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Abstract
In this paper, we examine the factors that influence the success of false data injection (FDI) attacks in the context of both
cyber and physical styles of reinforcement. Existing research considers the FDI attack in the context of the ability to change
a measurement in a static system only. However, successful attacks will require first intrusion into a system followed by
construction of an attack vector that can bypass bad data detection to cause a consequence (such as overloading). Furthermore,
the recent development of moving target defences (MTD) introduces dynamically changing system topology, which is beyond
the capability of existing research to assess. In this way, we develop a full service framework for FDI risk assessment. The
framework considers both the costs of system intrusion via a weighted graph assessment in combination with a physical, line
overload-based vulnerability assessment under the existence of MTD. We present our simulations on a IEEE 14-bus system
with an overlain RTU network to model the true risk of intrusion. The cyber model considers multiple methods of entry for the
FDI attack including meter intrusion, RTU intrusion and combined style attacks. Post-intrusion, our physical reinforcement
model analyses the required level of topology divergence to protect against a branch overload from an optimised attack vector.
The combined cyber and physical index is used to represent the system vulnerability against FDIA.
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1 Introduction

The contemporary power system is a cyber–physical sys-
tem with high levels of system inter-dependency and a near
ubiquitous use of communications throughout. The move
towards cyber–physical systems has resulted in new vulner-
abilities which have not been fully covered by the existing
defence frameworks. Such vulnerabilities were exposed dur-
ing the 2015 cyber-attack against distribution companies in
Ukraine [1]. Attacks like these have increased the focus on
the area of power system cyber security. While many papers
have focused on designing new attacks and novel defences,
relatively few have focused on risk assessment of specific
cyber attack types within the context of a cyber–physical
system. The main contribution of this work is to provide a
cyber–physical model of risk assessment for FDI attacks.
This model considers the inherent risk of a system topology,
the interconnection between RTU and telemetered mea-
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surements. The model also considers post-intrusion attack
considerations of attack plausibility in the light of the active
defence technique, Moving Target Defence (MTD).

2 Related works

2.1 FDI attacks

False Data Injection (FDI) attacks were first outlined in [2]
and involve altering system measurements to corrupt a net-
work operator’s state estimation process and cause negative
consequences such as line overloading and outage mask-
ing [3]. FDI attacks need to remain undetected by the network
operator to be effective. In this context, FDI attacks com-
pete with bad data detectors (BDD) within state estimation
processes. In modern energy management systems (EMS),
the BDD at the power system level relies on weighted-least
squares (WLS) and Chi-squared error testing [4]. Therefore,
a successfully FDI attack can only be implemented if the
attacker gains access to the correct combination of meter
measurement and change them in a coordinated way. Deng
et al. offer a comprehensive review of the FDI attack problem
in [5].

2.2 Moving target defence

Moving Target Defence (MTD), within the realm of power
system FDI attacks, refers to the process of imposing
dynamic changes in the physical system to invalidate the
topology knowledge assumption of the FDI attacker. As we
have shown previously in [6], it is possible to extract network
topology andperformFDI attacks simply byobservingpower
system data. By introducing topology changes away from
expected model by the attackers, gross errors can be intro-
duced which expose attackers via residual violations. These
topology changes can be implemented through transmission
switching [7] (rarely suggested) or by admittance perturba-
tion via distributed flexible AC transmissions (D-FACTs)
devices [8]. Extensive research has been carried out for the
optimisation of MTD application for power systems [9,10].
Other areas of research have been on advancing MTD by
camouflaged or hiddenMTD [11,12] or by exploring the cost
of applying MTD [13]. In response to this cost-based analy-
sis, other works have also considered the implementation of
MTD via event-triggering to reduce the overall utilisation of
MTD [14]. Crucially, no previous research has yet considered
the application of this style of MTD from a risk assessment
perspective. Questions remain on when to apply MTD and
when to opt for traditional cyber style reinforcement. In this
work, we would like to address, how resources can be best
spent in cyber–physical networks to reduce the overall risk
of a successful FDI attack (in both entry and post-intrusion

detection terms).Whilemanyworks have discussed the com-
pleteness ofMTD, the ability to protect a network withMTD
under noisy environment will be dependent on the size of the
attack vector. If a network is regularly operating at or close
to its rated capacity, then the attacker can cause damage with
only minor changes to the system. Under this scenario, large
amounts of MTD will be required in order to drive a positive
detection, whichmay be potentially untenable andmaymake
cyber reinforcement the more effective solution.

