. In this respect, for launching a MitM
attack against the client, the attacker needs to produce a
(forged) valid “config message”; for counterfeiting the sig-
nature they need to find a valid, PKCS conformant SSLv2
ciphertext. The authors pinpoint that QUIC discovery can be
done over plain HTTP, meaning that the server can be imper-
sonated by the attacker and falsely indicate support of QUIC.
Therefore, the next time the client connects to the server, it
will attempt to connect using QUIC, allowing the attacker
to present the forged “server config” message and execute
the assault. Naturally, this attack does not affect IETF-QUIC
as its cryptographic handshake is mandatorily based on TLS
1.3 rather than gQUIC crypto.

The authors in [43] conducted a formal analysis of TLS
v1.3 revision 10 through Tamarin Prover, a security protocol
verification tool. Their analysis, considering both unilateral
andmutual authentication, demonstrated that revision 10 ful-
fills the objectives of authenticated key exchange. Further, by
extending their model, they proposed a client impersonation
attack based on the delayed authentication process; presum-
ably this is the post-handshake authentication feature defined
inSect. 4.6.2 ofRFC8446, and it is permitted only if the client
has sent the post_handshake_auth extension. The identified
attack requires certificate-based client authentication in ses-
sion resumption using a PSK, as defined in Sect. 2.2 of RFC
8446—a PSK can be created in a previous connection and
subsequently used to establish a new connection. Specifi-
cally, the attacker must be in a MitM position with the client
and the server, and therefore is able to establish valid PSKs
with both ends. Assuming a session resumption process the
requires post-handshake authentication, the authors noticed
that the attacker is able to produce the correct CertificateVer-
ify message because the Finished messages are not included
in the session hash, i.e., the Transcript-Hash as defined in
Sect. 4.4.1 of RFC 8446. After that, the attacker possesses the
session keys and is able to impersonate the client to the server.
On the other hand, Sect. 4.4 ofRFC8446 states that theHand-
shakeContext for post-handshake authentication includes the
server’s Finished message. That is, with reference to Sect.
4.4.1 of the RFC the signature provided in the CertificateV-
erify message is produced over the value Transcript-Hash
(Handshake Context, Certificate). Therefore, as the authors
acknowledged, the identified attack is not considered feasible
starting from revision 11 of the RFC.

The authors in [44] elaborated on the nonce reuse/misuse
resistance authentication encryption schemes for modern
TLS and QUIC based web servers. Specifically, the problem
of nonce-based authentication encryption is the repetition
of nonce in two different messages; it is well-known that
any AEAD relies on no reuse of the same pair of key
and nonce. The authors argue that the nonce problem is

123

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 353

avoided by using a nonce reuse/misuse resistance authentica-
tion scheme like the AES_GCM_SIV. The latter, defined in
RFC 8452, is a mode of operation for AES, which comprises
a nonce misuse-resistant AEAD. Based on their analysis, the
AES_GCM_SIV is a superior scheme for achieving better
security bounds performing large messages in TLS cipher
suites and QUIC-based web servers, which also fulfils the
NIST security bound of 2−32.

With reference to the relevant RFCs, Sect. 5.3 of RFC
8446 states that “Each AEAD algorithm will specify a range
of possible lengths for the per-record nonce, from N_MIN
bytes to N_MAX bytes of input [as given in RFC 5116]. The
length of the TLS per-record nonce (iv_length) is set to the
larger of 8 bytes and N_MIN for the AEAD algorithm. An
AEAD algorithm where N_MAX is less than 8 bytes must
not be used with TLS.” Put simply, TLS 1.3 uses the same
key for multiple records, but constructs the per-record nonce
by XORing the accordingly padded 64-bit sequence number
(is maintained separately for reading and writing records)
with either the static client_write_iv or server_write_iv; the
latter is a 96-bit value obtained through key generation.

On the other hand, RFC 9000 states in Sect. 12.3 that
“The packet number is an integer in the range 0 to 262-1.
This number is used in determining the cryptographic nonce
for packet protection. [...] A QUIC endpoint must not reuse a
packet number within the same packet number space in one
connection.” If the packet number for sending reaches 262-1,
the sender must silently terminate the connection.

Recall that based on Sect. 2.2 of RFC 8446, TLS 1.3 sup-
ports the use of a PSK that was either established in the
context of a previous handshake (“session resumption or
resuming with a PSK”) or distributed out-of-band. Note that
the way an out-of-band PSK is generated and distributed
is basically considered external to TLS; nevertheless, the
Internet-Draft titled “Importing External PSKs for TLS” [45]
provides a PSK importer interface to mitigate against possi-
ble security issues.

The authors in [46] pinpointed that the problem with
this PSK-based, and therefore implicit, authentication mode
leaves room for a “(misuse) vulnerability, assuming that
a node can act as both a client and a server: the sender
of an authentic message could also be, under an attack
scenario, the receiver itself.” The attack, dubbed “Selfie”,
is a type of reflection attack where the opponent acts as
MitM, say, between Alice and Bob. Alice initiates session
S1 with Bob by sending him the ClientHello message with
the pre_shared_key extension. The attacker captures themes-
sage and reflects it back to Alice in another session S2, where
Alice acts as the server and Bob as the client. In S2, Alice
replies to Bob with ServerHello and server Finished mes-
sages. The attacker again captures both messages, and in the
context of S1, reflects them back to Alice. These messages
will be authenticated by Alice, who then is convinced she

is talking to Bob. As a result, in S1, Alice will reply with a
client Finished message, which is again echoed back to Alice
in the context of S2. This procedure will result in Alice open-
ing a “Selfie session with herself”, meaning that any piece
of data she sends in S1 will be echoed back to her through
S2. Guidelines for addressing the Selfie attack are given in
Appendix B of Internet-Draft [45].

4.2 Handshake attacks

The authors in [31] contributed the first study that focused
on gQUIC security. They managed to identify three different
attacks in which the gQUIC protocol was vulnerable and
proposed a security model, namely QACCE. The first one is
a replay attack where an attacker with a MitM position could
replay either some key establishment parameters to the client
or the packet that contained the source address token (stk) of
the client to the server. In both cases, the attacker couldmount
a Denial of Service (DoS), causing the protocol handshake
to fail. As stated in the analysis of [47], such attacks are still
feasible during a 0-RTT connection; the authors compared
this attack with the legacy TCP SYN flood one.

The second attack they examined is based on packet
manipulation; as discussed in [47] further down, unprotected
parameters, such as the CID or the stk token, could be possi-
bly manipulated by an attacker with aMitM position to force
a user into downgrading to a TLS connection over TCP. The
result is the same as with the replay attack above, that is, for
as long as the attack is active the client will be unable to con-
nect with the server due to handshake failure. At this point,
the authors correlated this attack with an SSL downgrade
one, say, from SSL v3 to SSL v2.

The third attack tested by the authors was a crypto stream
offset assault, where they injected a four character string, that
is, “REJ\0” into the handshake message. This addition was
enough to make the handshake fail and prevent the estab-
lishment of a QUIC connection between the client and the
server either by denying access to the requested application
or forcing the client to fall back to a TCP/TLS connection.
Additionally, this attack was correlated to a TCP ACK flood-
ing attack, inwhich an attacker sendsmultiple acknowledged
(ACK) responses to the server to confuse it and drop the con-
nection.

The work in [47] provided a comparable study between
TLS 1.2 and gQUIC from a security perspective. Specifically
for gQUIC, the authors described (although not practically
evaluated) three different attacks in the context of HTTP/2
services. All the attacks assume that the opponent has
obtained a MitM position between the legitimate client and
server and actively listens and interacts with the communi-
cation between the two ends. In the first attack, the adversary
waits for the client to initiate the connection establishment
process, that is, through a ClientHellomessage, and in a race

123

354 E. Chatzoglou et al.

condition with the server, they respond to the client with a
reject message, containing a spoofed source address token,
that is, an authenticated-encryption block of the client’s IP
address and a timestamp. Upon reception, and given that
the source address token is invalid, the server sends a reject
message to the client, who needs to repeat the connection
establishment process from the onset.

The second attack considers the manipulation of unpro-
tected parameters, including the CID or the source address
token. This drives both the client and the server to possess
different initial keys, eventually wrecking the connection
establishment. The last attack capitalizes on the fact that
all handshake messages in gQUIC comprise a logical byte-
stream. If the adversary is able to inject random data to
interrupt the byte-stream, they can render the byte-stream
invalid, breaking the connection establishment. It is obvious
that all three attacks have no real impact on the server and
only induce a DoS effect on the client. It is also important
to add that according to Sect. 5 of RFC 9000, “0-RTT pro-
vides no protection against replay attacks”, while Sect. 9.2
of RFC 9001 states that “QUIC is not vulnerable to replay
attack, except via the application protocol information it
might carry” and “Disabling 0-RTT entirely is themost effec-
tive defense against replay attack”. Moreover, on-path active
attacks and handshake DoS are discussed in Sect. 21.1.3.1
and Sect. 21.2 of RFC 9000.

In work [48], the focus is on the 0-RTT mode used in
gQUIC and TLS 1.3. Since this mode allows the client and
server to exchange data before switching to fully secure keys,
the authors studied the way replay attacks affect the security
of these protocols. Their results show that, at least at that time,
replay attacks were accepted as inevitable by the protocol
creators. This is further confirmed in IETF QUIC in RFC
9000.

The authors in [49] compared gQUIC with other common
protocols, such as TCP and UDP, in an attempt to pinpoint
security issues in gQUIC. Their analysis led to the identi-
fication of two 0-RTT oriented attacks, namely QUIC RST
and Version Forgery. In QUIC RST, the attacker sends a reset
packet to the client, making it believe that the server refused
the connection; this could lead the client to give up the con-
nection. In Version Forgery, the attacker pretends to be the
server and sends to the client a version negotiation packet
with a version that is not supported by the client; again
the client is deceived to drop the connection. The authors
argue that both these attacks are more easily mounted in a
LANenvironment due toAddressResolutionProtocol (ARP)
spoofing.

The authors of [50] examined downgrade attacks in TLS
1.3 in 2020. More specifically, they studied the Signaling
Cipher Suite Value (SCSV) downgrade protection mecha-
nism offered in TLS 1.3 and its support in 10 major Web
browsers, including Firefox, Chrome, and Edge, in five oper-

ating systems. The SCSVmechanism is a pseudo cipher suite
that is included in the ClientHello message of TLS 1.3 and
mentions the latest supported TLS version of the client; for
this protection to be present, both the client and the server
must support it. During their analysis, they discovered that all
browsers in iOS v12.2, Safari and QQ in macOS v10.14.4,
and Internet Explorer, Edge, and QQ in MS Windows 10
v1809, were vulnerable to a version downgrade attack, due
to not supporting the protection mechanism of SCSV. In
MS Windows, the TLS version could be downgraded to 1.0,
whereas in iOS and macOS to 1.2. Indeed, such an attack is
practically feasible and could be quite easily mounted due to
the lack of SCSV protection.

Gagliardi and Levillain [51] studied the QUIC transport
and cryptographic layers in the related Internet drafts from
version 18 to version 23. They focused on the connection
establishment in existing implementations, testing them for
security issues with the aid of the Scapy Python library. They
tested four different attacks in ten live demo servers, each one
with a diverse QUIC implementation.

The first attack was version negotiation, similar to the one
already mentioned in [49], where the attacker sends a dif-
ferent, yet-to-be-defined protocol version. Only the ngtcp2
implementationwas affected by this attack, leading to a time-
out.

The second attack checked the behavior of implementa-
tions against the client initial packet length. To defend against
amplification attacks, QUIC specifies that the initial packet
sent should have a length of at least 1,200 bytes and the
server’s response length should be at most 3 times the client’s
packet length. The authors sent short initial packets (300
bytes long) to all the implementations and even though two of
them replied, they did not send more than 3 times the length
of the initial packet, providing a basic level of protection
against amplification attacks.

In the third attack, namely missing parameters, different
parameters described as mandatory in both QUIC and TLS
1.3, such as the maximum size of each packet, were sent
to all implementations. The authors mentioned that some
servers accepted packets withmissingmandatory parameters
without specifying which ones had this behavior.

Finally, they mounted frame mangling attacks by sending
forbidden frames to the demo servers. In QUIC, four differ-
ent types of packets could be used inside an initial packet,
namely, crypto, ack, connection close, and padding frames.
However, the authors identified that in four different tested
cases, at least four different packets could be encapsulated
inside an initialQUICpacket, causing a successful handshake
instead of an error. First off, they used a Ping packet, that got
a response from aioquic, ats, and ngtcp2. Second, they sent
a split crypto packet, dividing the TLS ClientHello into two
crypto frames, with only pandora and quant responding cor-
rectly, that is, rejecting the handshake. The third and fourth

123

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 355

ones were based on sending overlapping crypto packets, one
with consistent and one with inconsistent contents respec-
tively. The correct behavior, that is, producing an error, was
observed only from ats, pandora and quant, in both cases.

Nawrocki et al. [52] examined the QUIC handshake pro-
tocol against two type of attacks, namely, state-overflow
and reflective amplification, to eventually prove that QUIC
is vulnerable to resource exhaustion attacks. This choice
stems from the latest QUIC RFC [3], which, to some extent,
mitigates amplification attacks (see Sect. 2). State-overflow
attacks, similarly toTCPSYNflood, are based on the fact that
QUIC keeps a state from each connected client. The authors
stated that another defensive mechanism has been added to
theQUICRFC to retry authentication if the IP address cannot
be verified. While the latter protection method can assist into
mitigating attacks, such as state-overflow, the same defen-
sive mechanism is considered to be against the QUIC design
goals since it introduces an additional overhead and delays
the authentication procedure.

To evaluate their observations and to identify DoS attacks
that may exist “in the wild”, the authors collected and ana-
lyzed QUIC traffic, that is, 92M QUIC packets, from UCSD
Network Telescope [53]. Then, they selected sessions with:
a) more than 25 packets, b) duration longer than 60 s, and c) a
maximum packet rate of higher than 0.5 pps, calculated over
all 1-min slots of the respective event. Their analysis revealed
2905 attacks, corresponding to 11% of all response sessions.
According to the authors, 98% of all of these attacks target
well-knownQUICservers.Additionally, theymade a twofold
observation on these attacks: a) QUIC floods are shorter but
on average as severe as common TCP/ICMP floods and b)
QUIC floods are part of multi-vector attacks and highly cor-
related with TCP/ICMP floods. The latter correlation means
that QUIC floods were used in conjunction with TCP/ICMP
floods against a target.

To cross-validate their results, the authors set up an
NGINX webserver, on a 128-core computer with 512 GB
RAM and recorded 500K packets using the QUIC client
quiche [14]. To simulate attacks, the authors sent only client
Initial messages with random packet rates to new server
instances. The authors found that servers with 4 or 128 work-
ers which did not support the RETRY defensive mechanism
presented slower responsiveness by 32% or 64% after 100
or 10,000 pps, respectively. On the other hand, servers that
did implement the RETRY protection mechanism, with only
four workers could withstand even a load of 100,000 pps.
This clearly indicates the importance of the RETRY scheme;
to further validate this observation, the same experiment has
been carried out in subsection 5.2.7 against six different
production-grade QUIC servers.

4.3 Fuzzing attacks

McMillan et al. [54] presented a formal specification of the
QUIC’swired protocol that generates automated randomized
testers for QUIC. The authors evaluated their method on a
quartet of diverse QUIC implementations. For each of them,
they performed test runs on a HTTP server based on a QUIC
library. Their results revealed various issues in the server
implementations, which according to the authors, point to
issues in the draft standard. From a total of 27 errors, four
cases were deemed to be exploitable; these were protocol
or progress violations that revealed possible vulnerabilities
in the implementations or the (at that time draft) standard
itself. Specifically, one of these was a potential DoS attack
by an off-path attacker. Another one was an information leak
comparable to the OpenSSL well-known heartbleed vulner-
ability; it occurs when a server instance sends an incorrect
number of bytes in a re-transmission of a stream frame, vio-
lating the specification and resulting in a stream frame that is
longer than intended, thus, causing arbitrary server memory
data to leak into the network. Yet another data leak case was
an APPLICATION_CLOSE frame transmitted in response to
the unexpected initial packet, sending application data in the
clear. The last issue was a case where a server instance allo-
cated a number of records in memory that was proportional
to the gap in packet sequence numbers, allowing an attacker
to eventually exhaust the server.

G.S. Reen et al. [55] presented DPIFuzz, a stateless
fuzzing framework, which can find exploit strategies for
DeepPacket Inspection (DPI) inQUIC implementationswith
the assist of “Mutations”, such as usingduplicate packet num-
bers and exploiting the diverging handling of overlapping
streamoffsets. The authors evaluated their framework against
five open-source QUIC implementations, namely QUICLY
[25], QUANT [56], NEQO [19],MVFST [20] and QUICHE
[14], identifying the following vulnerabilities. The imple-
mentation ofQUANT tries to access the state of a stream, i.e.,
either open or closed, by calling the q_is_stream_closed()
function after the memory allocated to the stream has already
been freed. The NEQO server calls the close() function on a
connection with state CLOSED.

In QUICLY, the server runs into a segmentation fault
due to a reference on a null pointer; more specifically,
the QUICLY_get_ingress_max_streams() function tries to
access the value of a NULL pointer, causing the server to
crash. Finally, the MVFST server runs into a segmentation
fault due to a reference on a null pointer; this is caused when
a stream frame with a non-zero Offset field has the OFF bit
set to 0, indicating that the Offset field is absent. In all the
above cases, the issues were reported and fixed. In general,
while a stateful, structure-aware fuzzer could identify more
bugs in QUIC servers, it could also be considered to be too
implementation-specific; for example, Table 1 shows that at

123

356 E. Chatzoglou et al.

least five different languages are used across 18QUIC imple-
mentations.

Zhang et al. [57] presented a modeling and verification
method for cryptographic protocols. The authors performed
analysis based on the symbolic protocol model, to verify
the security of the QUIC handshake protocol. Their results
reveal that an attacker can impersonate the client by forging
two plaintext messages, i.e., CEPub and CHLO, and send-
ing them towards the server to complete the establishment
of the initial session and final session key with the server.
Additionally, the authors proposed a revised QUIC hand-
shake protocol which uses the client’s private key to sign
CEPub and CHLO, and thus prevent attackers from forging
the aforementioned messages.