2.3 Cyber–physical risk assessment

Someworks have already attempted to tackle risk assessment
with respect to FDI attacks. For example, Hug et al. exam-
ined this area from the perspective of weakest node attack
point [15]. In this work, they perform a nodal-based target
selection using a minimum meters criteria to compromise a
node or state angle. The number of meters required for each
node is evaluated for the AC and DC models, and an alter-
nate meter conquering strategy is proposed using the RTUs
rather than the individual meter measurements. A similar
methodology is explored in [16] where security indices are
developed based on the physical topology of the power sys-
tem with specific reference to the FDI attacks. In this case,
the security index is defined by the minimum meter change
potential with an aim of finding the sparsest possible attack.
However, the work makes no reference to the RTU or combi-
nation style vulnerabilities. A similar indices-based approach
is also applied in [17]. In [18], Pan et al. offer one of the first
risk assessments of FDI attacks with cyber considerations.
The attack combines standard FDI style attack vectors with
denial of service (DoS) style attacks which reduces the num-
ber of meters required to compromise a state.

Some other works have addressed cyber–physical risk
modellingmore generally. In [19], a probabilistic risk assess-
ment model is introduced. The model uses acyclic digraphs
to represent the inter-dependencies between different com-
ponents in a cyber–physical system. In [20], a probabilistic
risk approach is used but with a focus on the removal of
graph nodes or edges and the effects they have on the net-
work. In [21], a framework for cyber–physical modelling
of power grid infrastructure is outlined. The attack focus is
around circuit breaker control and de-energising certain areas
of the grid. They combine upper level RTU modelling with
a lower level telemeter network model. One of the earliest
relevant works in the field, Bargiela et al. explore network
observability as a function of network topology in [22]. The
work also proposes an optimal protection graph which satis-
fies the spanning tree. This graph can then be used to return
a set of optimal buses to protect and guarantee reliable state
estimation. In [23], an integrated model-based approach for
cyber–physical risk assessment is used which outlines the
vulnerabilities of specific controllers into an industrial test
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bed. In [24], a vulnerability assessment framework for sys-
tematically evaluating SCADA vulnerabilities is proposed.
The method can be used to model access points for SCADA
networks, construct a model for intrusions, simulate cyber
attacks and suggest security improvements. In [25], ameshed
network framework that considers both power system fea-
tures and bi-directional communication flows is presented.
In [26], Barrere et al. outline a cyber–physical assessment
framework which features combined style attacks for indus-
trial control systems (ICS).

While these frameworks offer some interesting risk per-
spectives on the FDI attack, they can be improved in a number
of ways. Consideration of overlapping style attacks, which
combine RTU and meter style intrusions, would better repre-
sent the risk to a power system. Also, previous works which
modelled the risk of the FDI attacks, have assumed success
once the attacker has gained access to the required combina-
tion ofmeters. However, this fails to consider both the system
state and post-intrusion defences such as MTD. It is hence
important to expand upon these works by redefining a suc-
cessful FDI attack with consideration of the size of required
attack vector, the existence of MTD and a cyber–physical
model. In the following subsection, we outline the proposed
risk assessment framework.

2.4 Proposed risk assessment framework

Our cyber–physical risk assessment framework builds on the
cases outlined in the literature review. In particular, it con-
siders [15,16,18,21] and attempts to create an overarching
risk assessment criteria which considers both the intrusion
(cyber) component of risk and stealthiness in the presence
of MTD portion (physical) risks. Our work considers both
the cost of intrusion to a given attack point and the ability to
remain stealthy in the presence of MTD system capabilities.
Table 1 outlines where our work sits within the context of the
most similar papers.

To this end, we combine weighted min cost of intrusion
modelling and the level of MTD required to protect a mea-
surement when assessing risk to create a cyber–physical risk
assessment approach. In our risk assessment framework for
FDI attacks, we make the following contributions:

• Firstly, our model provides a weighted graph assessment
of the FDIA intrusion risk of the cyber components of
the grid. We introduce overlapping style attack consid-
erations for the FDI attack model, i.e. not simply the
choice of the RTU or the meter combinations for a given
state but also some combinations of the two. We show
in simulation, that these overlapping style vulnerabilities
can reduce the attackers overall intrusion cost and hence
enhance their ability to attack.

• We also introduce anMTD (post-intrusion) effectiveness
criteria which considers system capacity constraints in
the context of an FDI attack and the required level of
MTD to expose an attack for an overload style attack.We
model the level of divergence required to protect each bus
and branch combination in the context of a min possible
attack vector. We consider the MTD effectiveness in the
context of statistical loading peaks and optimised attack
vector.

The rest of this paper is organised as follows. The prelimi-
naries are outlined inSect. 3. Section 4details the formulation
related to the cyber–physical risk model and outlines the
algorithms used and their respective performances. Section 5
contains outlines for the algorithm and algorithmic perfor-
mance result. Section 6 features the results and analysis of
the risk model applied to different case studies, and Sect. 7
concludes the paper.

3 Preliminaries

3.1 State estimation

Initially, we consider the static power system problem. Con-
sisting of a set of n state variables x ∈ R

n×1 estimated
by analysing a set of m meter measurements z ∈ R

m×1

and corresponding error vector e ∈ R
m×1. The nonlinear

vector function h(.) relates meter measurements z to states
h(x) = (h1(x), h2(x), . . . , hm(x))T shown by

z = h(x) + e. (1)

However, we can primarily focus on the linear model for
this paper as we are operating from a risk assessment per-
spective only. Therefore, the state estimation problem can be
represented by the linear model as a function of the Jacobian
H ∈ R

m×n matrix and state vector as shown by

z = Hx + e. (2)

The state estimation problem is to find the best fit estimate
of x̂ corresponding to the measured power flow values of z.
Under the most widely used estimation approach, the state
variables are determined by minimisation of a WLS optimi-
sation problem as

min
x

J (x) = (z − Hx)TW(z − Hx). (3)

W is a diagonal m × m matrix consisting of the measure-
ment weights. These weights can represent meter accuracy,
reliability or simply engineering judgment about the relative
importance of that particular measurement. The solution for
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Table 1 This reports relative novelty in the field of CPS style risk assessment for FDI style power system attacks

Reference Author Cyber-Physical Model Consideration of FDI Consideration of MTD Intrusion Risk Post-Intrusion Risk

15 Hug et al X � X � X

16 Davis et al � X X � X

18 Pan et al X � X X X

22 Davis et al � X X X �
Our work Higgins et al � � � � �

a minimal J(x) can be analytically obtained by taking the
first derivative with respect to x and solving for 0, yielding x̂
defined by

x̂ = (HTWH)−1HTWz. (4)

3.2 Bad data detection

The current approach in power systems operation for bad data
detection is to use the 2-norm of the measurement residual.
The residual r is defined by the difference between the mea-
sured power flow values of z and the value calculated from
the estimated state values x̂ and the known topology matrix
H

r = ||z − Hx̂||2. (5)

Assuming the state variable x errors are random, inde-
pendent and follow a normal distribution with mean zero
and unitN (0, σ 2), a Chi-squared distributionmodelχ2

m−n,α

withm−n degrees of freedom and α the confidence interval
(typically 0.95 or 0.99) can be applied to define the detection
threshold as

η = σ

√
χ2
m−n,α. (6)

If rt > η BDD alarms will trigger and the system oper-
ator will discard the result, removing the elements from the
residual calculation with large values.