Thimmaraju et al. [58] analyzed the Connection ID (CID)
mechanism of the IETF QUIC draft v.30. According to the
authors, an attacker can exploit servers, which do not permit
the use of the same destination CID across new connec-
tions, to get the number of server instances behind a load
balancer. The authors dubbed this situation “enumeration
attack”. This information can be used to estimate the load
necessary to mount a Distributed Denial of Service (DDoS)
assault against the server. Their analysis on 15 QUIC imple-
mentations concluded that 25% of them are vulnerable to
this attack, namely,ApacheTraffic Server (ATS), Chromium,
LiteSpeed, and ngtcp2. To solve that, the authors proposed an
enumeration algorithm that would prevent an attacker from
performing this enumeration attack. We argue that the enu-
meration attack discussed in the above work, is practically
infeasible on the Chromium and ngtcp2 QUIC implementa-
tions due to the fact that both of them are not load balancers.

4.4 Transport-layer attacks

Gbur et al. [59] showed how stateful firewalls handlingQUIC
are prone to UDP hole punching, i.e., a well-known firewall
bypass technique; typically, this technique is used to estab-
lish UDP connections with systems behind Network Address
Translation (NAT). The authors used the QUIC implementa-
tion quiche [14] on twoVirtualMachines (VMs), a client and
a server running Ubuntu OS, and a transport layer stateful
firewall, that is, the Linux conntrack module. This experi-
ment assumes that the aggressor either has compromised the
web server via a remote code execution vulnerability on the
application level or has access to another computer in the
same internal network as the web server. Considering that
UDP is connectionless by nature, it mimics the TCP 3-way
handshake, whereas the firewall tries to guess which pack-
ets belong to the same connection based on the following
5-tuple values: source IP address, source port, destination IP
address, destination port, and transport protocol. The firewall
treats every UDP packet as a new connection and adds a new
entry in the connection table with the 5-tuple and the status

UNREPLIED. If the firewall receives a packet with a 5-tuple
listed in the table, it immediately assumes that it belongs
to the same connection and updates the entry by removing
the UNREPLIED status. In practice, every packet stemming
from the server side with this 5-tuple “punches a hole” in
the firewall that can be used for all server side packets hav-
ing this same 5-tuple. Subsequently, this hole can be used by
the attacker to spawn a reverse shell using the compromised
machine mentioned earlier.

4.5 Privacy attacks

Although the work from Van et al. [60] focuses on traffic
classification, the described techniques could be used for
attacking the privacy of users as well. Their proposal is a
static-based method which relies on the Convolutional Neu-
ral Network (CNN) to detect various QUIC-based Google
services, such as Google Hangout Chat, Google Hangout
Voice Call, YouTube, File transfer, and Google play music.
Specifically, their method uses a Random Forest model
trained with NetFlow-based features to detect Google Hang-
out services due to the unique network flow of these services.
It also uses the CNN model trained with packet-based fea-
tures to classify file transfer, YouTube, and Google play
music network traffic. The authors built a proof-of-concept
implementation of their approach on an Ubuntu workstation
using quic-go [13] to evaluate its performance. Precisely,
they captured around 150GB of real network traffic includ-
ing over 20K flows with five kinds of QUIC-based services.
The experimental results showed that the proposed method
can detect the five aforementioned QUIC-based Google ser-
vices with high accuracy (approximately 99%).

The authors of [61] tested the privacy of the full handshake
and session resumptionmechanisms of TLS1.3. Their results
showedTLS1.3 does provide a level of privacy,when consid-
ered in isolation.According to the authors, in full handshakes,
TLS 1.3 provides a perception of server unlinkability. On
the other hand, session resumption, a fundamental feature of
TLS, introduces a method of linking sessions between two
objects. In addition, the authors demonstrated that privacy
in TLS 1.3 is reduced when resumption is considered, due
to the use of session tickets. In that sense, TLS 1.3 offers a
rather optimal degree of privacy.

Govil et al. [62] presented MIMIQ, a privacy enhancing
tool which leverages on QUIC to mitigate traffic-analysis
attacks and protect user identity. To evaluate the proposed
tool, the authors created a proof of concept MIMIQ imple-
mentation. More specifically, they used an off-the-shelf
Dynamic Host Configuration Protocol (DHCP) server and
configured shortDHCP lease duration, tomakeold IP address
leases expire in time for new requests. Additionally, they
modified a QUIC client to act as a MIMIQ agent. This lat-
ter sends DHCP requests to the DHCP server, and triggers

123

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 357

connection migration by changing its interface IP using the
ifconfig system administration utility. Furthermore, Mininet
[63] was used to simulate two networks, i.e., a network with
only one QUIC client running and a multi-client network
with four QUIC clients, each running on a different host.
Each network had both a DHCP and a QUIC server. Finally,
the authors evaluated MIMIQ against state-of-the-art web-
site fingerprinting attacks, and found that setting migration
every 25 to 100 packets can reduce attack accuracy to less
than 10%.

The authors in [64] examined website fingerprinting
attacks on QUIC, gQUIC, and HTTPS/2 from a traffic anal-
ysis perspective. The purpose of this type of passive attack is
to deduce the website a user is visiting, which can be trans-
lated to a multi-class classification task. The tests employed
by the authors concluded that gQUIC and QUIC are more at
risk to these attacks than HTTPS/2 in the early traffic sce-
nario, but are similar in the normal full traffic. Specifically,
the authors collected network traffic using a controlled envi-
ronment which comprised three web servers running Ubuntu
18.04. Additionally, the authors selected the official landing
pages of the top 100 schools, which are split among the three
hosting servers. Docker was used in each server to isolate
resources from these websites.

To compare the protocols against fingerprinting attacks,
the authors utilized five machine learning models, i.e., Ran-
dom Forest, Extra Trees, k-nearest neighbors, Naive Bayes,
andSupportVectorMachine. The resultswere obtained using
tenfold cross-validation. According to the authors, with only
40 packets, the attack accuracy reaches 95.4% for gQUIC,
95.5% for QUIC, whereas only 60.7% for HTTPS/2.

Ludovic et al. [65] examined whether network-layer
padding, a feature included natively in QUIC, can be used to
defend against website fingerprinting attacks. Specifically,
two datasets were used during the experiments, namely a
mixed and a QUIC dataset. The authors observed that in the
mixed dataset, which has only 4% QUIC traffic, the classi-
fier favors TLS-specific features. For that reason, the authors
created the QUIC-dominated dataset, which contains 70% of
QUIC traffic.

The authors implemented an attack using the Random
Forest model and their results showed that: (a) Network-
layer defenses allow website identification with an F1 score
of more than 92%, (b) web development practices, such
as hosting resources on multiple servers, reduce the effec-
tiveness of any defense, and (c) the IP addresses can help
the attacker associate QUIC packets with a client; defences
include MIMIQ [62] or IP hiding solutions, such as Near-
Path NAT [66] and MASQUE [67].

5 Hands-on evaluation

The current section offers a hands-on security evaluation
performed against the six most popular QUIC and HTTP/3
enabled servers based on April 2022 figures provided by
W3Techs [68]. That is, from the list in [68], we only con-
sider servers that support both QUIC and HTTP/3; in this
respect, Apache web server has been left out as it currently
does not support QUIC. Particularly, we examined the QUIC
implementation of these servers, while theywere specifically
configured to support HTTP/3. All the servers were installed
in the Azure VM cloud to simulate a real-life environment.
Therefore, every VM had a specific subdomain bound to the
Azure VM public IP address.

5.1 Testbed

Table 2 details the Operating System (OS), VM specifica-
tions, and version of each tested server. Each server stored a
single, simple HTMLwebpage. For the sake of repeatability,
the configuration details per server are succinctly given in
the subsequent subsections.

5.1.1 OpenLiteSpeed

The OpenLiteSpeed latest stable version v1.7.15 has been
installed in anAzureVMwithUbuntu 18.04 server 1×CPU,
1 GB RAM and standard SSD. First, we acquired a domain
name and assigned it to the DNS zone of Azure. Next, we
setup a VirtualHost and a Listener to enable a website, and
uploaded a simple HTML webpage created with the Single-
FileChrome extension. This was done to avoid having issues
with the HTTP/3 in case of broken HTTP requests. Also, a
wildcard TLS certificate from www.shieldsigned.com web-
site was configured in the server. The OpenLiteSpeed admin
panel and theListenerwere configured to useHTTP/3 and the
TLS certificate, and server’s port 443 has been left open for
UDP traffic. TheHTTP/2 and SPDY indicator extension was
installed in Chrome to obtain a visual indication when vis-
iting an HTTP/3 website. To validate that our configuration
was sound, we visited the www.ssllabs.com and examined
our certificate, which received an “A” rating. Last, through
www.http3check.net, we verified that ourwebsitewas indeed
able to handle QUIC and HTTP/3 requests.

5.1.2 Caddy

The Caddy v2.4.6 server supports an experimental HTTP/3
server edition, and it was installed on an Ubuntu 18.04,
with 1 × CPU and 1 GB RAM Azure VM. Following the
samemethodology aswithOpenLiteSpeed, we registered and
assigned a domain name to the server. Caddy uses a TLS cer-
tificate out-of-the-box, which is rated as “A” by www.ssllabs.

123

www.shieldsigned.com
www.ssllabs.com
www.http3check.net
www.ssllabs.com

358 E. Chatzoglou et al.

Table 2 Testbed setup Name OS Spec Version

OpenLiteSpeed Ubuntu 18.04 1 × CPU/1 GB RAM 1.7.15

Caddy Ubuntu 18.04 1 × CPU/1 GB RAM 2.4.6

NGINX Ubuntu 18.04 2 × CPU/4 GB RAM 1.21.7

H2O Ubuntu 18.04 1 × CPU/1 GB RAM 2.3.0-DEV

IIS Windows Server 2022 2 × CPU/4 GB RAM 10

Cloudflare Ubuntu 18.04 2 × CPU/4 GB RAM 1.16.1

com. Throughwww.http3check.net the usage ofHTTP/3 and
QUICwas verified.Note that forQUIC,we perceived a delay,
that is, the server needs 2–3min after it is booted to be able to
communicate with QUIC; this is due to a known issue with
the current version reported in [69].