3.3 Attack vectors

In the case of an infinitely resourced and knowledgeable
attack, the attacker can gain full access to themetering infras-
tructure of the power system and change measured power
flows in almost any desired manner. However, the attacker
will still wish to remain undetected by bypassing BDD. Con-
sidering an attack vector a ∈ R

m×1 representing the change
added to the measurements, the measurement vector under
attack za is

za = z + a. (7)

As demonstrated in previous research, with a known sys-
tem topology matrixH, it is trivial to create a stealthy attack
vector. The attacker can choose any linear combination of
Hc where c ∈ R

n×1. The vector c can be selected so as to
have the desired impact on the state vector x. With the attack
vector a shown by

a = Hc. (8)

In most power systems,H is sparse. This means that most
individual c changeswill correspond to only a fewmetermea-
surements. For the AC system, this can also be generalised
using partial derivative matrix J. In practice, the relative risk
of these two models will be very similar and largely inter-
connection dependent.

3.4 Moving target defence

As shown previously, these types of attacks can be exposed
using topology-based defences known as MTD. We show in
[12] that given an attack vector a = Hc we can express the
new residual rn in terms of the change in topology, size of
the attack vector, WLS minimisation and power flow profile
such that

rn = ‖(1 − HnFn)z + (1 − HnFn)ΔHc‖2. (9)

where Fn is the WLS minimisation factor andHn is the new,
post-MTD topology. There is an assumption that attack vec-
tors will be based on the original topology H. Generally,
a system operator will aim to set this new residual value
above his current alarm limits to ensure detection of FDI
attacks. However, in practice, the attack vector cannot be
known beforehand and MTD implementation can be costly
and so understanding the exact level of MTD to apply can be
difficult.
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4 Cyber–physical threat model

4.1 Attacker assumptions

We make some assumptions about the prospective attacker
which help define our risk assessmentmodel.We outline here
the assumptions behind both the intrusion and system change
elements of the attack.

• System Intrusion—the attacker is attempting an FDI
style attack and will capture meter measurements in the
required sub-graph. His intrusion cost will be the cost of
compromising the meter set required to change a given
bus measurement, and they will seek to minimise this
cost. The attacker can choose either to compromise the
meter set, RTU or some combination to replicate the
underlying attacking subgraph.

• System Change—once intruded, the attacker is attempt-
ing to create a simulated overload attack via false data
injection to the power flow profile. The attacker will
attempt to optimise his attack vector to this effect, using
the smallest possible attack vector needed to overload the
given line.

• Statistical Peak—the attacker is conscious of the addi-
tional advantage peak loading can grant and will wait for
such instant before initiating the attack.We reflect this by
perform simulations on a 3 standard deviation statistical
peak reflecting an attackers advantage gained in waiting
for an overloaded moment.

Given these attacker aims, we first consider the intrusion
risk in terms of (weighted) sub-graph capture cost. We then
consider the ability of the SO to defend the systemwithMTD
under the ‘peak load’ style conditions.

4.2 Min cost point capture strategy

Previously,mostworks have envisioned an infinitely resourced
attacker. In practice, attackerswill be constrained inwhat ele-
ments they can compromise. They will likely choose targets
based on ease to compromise and will prioritise low-cost tar-
gets. In this article, we outline formulations for weighted and
unweighted bus capture strategies. The unweighted number
of meters to compromise MuCn where km denotes whether
a meter is present at the busbar or branch. This is represented
by the number of nonzero terms in the column vector ofH for
a given node n and represents the number of meters (needed
to compromise) in order to attack stealthily. This represents
a simply unweighted cost which is shown by

km =
{
1, if coln(Hn,m) > 0

0, else

Fig. 1 Cyber–physical network for 3-bus system with alternative cyber
and physical capture attack strategies

MuCn =
m∑
1

(km). (10)

We can also add considerations of the difficulty to cap-
ture a given edge by adding a graph weighting. It makes
sense given the co-existence of new and legacy measurement
equipment in the power system. This can be represented with
weightings for edges. For each edge E of graphG, there is an
associatedweightw(m). This can represent either line redun-
dancy or moremeters, which are more resilient to attack. The
weighted cost of meters MwC is shown by

pm =
{

w(m), if coln(Hn,m) > 0

0, else

MwCn =
m∑
1

(pm). (11)

Unlike in previous models, our proposed intrusion model
the attacker can compromise either the metering components
(similar to previous interpretations of FDI intrusion), the
RTUs or some combination in order to replicate the needed
subgraph. We outline these approaches in the next subsec-
tion.

The weighted cost functionality also allows us to incorpo-
rate effects like the DoS style attacks as seen previously in
[18].

123



584 M. Higgins et al.

Fig. 2 IEEE 14-BUS
cyber–physical graph
representation

4.3 State capture strategies

4.3.1 Meter attack criteria

For a given node/state wishing to be attacked under the phys-
ical system, the following is required to remain hidden:

• The self-edge for the target node is captured and mea-
surements changeable

• All edges emerging from the target node are captured
• The neighbour nodes of the target node self-edges are
also captured

4.3.2 RTU attack criteria

For a given node/state wishing to be attacked under the com-
munications network, the following is required to remain
hidden:

• The attacker would need to capture the RTUs (equivalent
to capturing the network bus and adjacent power flow
meters) associated with the physical attack.

• The same physical sub-graph comprising of all the local
measurements needs to be satisfied but through the cap-
ture of the upstream RTU which (usually) holds multiple
meter measurements.

4.3.3 Combined attack criteria

For a given node/state wishing to be attacked under the com-
munications network, the following is required to remain
hidden:

• The attacker would need to capture some combination of
RTUs and individualmeters in order to satisfy the original
“meter attack” criterion.

These attack options are shown in Fig. 1 for a 3 bus system.
The physical attack sub-graph requires capturing a number
of system level branches while the communications strategy
allows capturing of just 2 upstream nodes. Alternatively, the
attack can opt for the combination attack, capturing one of the
upstream RTU nodes and the left-over meter. 14-bus system
representation is shown in Fig. 2.

4.4 Physical attack risk

In the past, the cost of attacking a particular busbar via FDI
has been assessed in terms of the cost intrusion, i.e. which
meters are needed to manipulate a certain state stealthily.
However, this method of assessment fails to consider MTD
and the current system state. To assess the ability to attack
a system, a model should also consider the impact active
detection will have on the system residual in the presence of
an attack. As we have shown previously, in [14] meter value
deviation from expected values can increase the chance of
attack detection via anomaly detectors. We consider that the
required level of MTD to protect a system is an important
consideration and this level ofMTDwill be dependent on the
size of the attack vector a. Meanwhile, wemust also consider
that (usually) c will not be known ahead of the attack so a
true max–min optimisation based on the attack vector will
not be possible. Therefore, from the defender perspective, it
is better to base risk calculations on known quantities. We
consider that in order to perform a branch overloading attack
the power flow profile of the system will have to be adjusted
so that the power flow z exceeds the capacity overhead co.
Therefore, the higher the co, themore tolerance forFDI attack
an attacker has with respect to line overloading.

co = ‖zcap‖ − ‖z‖. (12)

where S is anm×m diagonal containing the power flow sign
of z. Using this, we can get a set of c values with the required
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Fig. 3 Outline of algorithm
process for assessment of the
weighted min meter target cost