5.1.3 NGINX

As stated in the official installation guide,1 NGINX exper-
imental version v1.21.72 supports QUIC with HTTP/3. It
should be noted that the latter guide suggests using either
the BoringSSL or the QuicTLS libraries. Since the former
library could not compile with 1 × CPU and 1 GB RAM,
we exploited a more powerful VM, i.e., 2xCPU, 4 GB RAM
and standard SSD inUbuntu 18.04. After server compilation,
it was required to create a service for binding NGINX to it.
By following the NGINX official guide,3 we created the ser-
vice, placing the correct paths, i.e., those used duringNGINX
installation.

5.1.4 H2O

H2O server vh2o/2.3.0-DEV@a429117ba was the latest edi-
tion as of Feb 22, 2022. We followed the official installation
process4 as well as the quick start guide.5 The server was
installed on an Ubuntu 18.04 Azure VM, with 1 × CPU
and 1 GB RAM. First, we installed the TLS certificate and
assigned a domain name, similarly to the other servers.
To configure the server to communicate with HTTP/3 and
QUIC, we utilized the h2o.conf example file6 taken from the
server’s official repository; this however made the server to
use HTTP/2 over TCP. To fix this issue, we configured the
minimum version of the TLS certificate to TLS 1.3; this can
be done through the optionminimum-version: TLSv1.3 under

1 https://quic.nginx.org/readme.html.
2 https://hg.nginx.org/nginx-quic.
3 https://www.nginx.com/resources/wiki/start/topics/examples/
systemd/.
4 https://h2o.examp1e.net/install.html.
5 https://h2o.examp1e.net/configure/quick_start.html.
6 https://github.com/h2o/h2o/blob/master/examples/h2o/h2o.conf.

the ssl category. Moreover, the header set field was wrong,
forcing browsers to communicate with HTTP/2 instead. To
correct this bug, the draft-25 version from the h3 header
was removed and the header.set: “Alt-Svc: h3-25=\“:443\””
option was changed to header.set: “Alt-Svc: h3=\“:443\””.
Lastly, the default port of the server was changed to 443.

5.1.5 Internet Information Services (IIS) 10

IIS 10 can be operated from a MS Windows Server 2022
Azure VM. Due to the Globally Unique Identifier (GUID)
this server requires, we created a 2 × CPU with 4 GB RAM
and standard SSD Azure VM and installed IIS on it. The
Dynamic Update Client (DUC) aided us in using a subdo-
main as the main domain name of the server. However, some
issues arosewith the TLS certificate; the server did not accept
any TLS (.cer, .pfx, .p7b, .crt) certificate. In most cases, we
received an error, while in the case of .cer, after its success-
ful installation, the server deletes the certificate. To overcome
this issue, the win-acme7 tool was used. The latter can cre-
ate a Let’s encrypt TLS certificate and install it smoothly to
the IIS. Since IIS 10 operates with HTTP/2 out-of-the-box,
it was necessary to enable QUIC, which in turn facilitates
HTTP/3. To this end, the following registry commands were
executed from an admin terminal:

• reg add "HKEY_LOCAL_MACHINE\ SYSTEM\
Current ControlSet\services \HTTP\
Parameters" /v EnableHttp3 /t REG
_DWORD /d 1 /f

• reg add "HKEY_LOCAL_MACHINE\SYSTEM\
Current
ControlSet\services\HTTP\Parameters"
/v EnableAltSvc /t REG_DWORD /d 1 /f

Moreover, it was required to disable the “Disable Legacy
TLS” checkbox from the site bindingofHTTPSand advertise
the QUIC usage by adding a custom HTTP response header,
namely “alt-svc” with values “h3=“:443”; ma=86400; per-
sist=1”. After restarting the server and unblocking the port

7 https://github.com/win-acme/win-acme.

123

www.ssllabs.com
www.http3check.net
https://quic.nginx.org/readme.html
https://hg.nginx.org/nginx-quic
https://www.nginx.com/resources/wiki/start/topics/examples/systemd/
https://www.nginx.com/resources/wiki/start/topics/examples/systemd/
https://h2o.examp1e.net/install.html
https://h2o.examp1e.net/configure/quick_start.html
https://github.com/h2o/h2o/blob/master/examples/h2o/h2o.conf
https://github.com/win-acme/win-acme

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 359

443 forUDPconnections, both the client’s browser andwww.
http3check.net verified that the ISS was using HTTP/3 with
QUIC.

5.1.6 Cloudflare

Cloudflare offers an open-source QUIC library, namely
quiche.8 This library usesRust v1.53 or later, and in the same
repository,Cloudflare provides a guide to installNGINXwith
the quiche implementation.9 As mentioned in subsection
5.1.3, NGINX uses the BoringSSL TLS library. Therefore,
to be able to compile BoringSSL, quiche, and NGINX, all
the necessary dependencies, including build-essential and
rustup had to be installed as well. For the same reason, we
used an Ubuntu 18.04 Azure VM, with 2 × CPU and 4 GB
RAM. After compilation, as mentioned in subsection 5.1.3,
the creation of a NGINX service was required. However,
NGINX v1.16.1 comes with a bug,10 according to which
NGINX is unable to locate the process ID (.pid) file. To solve
this issue, NGINX developers suggest linking the service file
with the “/logs/nginx.pid”file,which is the default location of
the PIDfile. Finally, we followed the suggested configuration
of the NGINX server, as given in the quiche guide, forcing
the usage of TLS 1.3 and removing the “http2” option.

5.2 Empirical security assessment

This subsection reports on the conducted security assessment
against the six servers. First, we detail the methodology fol-
lowed to examine each server, while our findings follow. For
easy reference, Table 3 recapitulates the identified issues per
server.

5.2.1 Methodology

After examining the related work on QUIC in Sect. 4, we
realized that some research directions have not yet been
considered: (a) no work has examined the effect of send-
ing malformed QUIC packets to a QUIC server; this should
be done based on RFC 9000 and not a QUIC draft imple-
mentation, and (b) no work heretofore targeted IETF QUIC
through malformed packets at the UDP layer. To this end,
we utilized two different fuzz testing tools (fuzzers), one for
each of the aforementioned cases, and exploited them against
each of the six servers of Table 2. Next, a manual examina-
tion phase took place based on different misconfigurations
observed during the first phase.

8 https://github.com/cloudflare/quiche.
9 https://github.com/cloudflare/quiche/tree/master/nginx.
10 https://bugs.launchpad.net/ubuntu/+source/nginx/+bug/1581864.

The first fuzzer, namely Mutiny-fuzzer,11 is capable of
fuzzing custom packets, including QUIC ones. After the user
assigns a pcap type of file to the fuzzer and configures its
communication port, the fuzzer creates a specific file for that
pcap to use as a test case. Munity-fuzzer uses Radamsa12 to
create seeds. The seeds are usually added at the end of each
packet and the testing rate was set to one seed per sec. Inmost
cases, the QUIC handshake was ended after 2–3 packets,
unable to complete the TLS handshake, since the transmitted
QUIC packet wasmalformed. However, in some fewer cases,
the fuzzer managed to perform a full handshake and receive
some data, validating the observations of the work in [51]
regarding the frame mangling attack.

Fuzzotron13 was the second fuzzer employed in the con-
text of our tests. It can be used to create custom TCP or UDP
packets and exploit them against a server implementation.
To this direction, it uses a grammar-based mutator, namely
Blab14 or Radamsa. Since Radamsa was utilized along with
Munity-fuzzer, for this second fuzzer, we used Blab. The
testing rate of the fuzzer was 100 seeds per s.

Figure3 provides an overview of the fuzzing procedure.
The fuzzing VMwas an Ubuntu 18.04 with a quad core CPU
and16GBRAM.Every serverwas tested through each fuzzer
for 12h, therefore the total duration of the fuzzing process
was 24h per examined server. In total, approximately 43,200
and 4,320,000 different seeds were tested against each server
for Mutiny-fuzzer and Fuzzotron, respectively. During the
fuzzing process, the connection with the tested server was
continuously monitored. This was done with the help of a
custom-made Python3 script, which was requesting every
1 s the URL of the website stored in the server. If the fulfil-
ment of the request exceeded 5 s, the script logged the date
and time of the request for subsequently finding thematching
seed. This was done by means of the Wireshark v3.6.5 tool
running in the background and filtering only the traffic that
was relevant to the targeted server. After the fuzzing stage
was over, we examined manually different attack scenarios
that may apply in real-life situations as explained in the fol-
lowing subsections. It is to be noted that IP spoofing was
not assessed, as Azure VMs come with native anti-spoofing
protection.15

5.2.2 QUIC-fuzz

For specific fuzzing seeds, IIS 10 presented a delay of more
than 5 sec for both the fuzzers, while OpenLiteSpeed and

11 https://github.com/Cisco-Talos/mutiny-fuzzer.
12 https://gitlab.com/akihe/radamsa.
13 https://github.com/denandz/fuzzotron.
14 https://gitlab.com/akihe/blab.
15 https://docs.microsoft.com/en-us/azure/security/fundamentals/
production-network.