Fig. 4 Time to completion of cyber-assessment algorithm process for
systems of differing sizes

branch change for overload. Setting all but the target branch
in co to 0, we can use this capacity overhead to get the set of
voltage angles required to overload that branch such that

zol = z + Hc. (13)

We constrain each case so that only a single bus is being
attacked (consistent with the minimal possible meter selec-
tion problem) and thereby setting cn = 0 for all except the
current target bus. The attack vector is then given by

an,m
ol = Hc. (14)

Once the list of possible attack vectors have been evalu-
ated for each bus, we use increasing magnitudes of available
MTD in combination with a multi-variable optimisation of
the topology H to return the maximum residual for the level
of installed MTD capacity.

max
H

‖(z + an,m
ol ) − H(HTWH)−1HTW(z + an,m

ol )‖2
s.t. H < Hlimit (15)

In practice, this optimisation can be performed quickly
with limited processing power. This is because the optimi-
sation is highly constrained. For one, the optimisation of
topology only occurs over the relatively small range of the
D-FACTs system limits. In addition, only a few branches will

contribute to the residual calculation (namely those affected
by the attacking subgraph). As power systems are sparse,
this means that even in large systems only a small fraction of
devices will need to optimised around for a given attacking
subgraph. As a result of these factors, the overall boundary
of optimisation in practice is very small and can be done
quickly. The level of MTD divergence in absolute terms to
evaluate each attack vector will be used as an assessment
factor with regions requiring larger applications indicating
an easier attack opportunity. We can use the WLS multiplier
to find the relative level of divergence DIV such that

DIV = ‖H(HTH)−1HTHmtd‖. (16)

We use this required level of divergence to denote regions
of higher risk with respect to FDI. Areas with high levels of
CO can be defended with very low levels of MTD applied,
while regions operating at capacity can be overloaded with
almost no FDI change and are therefore more difficult to
protect using MTD.

5 Cyber–physical assessment algorithm

5.1 Weightedmin cost communications

We use various tools from the MATLAB grTheory package
[27] to establish the respective communications, physical and
possible combination subgraphs and then evaluate the respec-
tive weighting for all of them. Initially, the algorithm takes
the power network and communications graphs as inputs. It
identifies the underlying attacking subgraphs. It then uses the
MATLAB “NCHOOSEK” function to outline the different
possible combinations of RTUs or meters that can achieve
this subgraph, subsequently weighing each possible combi-
nation.

The cyber assessment algorithm runs as follows:

1. To start, it takes the weighted graph inputs of the commu-
nications and physical meter networks.

2. It then calculates the underlying physical subgraph (sgp)
for each target bus.

3. For the subgraphs, each possible RTU/meter combination
to satisfy the attack is calculated.

4. This is then repeated for each target bus and a rank order
of target costs is established.
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Fig. 5 Outline of algorithm
process for physical risk
assessment using MTD
divergence and line capacities

This algorithmic flowof this process is illustrated in Fig. 3.
This algorithm can be applied quickly and simply. The time
for varying system sizes is shown in Fig. 4 with (as expected)
linear time scaling. As power systems are sparse, even large
systems would have broadly linear scaling. The exception
to this would be systems where the level of interconnection
grows with the system size, such as in the case of “complete”
graphs.

5.2 MTD-based physical vulnerability algorithm

Cyber assessment can effectively model the risk of intrusion
into a power system with respect to FDI attack vulnera-
bilities. However, in order to consider the post-intrusion
consequences we need to consider the underlying power sys-
tem model. In this post-intrusion assessment, we analyse the
risk of a branch overload via FDI attack. One way to defend
against FDI post-intrusion is using MTD. However, MTD is
costly to operate andSOs seek tominimise their overall appli-
cation of MTD. Large FDI attack vectors require less MTD
to evaluate and are easier to identify. It follows that regions
which require more MTD to protect have a higher inher-
ent risk to FDI as they are harder to protect post-intrusion.
Here, we outline a method of assessing this risk. To do this,
we use the MATLAB multi-variable optimisation package
FMINCON to establish the maximum residual value for a
given level of MTD capacity (ranging from 1 to 50% of base
branch inductance). Initially, the algorithm takes the topol-
ogy, MTD limits, power flows and power limits as inputs.
Based on the power flow limits, minimum potential attack
vectors are constructed from voltage angle adjustments for
each branch. We then use the optimal MTD algorithm, with
increasing capacity, to identify those regions which require
the most overall MTD (as a % of the base) to protect.