123

www.http3check.net
www.http3check.net
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche/tree/master/nginx
https://bugs.launchpad.net/ubuntu/+source/nginx/+bug/1581864
https://github.com/Cisco-Talos/mutiny-fuzzer
https://gitlab.com/akihe/radamsa
https://github.com/denandz/fuzzotron
https://gitlab.com/akihe/blab
https://docs.microsoft.com/en-us/azure/security/fundamentals/production-network
https://docs.microsoft.com/en-us/azure/security/fundamentals/production-network

360 E. Chatzoglou et al.

Table 3 Identified vulnerabilities per server

Name OpenLiteSpeed Caddy NGINX H2O IIS Cloudflare Total

QUIC-fuzz ✓(0/1✫) ✓(1/1✸) ✓(0/1✫) ✓(1/0) ✓(1/2) ✗ 5

QUIC-downgrade – – – – – – –

QUIC-out-of-joint ✗ ✓ ✓ ✓ ✗ ✗ 3

QUIC-loris ✗ ✓ ✗ ✗ ✗ ✗ 1

QUIC-encapsulation ✗ ✓ ✗ ✗ ✗ ✗ 1

QUIC-flooding ✗ ✓ ✓ ✓ ✗ ✗ 3

Total 1 5 3 3 1 0 –

The symbols ✓ and ✗ are used to denote the existence and lack of the vulnerability, respectively. For QUIC-fuzz, the first and second figure in
the parenthesis indicate the number of issues identified by manual or automatic fuzzing, respectively, while the ✫ and ✸ symbols designate the use
of either the Fuzzotron or Munity-fuzzer fuzzing tool. The QUIC-downgrade attack depends on the capabilities of the client and the server, i.e., if
both of them support gQUIC

Fig. 3 A high-level view of the fuzzing procedure

Caddy had a response delay for Fuzzotron and Mutiny-
fuzzer, respectively. By examining the packet structure and
manually inspecting the Proof of Concept (PoC) through a
trial-and-error process, we managed to construct an exploit,
as given in GitHub repository.16 The exploit is written in
Python 3 and takes advantage of the Scapy v2.4.5 library. At a
next step, the PoCwas tested against all the servers of Table 2
and half of them (H2O, IIS 10, and Caddy) presented an
increased delayed response of 6, 3, and 6 s, respectively. Pre-
cisely, the opponent needs to send a small number of packets
(about 30), and the delay when requesting a simple webpage
persists for about 10–30 min depending on the server. It is
to be noted that the attack does not affect OpenLiteSpeed,
although it was pinpointed as potentially vulnerable by Fuz-
zotron. For Caddy, it was observed that the server presented
identical behavior as with theQUIC-loris attack given in sub-
section 5.2.5.

Strangely, the current attack was not effective each time it
was initiated. Namely, the PoC was tested 20 times against
each server, but the affected servers were impacted in about
25%of the cases. The attackwas also assessed under a greater

16 The (currently) private repository is at https://github.com/efchatz/
QUIC-attacks. The repository will be made public upon paper accep-
tance. Note that the exploit has been also duly communicated to the
development teams of the affected servers.

number of packets (300), but the result was identical. Never-
theless, it is obvious that a more stable version of this attack
could be critical against live infrastructure, i.e., adding a
significant delay to the server responses is a high severity
issue, especially for time-sensitive networking services like
video streaming. Overall, it can be assumed that the attack
affects the corresponding server’s message parser, similarly
to a hash-collision attack at the application layer.17

5.2.3 QUIC-downgrade

With reference to the QUIC supported versions as tracked
by W3Techs [70], currently about 7.9% of the total websites
support gQUIC. Interestingly, the relevant list includes pop-
ular websites, like YouTube and Gmail. Recall that gQUIC
is vulnerable to PKCS#1 v1.5 and DROWN attacks [40,42]
as explained in Sect. 4. Additionally, gQUIC is supported by
Google Chrome.18 This means that any user who visits an
gQUIC-enabled website via Chrome may be susceptible to a
MitMQUIC-downgrade attack. On the positive side, Firefox
and Safari do not support gQUIC; Firefox19 supports QUIC
after QUIC’s draft version 27, while Safari has this feature
disabled by default.

To identifywebpages that support gQUIC, the attacker can
simply eavesdrop on the alt-svc HTTP header, which desig-
nates the server’s QUIC supported versions. For instance, if
the server supports gQUIC, it will advertise it along with
other QUIC supported versions. For example, the alt-svc
returned by the google.com website is: alt-svc: h3=“:443”;
ma=2592000,h3-29=“:443”; ma=2592000,h3-Q050=“
:443”; ma=2592000,h3-Q046=“:443”; ma=2592000,h3-
Q043=“:443”; ma=2592000, quic=“:443”; ma=2592000;

17 https://github.com/reddit/snudown/security/advisories/GHSA-
6gvv-9q92-w5f6.
18 https://www.chromium.org/quic/quic-faq/.
19 https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-
in-firefox-nightly-and-beta/.

123

https://github.com/efchatz/QUIC-attacks
https://github.com/efchatz/QUIC-attacks
https://github.com/reddit/snudown/security/advisories/GHSA-6gvv-9q92-w5f6
https://github.com/reddit/snudown/security/advisories/GHSA-6gvv-9q92-w5f6
https://www.chromium.org/quic/quic-faq/
https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-in-firefox-nightly-and-beta/
https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-in-firefox-nightly-and-beta/

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 361

v=“46,43”. As observed, this header includes the gQUIC
versions, referring to them as “Q0**”, say, Q050.

Interestingly, after examining older Google Chrome ver-
sions, namely 30.x.x to 80.x.x, on both a MS Windows 7
and 10 VM, none of them connected with gQUIC to any
supported webpage as those included in [70]; the connec-
tion was always done with HTTP/2 over TCP. Therefore,
in practice, this assault seems infeasible, but servers should
drop gQUIC, at least versions equipped with gQUIC-native
crypto.

5.2.4 QUIC-out-of-joint

Another identified issue is related to the Frame mangling
attack [51]. Specifically, when running the Munity-fuzzer it
was observed that, similarly to theFramemangling attack, the
fuzzer was able to pass arbitrary QUIC packets to the server
either during the TLS handshake or throughout the HTTP
service. Half of the tested servers, namely Caddy, H2O, and
NGINX, were found to be susceptible to this matter. Such an
issue can break the establishment of the TLS tunnel or offer
opportunity for exploiting other potential vulnerabilities as a
knock-on effect.

5.2.5 QUIC-loris

The current attack, affecting the Caddy server, requires about
150–200 packets in 1min, i.e., 2–3 packets per sec. Precisely,
the assailant initiates about 100 parallel QUIC connections
with the server, but drops each of them after 1 s, typi-
cally as soon after the handshake completes. Then, they wait
approximately 30 s and re-initiate QUIC (TLS) handshakes
again. This low-and-slow attack against the server signifi-
cantly decreases its response capacity to user requests; the
user needed more than 20 s, and in some cases more than
1 min, to fetch the (basic) HTML webpage. Specifically, it
was observed that theCPUof the targeted serverwas continu-
ously under heavy stress exceeding 99%. Recall from Sect. 2
that RFC 9000 does not cover stream fragmentation attacks.
And indeed, based on our experiments, such assaults are fea-
sible in practice. Given that this attack is especially drastic
on this server, by following a Coordinated Vulnerability Dis-
closure (CVD) process, we reported it to the developers of
the Caddy server, which in turn notified the quic-go team
[13]. The developers acknowledged the issue, realizing that
the probe timer of the Packetization Layer Path MTU Dis-
covery (plpmtud) method is being overflowed, i.e., reaching
values above 100 K. This is because the opponent drops the
connection soon after completing the QUIC handshake, forc-
ing the quic-go to a state that is unable to send a Path MTU
Discovery packet. As a result, after that point, the CPU usage
on the server is instantly over-utilized reaching 99.3–99.9%.
Since this issue affects the quic-go implementation, other

QUIC-enabled solutions also relying on this software may
be susceptible to the same issue. The attack has also been
reported toMITRE and has been assigned the IDCVE-2022-
30591.

5.2.6 QUIC-encapsulation

Encapsulation is a legacy type of attack that is typically
used to bypass firewall protection [71]. In fact, as detailed
in Sect. 4, the work in [59] examined this type of assault
for bypassing the firewall in QUIC realms. In our case, we
examined similar attacks, by encapsulating different IP pack-
ets, e.g., by placing a TCP packet inside a UDP one or a UDP
inside another UDP, and sent them against the server in an
unsolicited manner. In most cases, these unsolicited pack-
ets did not have any effect on the targeted server. However,
sometimes, Caddy responded with a TCP (keepalive probe)
packet or a UDP one depending on the initial unsolicited
packet received. Naturally, this behavior is aberrant and may
provide opportunities for attacks, including bypassing the
firewall protection, escalate a server-side request forgery
(SSRF) assault, and so on.