The physical vulnerability algorithm runs as follows:

1. The underlying power system data are taken as inputs
namely; capacity, power flows, network topology and
MTD limits.

2. For eachbranch, the overloadingminimumchange in volt-
age angles are calculated.

3. For each given attack vector and MTD capacity, the max-
imum possible residual is calculated.

4. The rank order of bus targets is established using theMTD
divergence figure.

This algorithmic flowof this process is illustrated in Fig. 5.

Fig. 6 Weighted cost of each strategywith Nodemeters, Branchmeters
and RTUs equal to a weighted cost of 1

5.3 Statistical load peak

We also consider the peak attack point for a respective
attacker. Often, attackers can remain hidden formanymonths
when intruding a system. Therefore, itmakes sense to operate
under the assumption that the attackerwill wait for the oppor-
tune moment to attack. We represent this opportune moment
as a statistically significant load of 3 standard deviations from
the mean such that

zs = z + 3SDz . (17)

where SD is a vector of standard deviations of z branch and
bus values.

6 Results and analysis

This section shows the results of the proposed risk assess-
ment strategies on both the standard IEEE 14-Bus test system
[28]. All grid simulations were implemented using theMAT-
POWER toolbox inMATLAB [29] and performed using Intel
Core i7-7820X CPU with 64GB of ram running on a Win-
dows 10 system.
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Fig. 7 Weighted cost of each strategywith Nodemeters, Branchmeters
equal to 1 and RTUs equal to a weighted cost of 3

6.1 IEEE-14 Bus system cyber

In Fig. 6, we show the min target costs under the assumption
of a flat cost of 1 for both meters or RTUs. From this graph, it
is clear that the communications-only strategy is always the
most efficient under the assumption that the devices are of
equal difficulty in capture. The reason that this effect occurs
is because the RTUs sit upstream of meter measurements
and thus, have control of downstream meter measurements,
i.e. each RTU effectively has equivalence in capture to multi-
ple meter measurements. Therefore, an attacker can replicate
attacking subgraphs by attacking fewer of these upstream
nodes rather than the meters directly. This is because this
first example is an unweighted, non-reinforced model. In
reality, most SOs would be aware that the RTUs represent
a better target to the attacker due to this relationship (even
prior to risk modelling), so we accept that this specific sce-
nario is unlikely in a practical system. RTUs will probably
have embedded defences against intrusions in place that will
likelymean theRTUswill have higher levels of intrusion pro-
tection than base meter measurements. We illustrate this in
Fig. 7. In this graph, we introduce a weighted cost for RTU
capture of factor 3 times the direct meter compromise. In
practice, weighted reinforcement at the RTU level is a more
realistic assumption and makes sense from a system opera-
tion perspective. RTUs control multiple functions and have
downstream capabilities. The value in their protectionwill be
more crucial than simple meter measurements, which only
provide telemetered measurements. Crucially, the weighting
of RTUs in this manner shows the emergence of combined
strategies emerging as the most efficient use of resourcing.
This makes sense as these combined approaches allow an

attacker to utilise well-connected RTUs and isolated meters
to complete underlying attack subgraphs.

6.2 IEEE-14 Bus system physical

In Fig. 8, we explore the impact of increasing MTD diver-
gence on system residual and detection. As discussed pre-
viously, we use the optimised min attack vector required to
overload a line within each attacking subgraph. We note that
in brancheswhere the natural powerflowprofile is close to the
network capacity, only smaller attacking vectors are needed
in order to achieve the simulated overload. This makes sense
from a system operation perspective as areas close to limits
require only small changes to overload a branch in excess
of capacity limits. We should expect to see that branches
with higher peak flows have higherMTD divergence require-
ments (as the attack vectors are smaller and harder to evaluate
with MTD). Indeed, we see that for regions with high over-
load capacity (low branch power flow relative to capacity)
only a via minor application of MTD-based divergence is
required to evaluate the optimal branch overloading attack.
However, as we can see in Fig. 9, there is an inverse relation-
ship between the size of attacking vector and level of MTD
required to protect against the attack. This is particularly clear
when the high vs low peak results are observed. For example,
bus 1–2 operates at the closest point to the branch capacity
and we see large levels of MTD divergence are required to
protect this bus sufficiently from cyber attacks. Significantly
higher levels of overall divergence are required to defend the
system which means these points are comparatively suscep-
tible to FDI-based changes. As the average size of attack
vector to breach the system is lower, the level of divergence
required to evaluate a FDI attack increases. This makes buses
with these close to overloaded branches relatively better tar-
gets than other regions where the attack vector has to be large
(and hence more easily evaluated).

6.3 IEEE-14 Bus system cyber–physical

Wenowconsider attack targets in terms of theirwhole system
risk. Bus 8 is by far the most vulnerable target in every non-
reinforced model. The relatively low interconnected means
it has the lowest capture cost of all the available buses with
just 2 components needed in order to compromise and gain
a stealthy intrusion. Also, the lack of interconnection also
means that MTD protocols are ineffective as MTD requires
at least 2 interconnections within an attacking subgraph to
drive changes to the residual under attack. This means that
despite the low line power flows, MTD is ineffective. In
the light of this consideration, bus 8 should be the priority
busbar for intrusion-based reinforcement and physical rein-
forcement should be ignored which provides no benefits to
this busbar. This particular case has crucial implications for
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Fig. 8 Absolute topology divergence to evaluate an attack for each bus and corresponding branch overload under a statistical peak of 3 standard
deviations operating conditions high and the same boundary lower

Fig. 9 Absolute required relative attack vector size to overload a line an attack for each bus and corresponding branch overload under a statistical
peak of 3 standard deviations operating conditions high and the same boundary lower

systems such as the IEEE 33-bus distribution style network
due to their lower levels of interconnectivity resulting from
the tree style topology. The vast majority of attack points in
these types of systems would gain no defensive advantage
with MTD and so intrusion-based defences should be prior-
itized. Similarly, in the case of busbar points 1 and 2 there
are large defensive MTD requirements in order to protect the
branch 1–2 measurement. While this branch is defensible
with MTD from an absolute cost perspective, it is likely bet-
ter to consider enhancing intrusion protection. Predictably,
highly connected buses have some innate protection when
it comes to FDI style attacks. Busbar 6 for example has 4
interconnections, and this means an innately higher system
protection from an intrusion perspective with 9 underlying
meters needing to be captured to commit stealthy changes.

7 Conclusions and further work

In this work, we developed a risk assessment framework for
false data injection attacks. Our assessment criteria consid-
ers weighted graph assessment of the cyber-vulnerabilities in
combination with a residual-based assessment of the physi-

cal system with relation to MTD. This framework provides,
for the first time, an intrusion and change introduction model
for risk assessment. This model first considers the weighted
minimum cost of intrusion into the network subgraph by
both RTU, meter and combined means. Second the model
considers residual under the minimum overloading attack in
the presence of MTD to show how defensible the targets
are. Simulations are performed under the assumption of the
peak load system in order to replicate the attacker’s ability
to wait for opportune moments to strike. To date, most work
in the field of FDI attacks has occurred purely in simulation.
However, there is a need to take these attack types from the
simulation realm to real-life simulation on cyber–physical
system testbeds such as the one outlined in [30].
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