5.2.7 QUIC-flooding

It was observed that by constantly attacking a server with 0-
RTT connections increased its CPU usage significantly. This
attack, particularly affecting Caddy, NGINX, and H2O, can
be easily mounted by utilizing the aioquic Python library,
which enables one to craft and send multiple QUIC requests.
Obviously, the assault capitalizes on the number of concur-
rent QUIC requests; the more the requests, the greater the
impact on the server’s CPU. According to our tests, 100 par-
allel 0-RTT connections done by just a single attack instance
are enough, but the impact seems to depend on the server’s
QUIC implementation. Specifically, NGINX was the only
server that was temporarily paralyzed, i.e., after 2–3 attack
rounds, or approximately 15 s after the attack was launched,
the server became unresponsive for about 30 s. This behav-
ior was observed every time the assault was active, meaning
that the opponent is able to teardown all ongoing connec-
tions every 15–20 s. For Caddy, we perceived an increased
CPU usage of 99.9% almost instantly, a logical outcome
since this server is also vulnerable to the QUIC-loris attack
given in subsection 5.2.5. H2O demonstrated delayed HTTP
responses exceeding 3 s.No less important, this assault can be
further exploited in a DDoS fashion, since a single aggressor
is able to consume at least the one-fifth of the server’s CPU.
To mitigate this assault, servers can employ the RETRY fea-
ture of QUIC, as explained in subsection 4.2.

123

362 E. Chatzoglou et al.

6 Challenges and future directions

The current section focuses on a set of challenges and future
directions regarding QUIC security.

First, from a network operator’s viewpoint, traffic analy-
sis becomes more troublesome because QUIC traffic is fully
obfuscated. This also poses a challenge for firewalls; at least
for enterprise settings, next generation firewalls featuring
deep packet inspection are of need. Moreover, with reference
to Sect. 2 of RFC 9000, QUIC does not provide any means of
ensuring ordering between bytes on different streams. While
QUIC encrypts the ordering number of the packet, an oppo-
nent may be able to exploit this mechanism, if they manage
to find a latent vulnerability in this encryption method.

In certain cases, the application layer can utilize the con-
nection during the QUIC (TLS) handshake phase. Namely,
0-RTT allows application data to be sent from or towards a
client before even receiving a response from the server. This
trait may for instance allow an application protocol to offer
the option of trading some security guarantees for reduced
latency. However, based on Sect. 9.2 of RFC 9001, 0-RTT
provides no protection against replay attacks. The work in
[72] did propose a forward secrecy scheme for 0-RTT, but
as recently demonstrated by [73], the protocol’s speed is
reduced when enabling forward secrecy on 0-RTT. That is,
as expected, applying forward secrecy produces additional
overhead, which as a result renders QUIC less antagonistic
vis-à-vis TCP implementations.

As shown in Table 1, a plethora of QUIC implementa-
tions have been published as open access projects in GitHub
or elsewhere. In fact, the Table contains 18 QUIC imple-
mentations, createdwith 7 different programming languages.
Additionally, seven diverse TLS libraries are utilized across
all these implementations. In this respect, and because all
these implementations are new, not having passed the test
of time, it is rather expected that they will not be bug-free.
Moreover, due to this diversity, an identified vulnerability
existent in one QUIC implementation may or may not affect
others.

Future directions can focus on different unexplored areas
of QUIC security. For instance, none of the works so far has
examined the QUIC endurance against IP spoofing attacks.
While QUIC does implement Address Validation protection,
it should further be examined if this protection is indeed
effective against all QUIC implementations, and how this
protection along with the other QUIC protections, i.e., hav-
ing specific UDP length in a packet, could be exploited in the
context of a UDP amplification attack.

It seems that QUIC is rapidly gaining ground replac-
ing TCP in several settings, say, P2PoverQUIC [74] for
Peer-to-Peer (P2P) connections and RTPoverQUIC [75]
for Real-time Transport Protocol (RTP) services, DoQ for
encrypted DNS [76] etc. However, studies on QUIC for

HTTP/3, DNS, Tor, SMBoverQUIC, and others, from the
perspective of security are scarce. Precisely, thus far, only
one short paper examined the privacy related issues of DNS
over QUIC [77]. In this respect, future studies should con-
centrate more on the security model of the aforementioned
QUIC implementations.

While web cache poisoning attacks are quite problematic
against HTTP-based implementations [78,79], thus far no
work assessed cache poisoning attacks against QUIC, which
does not offer a relevant countermeasure. Since QUIC is
implemented in different proxies and load balancers, a pos-
sible direction for future work is to examine cache poisoning
attacks in such infrastructures.

No less important, a stateful QUIC fuzzer could be ben-
eficial towards identifying misconfigurations in the plethora
of QUIC implementations. Since the testing carried out in
Sect. 5.2.2 demonstrated that fuzzing can indeed identify
potential issues, a QUIC-focused fuzzer could provide more
accurate results, potentially revealing a much larger set of
misconfigurations or bugs. Also in the same vein, a spe-
cialized tool able to craft and send QUIC packets is largely
needed. Right now, only the aioquic Python library can be
used to some extent for testing different attack behaviors
against QUIC servers.

7 Conclusion

IETF QUIC is a newfangled transport for the Internet. It
provides enhanced privacy and superior performance in
demanding network conditions, rendering it highly desir-
able as a transport layer for HTTP. Therefore, opposite to
HTTP/1.1 and HTTP/2, HTTP/3 uses QUIC as a transport,
with TLS 1.3 acting as a security component of QUIC. The
current work aspires to serve two purposes regarding QUIC
security. First, to deliver a full-fledged andmeticulous review
of relevant literature contributions spanning two axes: those
covering QUIC security evaluation and those identifying
attacks against both IETF QUIC and gQUIC components.
Actually, the latter part of this review effort covers five cate-
gories of attacks, namely cryptographic, handshake, fuzzing,
transport-layer, and privacy. The secondobjective of thework
at hand is to contribute the first to our knowledge empir-
ical evaluation of QUIC in terms of security through fuzz
testing. This effort, conducted on the currently six most com-
mon IETF QUIC production-grade server implementations,
yielded a number of zero-days, some of which allowing an
adversary to easily paralyze the targeted server. This was
quite anticipated, given that QUIC implementations have not
yet stood the test of time, and additionally there is currently a
great diversity in the implementations; we identified 18 dis-
tinct QUIC implementations, making use of 7 different TLS
libraries, created with 7 different programming languages.

123

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 363

Given its dual purpose and its associated practical findings,
we anticipate this work to serve as a cornerstone and point of
reference for further research in this timely and challenging
field.

Funding Open access funding provided by HEAL-Link Greece. This
study received no funding.

Data availability All data and code generated or used to support the
findings of this study are included within the article.

Declaration

Conflict of interest The authors declare that they have no conflicts of
interest regarding the publication of this study.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Belshe, M., Peon, R., Thomson, M.: Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. (2015). https://doi.org/10.17487/
RFC7540. https://www.rfc-editor.org/info/rfc7540

2. Langley, A., et al.: The QUIC transport protocol: design and
internet-scale deployment. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. SIG-
COMM’17. Association for Computing Machinery, Los Angeles,
pp. 183–196 (2017). https://doi.org/10.1145/3098822.3098842

3. Iyengar, J., Thomson, M.: QUIC: a UDP-based multiplexed and
secure transport. RFC 9000. (2021). https://doi.org/10.17487/
RFC9000. https://www.rfc-editor.org/info/rfc9000

4. Thomson, M., Turner, S.: Using TLS to secure QUIC. RFC
9001. (2021). https://doi.org/10.17487/RFC9001. https://www.
rfc-editor.org/info/rfc9001

5. Bishop, M.: Hypertext transfer protocol Version 3 (HTTP/3).
Internet-Draft draft-ietf-quichttp- 34. Work in Progress. Internet
Engineering Task Force, p. 75 (2021). https://datatracker.ietf.org/
doc/html/draft-ietf-quic-http-34

6. Joras, M.. Chi, Y.: How Facebook is bringing QUIC to bil-
lions. last visited 03/11/2021. https://engineering.fb.com/2020/10/
21/networking-traffic/how-facebook-isbringing-quic-to-billions/

7. LSQUIC.: LiteSpeed QUIC and HTTP/3 Library. Visited on 2022-
02-15. https://github.com/litespeedtech/lsquic

8. W3Techs: Usage statistics of QUIC for websites. Last visited
29/03/2022. https://w3techs.com/technologies/details/ce-quic

9. W3Techs: Usage statistics of HTTP/3 for websites. Last visited
29/03/2022. https://w3techs.com/technologies/details/ce-http3

10. Langley, A., Chang, W.-T.: QUIC Crypto. Last visited
31/03/2022. https://docs.google.com/document/d/1g5nIXAIkN_
Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit#

11. Rescorla, E., Korver, B.: Guidelines for writing RFC text on secu-
rity considerations. RFC 3552. (2003). https://doi.org/10.17487/
RFC3552. https://www.rfc-editor.org/info/rfc3552

12. Snake, R., Kinsella, J., Gonzalez, H., Lee, R.E.: Slowloris
HTTP DoS. Visited on 2022-04-04. https://web.archive.org/web/
20150426090206/http://ha.ckers.org/slowloris/

13. quic-go: A QUIC implementation in pure go. Visited on 2022-02-
15. https://github.com/lucas-clemente/quic-go

14. quiche: Savoury implementation of the QUIC transport proto-
col and HTTP/3. Visited on 2022- 02-15. https://github.com/
cloudflare/quiche

15. nghttp2: nghttp2—HTTP/2 C library and tools. Visited on 2022-
02-15. https://github.com/nghttp2/nghttp2

16. msquic: Cross-platform, C implementation of the IETF QUIC
protocol. Visited on 2022-02-15. https://github.com/microsoft/
msquic.19

17. quinn: Async-friendly QUIC implementation in Rust. Visited on
2022-02-15. https://github.com/quinn-rs/quinn

18. reactor-netty: TCP/HTTP/UDP/QUIC client/server with Reactor
over Netty. Visited on 2022-02-15. https://github.com/reactor/
reactor-netty

19. neqo: neqo—a QUIC library with Mozilla cooperation. Visited on
2022-02-15. https://github.com/mozilla/neqo

20. mvfst: An implementation of the QUIC transport protocol. Visited
on 2022-02-15. https://github.com/facebookincubator/mvfst

21. xquic: XQUIC Library released by Alibaba is a cross-platform
implementation of QUIC and HTTP/3 protocol. Visited on 2022-
02-15. https://github.com/alibaba/xquic

22. aioquic: QUIC and HTTP/3 implementation in Python. Visited on
2022-02-15. https://github.com/aiortc/aioquic

23. ngtcp2: ngtcp2 project is an effort to implement IETF QUIC pro-
tocol. Visited on 2022-02-15. https://github.com/ngtcp2/ngtcp2

24. s2n-quic: AWS | An implementation of the IETF QUIC protocol.
Visited on 2022-02-17. https://github.com/aws/s2n-quic

25. quicly: Amodular QUIC stack designed primarily for H2O.Visited
on 2022-02-15. https://github.com/h2o/quicly

26. picoquic: Minimal implementation of the QUIC protocol. Visited
on 2022-02-15. https://github.com/private-octopus/picoquic

27. kwik: A QUIC client, client library and server implementation in
Java. Supports HTTP3 with “Flupke” add-on. Visited on 2022-02-
15. https://github.com/ptrd/kwik

28. quiche google: Google’s production-ready implementation of
QUIC, HTTP/2, and HTTP/3. Visited on 2022-02-17. https://
github.com/google/quiche

29. nginx: A QUIC server implementation for NGINX. Visited on
2022-02-15. https://hg.nginx.org/nginx-quic/shortlog/quic

30. Sakurada, H., et al.: Analyzing and Fixing the QACCE Security
of QUIC. In: Lidong, C., David, M., Chris, M. (eds.), Security
Standardisation Research. Springer, Cham pp. 1–31 (2016)

31. Lychev,R., et al.: How secure and quick isQUIC?Provable security
and performance analyses. In: 2015 IEEE Symposium on Security
andPrivacy. (2015), pp. 214–231. https://doi.org/10.1109/SP.2015.
21

32. Chen, S. et al.: Secure Communication Channel Establishment:
TLS 1.3 (over TCP Fast Open) vs. QUIC. In: Kazue, S., Steve,
S., Peter, Y.A., Ryan (eds.), Computer Security—ESORICS 2019.
Springer, Cham, pp 404–426 (2019)

33. Zhang, J., et al.: Formal analysis ofQUIChandshake protocol using
symbolic model checking. IEEE Access 9, 14836–14848 (2021).
https://doi.org/10.1109/ACCESS.2021.3052578

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC7540
https://www.rfc-editor.org/info/rfc7540
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://www.rfc-editor.org/info/rfc9000
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9001
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-isbringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-isbringing-quic-to-billions/
https://github.com/litespeedtech/lsquic
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-http3
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit#
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit#
https://doi.org/10.17487/RFC3552
https://doi.org/10.17487/RFC3552
https://www.rfc-editor.org/info/rfc3552
https://web.archive.org/web/20150426090206/
https://web.archive.org/web/20150426090206/
http://ha.ckers.org/slowloris/
https://github.com/lucas-clemente/quic-go
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://github.com/nghttp2/nghttp2
https://github.com/microsoft/msquic.19
https://github.com/microsoft/msquic.19
https://github.com/quinn-rs/quinn
https://github.com/reactor/reactor-netty
https://github.com/reactor/reactor-netty
https://github.com/mozilla/neqo
https://github.com/facebookincubator/mvfst
https://github.com/alibaba/xquic
https://github.com/aiortc/aioquic
https://github.com/ngtcp2/ngtcp2
https://github.com/aws/s2n-quic
https://github.com/h2o/quicly
https://github.com/private-octopus/picoquic
https://github.com/ptrd/kwik
https://github.com/google/quiche
https://github.com/google/quiche
https://hg.nginx.org/nginx-quic/shortlog/quic
https://doi.org/10.1109/SP.2015.21
https://doi.org/10.1109/SP.2015.21
https://doi.org/10.1109/ACCESS.2021.3052578

364 E. Chatzoglou et al.

34. Fischlin, M., Günther, F., Janson, C.: Robust channels: handling
unreliable networks in the record layers of QUIC and DTLS 1.3.
Cryptology ePrint Archive, Report 2020/718. https://ia.cr/2020/
718.2020

35. Delignat-Lavaud A., et al.: A security model and fully verified
implementation for the IETF QUIC record layer. In: 2021 IEEE
Symposium on Security and Privacy (SP), pp. 1162–1178 (2021).
https://doi.org/10.1109/SP40001.2021.00039

36. Dowling, B., et al.: A cryptographic analysis of the TLS 1.3 hand-
shake protocol. J. Cryptol. 34(4), 37 (2021). https://doi.org/10.
1007/s00145-021-09384-1

37. Maddux, J.: When TLS hacks you. In: Black Hat (2020)
38. Kampourakis, V., et al.: Revisiting man-inthe- middle attacks

against HTTPS. In: Network Security 2022.3 (2022), null. https://
doi.org/10.12968/S1353-4858(22)70028-1

39. Bleichenbacher, D.: Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. In: Hugo, K.,
(ed.), Advances in Cryptology—CRYPTO ’98. Springer, Berlin,
pp. 1–12, (1998)

40. Jager, T., Schwenk, Jörg, S., Juraj: On the Security of TLS 1.3
and QUIC against Weaknesses in PKCS#1 v1.5 Encryption. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. CCS ’15. Association for Comput-
ing Machinery, Denver, pp. 1185–1196, (2015). https://doi.org/10.
1145/2810103.2813657

41. Elaine Barker (NIST): Recommendation for Key Management:
Part 1—General/SP 800-57 Part1 Rev. 5. Visited on 2022-03-
29. https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-
5/final

42. Aviram, N. et al.: DROWN: breaking TLS using SSLv2”. In:
25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10–12, 2016. USENIX Association, pp. 689–
706 (2016). https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/aviram

43. Cremers, C., et al.: Automated Analysis and Verification of TLS
1.3: 0-RTT, resumption and delayed authentication. In: IEEE Sym-
posium on Security and Privacy, SP 2016, San Jose, CA,USA,May
22–26, 2016. IEEEComputer Society, pp. 470–485 (2016). https://
doi.org/10.1109/SP.2016.35

44. Arunkumar, B., Kousalya, G.: Nonce reuse/misuse resistance
authentication encryption schemes for modern TLS cipher suites
and QUIC based web servers. J. Intell. Fuzzy Syst. 38(5), 6483–
6493 (2020). https://doi.org/10.3233/JIFS-179729

45. Benjamin, D., Wood, C.A.: Importing external PSKs for
TLS. Internet-Draft draft-ietf-tlsexternal-psk-importer-07.Work in
Progress. Internet Engineering Task Force (2022). https://www.
ietf.org/id/draft-ietf-tls-external-psk-importer-07.html

46. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK.
J. Cryptol. 34(3), 27 (2021). https://doi.org/10.1007/s00145-021-
09387-y

47. Saverimoutou, A., Mathieu, B., Vaton, S.: Which secure transport
protocol for a reliable HTTP/2-based web service: TLS or QUIC?
In: 2017 IEEE Symposium on Computers and Communications
(ISCC), pp. 879–884 (2017). https://doi.org/10.1109/ISCC.2017.
8024637

48. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time:
The case of the TLS 1.3 handshake candidates. In: 2017 IEEE
European Symposium on Security and Privacy (EuroS P), pp. 60–
75 (2017). https://doi.org/10.1109/EuroSP.2017.18

49. Cao, X., Zhao, S., Zhang, Y.: 0-RTT attack and defense of QUIC
protocol. In: 2019 IEEE Globecom Workshops (GC Wkshps),
pp. 1–6 (2019). https://doi.org/10.1109/GCWkshps45667.2019.
9024637

50. Lee, S., Shin, Y., Hur, J.: Return of version downgrade attack in
the Era of TLS 1.3. In: Association for Computing Machinery,

New York, pp. 157–168 (2020). https://doi.org/10.1145/3386367.
3431310

51. Gagliardi, E., Levillain, O.: Analysis of QUIC session establish-
ment and its implementations. In: Laurent,M.,Giannetsos, T. (eds.)
Information Security Theory and Practice, pp. 169–184. Springer,
Cham (2020)

52. Nawrocki, M. et al.: QUICsand: quantifying QUIC reconnais-
sance scans and DoS flooding events. In: Proceedings of the 21st
ACM Internet Measurement Conference. Association for Comput-
ing Machinery, New York, pp. 283–291 (2021). https://doi.org/10.
1145/3487552.3487840

53. caida: UCSD Network Telescope. Visited on 2022-02-15. https://
www.caida.org/projects/network_telescope/

54. McMillan, K.L., Zuck, L.D.: Formal specification and testing of
QUIC. In: Proceedings of the ACM Special Interest Group on
Data Communication. SIGCOMM’19. Association for Computing
Machinery, Beijing, pp. 227–240 (2019). https://doi.org/10.1145/
3341302.3342087

55. Reen, G.S., Rossow, C.: DPIFuzz: a differential fuzzing framework
to detect DPI elusion strategies for QUIC. In: Annual Computer
Security Applications Conference. ACSAC’20. Association for
Computing Machinery, Austin, pp. 332–344 (2020). https://doi.
org/10.1145/3427228.3427662

56. quant: A QUIC implementation written in C. Visited on 2022-02-
15. https://github.com/NTAP/quant

57. Zhang, J., et al.: A systematic approach to formal analysis of QUIC
handshake protocol using symbolic model checking. Secur. Com-
mun. Netw. 2021, 1630223:1-1630223:12 (2021). https://doi.org/
10.1155/2021/1630223

58. Thimmaraju, K., Scheuermann, B.: Count Me If You Can: enu-
merating QUIC servers behind load balancers. In: Conference on
Networked Systems 2021 (NetSys 2021), vol. 80, Electronic Com-
munications of the EASST (2021). https://doi.org/10.14279/tuj.
eceasst.80.1172

59. Gbur, K.Y., Tschorsch, F.: A QUIC(K) way through your firewall?
In: CoRR abs/2107.05939 (2021). arXiv: 2107.05939

60. Tong, V., et al.: A novel QUIC traffic classifier based on convo-
lutional neural networks. In: 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, pp. 1–6 (2018)

61. Arfaoui, G., et al.: The privacy of the TLS 1.3 protocol. Cryptology
ePrint Archive, Report 2019/749. https://ia.cr/2019/749 (2019)

62. Govil, Y., Wang, L., Rexford, J.: MIMIQ:Masking IPs with migra-
tion in QUIC. In: 10th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 20). USENIX Association
(2020)

63. mininet: mininet. Visited on 2022-02-15. http://mininet.org/
64. Zhan, P., Wang, L., Tang, Y.: Website fingerprinting on early

QUIC traffic. Comput. Netw. 200, 108538 (2021). https://doi.org/
10.1016/j.comnet.2021.108538

65. BarmanL., et al.: This is not the padding you are looking for!On the
ineffectiveness of QUIC PADDING against website fingerprinting
(2022). arXiv: 2203.07806

66. Near-path NAT for IP Privacy. Last visited 13/04/2022. https://
github.com/bslassey/ip-blindness/blob/master/near_path_nat.md

67. Multiplexed Application Substrate over QUIC Encryption
(masque). Last visited 13/04/2022. https://datatracker.ietf.org/wg/
masque/about/

68. W3Techs: Usage statistics of web servers. Last visited 29/04/2022.
https://w3techs.com/technologies/overview/web_server

69. Caddy: GitHub | HTTP/3 seems to stop working after any kind
of reload. Visited on 2022-03- 22. https://github.com/caddyserver/
caddy/issues/4348

70. W3Techs: Usage statistics of QUIC for websites. Visited on 2022-
03-22. https://w3techs.com/technologies/details/ce-quic

123

https://ia.cr/2020/718. 2020
https://ia.cr/2020/718. 2020
https://doi.org/10.1109/SP40001.2021.00039
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.12968/S1353-4858(22)70028-1
https://doi.org/10.12968/S1353-4858(22)70028-1
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.3233/JIFS-179729
https://www.ietf.org/id/draft-ietf-tls-external-psk-importer-07.html
https://www.ietf.org/id/draft-ietf-tls-external-psk-importer-07.html
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1007/s00145-021-09387-y
https://doi.org/10.1109/ISCC.2017.8024637
https://doi.org/10.1109/ISCC.2017.8024637
https://doi.org/10.1109/EuroSP.2017.18
https://doi.org/10.1109/GCWkshps45667.2019.9024637
https://doi.org/10.1109/GCWkshps45667.2019.9024637
https://doi.org/10.1145/3386367.3431310
https://doi.org/10.1145/3386367.3431310
https://doi.org/10.1145/3487552.3487840
https://doi.org/10.1145/3487552.3487840
https://www.caida.org/projects/network_telescope/
https://www.caida.org/projects/network_telescope/
https://doi.org/10.1145/3341302.3342087
https://doi.org/10.1145/3341302.3342087
https://doi.org/10.1145/3427228.3427662
https://doi.org/10.1145/3427228.3427662
https://github.com/NTAP/quant
https://doi.org/10.1155/2021/1630223
https://doi.org/10.1155/2021/1630223
https://doi.org/10.14279/tuj.eceasst.80.1172
https://doi.org/10.14279/tuj.eceasst.80.1172
http://arxiv.org/abs/2107.05939
https://ia.cr/2019/749
http://mininet.org/
https://doi.org/10.1016/j.comnet.2021.108538
https://doi.org/10.1016/j.comnet.2021.108538
http://arxiv.org/abs/2203.07806
https://github.com/bslassey/ip- blindness/blob/master/near_path_nat.md
https://github.com/bslassey/ip- blindness/blob/master/near_path_nat.md
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/
https://w3techs.com/technologies/overview/web_server
https://github.com/caddyserver/caddy/issues/4348
https://github.com/caddyserver/caddy/issues/4348
https://w3techs.com/technologies/details/ce-quic

Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study 365

71. Kamara, S., et al.: Analysis of vulnerabilities in Internet fire-
walls. Comput Secur 22(3), 214–232 (2003). https://doi.org/10.
1016/S0167-4048(03)00310-9

72. Günther, F., et al.: 0-RTT key exchange with full forward
secrecy. In: Jean-Sébastien C., Jesper B.N. (eds.), Advances
in Cryptology—EUROCRYPT 2017—36th Annual International
Conference on theTheory andApplications ofCryptographicTech-
niques, Paris, France, April 30–May 4, 2017, Proceedings, Part
III, vol. 10212. Lecture Notes in Computer Science, pp. 519–548
(2017). https://doi.org/10.1007/978-3-319-56617-7_18

73. Dallmeier, F., et al.: Forward-Secure 0-RTTGoes Live: Implemen-
tation and performance analysis inQUIC. In: Stephan,K., Haya, S.,
Serge, V., (eds.), Cryptology and Network Security—19th Interna-
tional Conference, CANS2020,Vienna,Austria, December 14–16,
2020, Proceedings, vol. 12579.LectureNotes inComputerScience.
Springer, pp. 211–231 (2020). https://doi.org/10.1007/978-3-030-
65411-5_11

74. draft-aboba-avtcore-quic-multiplexing-04: QUIC Multiplexing.
Visited on 2022-05-19. https://datatracker.ietf.org/doc/draft-
abobaavtcore-quic-multiplexing/04/

75. draft-engelbart-rtp-over-quic-03: RTP over QUIC. Visited on
2022-05-19. https://datatracker.ietf.org/doc/draft-engelbart-rtp-
over-quic/

76. Kambourakis, G., Karopoulos, G.: Encrypted DNS: the good, the
bad and the moot. Comput. Fraud Secur. (2022). https://doi.org/
10.12968/S1361-3723(22)70572-6

77. Hu, G., Fukuda, K.: An analysis of privacy leakage in DoQ traf-
fic. In: Gareth, T., Hannaneh, B.P., Lars C.W. (eds.), CoNEXTSW
’21: Proceedings of the CoNEXT Student Workshop, Virtual
Event/Munich, Germany, 7 December 2021. ACM, pp. 7–8 (2021).
https://doi.org/10.1145/3488658.3493782

78. Gil, O.: Web cache deception attack. In: Black Hat USA 2017
(2017)

79. Web Cache Deception Escalates. In: 31st USENIX Security Sym-
posium (USENIX Security 22). USENIX Association, Boston
(2022). https://www.usenix.org/conference/usenixsecurity22/
presentation/mirheidari

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/S0167-4048(03)00310-9
https://doi.org/10.1016/S0167-4048(03)00310-9
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-030-65411-5_11
https://doi.org/10.1007/978-3-030-65411-5_11
https://datatracker.ietf.org/doc/draft-abobaavtcore-quic-multiplexing/04/
https://datatracker.ietf.org/doc/draft-abobaavtcore-quic-multiplexing/04/
https://datatracker.ietf.org/doc/draft-engelbart-rtp-over-quic/
https://datatracker.ietf.org/doc/draft-engelbart-rtp-over-quic/
https://doi.org/10.12968/S1361-3723(22)70572-6
https://doi.org/10.12968/S1361-3723(22)70572-6
https://doi.org/10.1145/3488658.3493782
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari
https://www.usenix.org/conference/usenixsecurity22/presentation/mirheidari

	Revisiting QUIC attacks: a comprehensive review on QUIC security and a hands-on study
	Abstract
	1 Introduction
	2 Preliminaries
	3 Past studies on QUIC security evaluation
	4 Attacks targeting QUIC or gQUIC
	4.1 Cryptographic attacks
	4.2 Handshake attacks
	4.3 Fuzzing attacks
	4.4 Transport-layer attacks
	4.5 Privacy attacks

	5 Hands-on evaluation
	5.1 Testbed
	5.1.1 OpenLiteSpeed
	5.1.2 Caddy
	5.1.3 NGINX
	5.1.4 H2O
	5.1.5 Internet Information Services (IIS) 10
	5.1.6 Cloudflare

	5.2 Empirical security assessment
	5.2.1 Methodology
	5.2.2 QUIC-fuzz
	5.2.3 QUIC-downgrade
	5.2.4 QUIC-out-of-joint
	5.2.5 QUIC-loris
	5.2.6 QUIC-encapsulation
	5.2.7 QUIC-flooding

	6 Challenges and future directions
	7 Conclusion
	References

